
1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3141029, IEEE

Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 1

ARCHIE++ : A Cloud-enabled Framework for
Conducting AR System Testing in the Wild

Sarah M. Lehman, Semir Elezovikj, Haibin Ling, and Chiu C. Tan

AbstractÐIn this paper, we present ARCHIE++, a testing framework for conducting AR system testing and collecting user feedback in

the wild. Our system addresses challenges in AR testing practices by aggregating usability feedback data (collected in situ) with

system performance data from that same time period. These data packets can then be leveraged to identify edge cases encountered

by testers during unconstrained usage scenarios. We begin by presenting a set of current trends in performing human testing of AR

systems, identified by reviewing a selection of recent work from leading conferences in mixed reality, human factors, and mobile and

pervasive systems. From the trends, we identify a set of challenges to be faced when attempting to adopt these practices to testing in

the wild. These challenges are used to inform the design of our framework, which provides a cloud-enabled and device-agnostic way

for AR systems developers to improve their knowledge of environmental conditions and to support scalability and reproducibility when

testing in the wild. We then present a series of case studies demonstrating how ARCHIE++ can be used to support a range of AR

testing scenarios, and demonstrate the limited overhead of the framework through a series of evaluations. We close with additional

discussion on the design and utility of ARCHIE++ under various edge conditions.

Index TermsÐAugmented reality, testing and debugging, mobile applications, human-centered computing

✦

1 INTRODUCTION

Augmented reality (AR) systems are ones which leverage
knowledge about the environment to generate and integrate
virtual content into the user’s experience of the real world.
These systems are increasing in popularity and prevalence
with applications in domains such as manufacturing [24],
[37], healthcare [15], [47], education [12], [20], retail [17],
[22], and beyond. AR applications for mobile devices such
as smartphones and tablets are some of the most popular;
indeed, the AR social media application Snapchat [27] has
been downloaded and installed over 1 billion times from the
Google Play marketplace.

As mobile AR systems become more commonplace,
there is a corresponding need for tools to help test them.
Such systems are comprised of many different technological
components, such as computer vision and machine learning
modules, the user interface implementation, handling of
sensor data streams, and any additional boilerplate logic
needed just to run on a particular device (e.g. Android,
iOS, etc.). There are many places for bugs to appear, both
within and between components. While testing in the lab is
an effective first step in identifying and ªsquashingº bugs,
the overly controlled nature of laboratory test conditions
do not present a realistic view of system performance and
usability. Eventually developers will want to transition to
testing in the wild, that is, giving the application to testers
to use in their day-to-day lives. This, however, introduces
even more variables, as testers are now unconstrained in
their environments and interactions with the app. Certain

• Ms. Lehman, Mr. Elezovikj, and Dr. Tan are with Temple University,
Philadelphia PA 19122. Email: {smlehman, semir, cctan}@temple.edu

• Dr. Ling is with Stony Brook University, Stony Brook NY 11794.
Email: hling@cs.stonybrook.edu

application components, such as computer vision and ma-
chine learning modules, can be notoriously sensitive to
unconstrained conditions as environmental factors such as
ambient light levels, user movement speed, viewing angle,
level of background processing, and many other factors can
have direct impacts on the module’s ability perform its task.
These are known as edge cases, that is, scenarios in which
unanticipated or extreme system inputs yield undesirable
outputs. Edge cases can be particularly difficult to detect,
as the cost for exhaustively testing an AR system will every
possible input can be prohibitively high.

In addition to system performance and edge case testing,
there is a human aspect which makes mobile AR system
testing unique. Because the virtual content generated by the
system is integrated directly into the user’s experience of the
real world, incorrectly chosen or poorly placed and format-
ted virtual content can have very real impacts on the user.
Many AR system users experience ªsimulator sicknessº, or
nausea and disorientation caused by a disparity between the
appearance and movement of virtual content compared to
how the user expects real-world objects to move [32]. This
is particularly prevalent with testers using head-mounted
displays (HMDs) such as the Microsoft HoloLens [26], [48].
Even in handheld systems, virtual content in mobile AR
apps has the potential to obscure and distract from impor-
tant real-world content, such as street signs or approaching
cars when playing Pokemon Go, which has significant im-
pacts to user safety [14], [29].

