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Abstract. Results of large-scale first principle nuclear structure stud-
ies using the symmetry-adapted no-core shell model are reported. It
is shown that nuclei up through the intermediate-mass region display
highly regular and ubiquitous patterns of dominant nuclear shapes that
vibrate and rotate. This emergent structure is tied to an approximate
symplectic Sp(3,R) symmetry, and it is shown to determine dominant
features of low-lying states, even in close-to-spherical nuclear states
without any recognizable rotational properties.
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1 Introduction

The ab initio nuclear many-body approaches represent a long-sought unifying
framework for describing and understanding nuclear phenomena as it emerges
from the microscopic degrees of freedom tied to the underlying principles and
symmetries of QCD. The challenge of understanding the emergence of nuclear
collective modes from ab initio considerations stems from the combinatorial in-
crease in the problem size with the number of nucleons and model space cutoff.
When expressed in terms of literally billions of Slater determinants, the structure
of nuclear wave functions becomes quickly unrecognizable. This problem can
be addressed by utilizing a many-nucleon basis that reflects symmetries inherent
to the studied system. In atomic nuclei such symmetries were recognized early
on by Elliott [1] followed by work of Rowe and Rosensteel [2], who identified
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the symplectic group Sp(3,R) and its subgroup U(3) as the underlying symme-
tries of microscopic nuclear collective motion. Aiming to understand dominant
modes of nuclear collective dynamics emerging from ab initio studies, we con-
structed the symmetry-adapted no-core shell model [3–5] (SA-NCSM) approach
that solves the nuclear many-body problem with realistic nucleon-nucleon inter-
actions using many-nucleon basis organized in terms of U(3) irreducible repre-
sentations (irreps).

In the present investigation, we unveil the crucial role of the symplectic symme-
try in large-scale ab initio SA-NCSM results for various nuclei and nuclear real-
istic interactions. We first describe U(3) symmetry-adapted basis of SA-NCSM,
followed by an overview of Sp(3,R)⊃U(3) symplectic shell model basis. Next,
we present a method for expanding symplectic basis states in terms of U(3)
basis of the SA-NCSM. Finally, we present results that illustrate a remarkable
outcome from first-principles investigations up through the intermediate-mass
region, namely, the simplicity of nuclear low-lying states and the striking domi-
nance of the symplectic Sp(3,R) symmetry of nuclear collective dynamics.

2 U(3)U(3)U(3) Symmetry-Adapted Basis

The SA-NCSM adopts powerful mathematical algorithms of group theory [6,
7] to decompose a given model space in terms of U(3) irreps constructed in
proton-neutron formalism with the spatial part of basis classified by the SU(3) ⊃
SO(3) group-subgroup chain [8]. Thereby each many-nucleon basis state can be
schematically labeled as∣∣∣∣{ ~αpNp(λp µp)

~αnNn(λn µn)

}
Nρ(λµ)κL; (Sp Sn)S; JM

〉
. (1)

Here, Np and Nn denote the total number of harmonic oscillator (HO) excita-
tion quanta for protons and neutrons, N = Np + Nn. Protons and neutrons are
organized into SU(3) irreps labeled by (λp µp) and (λn µn) quantum numbers.
Proton and neutron irreps are coupled to proton-neutron SU(3) irrep (λµ). The
symbol ρ denotes a multiplicity label which is needed to distinguish between
multiple occurrences of the (λµ) irrep within the product of coupling. The
SU(3) quantum numbers are related to the quadrupole deformation of a nucleus.
For example, (0 0), (λ 0), and (0µ), describe spherical, prolate, and oblate de-
formation, respectively. The quantum numbers (Sp Sn)S denote the total intrin-
sic spin of protons and neutrons coupled to the total intrinsic spin of a nucleus.
The total spin S is coupled with the total orbital angular momentum L to the
total angular momentum J and its projection M . The multiplicity label κ re-
flects the fact that multiple occurrences of L are possible within a general irrep
(λµ) of SU(3). The symbol ~αp (~αn) schematically denotes all the additional
quantum numbers needed to uniquely determine proton and neutron irreps, see,
e.g., ref [8] for details.
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3 Symplectic Sp(3,R)Sp(3,R)Sp(3,R) Symmetry-Adapted Basis

