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Fig. 1: Visinity interface. a) Image viewer: multiplex whole-slide tissue images highlighting spatial cell arrangement; b) Cohort
view: search, apply, compare spatial patterns across different specimens; ¢) Neighborhood composition view: visualizes cell types
that make up cell neighborhoods; d) UMAP embedding view: encodes cells with similar neighborhood as dots close to each other;
e) Correlation matrix: pairwise interactions between cells; f) Comparison & summary view: different small multiple encodings of
extracted patterns; g) Neighborhood search: finds cells with similar neighborhood; h) Interactive clustering: automated detection of
neighborhood patterns; i) Annotation panel: save and name patterns; j) Channel selection: color and combine image channels.

Abstract— New highly-multiplexed imaging technologies have enabled the study of tissues in unprecedented detail. These methods are
increasingly being applied to understand how cancer cells and immune response change during tumor development, progression, and
metastasis, as well as following treatment. Yet, existing analysis approaches focus on investigating small tissue samples on a per-cell ba-
sis, not taking into account the spatial proximity of cells, which indicates cell-cell interaction and specific biological processes in the larger
cancer microenvironment. We present Visinity, a scalable visual analytics system to analyze cell interaction patterns across cohorts of
whole-slide multiplexed tissue images. Our approach is based on a fast regional neighborhood computation, leveraging unsupervised
learning to quantify, compare, and group cells by their surrounding cellular neighborhood. These neighborhoods can be visually analyzed
in an exploratory and confirmatory workflow. Users can explore spatial patterns present across tissues through a scalable image viewer
and coordinated views highlighting the neighborhood composition and spatial arrangements of cells. To verify or refine existing hypothe-
ses, users can query for specific patterns to determine their presence and statistical significance. Findings can be interactively anno-
tated, ranked, and compared in the form of small multiples. In two case studies with biomedical experts, we demonstrate that Visinity can
identify common biological processes within a human tonsil and uncover novel white-blood cell networks and immune-tumor interactions.
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INTRODUCTION

Tobler’s first law of geography, “Everything is related to everything
else, but near things are more related than distant things” [86] em-
phasizes the importance of spatial proximity. This is not limited to
geographical phenomena; it is also applicable to many biological
systems [61]. Biological tissues comprise numerous cell types that
function together in multi-cellular units that are crucial in development,
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physiology, and disease. In cancer, the interactions between tumor
cells and immune cells are of particular interest as these contacts dic-
tate whether tumor growth is controlled or proceeds unrestrained [23].
Recent tissue imaging methods permit the identification and quantifi-
cation of tumor and immune cell types within cancer tissue. Important
functional interactions between cells can be inferred by identifying
cells that are next to each other. In addition, higher-order arrangements
of cells that may represent a structural or functional component of tis-
sue can be quantified by determining which cells tend to neighbor each
other (spatial neighborhood analysis). These ‘recurrent neighborhoods’
can assemble to compose more extensive spatial patterns.

Detecting such patterns poses substantial challenges; recent research
found that spatial patterns must be investigated across large regions
of tissues to yield biologically and statistically meaningful results [50],
necessitating methods capable of spatial analysis at large scales.



Experts in the fields of pathology, cancer biology, and systems phar-
macology have thus acquired whole-slide images from tissue sections
using fluorescence microscopy techniques, such as CyCIF [48], with
an overall size of up to 60k x60k pixels. This results in highly mul-
tiplexed tissue images, often larger than 100GB in size. Moreover, a
single experiment can involve imaging ten or more specimens within
a larger cohort. Identifying spatial neighborhood patterns in such data
requires scalable computational methods. However, such techniques
alone cannot fully replace the human mind; experts have expansive
domain knowledge of cell and tissue morphology formed through
years of visually investigating tissues. There is thus a need to facilitate
visual human-in-the-loop data exploration, permitting these experts
to guide pattern identification and verification. Yet existing visual
approaches [77, 84, 85] for spatial neighborhood analysis, by design,
only scale to single images representing small regions of tissue and
are limited in their interactive capabilities.

We addressed these challenges as a team of visualization researchers,
pathologists, and cell biologists via a process of goal specification, iter-
ative design, and tool deployment in a biomedical research laboratory.
We make the following contributions: (1) A domain-specific human-in-
the-loop workflow to visually analyze, extract, and summarize spatial
interaction patterns within and across datasets. This workflow enables
both exploratory and confirmatory analysis through semi-automatic pat-
tern detection and visual querying. Identified patterns can be annotated
with information about their biological context, compared, and saved
for continued study. (2) A scalable and flexible computational pipeline
to quantify cellular neighborhoods and their spatial arrangements into
larger spatial microenvironments (patterns). This pipeline quantifies
the spatial neighborhood of each cell as a vector of surrounding cell
types in a defined query range. We group similar neighborhoods and
verify their significance through permutation testing, allowing for the
identification of meaningful spatial patterns within and across tissues.
(3) A scalable visual analytics system named Visinity to interactively
analyze the computed neighborhood patterns in and across the large
whole-slide tissue image data. Visinity consists of a web-based mul-
tiplex image viewer with different rendering modes and superimposed
neighborhood encodings. Image exploration is linked to projections
and parallel coordinates highlighting frequent neighborhoods and their
composition. Small multiple arrangements of these views summarize
findings and allow for side-by-side comparison.

We evaluate the applicability of our approach in two hands-on case
studies with biomedical experts. We first demonstrate that our system
can detect well-established spatial patterns of immune cells in a healthy
human tonsil specimen. Second, we analyze a cohort of specimens
from a genetically engineered mouse model of lung cancer, revealing
immune cell interactions that are an area of cutting-edge research in
oncology. We report on user feedback on Visinity’s functionalities and
demonstrate the tool’s computational scalability.

2 RELATED WORK

2.1 Visual Spatial Analysis of Biomedical Imaging Data

A wide variety of bioimaging data viewers (e.g., OMERO
Pathviewer [35], ViV [53]), Napari [82], Cytomine [75], Min-
erva [70]) and visual analysis tools (e.g., ParaGlyder [57], Vitessce [19],
Facetto [40], Scope2Screen [32]) are used to study multiplexed tissue
images and derived feature data. Visualization and analysis methods for
older spatially resolved modalities, by contrast, often operate directly
on the pixel data, though not at the single-cell resolution [6,7,13,17].
Generally, the aforementioned tools focus on visual exploration and
cell-type identification and are not intended to analyze interactions be-
tween cell types and the larger spatial neighborhoods that tissue mi-
croenvironments are composed of.

