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ABSTRACT

Following significant advances in image acquisition, synapse detection, and neuronal segmentation in connectomics, re-
searchers have extracted an increasingly diverse set of wiring diagrams from brain tissue. Neuroscientists frequently represent
these wiring diagrams as graphs with nodes corresponding to a single neuron and edges indicating synaptic connectivity. The
edges can contain “colors” or “labels”, indicating excitatory versus inhibitory connections, among other things. By representing
the wiring diagram as a graph, we can begin to identify motifs, the frequently occurring subgraphs that correspond to specific
biological functions. Most analyses on these wiring diagrams have focused on hypothesized motifs–those we expect to find.
However, one of the goals of connectomics is to identify biologically-significant motifs that we did not previously hypothesize.
To identify these structures, we need large-scale subgraph enumeration to find the frequencies of all unique motifs. Exact
subgraph enumeration is a computationally expensive task, particularly in the edge-dense wiring diagrams. Furthermore,
most existing methods do not differentiate between types of edges which can significantly affect the function of a motif. We
propose a parallel, general-purpose subgraph enumeration strategy to count motifs in the connectome. Next, we introduce a
divide-and-conquer community-based subgraph enumeration strategy that allows for enumeration per brain region. Lastly, we
allow for differentiation of edges by types to better reflect the underlying biological properties of the graph. We demonstrate our
results on eleven connectomes and publish for future analyses extensive overviews for the 26 trillion subgraphs enumerated
that required approximately 9.25 years of computation time.

Introduction
After more than a dozen years of tedious image acquisition and manual reconstruction, Caenorhabditis elegans (C. elegans)
became the first species to have a nearly complete mapping of its neuronal wiring diagram in 19861. This first connectome
contained 302 neurons and approximately 5,000 chemical synapses. For over twenty more years2, and continuing still3, 4, a
significant amount of research has dissected the connectome of C. elegans, improving its accuracy and gleaning additional
insights. Building on these successes, recent rapid advancements in image acquisition techniques5–7 paired with automatic
neurite segmentation8, 9 and synapse prediction10, 11 methods have enabled the extraction of more complex partial connectomes
from more sophisticated species with nearly two and three orders of magnitude more neurons and synapses, respectively12.
As these automated processes further improve, requiring less human correction and verification, we can expect more diverse
animal connectomes at an even larger scale13–16.

Two significant goals for analyzing connectome structures are to generate more faithful models of the brain and improve
artificial intelligence 17–19. To this end, researchers often represent these connectomes as graphs where vertices represent
neurons, and neurons that share a synaptic connection receive a directed weighted edge between the corresponding vertices12.
Furthermore, the graph’s edges can have labels, which we will refer to as colors. Edge colors indicate a specific connection
type, e.g., excitatory or inhibitory. After graph construction, one of the primary goals is to identify motifs, small reoccurring
subgraphs that correspond to specific biological functions, hidden within the graph (Figure 1A). A significant amount of existing
literature on motif discovery for these connectomes has focused on finding specific motifs of known biological importance
within the wiring diagram12, 20, 21. However, an open goal for exploring the connectome is to identify motifs whose biological
significance was previously unknown21.

One approach to finding these motifs is to enumerate all subgraphs in the wiring diagram to identify those frequently
occurring subgraphs. Subgraph enumeration is a computationally expensive task for two reasons. First, the number of subgraphs



Figure 1. Motifs in the wiring diagram. A) These four subgraphs that appear in the connectome have specific biological
functions. Although the biological significance of these motifs was previously hypothesized, enumerating all subgraphs can
identify additional essential motifs. B) Here, we see six isomorphic subgraphs of size 3. The node colors do not represent
labels but rather correspond to the bijection that preserves edges. The boxed subgraph is the canonical form where the string
(bottom right) corresponding to the adjacency matrix (bottom left) is minimized.