The symplectic model [2] was proposed by Rosensteel and Rowe as a mi-
croscopic model of nuclear collective phenomena that includes monopole and
quadrupole collective vibrations as well as vorticity degrees of freedom for a de-
scription of rotational dynamics in a continuous range from irrotational to rigid
rotor flows. It was derived as a microscopic generalization of the successful
Bohr-Mottelson-Frankfurt collective model. The symplectic model can be re-
garded as a many HO shell extension od the Elliott’s SU(3) model and hence it
allows one to realize nuclear collective states in terms of the shell model config-
urations.

The relevance of the symplectic Sp(3,R) symmetry for a description of a system
of strongly interacting nucleons emerges from the physical relevance of its 21
generators. The important operators such as, e.g., many-nucleon HO, the many-
particle kinetic energy, the mass monopole and quadrupole moments, angular
momentum operators, are elements of the symplectic algebraic structure.
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Figure 1. (Color online) The schematic plot illustrating decomposition of the shell model
space in terms of the symplectic Sp(3,R) irreps. Each Sp(3,R) irrep is depicted as a cone
made up of U(3) irreps, which are shown as ellipsoids. Each ellipsoid thus represents
Sp(3,R)⊃U(3) basis states labeled by N(λµ) quantum numbers that are related to a
definite nuclear deformation. The action of the symplectic raising and lowering operators
Â(2 0) and B̂(0 2) within a Sp(3,R) irrep is also schematically depicted. Figure adapted
from [9].
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The symplectic shell model group-subgroup chain, Sp(3,R) ⊃ U(3) ⊃ SO(3),
is directly responsible for the computational tractability of the symplectic model.
It transcends the Elliott SU(3) group and as a consequence bridges between the
microscopic shell model and the nuclear collective dynamics. The shell model
structure of the Sp(3,R) generators is elucidated if they are realized as

Âij =

A∑
n=1

b†nib
†
nj (2)

B̂ij =

A∑
n=1

bnibnj (3)

Ĉij =
1

2

A∑
n=1

(
b†nibnj + bnjb

†
ni

)
, (4)

where b†ni and bni are the HO raising and lowering operators for the nth particle
and i, j = x, y, or z. The operators Cij , generators of U(3) group, act only
within a major HO shell, while the six operators Aij are 2~Ω raising operators
and their adjoint Bij are 2~Ω lowering operators.

Symplectic basis states that span a given Sp(3,R) irrep are build by the action of
the symplectic raising operators Âij on a single U(3) irrep, dubbed symplectic
bandhead. Each symplectic bandhead carry a definite number of HO quanta N0

and can be associated through its SU(3) quantum numbers (λ0 µ0) to a certain
equilibrium shape. The action of symmetrically coupled polynomials in Âij
on the symplectic bandhead generates monopole and quadrupole vibrations and
rotations of the equilibrium shape. The resulting symplectic basis states are
labeled as

|α0N0(λ0 µ0)Nn(λn µn)Nρ(λµ)κL; (SpSn)S; JM〉, (5)

where the multiplicity index α0 is generally needed to distinguish between mul-
tiple equivalent symplectic bandheads. Quantum numbers Nn(λn µn) provide a
U(3) tensorial character of a polynomial in Âij that acts on the bandhead. Fi-
nally, U(3) set of quantum numbers N(λµ) labels the symplectic state, where
N = N0+Nn denotes the total number of HO quanta. In the proton-neutron for-
malism, each symplectic irrep carries the total intrinsic spin of protons, neutron,
and the total spin, Sp, Sn, and S.

The problem of evaluating a realistic Hamiltonian in the symplectic basis is chal-
lenging. It is hindered by the fact that Sp(3,R) Clebsch-Gordan coefficients are
not available. This problem can be avoided by the method built on ideas of
Suzuki and Hecht [10, 11], who derived recursive formulas for computation of
matrix elements of a generic U(3) unit tensor operator. This method was re-
cently implemented and applied in the study of emergence of collectivity in ab
initio results for 7Be [12].
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An alternative method is build on the fact that each Sp(3,R) basis state (5) can
be expanded in terms of U(3) symmetry-adapted states of SA-NCSM (1) that
carry identical (SpSn)S;N(λµ) quantum numbers. Such a space of equivalent
U(3) irreps constitutes a mere fraction of N~Ω shell model subspace of the
Hilbert space. Moreover, once the expansion is known, one can readily utilize
the existing SA-NCSM computational framework to carry out nuclear structure
calculations in Sp(3,R) symmetry-adapted basis.