A small subset of tools go beyond single-cell analysis to investigate
neighborhood patterns. CytoMAP [85] is a computational toolbox de-
signed to analyze spatial patterns in highly-multiplexed imaging data.
Similar to our approach, it uses radial queries to compute local neigh-
borhoods and visualizes their composition and arrangements. However,
the static plots that CytoMAP provides do not allow for interactive ex-
ploration and search. ImaCytE [84], HistoCat [77], and Halo [2] offer
interactive spatial analysis capabilities through linked views. These ap-

proaches visualize cell-cell interaction as matrices, superimposed links
in the image space (Halo), interaction networks (HistoCAT), and as ag-
gregated glyph-based representations of frequent neighborhoods (Ima-
CytE). While the proposed visual encodings were evaluated as effective
for exploring cell interactions, their confirmatory analysis capabilities
are limited. Visinity, by contrast, offers various visual querying capa-
bilities to search for specific interactions.

Most existing systems do not scale to the large datasets our users
work with. ImaCytE supports computation and rendering of tens of
thousands of cells, whereas whole-slide tissue images often contain
upwards of a million cells. Visinity enables this through scalable multi-
resolution WebGL rendering, spatial indexing, and algorithms that op-
erate at interactive rates. Additionally, like CytoMAP, most approaches
offer isolated analysis of one tissue at a time, whereas Visinity enables
users to analyze and compare across specimens. Somarakis et al. [83]
support such cohort analysis of pairwise cell-cell interactions through
explicit visual encodings (raincloud plots and heatmaps), but data sizes
are limited to 107 cells per dataset (Visinity scales to 107 cells). Finally,
to test the statistical significance of identified spatial patterns, Histo-
CAT and ImaCYtE rely on permutation testing. We extend these meth-
ods with efficient parallelization, precomputation, and visualization
to make them scalable, understandable, and interactively adjustable.

2.2 Visualization of Spatial Interaction

Our approach also draws more broadly on work visualizing spatial
interactions outside of the biomedical domain, such as movement and
communication between geographic areas. A straightforward approach
is to display such interactions in their spatial dimensions, e.g., on top of
amap or image. Advantages of this approach are the familiarity of read-
ing maps as well as emphasizing the spatial auto-correlation in the in-
teraction data. ArcGIS [1], among other geographical information sys-
tems, offers statistical methods and visual encodings [3,79] to compute
and display spatial dependencies, involving spatial correlation, clus-
tering, and alignment of spatial objects (shape, center, orientation). Re-
sults are usually superimposed on the map. To show spatial interaction,
flow maps [97] are a common practice. Varying opacity [94], spatial ag-
gregation [68,90], and edge bundling [68] are common methods to re-
solve clutter in these views. However, while flow maps are well suited
for tracking interactions across large distances, cell interactions in tis-
sue usually form a more planar graph with local connectedness. Glyph
overlays [74] can indicate a direction (i.e., tensor fields) and additional
features without obscuring the underlying data. In our data, interaction
is not explicitly defined but indicated through spatial proximity. We
thus decided not to emphasize interaction by visual edges or glyphs. In-
stead, we use minimalistic color-coding to highlight cell types in user-
based selections and contours (concave-hulls) to emphasize the unity
of detected neighborhood clusters while keeping the underlying image
data visible. Interaction patterns have also been displayed in abstract
(non-spatial) views where they can be visualized in aggregation, such
as node-link diagrams [8] and matrices [97]. Other systems [25,42],
similar to Visinity, apply a combination of coordinated spatial and
abstract views [73], offering different perspectives on the data.

Visinity also draws on visual querying to search spatial interaction
patterns. PEAX [44] introduces visual querying for pattern search in
sequential data where users query by example and interactively train
a classifier to find similar patterns. Krueger et al. [69] propose a visual
interface to sketch, query, display, and refine spatial interactions be-
tween moving objects. We adapt and task-tailor this workflow; search
can be triggered by selecting existing patterns in the tissue image or
by explicitly sketching a spatial neighborhood composition.

2.3 Computational Spatial Analysis Methods

Relevant spatial analysis methods can be categorized into: (A) statistical
methods measuring spatial distribution/ correlation of single or pairwise
features, (B) approaches detecting higher-order feature interaction such
as topics and motifs from tabular data, and (C) image-based approaches
to find reoccurring spatial features.

A) Spatial (Auto-)Correlation Methods: Moran’s I [56] and Geary’s
C [18] are commonly used methods to quantify spatial autocorrelation,
which determines how a variable is distributed spatially. Such corre-
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Fig. 2: A specimen consists of (a) multi-channel image data, (b) seg-

mentation mask of cells (often > 10° cells), and (c) single-cell data
containing information about the position, cell type, and marker inten-
sity values for each cell. (d) Specimens are often part of cohorts.

lation can be computed for every data feature (e.g., gene/protein ex-
pression) in isolation to describe their spatial organization and has been
used to identify biological relationships in imaged tissue [13]. Ripley’s
K function [72], among others, extends this by computing random, dis-
persed, or clustered distribution patterns at varying scale, for one (uni-
variate) or between two features (bivariate).

B) Higher-order Interactions between Multiple Features: To iden-
tify higher-order patterns, the spatial relatedness of objects can also
be modeled as a network. Ribeiro et al. summarize the field of sub-
graph counting and motif discovery [71]. However, the number of
cells (nodes in the graph) in combination with a variety of cell types
(node attributes) renders current motif discovery algorithms compu-
tationally infeasible for interactive setups, especially when considering
interaction at multiple scales. The complexity of most algorithms
grows exponentially with motif sizes [93]. Other approaches compute
groups (topics or clusters) based on probabilities and distances. Zhu
et al. [98] use a Hidden-Markov random field to model spatial depen-
dency of gene expression. Spatial-LDA [91] is a probabilistic topic
modeling approach, which is also applied in the biomedical field [58].
CytoMAP [85] and stLearn [67] rely on distance-based clustering; they
extract per-cell features from histology images, collect neighborhood
information for each cell (represented as vectors), and cluster these vec-
tors to reveal patterns. We formalize and combine these concepts into
a computational neighborhood quantification pipeline. We improve
existing methods by inverse distance weighting, adding similarity
search, and creating a scalable implementation; neighborhood size can
be changed on the fly to analyze spatial patterns at different scales.

C) Image-based Approaches: Other methods directly operate on the
image. Common deep learning approaches [76] include representation
learning for comparing and finding similar image regions [14,95] and
convolutional neural networks [21] for object classification and local-
ization. However, supervised approaches are difficult in a biomedical
context because of a lack of labeled data and their explainability. Over-
coming segmentation by operating directly on pixel data [62, 64, 89]
renders interpretation of interactions between captured patch-like struc-
tures more challenging. This aligns with our experts’ practice of using
cells as elemental and meaningful biological building blocks. By build-
ing our approach on single-cell data derived from multiplexed images,
we were able to develop a more scalable and quantifiable approach.