rapidly expands as the subgraph size k increases and the possible set of connected vertices expands. Second, once enumerating
a given subgraph, we need to determine its canonical labeling since two subgraphs can have different adjacency matrices
and yet belong to the same equivalence class. For example, Figure 1B shows six subgraphs that have different adjacency
matrices and yet belong to the same equivalence class; in the figure, the six subgraphs have an edge-preserving bijection
that transforms the vertices from one instance into the other. In Figure 1B, we color the nodes to help indicate the bijections
between the six graphs. Therefore, during subgraph enumeration, we determine the canonical labeling of every subgraph to
guarantee that each subgraph uniquely maps to its equivalence class to ensure proper counting. The canonical labeling of a
graph is the adjacency matrix of all subgraphs in the equivalence class that has the smallest value when written as a string
(Figure 1B, bottom right). There are no known polynomial-time algorithms to retrieve the canonical labeling from a subgraph22.
Unfortunately, it is not feasible to count all unique adjacency matrices and determine equivalence classes as a post-processing
step. There are 2k2

total possible adjacency matrices for a directed graph (noting that self-loops are possible) for a subgraph of
size k. Compounding these two issues, we must get the canonical labeling for each enumerated subgraph. We propose a parallel
subgraph enumeration technique that builds on the existing Kavosh algorithm23 (Figure 2, left). Our method divides the input
graph using simple features about the vertices into a set of batch jobs with relatively equal computation times. We reduce the
“wall time” over sequential computation needed for one representative dataset by 10×, as we explain further in Methods.

Subgraph enumeration becomes infeasible even with parallelization for dense graphs with high average degrees. The
size of the available extracted wiring diagrams has dramatically increased in the last decade, and future connectomes will
only further increase the number of neurons and synapses15. For enumerating larger subgraph sizes, we can first cluster the
graph into communities and then perform subgraph enumeration within each community (Figure 2, center). This two-step
divide-and-conquer approach allows us to increase the size of explored subgraphs by significantly reducing the search space.
We use an automatic graph clustering algorithm that produces communities of approximately equal size. However, future
users could designate communities using existing biological knowledge about the different regions of the brain. Although this
approach will miss subgraphs spanning two or more communities, we will still find potentially significant motifs within clusters
and later can differentiate motifs between brain regions.

Some existing subgraph enumeration strategies allow one to distinguish vertices by “color” or “label”. Some analyses on the
connectome have used these algorithms to distinguish between different types of neurons20, 24, 25. However, few enumeration
strategies immediately allow for edge colors without some manipulation. In the wiring diagram, however, edges can correspond
to different types of connections with opposite functionalities (e.g., excitatory synapses stimulate and inhibitory synapses
suppress) (Figure 2, right). Identical motif topologies with different connections can produce wildly different neural behavior
(Figure 1A, feed-forward versus regulator). Thus, we need to differentiate between edge types during subgraph enumeration to
better match the input graph’s actual biological realities. Although our algorithm allows for the differentiation of either vertex
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Figure 2. Subgraph enumeration for large-scale connectomes. We propose three improvements on existing subgraph
enumeration strategies to improve throughput and better capture the underlying biology. First, we parallelize an existing
subgraph enumeration strategy to work on a distributed cluster. For each job, we enumerate a subset of vertices, indicated here
by color. Second, we first cluster the vertices into different communities for larger connectomes and perform subgraph
enumeration within each community. Lastly, we add edge colors to the graph to match the diversity of the synaptic connections.

or edge types, we do not discuss vertex coloring since it is already prevalent in the existing literature.
We present four contributions for large-scale subgraph enumeration specifically tailored to connectomic graphs. First, we

parallelize an existing subgraph enumeration strategy to significantly reduce the wall time needed to enumerate all subgraphs
by balancing the computation time fairly on a distributed computing cluster. Second, we implement a two-step subgraph
enumeration strategy that first clusters the input graph into communities and then enumerates subgraphs within each community.
We automatically determine these clusters in this implementation; however, this method easily extends to other clustering
techniques, including manual labelings based on the underlying biology (e.g., by brain region). Third, we extend the subgraph
enumeration task to include edge colors to represent the biologically diverse set of possible connections better. We demonstrate
our results on three datasets containing eleven connectomes from two different animal species: C. elegans and Drosophilia. As
our fourth contribution, we provide extensive analysis of the subgraphs found across both species; to facilitate further analyses,
we make all data and code publicly available, including the summaries of all unique subgraphs found and their corresponding
counts, totaling over 26 trillion subgraphs requiring 9.25 years of computation time.