4 Expanding Symplectic States in U(3)U(3)U(3) Symmetry-Adapted Basis

The expansion of symplectic Sp(3,R)⊃U(3) states in terms of U(3) symmetry-
adapted basis of the SA-NCSM framework can be obtained by solving the eigen-
value problem for the second order Sp(3,R) Casimir operator,

Ĉ
Sp(3,R)
2 =

[
Â(2 0) × B̂(0 2)

](0 0)

. (6)

Each Sp(3,R) basis state is an eigenstate of the operator ĈSp(3,R)
2 with the asso-

ciated eigenvalue

C
Sp(3,R)
2 (λ0, µ0, N0, λ, µ,N) =

1

2
√

6
[C(λ, µ,N)− C(λ0, µ0, N0)] . (7)

Here

C(λ, µ,N) =
2

3

(
λ2 + µ2 + λµ+ 3λ+ 3µ

)
+

1

3
N2 − 4N, (8)

where N0 and N are related to the eigenvalue of the intrinsic A-particle three-
dimensional isotropic HO, i.e.

N =

A∑
i

(
ηi +

3

2

)
− 3

2
.

As the Casimir operator is both U(3) and intrinsic spin scalar, the eigenvalue
problem can be solved in a subspace of equivalent U(3) irreps, that is irreps
that carry the same (Sp Sn)S;N(λµ) quantum numbers. Furthermore, resulting
expansion coefficients do not depend on downstream quantum numbers k, L,
and J . Indeed, utilizing U(3) symmetry-adapted basis leads to a substantial
reduction in the problem size.

In our construction method, the symplectic generators Âij and B̂ij are not trans-
lationally invariant. In order to obtain Sp(3,R) states with the center-of-mass
in the HO ground state, we augment the Casimir operator (6) with the Lawson
term N̂cm represented by the operator counting the number of center-of-mass
HO quanta, which is multiplied by a sufficiently large strength parameter λcm.
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In addition, the operator ĈSp(3,R)
2 is multiplied by a negative sign to ensure that

Sp(3,R) states with the center-of-mass in the HO ground state are associated
with negative eigenvalues. Therefore, we are solving the eigenvalue problem for
the lowest lying eigenstates of operator

Ôλcm
≡ −ĈSp(3,R)

2 + λcmN̂cm. (9)

The spectrum of the operator Ôλcm
, which we denote σ(Ôλcm

), consists of the
three regions:

1. If σ(Ôλcm
) < 0 =⇒ eigenstates are Sp(3,R) states with the center-

of-mass in the HO ground state.
2. If σ(Ôλcm

) = 0 =⇒ eigenstates are Sp(3,R) bandheads with the
center-of-mass in the HO ground state.

3. If σ(Ôλcm
) ≥ min(−CSp(3,R)

2 ) + λcm =⇒ eigenstates are either
Sp(3,R) states or Sp(3,R) bandheads with the excited center-of-mass
contribution.

The resulting eigenvectors realize Sp(3,R) symmetry-adapted basis states and
can be readily used to construct the Hamiltonian in the new symplectic basis.
While this procedure is computationally intensive, especially for higher-N sets
of large dimensionality, the expansion needs to be carried out only once for a
given nucleus. Furthermore, the Hamiltonian matrix in Sp(3,R) basis of most
dominant symplectic irreps is drastically small in size and the nuclear energies
and states can be calculated without the need for supercomputers.