3 WHOLE-SLIDE MULTIPLEXED TISSUE IMAGING DATA

The data created by our biomedical experts consists of multiplexed
images of tissue generated by iterative staining with antibodies that rec-
ognize specific proteins followed by imaging with a high-resolution op-
tical microscope in successive cycles. Our collaborators commonly use
cyclic immunofluorescence (CyCIF) [49] to generate these data, though
other imaging technologies [20, 22] are capable of producing similar
image data. Individual cells in the image are then segmented. Based on
the relative protein expression levels present within each cell, most cells
can be assigned to a specific cell type [45,60]. This process, therefore,
yields the following data for a single specimen (Fig. 2): (a) a multi-
channel tissue image, where each channel corresponds to a different
‘marker’ (often proteins are recognized by an antibody ), (b) a cell seg-
mentation mask that conveys the location of each individual cell in the
image space, and (c¢) single-cell data: a feature table that includes po-

sition and cell type for each cell. (d) Specimens can be parts of greater
‘cohorts’ and are investigated in conjunction to one another. These data
are sizeable; single slides range from 2 to 6 cm? in size and contain up
to 107 cells. The tissue image, given the number of channels, contains
up to 107 pixels, resulting in an image file as large as 200GB. All analy-
sis in this paper uses the OME standard for microscopy image data [46]
and is generated with the MCMICRO [78] image processing pipeline.

4 GOAL AND TASK ANALYSIS

To understand the needs of domain experts in the field, we surveyed a
group of 6 biologists and 3 pathologists from Harvard Medical School,
Dana-Farber Cancer Institute, or Brigham and Women’s Hospital.
From the questionnaire (see Supplemental Material) and monthly meet-
ings over a period of one year, we identified and refined a set of high-
level domain goals from which we derived specific tasks as guidelines
for an effective visual analytics system. We thus fulfilled the translator
role put forth in the design study methodology by Sedlmair et al. [80],
requiring a comfort level with task abstraction [51] in computer science.

4.1 Goals

G1. Experts are interested in identifying how specific cell types attract
or repel each other (cell-cell interaction). When immune and cancer
cells are frequently observed close to one another (in each other’s spatial
neighborhood), they are likely to interact. For instance, the interaction
of two types of immune cells (B and T-cells) is a central tenet of pro-
tective immunity. These interactions can occur at various scales (cells
directly adjacent to each other or in the same large region of tissue).
G2. With these neighborhoods as building blocks, experts seek to
understand their spatial arrangement within the tissue image. These
neighborhood patterns can be equally distributed throughout the im-
age or appear in proximity, forming biologically meaningful spatial
structures (groups). Germinal centers, which are regions within lymph
nodes where B cells proliferate, are examples of such micro-structures.
G3. Experts seek to validate the statistical significance of identified
neighborhood patterns and larger spatial structures (G1, G2) within
and between specimens. By understanding how often they appear and
how properties (e.g. composition, size) vary between patterns, expers
can determine clinical relevance and motivate further investigation.
G4. Finally, experts want to connect patterns present in an image back
to biological and clinical information. They hope to determine how
the presence of specific patterns correlates to specific cancer therapies,
the growth of tumors, and immune response to those tumors, with an
overall goal of improving cancer diagnosis and treatment.

Our survey showed that the scientists are interested in performing
both exploratory and confirmatory analysis to achieve these goals. In
their highly experimental settings, discovering novel spatial neigh-
borhood patterns and thereby generating new hypotheses is of similar
importance as the ability to express and verify existing hypotheses.

4.2 Tasks

T1: Visually explore spatial neighborhoods (G1, G2) from differ-
ent perspectives. This includes navigation, visual identification, and
selection of regions of interest in the tissue as a means for exploring
the spatial neighborhoods present in a specimen or multiple specimens.
T2: Group similar cell interactions, through which experts can iden-
tify the larger structures formed by these cell-cell interaction patterns
(G2). These grouping strategies must scale to the large data, even group-
ing the patterns present in multiple specimens at once while also being
interactively configurable to incorporate users’ domain knowledge.
T3: Express and search for hypotheses (G3). This includes the abil-
ity to query for specific user-defined cell-cell interactions as well as
search by example, i.e., find additional occurrences of the pattern
present in a ROL. It also includes querying across cohorts.

T4: Compare the contents and spatial expression of patterns iden-
tified within a single specimen and across a cohort (G3), while taking
into account the biological and clinical context. (G4). In this context,
spatial expression refers to the presence of a pattern within a tissue.
T5: Rank the presence and statistical significance of pattern
within a specimen, building on the previous task. This augments com-
parison and helps experts better understand these patterns (G1, G2)
and how they differ within and across specimens (G3).
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Fig. 3: Visinity Workflow: (a) Neighborhood quantification: users choose a spatial range triggering neighborhood vector computation; (b)
Browse cohort: small multiples of specimen to gain an overview of neighborhood patterns; (c) Bottom-up analysis: explore spatial arrangements
and cell-type composition of neighborhoods, generate hypotheses, cluster, and extract patterns; (d) Top-down analysis: two visual querying
capabilities allow hypothesis generation and search for similar patterns; (e) Pattern annotation and comparison within and across datasets.

Té6: Extract, annotate, and save found patterns along with biological
and clinical information (G4), as analysis is ongoing and not limited
to isolated sessions. This information may relate to the source of the
specimen, specific treatments involved, or patient outcomes. This al-
lows for continued analysis, where gained knowledge is applied to new
specimens (G3), and insights can be shared with other experts.

5 WORKFLOW

From the identified goals and tasks and in bi-weekly sessions with the
experts, we extracted an iterative human-in-the-loop workflow (Fig. 3)
for spatial neighborhood analysis that guided the design of our visual
analytics system Visinity (see Sec. 7).

After importing the data, users can specify a neighborhood size
(can be modified), depending on if they are interested in more local
or global interaction patterns (Fig. 3, a). Neighborhoods are then quan-
tified. Users can gain an overview of the tissue environments across all
specimens in their cohort (T1) in the form of small multiples (Fig. 3,
b). Users can start to explore the image (bottom-up analysis) (Fig. 3,
c) and select regions of interest in the tissue to visualize the spatial
neighborhoods present (T1). To aid exploration, they can interactively
cluster neighborhoods in an entire tissue (T2), extracting patterns in
a semi-automated manner. Top-down analysis (Fig. 3, d, T3) to test
and refine existing hypotheses can either be done by specifying the
cell types involved in a neighborhood pattern or by selecting a region
of interest in the tissue as an example of a spatial pattern. Both trigger
a search within and across tissue images for matching neighborhoods.
Based on the contents, spatial context within the tissue, and statis-
tical significance of results (quantified through permutation testing),
users refine their hypotheses and can save and annotate identified pat-
terns (T6). Finally, a user can (Fig. 3, e) compare these saved patterns
within a dataset and across datasets, allowing them to test if a pattern
in one tissue is present and statistically significant in another (T4, T5).
6 QUANTIFYING SPATIAL NEIGHBORHOODS
According to our biomedical experts, a cell’s neighborhood is de-
fined by the cells in spatial proximity within a defined spatial dis-
tance. Groups of cells with similar neighborhoods form patterns that
assemble to compose more extensive spatial arrangements. To ex-
plore (T1), group (T2), search for (T3), compare (T4), rank (T5), and
save (T6) cell neighborhoods and the patterns they form, we propose
a neighborhood quantification pipeline, building on existing work in
the field [84, 85]. We extend these methods with a more scalable imple-
mentation to interactively investigate patterns of different length-scales
in whole-slide imaging data, with spatial distance weighting to reflect
the neighborhood influence of cells, and with higher-order permutation
testing to determine the significance of found proximity patterns.

