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Replay is the reactivation of one or more neural patterns that are similar to
the activation patterns experienced during past waking experiences. Re-
play was first observed in biological neural networks during sleep, and
it is now thought to play a critical role in memory formation, retrieval,
and consolidation. Replay-like mechanisms have been incorporated in
deep artificial neural networks that learn over time to avoid catastrophic
forgetting of previous knowledge. Replay algorithms have been success-
fully used in a wide range of deep learning methods within supervised,
unsupervised, and reinforcement learning paradigms. In this letter,
we provide the first comprehensive comparison between replay in the
mammalian brain and replay in artificial neural networks. We identify
multiple aspects of biological replay that are missing in deep learning
systems and hypothesize how they could be used to improve artificial
neural networks.
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Replay in Deep Learning 2909

1 Introduction

While artificial neural networks now rival human performance for many
tasks, the dominant paradigm for training these networks is to train them
once and then to retrain them from scratch if new data are acquired. This
is wasteful of computational resources, and many tasks involve updating a
network over time. However, standard training algorithms (i.e., online er-
ror backpropagation) produce catastrophic forgetting of past information
when trained from a nonstationary input stream, for example, when in-
crementally learning new classes over time or most reinforcement learning
problems (Abraham & Robins, 2005; Robins, 1995). The root cause of catas-
trophic forgetting is that learning requires the neural network’s weights to
change, but changing weights critical to past learning results in forgetting.
This is known as the stability-plasticity dilemma, an important problem in
deep learning and neuroscience (Abraham & Robins, 2005).

In contrast, humans can continually learn and adapt to new experiences
throughout their lifetimes, and rarely does learning new information cause
humans to catastrophically forget previous knowledge (French, 1999). In
the mammalian brain, one mechanism used to combat forgetting and fa-
cilitate consolidation is replay: the reactivation of past neural activation
patterns1 (McClelland, McNaughton, & O’Reilly, 1995; Kumaran, Hassabis,
& McClelland, 2016; McClelland, McNaughton, & Lampinen, 2020). Re-
play has primarily been observed in the hippocampus, a brain structure
critical for consolidating short-term memory to long-term memory. Replay
was first noted to occur during slow-wave sleep, but it also occurs dur-
ing rapid eye movement (REM) sleep (Louie and Wilson, 2001; Eckert,
McNaughton, & Tatsuno, 2020; Kudrimoti, Barnes, & McNaughton, 1999)
and while awake, potentially to facilitate the retrieval of recent memories
(Walker & Stickgold, 2004).

In artificial networks, the catastrophic forgetting problem during con-
tinual learning has been successfully addressed by methods inspired by re-
play (Rebuffi, Kolesnikov, Sperl, & Lampert, 2017; Castro, Marín-Jiménez,
Guil, Schmid, & Alahari, 2018; Wu, Chen et al., 2019; Hou, Pan, Wang,
Change Loy, & Lin, 2019; Hayes, Kafle, Shrestha, Acharya, & Kanan, 2020).
In the most common implementation, replay involves storing a subset of
previous veridical inputs (e.g., RGB images) and mixing them with more
recent inputs to update the networks (Rebuffi, Kolesnikov, Sperl, & Lam-
pert, 2017; Castro et al., 2018; Wu, Chen et al., 2019; Hou et al., 2019;
Andrychowicz et al., 2017; Schaul, Quan, Antonoglou, and Silver, 2016;
Lesort, Caselles-Dupré, Garcia-Ortiz, Stoian, & Filliat, 2019; Wu et al., 2018;

1
For simplicity, we use replay to refer to both reactivation and replay. In the neuro-

science literature, replay typically refers to the reactivation of a sequence of neural pat-
terns in the same sequence they occurred during waking experience, but here we define
it as the reactivation of one or more neural patterns.
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2910 T.L. Hayes et al.

Figure 1: High-level overview of the flow of learning activity during awake and
replay stages in biological networks versus artificial neural networks (ANNs).
While replay occurs in several brain regions both independently and concur-
rently, replay in most artificial implementations occurs concurrently from a sin-
gle layer. While the hippocampal complex (HC) can be used for both replay and
inference in biological networks, the memory buffers in artificial replay imple-
mentations are mostly used to train the neural network that makes predictions.
Figure (a) Replay in biological networks. (b, c) Examples of replay in an ANN
with three hidden layers. For networks with more layers, the layer for represen-
tational replay can be chosen in a variety of ways (see text).