5 Results

We generated the complete Sp(3,R) symmetry-adapted basis with up to 12 HO
excitation quanta (i.e. model space including 14 HO major shells) of the odd-
odd 6Li and even-even 8He nuclei. For the intermediate-mass nuclei 20Ne, we
constructed symplectic basis spanning a physically relevant subspace that in-
cludes configurations with up to 8 excited HO quanta (i.e. including 11 HO
major shells). For our study, we use ab initio SA-NCSM wave functions ob-
tained with the Entem-Machleidt (EM) N3LO [13] and NNLOopt [14] chiral
potentials without renormalization in nuclear medium.

The projection of SA-NCSM wave functions onto Sp(3,R) basis reveals that
low-lying nuclear states, deformed or not, are predominantly (70%-80%) com-
posed of a few Sp(3,R) irreps as depicted in Figure 2. This implies that nuclei
exhibit relatively simple physics. Nuclear collective dymamics as it emerges
from first principle nuclear structure studies can be desribed by a few equilib-
rium shapes that vibrate and rotate, where each equilibrium shape is associated
with a single symplectic Sp(3,R) irrep.

For example, the ground state and its rotational band in 6Li and 20Ne are dom-
inated from 70-80% by a single Sp(3,R) irrep built over the most deformed
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irreps closely reproduce the experimental data, Fig. 3(d), and
remain stable as the number of symplectic irreps is varied.
Extrapolations to the infinite number of shells use the
Shanks transformation and are based on the fast convergence
we find for observables [56,57].
Radii and E2 transitions are determined by Spð3;RÞ

generators (r2 and Q, respectively) that do not mix
symplectic irreps. The predominance of a single symplectic
irrep reveals the remarkable result that the largest fraction
of these observables, and hence nuclear size and collec-
tivity, necessarily emerges within this symplectic irrep,
Fig. 3(d). We note that the underprediction of the E2
transitions agrees with rms radii estimates, as both observ-
ables exhibit almost perfect correlations (see Supplemental
Material [28]). This also implies that the inclusion of 3N
forces, currently work in progress, will have an effect on the
E2 estimates, albeit to a small degree: e.g., rms radii
decrease by about 3% for light nuclei with EM-N3LO

NNþ 3N [58]; further, the extrapolated rms matter radii for
NNLOopt NN deviate from experiment only by 2% for 6Li
and 6.7% for 20Ne (see also Ref. [20]). Indeed, as shown in
Figs. 2 and 3, the symmetry patterns for the EM-N3LO,
whose complementary 3N forces give non-negligible con-
tributions to binding energies and radii, exhibit a strikingly
similar behavior to the ones for NNLOopt that minimizes
such 3N contribution in 3H and 3;4He [46].
The outcome is not sensitive to the parameters of the basis,

ℏΩ andNmax. Thesemodel parameters can be related toLeff ,
the infrared IR cutoff, and aeff , the ultraviolet UV cutoff
Λeff ¼ 1=aeff [59], which can be understood as the effective
size of the model space (“box”) in which the nucleus resides
and its grid size (resolution), respectively. Indeed, the
symplectic content of a nucleus is found to be stable against
variations in the box size or resolution (Fig. 4). This has an
important implication: complete SA-NCSMcalculations are

(a) (b)

(c) (d)

FIG. 3. (a)–(c) Symplectic Spð3;RÞ irreps that make up the rotational band states of 6Li, 8He, and 20Ne (in a close agreement with the
results of Fig. 2); each irrep is specified by its equilibrium shape, labeled by β and the corresponding SU(3) labels ðλμÞ together with
total spin S. Insets: the same irreps but without the predominant contribution, together with the β-γ plot for the ground state.
(d) Observables for 6Li and 20Ne calculated in the ab initio SA-NCSM with Spð3;RÞ basis using only a small number (specified in the
x-axis labels) dominant symplectic irreps including the most dominant one, as compared to experiment (“Expt.”). Energies (with errors
∼100 keV) and BðE2Þ transition strengths (in W.u.) are reported for extrapolations to infinitely many shells of converging results across
variations in the model space size and resolution (see Supplemental Material [28]). Model-space dimensions are shown above each case;
for comparison, the corresponding NCSM dimension for Jπ ¼ 0þ; 2þ; 4þ in 20Ne in 11 HO shells is 3.8 × 1010. Results (a)–(c) and
energies in (d) labeled as “All” are reported for ab initio SA-NCSM calculations for an SU(3) basis that yields a fast convergence of the
gs rms radius: complete (selected) model space of 14 (11) HO major shells for 6Li and 8He (20Ne) with intershell distance of (a)–(b) 20
and (c)–(d) 15 MeV.
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 20Ne