Related Work
Subgraph enumeration tasks typically fall into two categories: subgraph-centric, also referred to as motif-centric, or network-
centric26. Subgraph-centric algorithms take as input a query subgraph and identify all occurrences of that particular sub-
graph27–29. These algorithms can efficiently find all occurrences of a given subgraph and use symmetry-breaking conditions
to reduce complexity significantly. However, these algorithms require query subgraphs and do not efficiently enumerate all
subgraphs, which may be more beneficial in determining the biological importance of all subgraphs. Network-centric algorithms
exhaustively enumerate all subgraphs in a given network for a given subgraph size23, 30, 31. These methods enumerate each
subgraph once and determine its canonical labeling using Nauty or a similar tool22. In this way, these algorithms incrementally
determine the number of occurrences for each unique subgraph. Analytic methods count the total number of occurrences of
each subgraph type without enumerating all subgraphs by constructing a matrix of linear equations that encode connectivity
information32, 33. However, computational restrictions limit these methods to k ≤ 626. G-Tries represent a middle approach to
network- and motif-centric methods34, 35. This suite of methods constructs a tree of subgraphs, where the tree leaves represent
the complete set of subgraphs to enumerate.

As noted above, complete subgraph enumeration is a computationally expensive task as the number of subgraphs grows
quickly as k increases. Furthermore, there are no known polynomial-time algorithms for producing the canonical labeling of
a general subgraph22. Approximate counting algorithms reduce the search space by traversing to a new vertex with a fixed
probability36 or searching a compressed network37, among other solutions. However, these strategies can miss subgraphs, which,
although very rare, would seldom appear in a random network, and therefore could indicate a biologically important motif (e.g.,
a large clique). There is a significant amount of research into distributing computation for exact subgraph enumeration. These
methods typically look for asymmetrical search spaces induced at each vertex38 or edge39.

Early research into motifs in neural wiring diagrams typically focused only on small motifs of two or three neurons40.
Furthermore, these early discoveries typically concerned a few neuron types in specific regions of the brain. Research into
motifs in the wiring diagram of C. elegans has focused primarily on small motifs between four or fewer neurons2, 25. Varshney et
al. found similar motifs in the C. elegans worm as to those found in the mammalian neocortex2, 40. Cook et al. compare the
relative frequency of all possible subgraphs of sizes two and three between the two specific sexes of the C. elegans worm3.
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Species Age Sex Neurons Edges Edge Types
Caenorhabditis elegans Adult Hermaphrodite 473 6,897 Chemical/Electrical/Both
Caenorhabditis elegans Adult Male 598 7,725 Chemical/Electrical/Both
Caenorhabditis elegans 0 h Hermaphrodite 225 775 N/A
Caenorhabditis elegans 5 h Hermaphrodite 225 986 N/A
Caenorhabditis elegans 8 h Hermaphrodite 225 1,006 N/A
Caenorhabditis elegans 16 h Hermaphrodite 225 1,101 N/A
Caenorhabditis elegans 23 h Hermaphrodite 225 1,504 N/A
Caenorhabditis elegans 27 h Hermaphrodite 225 1,524 N/A
Caenorhabditis elegans Adult (50 h) Hermaphrodite 225 2,193 N/A
Caenorhabditis elegans Adult (50 h) Hermaphrodite 225 2,189 N/A

Drosophila melanogaster Adult Female 21,739 841,720 Moderate/Strong

Table 1. Connectome datasets. We enumerate subgraphs on eleven connectomes from two different species. Two of the adult
C. elegans connectomes also contain end-organs and muscles.

Scheffer et al. consider both small and large motifs of the fruit fly Drosophila melanogaster, with attention to neuron type20.
The authors confirm some of the traditional results from previous works for small motifs, such as the over-representation of
reciprocal connections20, 41. Others have also observed these frequently occurring motifs in the connectomes of mammals
and worms. Scheffer et al. also search for families of large motifs, such as large cliques where all possible edge connections
are present20. However, in both the small and large cases, the authors focus primarily on motifs previously theorized to be
critical instead of exploring all possible subgraphs to find new motifs. More recently, Matelsky et al. published DotMotif, a
motif-centric connectome subgraph search and query tool that allows for node and edge attribute constraints42.

Results
This section provides summaries and insights on the subgraphs in these connectomes and quantitative statistics on the number
of subgraphs and the computation time. To encourage further analyses by others in the field, we provide complete summaries of
all subgraph counts for all connectomes. These summaries cover over 26 trillion subgraphs over the eleven connectomes and
required over 9.25 years of computation time.