Draelos et al., 2017). This preserves representations for processing previous
inputs while enabling new information to be learned. In contrast, the brain
replays highly processed representations of past inputs, such as those stored
within the hippocampus (Teyler & Rudy, 2007), and a similar approach
has been used to enable continual learning for artificial networks in some
recent works that replay high-level feature representations (Hayes, Kafle,
Shrestha, Acharya, & Kanan, 2020; Iscen, Zhang, Lazebnik, & Schmid, 2020;
Caccia, Belilovsky, Caccia, & Pineau, 2020; Pellegrini, Graffieti, Lomonaco,
& Maltoni, 2019; van de Ven, Siegelmann, & Tolias, 2020). While this is closer
to biology, many facets of replay in biology have not been incorporated into
artificial networks, but they could potentially improve generalization, ab-
straction, and data processing. A high-level depiction of the differences be-
tween biological and artificial replay is shown in Figure 1.

In this letter, we first describe replay’s theorized role in memory consoli-
dation and retrieval in the brain and provide supporting evidence from neu-
roscience and psychology studies. We also describe findings in biology that
deviate from today’s theory. Subsequently, we discuss how replay is imple-
mented to facilitate continual learning in artificial neural networks. While
there have been multiple reviews of replay in the brain (Tingley & Peyrache,
2020; Ólafsdóttir, Bush, & Barry, 2018; Pfeiffer, 2020; Foster, 2017; Robert-
son & Genzel, 2020) and reviews of continual learning in artificial networks

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/11/2908/1966599/neco_a_01433.pdf by R
am

ona M
archand on 05 N

ovem
ber 2021



Replay in Deep Learning 2911

(Kemker, McClure, Abitino, Hayes, & Kanan, 2018; Parisi, Kemker, Part,
Kanan, & Wermter, 2019; Delange et al., 2021; Belouadah, Popescu, & Kanel-
los, 2020), we provide the first comprehensive review that integrates and
identifies the gaps between replay in these two fields. While it is beyond the
scope of this letter to review everything known about the biology of replay,
we highlight the salient differences between known biology and today’s
machine learning systems to help biologists test hypotheses and help ma-
chine learning researchers improve algorithms. An overview of various re-
play mechanisms in the brain, their hypothesized functional role, and their
implementation in deep neural networks is provided in Table 1.

2 Replay in Biological Networks

Memory in the brain is the process of encoding, storing, and retrieving in-
formation. Encoding involves converting information into a format that can
be stored in short-term memory, and then a subset of short-term memories
is consolidated for long-term storage. Consolidation is a slow process that
involves the integration of new memories with old (McGaugh, 2000). Split-
ting learning into short-term and long-term memory allows the brain to
efficiently solve the stability-plasticity problem. The consolidation phase is
used for long-term storage of declarative, semantic, and procedural mem-
ories (Rasch & Born, 2013; Born, 2010; Stickgold, 2005, 2012).

Consolidation occurs during periods of rest or sleep, when spiking
activity during replay initiates long-term changes in synapses through
activity-dependent plasticity processes. Consolidation is well understood
for declarative and semantic memory, which depend on the hippocam-
pus. Bilateral removal of the hippocampus results in anterograde amnesia
and the inability to form new semantic memories (Nadel & Moscovitch,
1997). The primary input to the hippocampus is the entorhinal cortex,
which receives highly processed information from all sensory modali-
ties and the prefrontal cortex. While the hippocampus allows for the
quick assimilation of new information, medial prefrontal cortex is used
for long-term storage of memories and generalization (Bontempi, Laurent-
Demir, Destrade, & Jaffard, 1999). These generalization capabilities are a
result of the medial prefrontal cortex using a slower learning rate and
densely encoding memories with overlapping representations, whereas
the hippocampus uses a faster learning rate in conjunction with spar-
sity and indexing mechanisms (Teyler & Rudy, 2007). Hebbian learning
and error-driven schemes are used by both the hippocampus and medial
prefrontal cortex (O’Reilly & Rudy, 2001). Initially, the hippocampus is
used to retrieve new memories, but over time, the medial prefrontal cor-
tex is instead used for retrieval (Kitamura et al., 2017). Results from Kita-
mura et al. (2017) suggest that when new memories are created, neurons
are allocated in both the hippocampus and medial prefrontal cortex, with
unused neurons in the hippocampus engaged immediately for formation
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2912 T.L. Hayes et al.