Figure 2. (Color online) Projection of ab initio SA-NCSM ground states and their rota-
tional bands in 6Li (top) and 20Ne (bottom) onto Sp(3,R) irreps labeled by the deforma-
tion parameter β, SU(3) labels (λ0 µ0), and the total intrinsic spin S. The insets show
the same irreps excluding the most dominant ones, together with the β − γ plot for the
ground state. The SA-NCSM wave functions were obtained using the EM-N3LO inter-
action in a model space of 14 (6Li) and 11 (20Ne) HO major shells, and ~Ω = 20MeV.
Figure adapted from [5].

U(3) valence space bandhead, i.e. (λ0 µ0) = (2 0) in the case of 6Li, and
(λ0 µ0) = (8 0) in the case of 20Ne. It is remarkable that for both nuclei the
model space defined by this single dominant Sp(3,R) irrep closely reproduces
experimental excitation energies as well asB(E2) strengths (Figure 3). This can
be understood from the fact that E2 transitions operator is a Sp(3,R) generator
that can not mix different symplectic irreps. This implies that the largest fraction
of these transitions, and hence nuclear collectivity, necessarily emerges within
this most dominant symplectic irrep. It is important to note that this holds true
also for the point-particle root-mean-square matter radii, as r2 operator is also a
Sp(3,R) generator [15].
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total spin S. Insets: the same irreps but without the predominant contribution, together with the β-γ plot for the ground state.
(d) Observables for 6Li and 20Ne calculated in the ab initio SA-NCSM with Spð3;RÞ basis using only a small number (specified in the
x-axis labels) dominant symplectic irreps including the most dominant one, as compared to experiment (“Expt.”). Energies (with errors
∼100 keV) and BðE2Þ transition strengths (in W.u.) are reported for extrapolations to infinitely many shells of converging results across
variations in the model space size and resolution (see Supplemental Material [28]). Model-space dimensions are shown above each case;
for comparison, the corresponding NCSM dimension for Jπ ¼ 0þ; 2þ; 4þ in 20Ne in 11 HO shells is 3.8 × 1010. Results (a)–(c) and
energies in (d) labeled as “All” are reported for ab initio SA-NCSM calculations for an SU(3) basis that yields a fast convergence of the
gs rms radius: complete (selected) model space of 14 (11) HO major shells for 6Li and 8He (20Ne) with intershell distance of (a)–(b) 20
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Figure 3. (Color online) Excitation energies and B(E2) transition strenghts (in W.u.) for
6Li and 20Ne calculated in the ab initio SA-NCSM with Sp(3,R) basis using only a small
number (specified in the x-axis labels) of dominant symplectic irreps including the most
dominant one, as compared to experiment (“Expt.”). Model-space dimensions are shown
above each case; for comparison, the corresponding complete model space dimension for
Jπ = 0+, 2+, 4+ in 20Ne in 11 HO shells is 3.8 × 1010. Figure adapted from [5].

The observed dominance of Sp(3,R) symmetry extends to low-lying states of
studied nuclei. We identified low-lying states that have almost identical Sp(3,R)
structure to that of the ground state, but which differ in their orbital angular
momenta quantum number L. This is illustrated in Figure 2 for 6Li and 20Ne.
Such a coherent structure is a rigorous signature of rotations of a shape and can
be used to identify members of a rotational band and enhancedB(E2) strengths.Role of Symmetries in Nuclear Physics 2437

Fig. 5. Symplectic Sp(3, R) irreps that make up (a) the 0+ ground state and (b) the
second 0+ state of 8He, labeled by the total HO excitations N0, SU(3) labels (�0 µ0), and
total intrinsic spin S0 of the equilibrium shape, together with the corresponding �-� plot.
Results are reported for ab initio SA-NCSM calculations with the NNLOopt interaction, for
an SU(3)-adapted basis in a complete model space of 14 HO major shells and ~⌦ = 20 MeV.

the N0 = 0(8 0)S0 = 0 equilibrium shape, but remarkably both have the same SU(3)
quantum numbers.