Datasets
We perform motif discovery on three classes of datasets containing eleven connectomes, ten from C. elegans, and one from
Drosophila melanogaster. Table 1 summarizes each of the eleven connectomes, which are all publicly available.

Our first two datasets contain one complete connectome from each of the two biological sexes of C. elegans: hermaphrodite
and male. The two sexes have 302 and 385 neurons for the hermaphrodite and male, respectively. These two datasets also
include muscles, end-organs, and glial cells leading to 473 and 598 nodes in the graph for the two sexes. Cook et al. produced
the first male connectome and provided an analysis of the differences between the two sexes3. In their analyses, they focus on
subgraphs of sizes two and three only. We extend these analyses by exploring larger subgraphs than initially considered. We
also enumerate all subgraphs with three possible edge colors: chemical synaptic connections, gap junction (electrical), or both.
We refer to the male and hermaphrodite connectomes from this dataset as C. elegans AM and C. elegans AH for adult male and
adult hermaphrodite, respectively.

Our next eight datasets come from a longitudinal study of the developmental growth of C. elegans published by Witvliet et
al.4. These eight partial connectomes contain 225 neurons, each with increasing numbers of synapses based on the specimen’s
age. Six of these connectomes come from adolescent worms, and the oldest two are adults. These datasets only contain
chemical synapse information, so there are no unique edge types. Likewise, we refer to these datasets as C. elegans D[1-8]
with the number indicating the specimen’s relative age.

The Drosophila dataset is the largest publicly available proofread connectome with over 21,000 neurons and four million
synaptic connections12. We define three synaptic connectivity levels between two neurons: weakly, moderately, and strongly
connected. Weakly connected neurons share three or fewer synapses, moderately connected neurons share more than three
but fewer than ten synapses, and strongly connected neurons share ten or more synapses. Based on the authors’ discussion
on the precision of synapse detection12, we prune our graph to contain only synaptic connections that are moderately or
strongly connected. Removing these edges reduces the number of edges in our graph from 3,550,404 to 841,720. Compared
to mammalian brain samples, the EM imagery does not provide enough detail to differentiate excitatory and inhibitory
connections12. Therefore, our edges do not reflect that distinction.
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Figure 3. Subgraph distributions of size three. The distributions of subgraphs of size three are similar in the C. elegans
developmental (left) and the C. elegans sexes (right) datasets (cosine similarities > 0.977 and 0.995, respectively). Note that
these datasets are not comparable to one another since the datasets differentiating the two sexes include muscles, non-muscle
end organs, and glial cells.

Motifs
Figure 3 shows the relative proportion of size three motifs for both the developmental growth connectomes and the two sexes
of C. elegans. The distribution of subgraphs between the specimens in each grouping of datasets is remarkably similar for
both subgraphs of size three with a minimum cosine similarity of 0.977 for the developmental series and a cosine similarity of
0.995 for the sexes comparison. This surprised the authors, as these similarities cannot be explained entirely by the multiple
connectomes sharing an abundance of joint edges. For C. elegans AH and AM, the two connectomes share 449 neurons,
muscles, end-organs, and glial cells, leaving 24 and 149 unique cells for the hermaphrodite and male, respectively. The two
specimens have 3,572 equivalent edges among the shared nodes, leaving 3,325 and 4,153 unique edges for each sex. We cannot
compare the developmental series with the two other adult worms for two reasons. First, the developmental growth series are
only partially connectomes with only 225 neurons each. Second, C. elegans AH and AM contain muscles and end-organs in
addition to all of the neurons in the brain.

We provide a more thorough summary of the five most frequent subgraphs of sizes four and five in Figure 4. We note that
the same motifs frequently appear between specimens in the two longitudinal studies. There are only 7 and 6 unique motifs
of sizes 4 and 5 for the developmental series over the entire dataset. However, many (but not all) of these motifs represent
a purely linear connection with varying directional and bidirectional edges. Subgraph enumeration cannot determine which
motifs occur more frequently than random as that requires a random graphical model to serve as a null hypothesis. We can,
in part, explain the higher percentage of reciprocal edges in the male/hermaphrodite longitudinal study from the inclusion of
electrical synapses, which allow for a bidirectional flow of current.