Table 1: High-Level Overview of Replay Mechanisms in the Brain, Their Hy-
pothesized Functional Role, and Their Implementation/Use in Deep Learning.

Replay Mechanism Role in Brain Use in Deep Learning

Replay includes contents
from both new and old
memories

Prevents forgetting Interleave new data with
old data to overcome
forgetting

Only a few selected
experiences are
replayed

Increased efficiency,
weighting experiences
based on internal
representation

Related to subset
selection for what
should be replayed

Replay can be partial
(not entire experience)

Improves efficiency, allows
for better integration of
parts, generalization, and
abstraction

Not explored in deep
learning

Replay observed at
sensory and
association cortex
(independent and
coordinated)

Allows for vertical and
horizontal integration in
hierarchical memory
structures

Some methods use
representational replay
of higher-level inputs
or feature maps

Replay modulated by
reward

Allows reward to influence
replay

Similar to reward
functions in
reinforcement learning

Replay is spontaneously
generated (without
external inputs)

Allows for all of the above
features of replay without
explicitly stored memories

Some methods replay
samples from random
inputs

Replay during NREM is
different from replay
during REM

Different states allow
different types of
manipulation of memories

Deep learning currently
focuses on NREM
replay and ignores
REM replay

Replay is temporally
structured

Allows for more memory
combinations and follows
temporal waking
experiences

Largely ignored by
existing methods that
replay static,
uncorrelated inputs

Replay can happen in
reverse

Allows reward mediated
weighting of replay

Must have temporal
correlations for reverse
replay

Replay is different for
novel versus nonnovel
inputs

Allows for selective replay to
be weighted by novelty

Replay is largely the
same independent of
input novelty

and neurons in medial prefrontal cortex being epigenetically tagged for
later storage (Lesburguères et al., 2011; Bero et al., 2014). This switch from
hippocampus to cortex occurs over a period of several days with several
episodes of sleep; however, it can take months or even years to make mem-
ories completely independent of the hippocampus. Replay during sleep
determines which memories are formed for long-term storage. Moreover,
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Replay in Deep Learning 2913

while replay contributes to long-term memory consolidation, the associ-
ated retrieval processes have been shown to change memories qualitatively
(Jonker, Dimsdale-Zucker, Ritchey, Clarke, & Ranganath, 2018). These qual-
itative changes are thought to strengthen the representations of episod-
ically similar memories and have been underexplored in computational
models.

The complementary learning systems (CLS) theory describes long-term
memory consolidation based on the interplay between the hippocampus
and the neocortex (McClelland et al., 1995; Kumaran et al., 2016). In this
framework, the hippocampus and cortex act complementary to one an-
other. The hippocampus quickly learns short-term instance-level informa-
tion, while the cortex learns much more slowly and is capable of better
generalization. The CLS theory (McClelland et al., 1995; Kumaran et al.,
2016) also suggests that the brain generalizes across a variety of experiences
by retaining episodic memories in the hippocampal complex and consoli-
dating this knowledge to the neocortex during sleep.

Consolidation of the hippocampus independent short-term memory,
such as emotional and procedural memory, is also enhanced by sleep
(McGaugh, 2000; Hu, Stylos-Allan, & Walker, 2006; Payne, Stickgold, Swan-
berg, & Kensinger, 2008; Wagner et al., 2001). Sleep improves motor se-
quence learning (Walker, Stickgold, Alsop, Gaab, & Schlaug, 2005; Walker,
Brakefield, Morgan, Hobson, & Stickgold, 2002), motor adaptation (Stick-
gold, 2005), and goal-related sequence tasks (Albouy et al., 2013; Cohen,
Pascual-Leone, Press, & Robertson, 2005). Learning motor tasks involves
many brain regions, including motor cortex, basal ganglia, and hippocam-
pus (Debas et al., 2010). While some improvement in sequential motor tasks
may arise from the hippocampal contribution during sleep (King, Hoedl-
moser, Hirschauer, Dolfen, & Albouy, 2017), improvement in motor adap-
tation tasks does not involve the hippocampus (Debas et al., 2010). Sleep has
also been shown to prevent interference between procedural and declara-
tive tasks (Brown & Robertson, 2007), suggesting a role for sleep in prevent-
ing interference during consolidation of different memory types.