Our computational pipeline (Fig. 4) works in 5 steps (1-5):

Step 1: We build a ball tree with the coordinates of each cell in the im-
age. This takes O(n+ k) to perform spatial range queries, where 7 is the
number of points and k the number of points returned in that range [36].
Step 2: We create a feature vector representing each cell’s neighbor-
hood of size 1 x ¢ (where ¢ is the number of cell types in the dataset).
Each column corresponds to the fraction of a cell’s overall neigh-

borhood occupied by a specific cell type. These values are linearly
weighted such that cells closer to the center of the neighborhood radius
contribute more to the overall neighborhood. The resulting vector is
normalized. This representation builds on existing approaches [84, 85]
and was reaffirmed by feedback from our collaborators, who said that
it was highly interpretable and fit with the hypotheses they had regard-
ing the cell-cell interactions present in a dataset (T3).

Step 3: Repeat this process for every cell in a dataset, resulting in one
vector for each cell. We generate a matrix representing the neighbor-
hoods in a dataset, where each row is the neighborhood of a cell.

Step 4: Cells with similar spatial neighborhoods are represented by
similar neighborhood vectors. We run a distance-based nearest neigh-
bor search (T3) and use a configurable threshold to define similarity.
To find groups of similar neighborhoods (T2), we utilize partition-
based clustering (see Sec. 8.1 for more details). Together with our
experts and based on literature [31], we evaluated vector comparison
based on Euclidean distance to achieve the most satisfying results
while also providing simplicity, interpretability, and scalability.

Step 5: Inspired by similar approaches [77, 84], we use permutation
testing [30] to determine the patterns’ statistical significance (T5)
within a specimen and across a cohort. We count individual neighbor-
hoods that match a given neighborhood pattern based on a user-defined
similarity threshold (Sec. 8.2). We then randomly shuffle the assigned
cell types in the data, recomputing neighborhood vectors (Steps 1 -
3), and calculating the number of matching neighborhoods for each
permutation. Eq. 1 describes our P value calculation.

P ¥ (Permuted Data Matches > Actual Matches) )

# of Permutations

7 VISUALIZING SPATIAL NEIGHBORHOODS

To realize the identified workflow (Sec. 5) and task (T1-T6) we devel-
oped Visinity — an open-source visual analytics system [4] for spatial
neighborhood analysis. Visinity’s interface (Fig. 1) consists of coordi-
nated views offering different perspectives on detected neighborhoods,
including their composition and spatial occurrence in the tissue.
Cohort Overview. After data import and neighborhood quantification
(Sec. 6), users can start the analysis with an overview of all specimens
in a cohort. Together with the biomedical experts, we chose small mul-
tiples of image thumbnails as a sufficient and compact way to compar-
atively summarize (T4) the images in a cohort and their morphology
(Fig. 1, b). Users can zoom and pan into these thumbnails to begin ex-
ploration and select a specific dataset for thorough investigation (T1)
in the image viewer (a). As analysis progresses, spatial neighborhood
patterns identified in a single specimen are detected and visualized in
other members of the cohort by highlighting their spatial presence in
linked images. Specimens can also be sorted by the number of match-
ing neighborhoods to the pattern currently being investigated or by the
statistical significance of that pattern within a specimen (see Sec. 9).
Spatial Exploration of Tissue Morphology. To support visual ex-
ploration of the spatial neighborhoods in tissue images (T1), we of-
fer a scalable image viewer (Fig. 1, a), allowing navigation via zoom-
ing+panning. The viewer builds on our previous work Facetto [40] and
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Fig. 4: Neighborhood Quantification: (1) For a cell in an example microenvironment, find all proximate cells within a specified radius. (2) Each
cell’s neighborhood is a feature vector that represents the weighted presence of each cell type in the neighborhood. (3) Repeat this process for
each cell, resulting in a neighborhood vector for each cell in an image. (4) Groups of similar neighborhood vectors correspond to spatial patterns.
(5) Randomly permute cell types in an image to determine patterns’ significance.

(2) (b)
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Fig. 5: Visual Exploration Through Linked Views: (a) Selected ROI to investigate the spatial neighborhoods. Cell types are displayed with
color-coded segmentation outlines. (b) Neighborhood composition in a PC plot - orange lines represent neighborhoods selected, exhibiting two
discrete patterns. (c) Interactive 2D UMAP embedding of all neighborhood vectors in a specimen in grey; current selection visualized in orange.
Users can select a region to explore similar neighborhoods. (d) Pairwise cell-cell interactions visualized as a correlation matrix.

(a) (b)
Fig. 6: Cell Outlines or Concave Hull: Two view modes: (a) coloring
cell outlines by cell type; (b) outlining patterns with a concave hull.

Scope2Screen [32]. Through multi-channel rendering, pseudo-colored
channels can be blended together into a single view, enabling users to
analyze the expression level of multiple markers at once.

To mark and filter for cell neighborhoods in an ROI, users can
employ an interactive lasso tool. Fig. 5, a shows a selected spatial
neighborhood in a lymphoid nodule from a healthy tonsil tissue. We
decided to primarily render cell neighborhoods directly in the image
space. This design was driven by our experts’ feedback that spatial im-
age context is essential for pathologists to draw the right conclusions.
‘We render selected cells with superimposed outlines so that the under-
lying tissue image and morphology is still visible. These outlines are
optionally colored by cell type using a categorical color scale (Fig. 5,
a). We derived this color scheme from ColorBrewer [28] and Colorgor-
ical [24] to increase the contrast between selected cells and the black
image background. In this example, the region is composed primarily
of two immune cell types, B cells, and T cells. The encoding is effec-
tive for a few image channels and cell types (Fig. 6, a), but becomes
increasingly difficult to comprehend when combining multiple pseudo-
colored channels with categorical cell coloring. Thus, users can switch
to an alternative mode that visualizes detected neighborhood patterns
with a concave hull, emphasizing their unity while maintaining a non-
occlusive view of the underlying image channels (Fig. 6, b).
Composition of Spatial Neighborhoods. To provide more informa-
tion about what cell types spatial neighborhoods are composed of (T1),
we include a parallel coordinate plot (Fig. 5, b). We chose PC plots over
bar charts and box plots to emphasize the occurrence of each cell type in
a spatial neighborhood while also encoding the distribution and correla-

tion between the features. Fig. 5, b shows the composition of a selected
tonsil region (a). Here, each poly-line represents the neighborhood of
a cell. Each individual axis is defined by the influence of a specific cell
type in the neighborhood. Two distinct neighborhoods are represented,
one containing more B cells and one containing more CD4 T cells. To
emphasize correlations between cell types on adjacent axes, we employ
an axis reordering strategy [9,33]. Fig. 8, a shows a negative corre-
lation between CD4 T cells and B cells. The axes can also be reordered
by drag&drop, addressing the need of experts to investigate pairwise
interactions between cell types (T3) To compare (T4) the current se-
lection to the overall composition of a specimen or cohort, the PC plot
optionally encodes the neighborhoods in the entire specimen or cohort
in gray, behind the current selection in orange (Fig. 1, ¢). The opacity
of lines in the plot is chosen based on the data size and screen dimen-
sions, thus minimizing over-plotting and making sure neighborhood
patterns within the overall data are visible. This view also supports
interactive brushing, allowing users to investigate such patterns. When
analyzing a specimen that is part of a larger cohort, the user can toggle
between visualizing the specimen in isolation or the overall cohort.