Component Analysis
Kavosh Parallelization
Subgraph enumeration for even moderate k on the larger Drosophila dataset is simply infeasible without parallel processing.
We enumerate all subgraphs of size five on this dataset in under 7 days when running on ∼ 150 CPUs. Without parallelization,
that enumeration would take 2.77 years (Table 5). Even on the much smaller C. elegans datasets, enumerating subgraphs of size
7 on C. elegans AH takes 17.95 days of CPU time. Although the amount of total CPU time is similar using a naïve enumeration
ordering as to the ordering described in Algorithm 1, the maximum time spent for a single vertex decreases significantly on the
Drosophila dataset from 9820.40 sec to 74.12 sec (13.23×). When running on 250 CPUs, our algorithm reduces the wall time
by 11.10× and the idle CPU time by 47.99× (Table 2).

Community-Based Enumeration
A divide-and-conquer approach to subgraph enumeration can significantly reduce the total computation time required on a given
dataset. The number of subgraphs found decreases, particularly for larger values of k (Table 3). These decreases correspond to
subgraphs that span more than one community. In going from one to five communities, the number of subgraphs decreases by
55%, with a similar reduction in total computation time. Although this is a significant decrease in enumerated subgraphs, the
relative proportions of the motifs found remain relatively stable, as described by the cosine similarity metric, which compares
the distances between the two distributions of motif counts. Despite this reduction, we can still identify significant motifs per
community. This trade-off between exhaustive enumeration and quicker processing is a necessity moving forward.
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Figure 4. Most frequent motifs of size 4 and 5. Here, we summarize the five most common motifs of sizes four and five for the
eleven connectomes. Within each of the three datasets, motifs with the same color and letter designation are identical.

Naïve Algorithm 1
Mean Time 8.21 sec 8.54 sec

Median Time 0.92 sec 5.80 sec
Maximum Time 9820.40 sec 74.12 sec

Wall Time 175.20 min 15.78 min
Idle CPU Time 680.44 h 14.18 h

Table 2. Parallelization computation improvements. We can significantly reduce the wall time required when enumerating
subgraphs over a compute cluster by relabeling the vertex indices, as described later in the Methods. We reduced the maximum
time for enumerating from a root vertex from just under three hours to slightly more than one minute on the Drosophila dataset.
The new enumeration order reduces the idle CPU time by over 665 hours (97.9% decrease). The distribution of individual
times for the naïve method is highly skewed to the right; 5% of nodes account for over 62% of computation time.

Although the Drosophila dataset is the largest connectome to date, another most likely will surpass it within the next
half-decade. A divide-and-conquer approach can avoid enumerating subgraphs that span multiple communities and focus only
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No. Communities No. Subgraphs Total Time Cosine Similarity
1 36,041,949,778 51.54 h 1.0000
5 16,111,511,700 23.49 h 0.9577
10 10,660,308,898 15.66 h 0.9207
15 8,103,662,469 11.37 h 0.8693
20 6,340,790,895 8.85 h 0.8244
25 4,563,678,610 6.41 h 0.7946
30 3,819,932,809 5.39 h 0.7915

Table 3. Divide-and-conquer subgraph enumeration. A divide-and-conquer approach can significantly decrease the total
amount of computation time required when enumerating very large connectomes, although at the expense of total subgraphs
enumerated. These results come from k = 4 on the Drosophila dataset.

on those tightly connected regions of the brain. Furthermore, we believe this methodology extends well to connectomes with
predefined communities such as different brain regions. In these instances, one could perform intraspecimen comparisons
between the motifs found in different communities.

Edge Coloring
Adding edge colors increases the amount of computation time required for subgraph enumeration. However, differentiating
edges by color is critical for these biological graphs where two edges can have markedly different properties. Table 4 gives a
brief overview of the increase in running time when adding edge colors to the connectome. Typically, enumerating subgraphs
with edge colors increases execution time by 2–2.5×.

Dataset No Color/Edge Color
3 4 5 6 7

Drosophila 566.63/1053.48 s 2.15/4.39 d 2.77/6.12 yr N/A N/A
C. elegans AH 0.37/0.77 s 14.75/31.78 s 727.96/1607.75 s 9.53/21.76 hr 17.95/42.48 d
C. elegans AM 0.38/0.72 s 13.18/29.61 s 593.57/1296.49 s 7.13/16.38 hr 12.54/30.11 d

Table 4. Edge-coloring increased computation costs. Adding edge colors dramatically increases the running time for subgraph
enumeration.