Different sleep stages have distinct roles in memory consolidation. Non–
rapid eye movement (NREM) sleep is strongly associated with consolida-
tion of declarative memory (Diekelmann, 2014; Walker & Stickgold, 2010).
In contrast, rapid eye movement (REM) sleep promotes the organization
of internal representations (Dumay & Gaskell, 2007; Haskins, Yonelinas,
Quamme, & Ranganath, 2008; Bader, Mecklinger, Hoppstädter, & Meyer,
2010; Tibon, Gronau, Scheuplein, Mecklinger, & Levy, 2014) and abstrac-
tion (Gómez, Bootzin, & Nadel, 2006; Wagner, Gais, Haider, Verleger, &
Born, 2004; Smith & Smith, 2003; Djonlagic et al., 2009; Cai, Mednick, Harri-
son, Kanady, & Mednick, 2009; Lewis, Knoblich, & Poe, 2018; Durrant, Cair-
ney, McDermott, & Lewis, 2015) and protects against interference between
memories (McDevitt, Duggan, & Mednick, 2015). In motor tasks, NREM is
associated with the improvement of simple sequential tasks, while REM
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2914 T.L. Hayes et al.

Figure 2: (a) Visualization of the contribution of replay in the hippocampal
complex (HC) and the neocortex during different stages. During waking hours,
experiences are encoded in the HC and neocortex. While asleep, humans cycle
between NREM and REM sleep stages, with NREM stages getting shorter and
REM stages getting longer as the night progresses. In NREM, recent experiences
are consolidated. In REM, internal experiences are organized. We also illustrate
spike traces of neocortical outputs during (b) awake activity, (c) faster replay
(NREM), (d) partial replay (NREM and REM), and (e) reverse replay (reinforce-
ment learning). Note that activity during REM has been observed to be similar
to that during waking experiences.

promotes the consolidation of complex motor tasks (King et al., 2017). REM
also selectively promotes consolidation of emotional memories (Baran,
Pace-Schott, Ericson, & Spencer, 2012; Wagner, Gais, & Born, 2001). This
collection of evidence suggests NREM is associated with transfer and stor-
age of recent experiences, and REM is associated with organizing inter-
nal representations. This also coincides with NREM occurring more during
early parts of night sleep, when transfer occurs, followed by REM sleep oc-
curring predominantly during the later part of night sleep, when integra-
tion and higher order memory manipulations occur. This is illustrated in
Figure 2.
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Replay in Deep Learning 2915

2.1 Replay Reflects Recent Memories. Since synaptic plasticity mech-
anisms that result in long-term changes are activity dependent (Bi &
Poo, 1998; Markram, Lübke, Frotscher, & Sakmann, 1997; Abbott & Nel-
son, 2000), replay during sleep plays a critical role in long-term memory
consolidation.

The first evidence of replay in the hippocampus was observed in the
firing patterns of pairs of neurons (Pavlides & Winson, 1989; Wilson &
McNaughton, 1994). In these studies, the firing patterns of place cells in
the hippocampus were measured during sleep. Since place cells are known
to spike when the animal is in a particular location (O’Keefe & Nadel, 1978),
it is possible to study neurons that are active during both sleep and re-
cent waking experiences. A strong correlation was observed between the
firing rates of place cell neurons during sleep to those observed during the
waking task (Pavlides & Winson, 1989; Wilson & McNaughton, 1994). Such
replay of recent learning has been replicated across several studies (Louie
and Wilson, 2001; Davidson, Kloosterman, & Wilson, 2009) and in other
brain regions (Peyrache, Khamassi, Benchenane, Wiener, & Battaglia, 2009;
Ji & Wilson, 2007). Subsequent studies focus on the relative timing of dif-
ferent neurons and identified a similarity in the temporal order of spiking
between awake experiences and sleep (Louie & Wilson, 2001; Ji & Wilson,
2007).

Replay of recent memories in hippocampus decays over time, with the
progressive reduction of correlations in the firing of neurons with recent
experience over several sleep cycles (Nádasdy, Hirase, Czurkó, Csicsvari,
& Buzsáki, 1999). There is also a reduction in the strength of replay dur-
ing awake rest across days (Karlsson & Frank, 2009). The decline in replay
of recent experiences was shown to occur relatively fast—within a matter
of hours—in hippocampus and prefrontal cortex (Kudrimoti et al., 1999;
Tatsuno, Lipa, & McNaughton, 2006). The decline of replay in recent expe-
riences during sleep is followed by the resetting of hippocampal excitabil-
ity during REM sleep (Grosmark, Mizuseki, Pastalkova, Diba, & Buzsáki,
2012), which may allow the hippocampus to encode new memories.