Embedding of Neighborhood Vectors. While a PC plot emphasizes
neighborhood composition and can reveal correlation, it can be hard
to distinguish patterns from one another due to increasing occlusion
and visual clutter. To make neighborhood patterns more distinct, we
perform dimensional reduction on the neighborhood vectors and visual-
ize the reduced 2D data in a scatterplot (Fig. 5, c), where each point
reflects a cell’s spatial neighborhood. Cells that are close to another
share a similar neighborhood and form spatial groups. For cohort data,
we create a shared embedding of the neighborhoods across the indi-
vidual datasets allowing users to identify and compare similar spatial
neighborhoods and discrepancies across specimens.

Dimensional reduction is a conventional and familiar practice for
our intended users. There is significant biological precedent for the use
of t-SNE [38, 84, 85,87] and UMAP [54, 85] to investigate spatial fea-
tures in tissue images. With proper initialization and hyperparameters,
both methods can preserve global structures and produce similar em-
beddings [39,92]. While both are stochastic, UMAP has been shown
to demonstrate improved stability, making the embedding more repro-
ducible [54]. We thus use UMAP with parameters to emphasize global
structure [15] (50 nneighbors, 0.01 min_dist) to visualize these
data, though t-SNE with a high attraction behaves similarly [11]. We
found that UMAP produced good spatial separation in the 2D layout



at various dimensionalities (dictated by number of cell types), allowing
users to distinguish patterns from another and easier selection. The scal-
ability of UMAP is another benefit, specifically when using RAPIDS
GPU UMAP implementation [59], which is capable of embedding
million-cell neighborhood matrices in a few minutes (see Sec. 10). How-
ever, we see incorporating other dimensionality reduction techniques,
particularly those which emphasize scalability [37,66], allow for user
input [65], or are tailored to specific biological data (e.g. preservation of
rare cell types [88]) as a promising application for Visinity (Sec. 11.4).
Users can navigate in the scatterplot (embedding view) and make
selections as they would with the image view, which highlights the
selection in the coordinated views. E.g., a user may notice a region
of high density in the embedding (Fig. 5, ¢) and select it in order to
understand the cell types that compose that visual group (Fig. 5, b) and
the locations (Fig. 5, a) of those neighborhoods within a tissue image
(image viewer) or across multiple images (cohort view). Likewise,
users can select a spatial region in the cohort view and image viewer and
review the greater neighborhood pattern it is part of in the embedding.
When investigating a specimen, users can toggle between the individual
embedding or cohort embedding.
Pairwise Correlation Between Cell Types. To address the need to
explore pairwise interaction between two specific cell types (G1), (T1)
we offer a correlation matrix visualization. We chose a matrix over a
node-link diagram to avoid clutter when encoding relationships between
every pair of cell types. Matrix visualizations provide a consistent and
compact layout, making it easy for users to compare interactions in
a specific pattern to those in the overall specimen and to other patterns
(T4). Inspired by existing geographic [52] and biomedical [85] ap-
proaches, we compute the Pearson correlation coefficient between each
pair of cell types within the computed neighborhood vectors to quantify
these pairwise relationships. Two cell types with a strong positive corre-
lation tend to be found in similar neighborhoods, whereas two cell types
with a strong negative correlation tend to avoid each other. We use a di-
verging red-white-blue color palette to visualize these correlation values.
To support comparison, we split each field into two triangles (Fig. 1, e),
one representing the correlation of cell types in the overall image or co-
hort and one representing correlations within currently selected neigh-
borhoods. Selecting a triangle in the matrix filters the other views to
highlight neighborhoods with respective pairwise cell type correlation
above a user-defined threshold. In Fig. 5, d, B cells have a negative cor-
relation to all other cell types (all correlations are blue), indicating that
the region of B cells is very homogeneous. CD4 T cells, meanwhile,
have a positive (red) correlation with CD8 T cells, blood vessels, and
regulatory T cells, indicating these different cell types are interacting.

8 SEMI-AUTOMATED ANALYSIS

Beyond exploration through linked views (T1), Visinity offers semi-
automated methods to cope with the large and high-dimensional (> mil-
lion cells per specimen) data. This allows users to automatically group
spatial neighborhoods (T2) through interactive clustering and search
for neighborhood patterns to test and refine hypotheses (T3) at scale.

8.1 Detecting Spatial Patterns Through Clustering

To automatically cluster the cells based on similar neighborhood vectors
we chose to use EM (expectation-maximization) clustering for Gaus-
sian mixture models [96]. Depending on the specific biomarkers, de-
rived cell types, and cellular neighborhoods, we can only make assump-
tions about the underlying model with many latent unknown variables.
The EM algorithm finds (local) maximum likelihood parameters of that
statistical model given our sample data [16] and can detect clusters that
vary in shape and density, compared to, e.g., k-means. This approach
scales to cluster our datasets interactively without precomputation.
The interface enables users to either cluster the neighborhoods in
a specific dataset and apply this clustering to the rest of the cohort, or
to run the clustering on all specimens in a cohort and then drill down
into individual specimens to explore results in more detail. Computed
clusters are listed with other saved patterns in a list view (see Fig. 1,
i), and users can click on them to visualize them in each of the linked
views. The clustering can be used in an iterative manner; based on the
spatial context in the image, the cluster’s composition, and where the

cluster lies in the embedding, a user may choose the number of clusters
they desire, allowing the detection of sub-structures that may exist
within a given neighborhood pattern as well as the macro-structures
that contain these neighborhoods compose. We visualize these clusters
by coloring their cells by cell type and emphasize unity with a concave
hull, as we do for regional selections. Fig. 10 shows identified clusters
in the tonsil data, including the B cell follicles investigated earlier and
the ‘Paracortex’, containing many different types of T cells.