Enumerated Subgraph Dataset
We publish exhaustive summaries of the subgraphs found over the eleven connectomes to encourage further analyses. For
C. elegans AH and AM datasets, we found all subgraphs 3≤ k ≤ 7 with and without edge colors. For the C. elegans D[1-8]
datasets, we found all subgraphs 3 ≤ k ≤ 7 (no edge colors available). Finally, for the Drosophila dataset, we enumerated
subgraphs of 3≤ k ≤ 5 with and without edge colors. These datasets contain summaries of over 26 trillion subgraphs across all
of the connectomes, which required over 9.25 years of total computation time. We hope that this readily available dataset will
encourage additional longitudinal studies across species, sexes, and developmental stages in the future.

Computational Complexity
Time
Subgraph enumeration is a computationally expensive task, as we see the number of subgraphs quickly explode in the Drosphila
dataset (Table 5). Although enumerating subgraphs of size three takes less than ten minutes, the total CPU time required
balloons to 2.77 years. Comparatively, we enumerate subgraphs for all of the C. elegans connectomes considerably quicker.
The most time-intensive enumeration for these specimens was for subgraphs of size seven for the adult hermaphrodite (473
vertices, 6,897 edges), requiring 17.95 days computation time. We significantly decrease the wall time required by distributing
computation across a compute cluster. For the Drosophila dataset, we compressed the 2.77 years of computation time to less
than 7 days using ∼ 150 nodes.

Memory
One of the most significant benefits of the Kavosh algorithm is its memory efficiency23. Empirically we found that our parallel
implementation requires less than 800 MB of RAM for each generated process for subgraphs with six or fewer vertices. Our
methods require more RAM for larger subgraphs, although all processes required less than 3 GB.
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Motif Size No. Subgraphs CPU Time
Drosophila

3 126,610,248 9.44 min
4 36,041,949,778 2.15 d
5 12,522,283,314,604 2.77 yr

Table 5. Computational complexity. The number of subgraphs, and the corresponding amount of time needed for enumeration,
greatly increases as k increases on large connectomes.

Discussion
Twelve years of onerous work yielded the first connectome in 1986 with 302 neurons and over 5,000 synapses. Since then,
advancements in image acquisition, neural reconstruction, and synapse detection have significantly reduced the amount of time
needed to extract these wiring diagrams. A recent dataset of a fruit fly contains over 21,000 neurons and 800,000 moderate
and strong synaptic connections. We expect similar growth in the future as neuroscientists reconstruct brain tissue from even
more evolved species such as bumblebees, shrews, and even humans. One goal of extracting these wiring diagrams is to create
more faithful models of the brain and advance artificial intelligence. Thus, we will need to identify the motifs in these wiring
diagrams that correspond to biologically essential functions.

Subgraph enumeration on these dense connectomes is a computationally expensive process that becomes infeasible even
for small wiring diagrams with < 1000 nodes. We present a novel subgraph enumeration strategy for large connectomes that
enables us to find frequent motifs. We parallelize our method to work across a distributed cluster and, when needed, use
a two-step enumeration method that first divides the wiring diagram into communities. Building on previous enumeration
strategies, we include methods for differentiating edge types to resemble the underlying biology better. We evaluate our
methods on eleven connectomes from two species and provide summaries to the over 26 trillion enumerated subgraphs. Ten
of these connectomes come from two existing longitudinal studies on C. elegans3, 4. We hope that our published motifs will
encourage further analysis into these eleven connectomes and longitudinal studies across brain regions within a specimen and
even across different species. Some motifs are known to occur in high frequency across brain regions and animal species, such
as the feed-forward loop and the reciprocal connection3, 20, 40. We hope that publishing enumerated subgraphs in variable wiring
diagrams will enable the discovery of other biologically essential motifs that span species and offer additional insights into the
brain’s inner workings.

As connectomes continue to increase in the number of neurons and synaptic connections, we will need to explore new ways
to enumerate subgraphs efficiently. By dividing the brain into individual regions with shared functionality, we can perform
intraspecimen longitudinal studies while significantly reducing the computation time for enumeration. Eventually, however, we
may need to consider approximate counting methods that sample subgraphs randomly to produce estimates for the motif counts.
Although these methods may miss important yet rare motifs, such as fully connected cliques, they will reduce computational
costs while still producing extensive summaries of the frequently occurring subpatterns in the brain.