Replay of recent memories has also been observed in brain regions out-
side the hippocampus. For example, the prefrontal cortex shows firing pat-
terns similar to recent learning that are time-compressed (Euston, Tatsuno,
& McNaughton, 2007; Peyrache et al., 2009). Coordinated replay between
hippocampus and visual cortex has also been observed (Ji & Wilson, 2007),
which provides direct evidence for the transfer of memories from hip-
pocampus to cortex. Recent procedural memories also result in the replay of
task-related activity during sleep. Scalp recordings during sleep resemble
activity during recently learned motor tasks (Schönauer, Geisler, & Gais,
2014). Spiking activity from motor cortex during NREM sleep has firing
patterns that are similar to those of recent learning (Ramanathan, Gulati,
& Ganguly, 2015; Gulati, Guo, Ramanathan, Bodepudi, & Ganguly, 2017;
Gulati, Ramanathan, Wong, & Ganguly, 2014). Further, replay during sleep
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2916 T.L. Hayes et al.

was essential for solving the credit assignment problem by selectively in-
creasing task-related neuron activity and decreasing task-unrelated neuron
activity following sleep (Gulati et al., 2017). Taken together, these findings
suggest recent memories are replayed by many different brain regions dur-
ing sleep, some of which may relate to hippocampus, while others appear
to originate locally or through other brain regions.

2.2 Selective Replay Enables Better Memory Integration. Replay
does not exactly replicate activity during waking experiences. An explicit
demonstration of this effect was shown in a two-choice maze task, where
replay in rats corresponded to paths that were experienced and shortcuts
that were never experienced (Gupta, van der Meer, Touretzky, & Redish,
2010). More recently, replay during sleep in the hippocampus and pre-
frontal cortex corresponded to separate activation of movement-related
and movement-independent representations (Yu et al., 2017). Likewise,
commonly used methods for analyzing replay, such as template match-
ing, principal component analysis, and independent component analysis,
have shown high similarity but not an exact match, between activation pat-
terns during waking and sleep (Lee & Wilson, 2002; Louie & Wilson, 2001;
Peyrache et al., 2009).

Selective and partial replay are in part responsible for why replay is not
an exact reconstruction of waking experience. Since sleep is time limited
as compared to the time required to replay all memories related to recent
experiences, replaying only selected experiences can be more efficient for
consolidation. Which experiences are selected for replay remains an open
question. Schapiro, McDevitt, Rogers, Mednick, and Norman (2018) sug-
gested that weakly learned information was replayed more frequently than
other memories. Moreover, selective replay has also been shown to be mo-
tivated by fear (de Voogd, Fernández, & Hermans, 2016) and reward (Gru-
ber, Ritchey, Wang, Doss, & Ranganath, 2016; Murty, Tompary, Adcock, &
Davachi, 2017; Singer & Frank, 2009). McClelland et al. (2020) suggested
that old experiences that overlap with new memories are in the most danger
of being damaged by new learning and are preferentially replayed. Further,
only certain subparts of the selected experiences are replayed. Such partial
replay allows relevant memories with shared components to be blended,
which could result in improved generalization. This was demonstrated in a
recent experiment involving rats in various tasks, where coordinated partial
replay of hippocampal and prefrontal cortical neurons represented gener-
alization across different paths (Yu, Liu, Loback, Grossrubatscher, & Frank,
2018). Magnetoencephalography (MEG) studies in humans after training
on tasks involving sequences with overlapping structure had activity ev-
ident of partial replays that resulted in generalization (Liu, Dolan, Kurth-
Nelson, & Behrens, 2019). Partial replay has also been proposed to build
cognitive schemata (Lewis & Durrant, 2011). Thus, partial replay provides a
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Replay in Deep Learning 2917

mechanism for higher-order memory operations, which is not a simple rep-
etition of past experience.