These sorts of issues are typically identified through
usability testing, where human testers are presented with
the system, asked to perform a set task, and then asked
for feedback on how well the system performed for the as-
signed use case. Traditional methods of feedback collection
are limited, however, in that, while they can be reliable when
reporting satisfactory system use, they fail to capture any

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on March 21,2022 at 22:15:45 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3141029, IEEE

Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 3

developers to record and replay system inputs for testing.
While all of these tools can be helpful during development
and initial testing stages, they are generally suitable only
for in-lab testing, as their operations are quite resource-
intensive. ARCHIE++ can supplement these efforts by pro-
viding additional lightweight support when an application
has passed code quality testing in the lab and is ready for
user evaluations in the wild.

AR analytics frameworks. There has been some recent
work to assist AR researchers in collecting and analyz-
ing data from system evaluations. MRAT [36] enables re-
searchers outside of the Computer Science domain to run
complex experiments using AR systems. The framework
collects huge amounts of environment and user-specific data
to facilitate analysis, but provides no method for testers to
provide their own usability feedback. Further, the frame-
work is only viable in the lab, with no support for in-
the-wild testing. Another framework described in [40] does
support testing AR applications in the wild, while collecting
a range of system-level metrics about the user base at large
as well as individuals. Further, it supports A/B testing, a
limited version of comparison testing in which participants
are exposed to one of two implementation options, and
then feedback is collected; however, the framework gathers
this feedback across the user base at large, rather than per
individual. Any preference or performance conclusions are
drawn based on system metrics analysis rather than indi-
vidual feedback, which is not collected. Other frameworks,
such as the visualization comparison system presented by
Brehmer et al [18], use supplementary user behavior, such
as periods of inactivity, to preemptively remove incom-
plete data sets from their test corpus. ARCHIE++ addresses
both of these issues by enabling comparison testing within-
subjects so that every tester experiences all implementations,
and providing a configurable post-processing workflow to
filter out unsatisfactory data samples.

Usability testing. In addition to more system-level anal-
ysis, there has been recent research in developing adaptive
systems and testing patterns to improve AR system usabil-
ity. The popular usability testing survey by Ivory and Hearst
[28], though it presents solid guidance on usability feedback
collection in general and even touches on comparison test-
ing, was written before the time of handheld mobile and
wearable devices. As such, there remains a need for testing
tools and procedures that focus on these non-traditional
interfaces. The system proposed in [34] dynamically adapts
the UI based on both the environment and testers’ estimated
cognitive load. The drawback to this system is that the
adjustments to the UI are only as good as the system’s ability
to estimate tester discomfort; there is no built-in support
for testers to provide in situ feedback to modify their expe-
rience. Mottelson et. al. [35] present a feasibility study on
transitioning virtual reality studies out of the laboratory set-
ting. Their approach, however, focused more on researchers’
abilities to recruit and manage participants and to admin-
ister a user study remotely rather than to diagnose and
understand any issues that might occur with their system
during runtime. Costa et. al. [21] present another method
for conducting automated user studies, with a standalone
application to facilitate studies on participants’ information
retrieval behavior with online search engines. Similar to

[35], Costa et. al. make the simplifying assumption that the
system itself is bug-free with a set implementation; they
assume that it is only tester behavior and feedback that
the researchers are interested in, rather than edge cases
within the system itself. Further, the system proposed by
Costa et. al. has no out-of-the-box support for comparison
testing. Other works explore the usability of AR systems
to accomplish a specific task, such as chemistry education
[13], [23], assessing the development of motor and cognitive
skills in children [39], and workplace training [31], [41].
ARCHIE++ can supplement these testing frameworks by
providing grouped packets of system state data and user
feedback data, not only to collect usability information in
the moment, but also to help developers target and address
scenarios that testers explicitly disliked.

3 UNDERSTANDING AR TESTING PRACTICES

In order to inform our solution, we first conducted a survey
of current research efforts in augmented reality with a
particular focus on user feedback and testing methods. Our
goal was to learn more about how user studies and human
testing efforts are conducted, the kinds of information that
researchers are seeking to gather from testers, and how
that information is collected. This knowledge is useful in
that it can help us identify shortcomings in current testing
practices that ARCHIE++ can help alleviate.

Comparison with prior work: In [33], we performed
an initial investigation to identify broad trends in how AR
researchers tested their systems. We then leveraged these
trends to identify challenges in migrating existing testing
practices to the wild. In this follow-up paper, we expand
that initial survey to include results from additional venues.
These expanded results confirmed the conclusions from our
previous study, and allowed us to identify practical chal-
lenges that researchers would face when applying existing
practices to large scale testing efforts.