Methods

Connectomes as Graphs
We construct a graph G(V,E) from each connectome. Each neuron or cell represented in the connectome corresponds to a single
vertex in the graph. Each vertex receives a unique index, although these indices do not contain biological significance. Edges in
the graph indicate a synaptic connection between two cells. The edges can receive labels (or colors) that can correspond to
synaptic strength (moderate or strong) or connection type (excitatory/inhibitory or chemical/electrical). We use k to refer to the
size (i.e., the number of vertices) of a subgraph throughout the remaining sections.

Kavosh Subgraph Enumeration
We extend the Kavosh algorithm to enumerate all subgraphs in our connectomes23. This algorithm is extremely fast and easily
parallelizable. The Kavosh algorithm begins with the vertex v with the smallest index and enumerates all subgraphs of size k for
which v belongs. The algorithms then updates v to be the vertex of the next smallest index, enumerates all subgraphs similarly,
and so on. At any point, the algorithm ignores any neighbors of v that have a smaller index than v to avoid counting the same
subgraph multiple times since each subgraph has a unique lowest-indexed vertex. This pruning does not miss subgraphs; every
subgraph has a lowest value vertex v0, and the subgraph will be found only during the enumeration rooted at v0. The number of
enumerated subgraphs grow quickly (Table 5) as k increases. Therefore, we cannot store each subgraph as a tuple of vertices as
the disk storage quickly becomes too onerous.
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Figure 5. Enumeration times and neighborhood sizes. A) There is a non-linear relationship between the number of neighbors
and the running time required. We can reduce running time variance by reducing neighborhood size variance. B) Although
immediate neighborhood size is a good indicator of the number of enumerated subgraphs, there is little correlation between the
extended neighborhood size and the number of subgraphs.

Kavosh Parallelization
Since the Kavosh algorithm enumerates all subgraphs rooted at a given vertex, we can divide subgraph enumeration tasks by
vertex. We do not need to worry that this division will overcount individual subgraphs since a subgraph is only enumerated if
the root vertex has the smallest index. Therefore, we can spawn off as many enumeration threads as vertices and guarantee
complete enumeration with no subgraph duplication. However, given the large number of vertices, it is more practical to group
together vertices into batch jobs.

The running time to enumerate all subgraphs from a given vertex varies greatly (Figure 5A). In one large-scale connectome
with over 20,000 neurons, enumeration of subgraphs of size 4 for some vertices took three or more hours. However, enumeration
concluded for 95% of neurons in under 30 seconds. Although such disparities do not significantly influence the total CPU
time required, they can drastically alter the “wall time” required when running on a distributed cluster. In most large-scale
wiring diagrams, the neuron indices are typically random—an artifact of the automatic reconstruction methods that gradually
agglomerate an oversegmentation8, 9. Even with species with highly stereotyped connectomes, like C. elegans, we can merely
assign a new “enumeration index” to each vertex that substitutes the given neuron index. Therefore, we selectively choose the
“enumeration indices” for each vertex to reduce computation time variance.

Algorithm 1 CalculateEnumerationIndex

Input G(V,E)← graph with V vertices and E edges
for v in V do

v.degree← len(v.neighbors)
end for
order← [ ] ▷ Final enumeration order
while len(order) ̸= ∥V∥ do

v← argminv∈V v.degree
order.append(v)
for u ∈ v.neighbors do

u.degree−−
end for

end while

For each vertex v, the number of neighbors of v with a larger enumeration index strongly indicates the number of subgraphs
rooted at that vertex, and consequently, the running time required to enumerate from v (Figure 5A). Intuitively, we know that

9/13



if there are n neighbors of v with a higher index, at a minimum, there are
( n

k−1

)
subgraphs contained within the immediate

neighborhood alone. We only consider the neighborhood of vertices with larger enumeration indices because Kavosh does not
enumerate subgraphs rooted at v that include vertices with lower-valued indices. When we use the pre-existing neuron indices
as the enumeration index, a few unlucky neurons have a low index and an exceptionally high degree. These corresponding
vertices dominate the computation time. Therefore, we greedily generate the vertex indices using Algorithm 1. In summary, we
assign an enumeration index of 0 to the vertex v0 that has the smallest edge degree. We then decrement v0’s neighbors’ degrees;
enumeration from those vertices will not consider subgraphs that include v0. Next, we choose the vertex, v1, with the lowest
remaining edge degree, and similarly update the remaining vertices’ neighborhoods. We continue this process until each vertex
has an enumeration index.