Rewards received during tasks are strong modulators of replay during
sleep. The temporal order of replay can be reversed when it is associated
with a reward, and the strength of this reversal is correlated with the reward
magnitude (Ambrose, Pfeiffer, & Foster, 2016). Reverse replay can be ex-
plained based on a form of spike time dependent synaptic plasticity (STDP),
which allows for symmetric connections in both directions following se-
quential activation, with rewards at the end of the sequence (Pfeiffer, 2020).
A series of human experiments further suggests that selective and par-
tial replay in tasks involving reward allow humans to perform generaliza-
tion and model-based reinforcement learning (Momennejad, 2020), which
has inspired several algorithms in machine learning (see Cazé, Khamassi,
Aubin, & Girard, 2018, for a review). Another important function of selec-
tive and partial replay is in planning. Replay is shown to include activity
sampled from past experiences as well as novel activity that corresponds
to future possibilities (Johnson & Redish, 2007) and random movements in
place cells (Stella, Baracskay, ONeill, & Csicsvari, 2019). Experimental and
theoretical studies have identified partial replay as a potential mechanism
for exploring possible routes or facilitating goal-directed navigation (Foster
& Knierim, 2012; Pfeiffer & Foster, 2013). For example, partial replay corre-
sponded to different locations in the environment that could facilitate the
reconstruction of unexplored paths and novel future trajectories (Ólafsdót-
tir, Barry, Saleem, Hassabis, & Spiers, 2015; Ólafsdóttir et al., 2018).

Since reverse replay begins with the state of the reward and spike se-
quences trace backward, it has been proposed to be similar to backward
planning from the goal in Markov decision processes (Foster, 2017). Thus,
reverse replay could be an efficient way of estimating state values, which
are critical in reinforcement learning.

2.3 Replay Generation and Coordination across Brain Regions. The
exact mechanism for the spontaneous origin of replay during sleep and rest-
ing periods is not well understood. During sleep, there is a large change
in the neuromodulatory tone for each sleep state across the entire brain
(Brown, Basheer, McKenna, Strecker, & McCarley, 2012; McCormick, 1992;
Watson, Baghdoyan, & Lydic, 2010). Neuromodulatory levels determine a
neuron’s excitability and the strength of its synaptic connections. During
NREM sleep, due to a reduction in acetylcholine and monoamine levels,
there is an overall reduction in neuron excitability and an increase in ex-
citatory connections. Further, increased extracellular GABA during NREM
suggests an increase in inhibition during this state. The reduced excitabil-
ity and heightened synaptic connections result in spontaneous activity dur-
ing sleep (Olcese, Esser, & Tononi, 2010; Krishnan et al., 2016). This reflects
patterns of synaptic connectivity between neurons rather than the intrin-
sic state of neurons. Reactivation has also been observed in computational
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2918 T.L. Hayes et al.

models of attractor networks (Shen & McNaughton, 1996), where random
activations initiate attractor dynamics that result in the replay of activity
that formed the attractor. If synaptic changes reflect previous learning, such
as a particular group of neurons coactivating or a sequential activation of
neurons, then the activity generated during sleep follows or replays the
activity from learning. This has been demonstrated in several studies in-
volving recurrently connected thalamocortical networks (Wei, Krishnan,
& Bazhenov, 2016; Wei, Krishnan, Komarov, & Bazhenov, 2018; González,
Sokolov, Krishnan, Delanois, & Bazhenov, 2020). The studies demonstrated
that replay helps to avoid interference between competing memories and
results in a synaptic connection that reflects the combination of previous
tasks (Golden, Delanois, Sanda, & Bazhenov, 2020; González et al., 2020).

This mechanism is the basis of replay in computational models of attrac-
tor networks (Crick & Mitchison, 1983; Robins & McCallum, 1998, 1999).
Specifically, in Crick and Mitchison (1983) attractors are randomly chosen
for replay, facilitating the unlearning of them. Conversely, in Robins and
McCallum (1998), attractors are replayed for relearning (e.g., via replay or
generative replay). Both studies use Hopfield networks and are directly
compared in Robins and McCallum (1999).

An important characteristic of sleep is the synchronization of firing
across neurons that leads to oscillations (e.g., oscillations in the local field
potential or electroencephalography (EEG) signals). Replay during sleep
was shown to co-occur with sleep oscillations. NREM sleep is characterized
by several well-defined types of oscillations, found across a wide range of
species from reptiles to humans, including sharp wave ripples (100–200 Hz)
in the hippocampus (Buzsáki, Horvath, Urioste, Hetke, & Wise, 1992), spin-
dles (7–14 Hz) (Morison & Dempsey, 1941) and slow (<1 Hz) oscillations
(Steriade, Timofeev, & Grenier, 2001; Steriade, Nunez, & Amzica, 1993) in
the thalamocortical network (Bazhenov & Timofeev, 2006). Numerous stud-
ies have demonstrated that replay in the hippocampus is linked to the oc-
currence of sharp-wave ripples (Nádasdy et al., 1999; Foster & Wilson, 2006;
Davidson et al., 2009; Peyrache et al., 2009; Buzsáki, 2015). In the cortex,
replay occurs during spindles and active states of slow oscillations (Ra-
manathan et al., 2015). Indeed, oscillatory activities during NREM stage 2
sleep, including sleep spindles and slow waves, are strongly correlated with
motor sequence memory consolidation (Nishida & Walker, 2007; Barakat
et al., 2013).