8.2 Hypotheses Testing With Visual Querying

Visual Querying By Region of Interest. For any region of interest
found during data exploration, there might be similar regions in the
specimen or throughout the cohort. Visinity enables users to execute
such queries for any detected or manually selected neighborhood pat-
tern (query-by-example), revealing similar spatial neighborhoods both
within the image and in all images in the cohort (Fig. 1, g).

The computational process is outlined in Fig. 7: For any selected re-
gion (a), we first compute the mean of the neighborhood vectors in that
region (b). We then compare this representative vector v; with each
other neighborhood vector v, in the image using the Euclidean simi-
larity score [81]: m with distance d between vectors. Neigh-
borhoods above a specified similarity threshold are then highlighted in
each of the linked views (Fig. 7, d). Additionally, we visualize (Sec. 9)
the number of matching neighborhoods and statistical significance of
this hypothesis as determined through permutation testing (Sec. 6).

Representing an ROI by its mean vector is an approximation of the
neighborhoods in the region. As the region increases in size, particularly
when the region contains multiple patterns of interest, this gets more
and more inaccurate. However, when such a region is selected, the
composition and embedding views provide context to the homogeneity
of this selection, allowing a user to investigate potentially discrete
patterns in isolation. Moreover, to accommodate the analysis of regions
of tissue of any size, users can modify the neighborhood radius to fit
their needs. Through iterative design with frequent feedback from our
expert collaborators, we found this approach was effective at finding
similar neighborhoods, as demonstrated in Sec. 11.1 and Sec. 11.2.
Visual Querying By Neighborhood Composition. Experts indicated
that they often were interested in investigating interactions between
specific cell types (T3). To support expression and search for their
hypotheses (Fig. 5, f), users can look for specific interactions by defin-
ing a custom query vector in the neighborhood composition view by
clicking and dragging to create a polyline representing a query vector.
The current neighborhood composition and overall composition are
both optionally displayed behind the query vector, allowing the user
to match trends reflected in these views while building a query (Fig. 8,
a). The results, which represent the interaction of the specified cells,
are visualized in the linked views (Fig. 8). A user can perform query
refinement or expansion by adjusting the similarity threshold; increas-
ing this threshold yields neighborhoods that more precisely match
the query (Fig. 8, b) while decreasing the threshold casts a wider net
(Fig. 8, c). The same refinement can be applied to ROI-based queries.
8.3 Visual Querying Across Specimen
When a user queries a specimen for a pattern, we search across the entire
cohort for matching neighborhoods, which are displayed in the cohort
section of the comparison view (Fig. 1, f). We additionally display the
number of results and significance of the query within each specimen
above the spatial summary, as discussed in Sec. 9. Users sort related
specimens within the list by significance and number of results (T5).

9 ViISUAL COMPARISON AND RESULT SUMMARIZATION

While using Visinity, users can save and retrieve patterns and label them
with clinical or biological context (T6), which are displayed in a pat-
tern list in the interface, as reflected in the proposed workflow (Fig. 3,
e). Once saved, experts can compare the neighborhood composition
and spatial expression of these patterns (T4). Comparison can happen
on two levels: between identified patterns and between specimens.
Comparison Between Neighborhood Patterns. To summarize and
compare identified neighborhood patterns, users can choose between
spatial and compositional comparison (Fig. 1, f). Small multiples of bar
charts (Fig. 10) represent the composition of each saved pattern, allow-
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ing users to compare the presence of each cell type between patterns.
‘We chose bar charts over the initial PC plot (Sec. 7) as they are a con-
cise and simple visual encoding that allows users to easily compare the
neighborhood composition of many patterns (T4). We also provide spa-
tial context regarding the patterns in a concise manner with scatterplots
(Fig. 10), which encode the position of each pattern in the tissue, provid-
ing a stripped-down visual summary of the tissue imaging data. A user
can select these small multiples to view them in full detail in each of the
linked views and, in the case of comparison across images, to search for
that pattern within a new image. On top of each plot, a bar represents
the number of cells with that given neighborhood above each specimen
thumbnail (Fig. 10). The color of the bar encodes the statistical sig-
nificance (see Sec. 6, step 5) on a single hue white-orange color scale.
Comparison Between Specimens. It is also of interest to understand
where and how frequently a specific neighborhood pattern appears
in the different specimens (T4). After a pattern is selected from the
pattern list (Fig. 1, i), a bar shows the number of matching neighbor-
hoods above each specimen thumbnail of the Cohort View (Fig. 10).
Again, we encode the number of cells contained in the pattern with
its computed significance as a bar above the respective plot.

10 SCALABLE IMPLEMENTATION

Throughout the design process, we emphasized scalability, leverag-
ing methods and interfaces that support simultaneous analysis of gi-
gapixel images containing more than a million cells. We feature a
JavaScript client / Python server architecture with web-based frontend
visualization and efficient backend computation. We built on our pre-
vious work (Scope2Screen [32], Minerva [29, 70]), storing images in
the Zarr [55] format and rendering them using WebGL. The embed-
ding view, linked image thumbnails, and spatial comparison views use
the regl-scatterplot [43] library, which allows for panning, zooming,
and selection in datasets containing as many as 20 million points. We
combined efficient methods with strategic pre-computation to quantify
and analyze spatial neighborhoods. Neighboring cells are queried us-
ing scikit-learn’s [63] ball-tree index structure. The neighborhood vec-
tor computation is compiled with Numba [41], and thus translated into
efficient machine-code. When the neighborhood radius changes, we
recompute all neighborhoods and save them as Zarr arrays. To evaluate
runtime performance of this approach (Fig. 9) we generated random test
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Fig. 9: Runtime evaluation for steps in the neighborhood computation
pipeline. Data size is increased gradually.

data ranging in size from 103 cells to 107 cells. These synthetic data
maintain the same cell density as the Tonsil dataset investigated in Case
Study 1. We randomly give each cell one of the 13 cell types assigned
in the same tonsil dataset, maintaining the same incidence of each cell
type as was present in the tonsil. The greatest computational bottleneck
is neighborhood quantification at increasingly large neighborhood sizes,
which is primarily a result of the time needed to identify neighboring
cells. We found the ball tree used to search neighbors outperformed var-
ious other similarity search implementations [26,34] on 2D data. When
computing neighborhoods, we also randomly reassign cell types to cre-
ate new permuted versions of this neighborhood matrix, which is simi-
larly compiled and saved as a compressed Zarr array. Similarity search
across the neighborhood vectors and permuted neighborhood vectors
is conducted in parallel. We offer two EM clustering implementations,
one using scikit-learn [63] which is fit on a 10% random sub-sample of
the data and a hardware-accelerated approach [10] fit with all the data.
Sub-sampling worked well with data and quantified cell types used by
our collaborators. However, when small quantities of rare cell types are
identified, these cells may be lost. SCHNEL [5], among other methods
offer clustering strategies that specifically preserve rare cell types.

As demonstrated in Fig. 9, our permutation testing, clustering, and
search implementations scale linearly as the number of cells increases.
Visinity’s source code and executables are available on GitHub [4].