3.1 Methodology

To assemble the body of work for our survey, we reviewed
proceedings from six different conferences: two focused on
AR and VR (IEEE VR and ISMAR), two focused on human
factors (CHI and UIST), and two focused on mobile and per-
vasive systems (MobiSys and PerCom). These conferences
were selected as the dominant venues within a range of AR
research disciplines; the goal of which was to provide a more
holistic and systems-focused view of user testing procedures
within these research efforts than a deeper survey of a single
venue could provide on its own. We considered conferences
rather than journals because they represent more cutting-
edge rather than archival research efforts.

There are many surveys of augmented reality systems
available, but very few that address testing and user study
techniques within such systems. One survey that does touch
on this topic is Billinghurst et. al. [16], though it only
covers works published through 2014. Even considering
only works published from 2015 onward, this represents a
substantial body of work (e.g. 370 and 378 Scopus results
respectively from IEEE VR and CHI when filtering by aug-
mented or mixed reality). As our interest in this survey was

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on March 21,2022 at 22:15:45 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3141029, IEEE

Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 5

TABLE 2: Data collected by ARCHIE++ framework. The issue list, raw and augmented screenshots, and FPS trace are
bundled into ªpacketsº. Packets are labeled with timestamp, config ID, and experience rating before offloading to Firebase.

Collected Item Data Type Description
timestamp Date Date and time at which interval ended and data was packaged
config_id String Identifier of the configuration being tested when data was collected

experience_rating String Enumeration reflecting current user experience (e.g. excellent, good, fair, poor, bad)
issue_list String[] Configurable list of issues encountered by the user during this interval (e.g. poor contrast, etc.)

screenshot_raw Image Unaltered frame taken from device camera feed
screenshot_aug Image Altered camera frame, containing application-generated augmentations (e.g. what the user sees)

fps_trace String[] History of how many frames were generated per second (FPS) during this interval

be able to indicate whether it was because of factors such
as slow processing or poor viewing angles captured by the
system camera.

Challenge #2 (C2): scalability. The second challenge is
in the difficulty in scaling current testing practices. Current
human testing practices focus on working with small groups
of people for short periods of time. This is because testers’
time is valuable, and recruitment of testers that meet desired
criteria may be difficult. Related to this is the time and
labor cost of manually administering questionnaires and
interviews to study participants. Further, research teams
typically use very expensive or specialized equipment, with
bespoke code bases tailored to a specific usage environment.
This makes the transition to in-the-wild testing very diffi-
cult, as systems may be ill-equipped to support consumer-
grade hardware or open-ended usage conditions.

Challenge #3 (C3): reproducibility. The third challenge
in contemporary AR testing efforts is the inability to ef-
fectively compare and reproduce the testing conditions be-
tween test instances. When conducting human testing in the
lab, environmental conditions such as ambient light levels,
weather, time of day, viewing angles, and movement speed
are easily controlled between testers. However, when testing
at different locations, or when performing tests in the wild,
it is much more difficult to control and reproduce these
conditions. Too great of variance between test conditions
can subsequently make test results unreliable.

In the following section, we present the design of our
ARCHIE++ framework, and demonstrate how it addresses
the challenges described here.

4 SYSTEM DESIGN

When designing ARCHIE++, we improved upon our origi-
nal design [33] by streamlining the developer-facing frame-
work architecture, and moving data storage and processing
functions to the cloud. Developers using ARCHIE++ are
responsible only for implementing a single function call,
event listener, and manifest file in order to utilize the frame-
work; this means (as shown in Section 6) that modifying
an existing code base to incorporate ARCHIE++ requires
on average only 97 new lines of code, where integration of
ARCHIE 1.0 would require hundreds of new lines of code.
In this section, we first describe how the testing challenges
from Section 3.3 influenced our system design, followed by
a more detailed discussion of the ARCHIE++ framework
architecture and its behavior during runtime. The source
code for ARCHIE++ is available on GitHub1.

1. https://github.com/lehmansarahm/ARCHIE

4.1 Testing Challenge Impacts on System Design

For testing of mobile AR applications to work in the wild,
the challenges described in Section 3.3 need to be addressed.
First, ARCHIE++ addresses the lack of developer under-
standing of test conditions (C1) by collecting samples of
system performance and input data in tandem with tester
feedback during run-time. The data collected by ARCHIE++
(described in Table 2) is grouped into time-boxed ªpacketsº,
with the user’s ªexperience ratingº (shown in Figure 1c)
included in the title. By grouping and labeling data in this
way, ARCHIE++ enables researchers to quickly identify and
explore contextual information specific to those conditions
which precipitated poor user feedback.