One might expect that we could gather more information about the possible running times by considering second-order
neighborhoods that include neighbors of neighbors. However, we found little correlation between the number of subgraphs to
enumerate and second-order neighborhoods. Intuitively, vertices on the periphery of a large clique will have a small first-order
neighborhood and a substantial second-order neighborhood (Figure 5B, purple vertex). However, the number of subgraphs
rooted at the peripheral vertex will be significantly less than its neighbor since every subgraph from the peripheral vertex must
also include its neighbor. Previous research has noted the existence of over ten such cliques with twenty or more neurons in the
Drosophila connectome20.

Community-Based Enumeration
Even with smarter parallelization strategies, enumerating all subgraphs for even k = 5 becomes quickly infeasible for large-scale
connectome graphs. For a representative connectome with approximately 22,000 neurons and 820,000 edges, subgraph
enumeration started at 9.44 minutes and 2.15 days for motifs of size three and four, respectively, but 2.77 years for motifs of
size five (Table 5). Considering that identifying motifs often requires subgraph enumeration on randomized graphs of a similar
size, this computational cost becomes overbearing even across a large distributed compute cluster. Therefore, we allow users to
cluster the vertices in the graph into communities and perform subgraph enumeration within each community. A downside of
using clustering is that we miss enumerating subgraphs that span more than one community. However, we can still identify the
frequently occurring motifs within clusters and contrast subgraph counts between different clusters.

For graph clustering, we use the METIS algorithm, which divides an input graph into a predetermined number of clusters43.
This algorithm has the desirable property of producing relatively evenly sized communities. Other such algorithms provide
unequal clusters, which significantly reduces the effectiveness of the divide-and-conquer strategy. Although we use an automatic
clustering technique, future analyses could segment the connectomes based on biological priors such as brain regions. With
a divide-and-conquer clustering approach, future research could contrast subgraph distributions based on the brain regions
themselves.

Edge Coloring
In the innermost loop of subgraph enumeration, we must identify each subgraph’s canonical form to classify a given collection
of connected vertices correctly. Although it is not known if the graph isomorphism problem is NP-Complete, there are currently
no polynomial time algorithms, and the current best provable complexity is exp

(
O(
√

n logn)
)

44. Many motif discovery
algorithms use the nauty library for graph isomorphism. This highly optimized library returns the canonical labeling of a
vertex-colored graph45. However, nauty does not currently support edge colors without some manipulation of the input,
requiring an expansion of the graph size to O (n logd), where d is the number of possible edge colors22. Thus, although
many motif discovery algorithms allow for vertex colors, they typically do not consider different colored edges. However,
different edge types are essential for brain networks and differentiate between excitatory and inhibitory connections and
chemical and electrical (gap junction) synapses. Additionally, some pairs of neurons will have multiple pathways between
them (e.g., chemical synapses and gap junctions). We can assign a new edge color to indicate neurons that have multiple types
of connections. Although the Kavosh algorithm does not natively support edge colors, the nauty documentation briefly
discusses how to add edge colors22. We modify the enumerated subgraphs before generating the canonical labeling based on
the nauty documentation.

Implementation Details
We implement our subgraph enumeration algorithm in C++ and provide a Python wrapper. We use the nauty22 library to
generate canonical labelings for each enumerated subgraph. We ran timing analysis on a distributed cluster with Intel E5-2695
v2 processors at 2.40 GHz 12 core, with 90 gigabytes of RAM. All code and enumerated subgraph results are publicly available
at rhoana.org/subgraph_enumeration.
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Data Availability
We publish the eleven connectomes analyzed on our webpage (rhoana.org/subgraph_enumeration), as well as a link to the
motif summaries. Note, the number of nodes and edges on the male/hermaphrodite longitudinal study differ from the original
publication of these datasets3. Our connectomes come directly from the adjacency matrices in Supplementary Information 5,
corrected version July 2020. These datasets contain extrapolated information from other C. elegans specimens for cells missing
from the reconstruction of Cook et al.
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