11 CASE STUDY EVALUATION

We present two case studies that demonstrate the utility of our system,
each with a domain expert. These experts were involved in the goal
and task analysis and provided incremental feedback during the system
development. In each 90-minute in-person session, the participants,
who had no hands-on experience with Visinity, were given a brief walk-
through and then steered the system themselves. While analyzing the
tissues, the experts were instructed to think-aloud the biological context
and motivation for their analysis and to provide usability feedback for
the system. After completing the session, each expert filled out a sur-
vey quantifying the usefulness and intuitiveness of Visinity’s features.

11.1 Case Study 1: Human Tonsil

Tonsils, which are lymphoid organs at the back of the throat, are a part
of the immune system and help defend against foreign organisms. They
have been extensively studied as they are dense tissues with distinct
morphology and contain many immune structures and interactions.
In this case study, a senior anatomic pathologist (P1) at Harvard and
Brigham and Woman’s Hospital, with a focus on precision medicine
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Fig. 10: Case Study 1: Small multiple comparison views summarize the biological structures and processes found in a human tonsil, including
key interactions between B cells, T cells, and macrophages as well as unexpected regulatory T cell structures.

in cancer biology, investigated a single tissue specimen of a normal
human tonsil. We demonstrate that Visinity can be used to identify
such known spatial arrangements of immune cells.

Data: The tonsil was scanned to generate a 17,231 x 12,312 micron
whole-slide image of 1.3 million cells. The imaging data are 62 GB and
contain 45 channels, each 26,482 x 19,065 pixels. Cells in the specimen
were assigned by a computational biologist to one of 13 different types
based on patterns of protein expression.

Analysis: We began the analysis by turning on the DNA channel in
the image viewer, outlining the nuclei of all cells in the specimen in the
tissue image. Zooming and panning in the image revealed the expected
tonsil morphology and architecture. As an initial exploratory step,
we clustered the spatial neighborhoods in the tonsil into ten groups.
P1 immediately noticed three clusters occupying adjacent regions in
the image that corresponded to known biological structures and in-
teractions. One cluster formed distinct oval-shaped groups, which P1
identified as representing germinal centers which are areas of B cells,
a type of white blood cell that proliferates before migrating out of the
tonsil to secrete antibodies (Fig. 10, a). Another cluster outside of the
germinal centers contained numerous T cells of various types (helper,
cytotoxic, and regulatory) and specialized blood vessels that shuttle
B and T cells in and out of the tonsil. P1 identified this as the T-cell
zone of the tonsil (Fig. 10, b). Between these clusters was a band of
Helper T cells binding to B cells. Here, Helper T cells facilitate in the
development of B cells into antibody-secreting plasma cells or memory
B cells, which remember information about specific antigens so the
body can defend against them in the future (Fig. 10, e).

P1 then investigated the distribution of macrophages in the tonsil,
which are cells that engulf and consume other cells and attract immune
cells. In this tissue, two types of macrophages were identified based
on the proteins they express, CD68 and CD163. We selected each type
of macrophage in the cell-type legend and found that these neighbor-
hoods occupied two distinct regions of high density in the embedding.
We saved and labeled both patterns. In the spatial comparison view,
the pathologist noted that the CD68 macrophage neighborhoods were
located in the interior of the tonsil, near and within the B cell follicles,
whereas CD163 macrophages were closer to the surface of the tonsil
(Fig. 10, c,d). The comparison bar charts demonstrated that while both
macrophage neighborhoods contained roughly the same fraction of
Helper T cells and Regulatory T cells, the CD68 macrophage neigh-
borhoods were far richer in B cells, whereas the CD163 macrophage
neighborhoods had more T cells and fewer B cells, suggesting differ-
ential roles in B cell development.

In addition to identifying common immune interactions and dis-
tributions, the analysis revealed less well-appreciated patterns. The
correlation matrix showed that Cytotoxic T cells and Regulatory T
cells had the highest correlation in the specimen. We selected this
index in the matrix to find neighborhoods of both cell types. Regu-
latory T cells help prevent the immune system from attacking healthy
cells and the pathologist noted that the co-localization with Cytotoxic
T cells is consistent with a modulatory role for the regulatory cells in

controlling cytotoxic T cells, which kill other cells. In the composition
view, most of the neighborhoods were shown to contain a roughly
equal proportion of the two cell types as well as some helper T cells,
but some neighborhoods were visible with a higher incidence of Reg-
ulatory T cells. Sketching such a pattern and searching for similar
neighborhoods revealed small groups of cells underneath the tonsil
membrane and outside of the B cell follicles (Fig. 10, f). P1 indicated
that it was interesting to find Regulatory T cells clustered together
since they are generally more evenly dispersed throughout tissues.

11.2 Case Study 2: Lung Cancer in Mouse Tissues

Mice share many biological similarities with humans and are commonly
used as a model organism to study cancer biology. During this case
study, a senior biologist (B1) with expertise in quantitative, molecular,
and cellular biology at Harvard and Brigham and Women’s Hospital
investigated 10 lung tissues belonging to a cohort of mice that were
genetically modified to develop multiple small tumor nodules. Within
this cohort, half of the specimens were from mice that develop tumors
that elicit a very poor immune response (immune-poor) while the
other half were engineered to activate Cytotoxic T cells, driving a
robust infiltration of immune cells into the tumors (immune-rich). The
objective of this study is to identify spatial organization and molecular
features of immune cells that prevent tumor growth and to characterize
the features of the immune response between the two specimen types.
Data: This cohort was composed of 10 specimens representing 740
GB of imaging data. Each image contains 31 channels and is more than
600 million pixels in size. In total, these specimens contain 2.6 million
cells, each assigned to one of 17 cell types by the senior biologist.
Analysis: As lungs contain many regions with low cell density, we
chose a wide 50-micron neighborhood radius. B1 began in the cohort
view to get an overview of each specimen and its morphology and then
looked at the cell types with the highest pairwise correlation across
the cohort in the matrix visualization, which were Dendritic cells and T
cells. These cells are known to interact; Dendritic cells are messengers,
presenting antigens to the surface of T cells, activating T cells to com-
bat tumors. B1 indicated that identifying this interaction confirmed
the accuracy of the cell-typing.