Second, ARCHIE++ addresses the problem of scalability
(C2) by embracing a device-agnostic cloud-enabled archi-
tecture, specifically as a plugin for the popular Unity3D
IDE [44] with a Firebase backend [25]. Unity3D is one
of the preeminent development environments for AR and
VR systems, and includes support for a wide range of
devices, including mobile systems, head-mounted displays,
and standalone applications for personal computers [43],
[45]. Unity even supports browser-based applications, such
as the system proposed by Butcher et. al. [19], through
integrations with libraries such as WebGL. Thus, by lever-
aging Unity, developers can build a single application and
deploy to a range of tester devices, rather than maintaining
individual code bases for each device OS. Similarly, by in-
corporating Firebase as our framework backend, developers
gain infrastructure-as-a-service benefits such as redundancy
and high availability, as well as a centralized point of data
aggregation and processing. This means that developers
can administer evaluations with larger groups for longer
periods of time, as they no longer have to meet with testers
individually to debrief and retrieve data from their devices.

Finally, ARCHIE++ addresses the problem of repro-
ducibility (C3) by providing camera frames, both in their
original state and including application-generated augmen-
tations, to help researchers verify consistency of test con-
ditions under which the framework is being used. Using
the raw camera frames, developers can supplement future
testing efforts using known problematic inputs previously
collected by the system, either by feeding the frames directly
back into the system or using the frames as seed values to
fuzz and generate new data sets. Subsequent outputs can
then be compared against the augmented camera frames to
judge performance of the new system. Feedback collected
with traditional methods such as questionnaires and inter-
views are unable to provide this information.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on March 21,2022 at 22:15:45 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3141029, IEEE

Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 14

ing tool; as such, we can make certain assumptions. First, we
assume that developers have obtained the appropriate IRB
approval, as well as permission from testers to collect im-
ages as part of their study. Second, we assume that users will
be interacting with the system only for a pre-determined
amount of time, limiting the amount of data captured by
the system. Finally, we assume that research teams utilizing
ARCHIE++ are taking the appropriate privacy precautions,
such as (but not limited to), screening or sanitizing images
as necessary using techniques such as those presented in
[42], [49].

Moving beyond AR. Finally, we would like to address
the inevitable question of whether ARCHIE++ can support
VR applications. A team wishing to utilize ARCHIE++
to evaluate a VR application could absolutely do so; the
client-side Unity plugin and device-agnostic Firebase back-
end could support it. The team could utilize ARCHIE++
to compare functional options such as different types of
avatars, different methods of data visualization, and more.
However, the current input method for the feedback form
would need to be updated, as it assumes a touch-screen
interface, either through the device itself or a companion
device, visible through a see-through HMD. We also would
anticipate that some of the data collected by ARCHIE++
would be somewhat redundant to developers, as the testers
are constrained to a predetermined virtual environment,
rather than moving through an open-ended physical one.

8 CONCLUSIONS

In this paper, we presented ARCHIE++, the Augmented
Reality Computer-Human Interaction Evaluator framework
for conducting AR system testing and tester feedback col-
lection in the wild. We demonstrated the need for scalable,
reproducible usability testing in AR, and described our sys-
tem architecture to support this need. We also demonstrated
how ARCHIE++ can be incorporated into an existing AR
system with acceptable system overhead, and presented a
real-world case study for our framework. In the future,
we would like to investigate real-world trade-offs between
screenshot size and the accuracy of post-processing analysis,
and explore security implications of keeping in-the-wild
camera frames in third-party cloud storage.

ACKNOWLEDGMENTS

Dr. Ling was partially supported by NSF grants 2006665,
2128350 and 2128187.

REFERENCES

[1] Compositor mirror Ð oculus documentation.
https://developer.oculus.com/documentation/pcsdk/latest/
concepts/dg-compositor-mirror/. Accessed: 2020-09-09.

[2] Oculus debug tool Ð oculus documentation.
https://developer.oculus.com/documentation/pcsdk/latest/
concepts/dg-debug-tool/. Accessed: 2020-09-09.

[3] Perception simulation - mixed reality Ð microsoft
docs. https://docs.microsoft.com/en-us/windows/mixed-
reality/perception-simulation. Accessed: 2019-10-22.

[4] Performance heads-up display Ð oculus documentation.
https://developer.oculus.com/documentation/pcsdk/latest/
concepts/dg-hud/. Accessed: 2020-09-09.

[5] Profiler tool reference Ð unreal engine doc-
umentation. https://docs.unrealengine.com/en-
US/Engine/Performance/Profiler/index.html. Accessed:
2020-09-09.

[6] Reality composer - augmented reality - apple developer.
https://developer.apple.com/augmented-reality/reality-
composer/. Accessed: 2020-09-09.