Similarly, the lowest two 0+ states in 8He, which has been suggested to be a halo
nucleus, are made of a predominant shape that contributes at the 40–55% level and a
secondary in importance shape with about 20% contribution (Fig. 5). It is interesting
to note that both shapes are “opposite” in their deformation, (1 0) is prolate and
the other one (0 2) is oblate (we note that another common convention associates a
positive � value with a prolate shape, whereas a negative � indicates an oblate shape).
While, in general, 8He is considered to be spherical, the present outcome points to
an interplay of two shapes in the ground state, which on average may appear to
have a zero deformation, but with a B(E2) strength from its 2+ rotational state that
constructively adds the nonzero contributions of both shapes.

4.2 Sensitivity to the NN interaction

The predominance of a few shapes is neither sensitive to the type of the realistic
interaction used, nor to the parameters of the basis, ~⌦ and Nmax [1]. Details such
as contribution percentages slightly vary, but dominant features retain. Furthermore,
even when the NN interaction is trimmed down by removing many SU(3)-symmetric
components that contribute less than a percent to the entire interaction, the results
practically coincide with the corresponding ab initio calculations that use the full
interaction [57]. As an illustrative example, we show that the SU(3) content for both
the ground state and the lowest 2+ state in 12C remains practically the same when
the full N3LO-EM [34] is used or its selected counterpart (Fig. 6). The corresponding
matter rms radius deviates only by 1% when the selected interaction is used (Fig. 6a,
inset), and such deviations typically decrease with larger model spaces (we note that
in these calculations we neglect the three-nucleon forces that will reduce the deviation
from the experimental value). This study o↵ers another remarkable outcome, namely,
chiral potentials such as N3LO-EM, when expressed as a sum of SU(3)-symmetric
components, exhibit a clear dominance of its (0 0) component, which preserves defor-
mation. In addition, we find that many of these components are negligible, which in
turn makes the selection feasible.

Figure 4. (Color online) Projection of SA-NCSM wavefunctions for (a) the 0+ ground
state and (b) the second 0+ state of 8He onto Sp(3,R) irreps labeled by the total HO
excitations N0, SU(3) labels (λ0 µ0), and the total intrinsic spin S, together with the
corresponding β − γ plot. The wave funtions were obtained using the NNLOopt inter-
action in a complete model space of 14 HO major shells and ~Ω = 20MeV. Adapted
from [15].
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We also studied the two lowest 0+ states in 8He, which has been suggested to be
a halo nucleus. Although 8He is considered to be spherical, both studied states
are dominated by the prolate (1 0) and the oblate (0 2) Sp(3,R) irreps. The dom-
inant irrep contributes at the 40-55% level and a secondary in importance con-
tributes approximately by 20% (Figure 4). Clearly, the structure of both states
can be described as an interplay of two shapes, which on average may appear to
have a zero deformation, but with a B(E2) strength from its 2+ rotational state
that constructively adds the nonzero contributions of both shapes [15].

6 Conclusions

We presented a method for the construction of symplectic Sp(3,R) symmetry-
adapted basis states in terms of U(3) symmetry-adapted basis states of the SA-
NCSM. This method allows us to study symplectic Sp(3,R) symmetry of nu-
clear collective motion as it emerges in large-scale ab initio nuclear structure
results, while addressing the long-standing problem of carrying out ab initio nu-
clear structure calculations in the symplectic basis that typically represents a
mere fraction of a complete model space. Outcomes point to unexpectedly ubiq-
uitous symplectic symmetry, with the illustrative examples provided for 6Li,
8He, and 20Ne nuclei. We find that ground states and low-lying excited states
are predominantly comprised (typically in excess of 70%-80%) of only a few
Sp(3,R) irreps. We showed that these dominant irreps constitute physically rel-
evant model spaces of small dimension that holds key to describing fundamental
collective features observed in atomic nuclei. In short, our results expose the
role of the Sp(3,R) symmetry as a remarkably good symmetry of the strong
nuclear force in the low-energy regime.
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