B1 next investigated the neighborhood embedding and changed the
plot to color by cell type; this revealed a region containing many differ-
ent immune cells, which was confirmed by selecting the region and visu-
alizing these neighborhoods in the composition view. Adjoining this re-
gion in the embedding, the biologist identified a large cluster composed
of a high percentage of epithelial cells. They selected one half of the
epithelial region of the embedding; when visualized spatially across all
specimens, this region corresponded to epithelial cells that make up the
airways in the lung. The other half was identified as containing many of
the tumors. B1 clicked on a specimen in the cohort view to investigate
it individually. Turning on the channel for TTF1, a biomarker used to
recognize lung tumors, allowed the biologist to identify many separate
tumor nodules throughout the tissue, two of them in close proximity to
each other. After lassoing one of the tumors, the outlined cells and com-



Fig. 11: Case Study 2: Distinct regions in the embedding represent (a)
immune structures far from tumors and (b) tumors infiltrated with im-
mune cells. Tumor cells (green), B cells (orange) and T cells (purple).

position view showed mostly epithelial cells, as well as a small number
of macrophages and Cytotoxic T cells on its periphery. B1 identified
this tumor as not infiltrated by immune cells. We used neighborhood
similarity search to identify this pattern across both this single specimen
and the entire cohort of specimens, identifying several other structures
within the specimen that the biologist (B1) determined to be immune-
poor tumor. When assessed across the cohort and sorted by the number
of matching neighborhoods, the biologist found that far fewer of these
structures were identified in the immune-rich cohort than in the immune-
poor cohort, consistent with the lack of tumor antigen expression and
immune activation in the immune-poor cohort. We investigated these tu-
mors in the image, B1 noticed many adjacent immune structures, which
occupied a distinct region in the embedding space. This region corre-
sponded (Fig. 11, a) to immune structures outside of tumors across the
specimens. Returning to the initial specimen we were investigating, B1
selected a tumor in the image which did not belong to the non-infiltrated
tumor pattern. This pattern occupied a distinct region in the embedding
space (Fig. 11, b), which, when investigated in all specimens, we found
to represent immune-infiltrated tumors. The linked views demonstrated
that the selected tumor contained many B cells as well as Cytotoxic and
Helper T cells. Despite arising in an animal that was not engineered
to express a tumor antigen, this tumor was infiltrated by immune cells,
highlighting the natural variability present in animal models of disease.

11.3 Feedback and Survey

We collected think-aloud feedback [12] from the pathologist (P1) and bi-
ologist (B1) during the case studies. We also held additional 30-minute
hands-on sessions with two biologists at Harvard Medical School not in-
volved in the project: a postdoc and a research assistant, both with exper-
tise in the tumor microenvironment and multiplex immunofluorescence
imaging. The users then filled out a survey to rate Visinity’s features on
a 5-point Likert scale ranging from strongly disagree to strongly agree.

All users rated the interface design as intuitive and accessible (4x
strongly agree). They particularly liked the search by region of inter-
est (4x strongly agree) and by composition (4x agree). Both P1 and
B1 emphasized that searching for known cell-cell interactions is a
powerful way to verify cell types and confirmed the effectiveness of
the similarity search in various cases. While all users strongly agreed
that the matrix helps to identify co-localization of cell types and can
highlight pairwise interaction patterns, P1 indicated that the lack of
stronger correlations and, thus light shades of blue or redmade it more
difficult to interpret. The composition view was rated helpful and in-
tuitive (3x strongly agree, 1 agree). B1 suggested allowing users to
switch between displaying the relative and normalized presence of a
cell type in neighborhoods on the x-axis of the PC plot; some types
occurred infrequently in the mouse cohort, making it hard to compare
their incidence in neighborhoods.P1 particularly liked switching be-
tween user exploration and cross-sample testing. and suggested adding
functionality to facet specimen into individual sets, allowing for re-
gional comparison in a similar way. When comparing patterns across
specimens, users generally found that patterns were either wholly sta-
tistically significant or insignificant. B1 noted that while permutation
testing is the standard way of determining significance, other statistical
approaches that did not assume that the axis of variability was similar
to the axis of information might yield more nuanced results. B1 stated

that moving from a single sample to groups of samples made Visinity
uniquely suited to robust and reliable biological discovery and was
not included in any other visualization tool they had been exposed to.

11.4 Lessons Learned

Long-term collaboration with biomedical experts was essential to un-
derstand the application domain. The digital pathology field is familiar
with visualization, e.g., ways to display multiplexed image data, col-
orization of channels, projections of high-dimensional features, and
heatmaps (matrices) to discover cell interaction. Learning the experts’
dictionary and conventions was key to providing a useful solution while
offering concepts beyond the state-of-the-art. Together, we refined
features and designs from early and separate prototype views into inte-
grated solutions. We identified questionnaires (to understand the needs),
real-world use cases (to test the applicability), and hands-on user testing
(to stress the interface design) as a successful combination for our evalu-
ation. Secondly, we learned and categorized approaches to quantify spa-
tial neighborhood depending on the data and application scenario, but
we experienced a lack of consensus and integration. A VA approach of-
fering round-trip analysis rendered highly advantageous for them com-
pared to the state-of-the-art of disconnected tools for individual steps.
Through iterative design, we discovered a tight linkage between image,
composition, and embedding perspectives a powerful analysis concept.
We found that displaying neighborhood patterns in the image with min-
imalistic outliness and boundary encoding to be an effective approach
aligning with our experts’ expectations and existing conventions. We
identified ‘cellular neighborhood’ and ‘cell interaction’ as constructs of
spatially close cells and ‘spatial neighborhood patterns’ as regions of
interest with frequent occurrences of these constructs (building blocks).
We learned extending visual neighborhoods analysis from a single
specimen to evaluating neighborhood patterns in cohorts is key to dis-
covering significant building blocks in the cancer micro-environment.

12 CoONCLUSION AND FUTURE WORK

We present Visinity, a visual analytics system for investigating spatial
neighborhood patterns within and across tissues. It provides a flexible
human-in-the-loop workflow building on an integrated computational
pipeline to quantify cellular neighborhoods. We demonstrate the appli-
cability of our system to identify biologically meaningful spatial neigh-
borhood patterns. We identify three key avenues of future research,
ranging from the short to the long term.

Extracting Image-Based Features. Our methods for quantifying and
identifying spatial patterns are built for single-cell information (po-
sition and cell type). However, reducing high-detail images of cells
to single intensity values or type classifications causes a loss of in-
formation. Computer vision models could help to capture biological
structures based on their shape, as well as marker polarization within
cells, indicating if cells attract or repel each other. While many deep
learning models for image-based feature extraction are a black box,
visual analytics could add interpretability and steerability.

Moving Beyond 2D Imaging. Recent developments in tissue imaging
have begun to produce multiplexed high-resolution 3D volumes. While
our scalable method for quantifying neighborhoods adapts well to 3D
data, such multi-volumetric data pose new challenges in designing suit-
able visual encodings, scalable volume+surface rendering strategies,
constraint and guided navigation, and interaction.

Identifying Spatial Signatures. As spatial analysis of tissue imaging
data becomes more prevalent, it would be helpful to extend Visinity’s
existing ability to save significant spatial patterns into a knowledge
database similar to the Molecular Signature Database [47] that serves
as a vital reference in genomics or even assemble the relations into a
knowledge graph representation as provided in the INDRA project [27].
Accompanying visual interfaces to query and explore attributes and
relationships of biological relevant spatial interaction patterns could
greatly benefit the digital pathology community, allowing the discovery
of new patterns and easing communication of cancer research.
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