[7] Testing your app on hololens - mixed reality Ð microsoft
docs. https://docs.microsoft.com/en-us/windows/mixed-
reality/testing-your-app-on-hololens. Accessed: 2020-09-09.

[8] Using the hololens emulator - mixed reality Ð microsoft
docs. https://docs.microsoft.com/en-us/windows/mixed-
reality/using-the-hololens-emulator. Accessed: 2019-10-22.

[9] Using the windows mixed reality simulator - mixed
reality Ð microsoft docs. https://docs.microsoft.com/en-
us/windows/mixed-reality/using-the-windows-mixed-reality-
simulator. Accessed: 2020-09-09.

[10] VR performance optimization guide Ð oculus documentation.
https://developer.oculus.com/documentation/pcsdk/latest/
concepts/dg-performance-opt-guide/. Accessed: 2020-09-09.

[11] N. Aeronautics and S. Administration. TLX @ NASA ames - home.
https://humansystems.arc.nasa.gov/ groups/TLX/. Accessed:
2020-07-23.

[12] M. AkcËayır and G. AkcËayır. Advantages and challenges associated
with augmented reality for education: A systematic review of the
literature. Educational Research Review, 20:1±11, 2017.

[13] J. An, L.-P. Poly, and T. A. Holme. Usability testing and the
development of an augmented reality application for laboratory
learning. Journal of Chemical Education, 97(1):97±105, 2019.

[14] S. Barbieri, G. Vettore, V. Pietrantonio, R. Snenghi, A. Tredese,
M. Bergamini, S. Previato, A. Stefanati, R. M. Gaudio, and P. Fel-
tracco. Pedestrian inattention blindness while playing pokÂemon
go as an emerging health-risk behavior: a case report. Journal of
medical internet research, 19(4):e86, 2017.

[15] S. Bernhardt, S. A. Nicolau, L. Soler, and C. Doignon. The status
of augmented reality in laparoscopic surgery as of 2016. Medical
image analysis, 37:66±90, 2017.

[16] M. Billinghurst, A. Clark, and G. Lee. A survey of augmented
reality. Foundations and Trends in Human-Computer Interaction, 2015.

[17] F. Bonetti, G. Warnaby, and L. Quinn. Augmented reality and
virtual reality in physical and online retailing: A review, synthesis
and research agenda. In Augmented reality and virtual reality, pp.
119±132. Springer, 2018.

[18] M. Brehmer, B. Lee, P. Isenberg, and E. K. Choe. A comparative
evaluation of animation and small multiples for trend visualiza-
tion on mobile phones. IEEE Transactions on Visualization and
Computer Graphics, 26(1):364±374, 2019.

[19] P. W. Butcher, N. W. John, and P. D. Ritsos. VRIA: A web-based
framework for creating immersive analytics experiences. IEEE
Transactions on visualization and computer graphics, 27(7):3213±3225,
2020.

[20] P. Chen, X. Liu, W. Cheng, and R. Huang. A review of using
augmented reality in education from 2011 to 2016. In Innovations
in smart learning, pp. 13±18. Springer, 2017.

[21] L. Costa, M. Aliannejadi, and F. Crestani. A tool for conducting
user studies on mobile devices. In Proceedings of the 2020 Conference
on Human Information Interaction and Retrieval, pp. 462±466, 2020.

[22] S. G. Dacko. Enabling smart retail settings via mobile augmented
reality shopping apps. Technological Forecasting and Social Change,
124:243±256, 2017.

[23] A. Ewais and O. D. Troyer. A usability and acceptance evaluation
of the use of augmented reality for learning atoms and molecules
reaction by primary school female students in palestine. Journal of
Educational Computing Research, 57(7):1643±1670, 2019.

[24] P. Fraga-Lamas, T. M. FernÂandez-CaramÂes, ÂO. Blanco-Novoa, and
M. A. Vilar-Montesinos. A review on industrial augmented reality
systems for the industry 4.0 shipyard. Ieee Access, 6:13358±13375,
2018.

[25] Google. Firebase. https://firebase.google.com. Accessed: 2021-09-
26.

[26] C. L. Hughes, C. Fidopiastis, K. M. Stanney, P. S. Bailey, and
E. Ruiz. The psychometrics of cybersickness in augmented reality.
Frontiers in Virtual Reality, 1:34, 2020.

[27] S. Inc. Snapchat - apps on google play.
https://play.google.com/store/apps/details?id=com.snapchat.
android. Accessed: 2020-08-23.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on March 21,2022 at 22:15:45 UTC from IEEE Xplore. Restrictions apply.