There is evidence for coordination between oscillations across the cor-
tex and hippocampus (Battaglia, Sutherland, & McNaughton, 2004; Sirota,
Csicsvari, Buhl, & Buzsáki, 2003; Mölle, Yeshenko, Marshall, Sara, & Born,
2006; Siapas & Wilson, 1998), suggesting that sleep rhythms can mediate
the coordinated replay between brain regions. The nesting of ripples, spin-
dles, and slow oscillations was reported in vivo (Staresina et al., 2015) and
demonstrated in large-scale biophysical models (Sanda et al., 2021). Coordi-
nated replay is supported by simultaneous recordings from hippocampus
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and neocortex (Ji & Wilson, 2007). Taken together, this evidence strongly
suggests that replay in the neocortex is modulated by the hippocampus
during sleep. Such coordination is critical for the transfer of recent mem-
ories from hippocampus to cortex and also across cortical regions. This co-
ordination leads to the formation of long-range connections and promotes
associations across memories and modalities.

Properties of sleep oscillations influence replay and synaptic plasticity
during sleep. The frequency of spiking during spindles is well suited for
initiating STDP (Sejnowski & Destexhe, 2000). Both spindles and slow oscil-
lations demonstrate characteristic spatiotemporal dynamics (Muller et al.,
2016), and its properties determine synaptic changes during sleep (Wei
et al., 2016).

2.4 Open Questions about Replay. There are several open questions
about replay in biological networks that are far from being well under-
stood. One of them is about the origin and functions of replay during REM
sleep. REM sleep has been shown to play at least three intertwined roles
(Walker & Stickgold, 2010): (1) it unitizes distinct memories for easier stor-
age (Haskins et al., 2008; Bader et al., 2010; Tibon et al., 2014; Kuriyama,
Stickgold, & Walker, 2004; Ellenbogen, Hu, Payne, Titone, & Walker, 2007),
(2) assimilates new memories into existing networks (Walker, Liston, Hob-
son, & Stickgold, 2002; Stickgold, Scott, Rittenhouse, & Hobson, 1999;
Dumay & Gaskell, 2007), and (3) abstracts high-level schemas and general-
izations to unlearn biased or irrelevant representations (Gómez et al., 2006;
Wagner, Gais, Haider, Verleger, & Born, 2004; Smith & Smith, 2003; Djon-
lagic et al., 2009; Cai, Mednick, Harrison, Kanady, & Mednick, 2009; Lewis
et al., 2018; Durrant et al., 2015). REM sleep also facilitates creative problem
solving (Lewis et al., 2018; Baird et al., 2012; Cai et al., 2009).

While the majority of replay studies are from NREM sleep, some stud-
ies have shown replay during REM sleep (Louie & Wilson, 2001; Eckert
et al., 2020; Kudrimoti et al., 1999). Early studies did not find a correlation
in firing patterns during REM, which had been found in NREM sleep (Ku-
drimoti et al., 1999). However, Louie and Wilson (2001) identified replay
during REM in hippocampal place cells similar to NREM. In the case of mo-
tor skill learning, reactivation was observed during both REM and NREM
sleep. Moreover, replays during REM and NREM are interlinked, since re-
play during REM is correlated with replay during NREM from the previ-
ous night (Eckert et al., 2020). REM sleep was implicated in pruning newly
formed postsynaptic dendritic spines in the mouse motor cortex during de-
velopment and motor learning and was also shown to promote the survival
of new, learning-induced spines that are important for the improvement
of motor skills (Li, Ma, Yang, & Gan, 2017). Together, these studies point
to the important but still poorly understood role of REM sleep in memory
and learning and suggest that the repetition of NREM and REM stages with
different neuromodulatory states is critical for memory consolidation.
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2920 T.L. Hayes et al.

What is the meaning of replayed activity? While in some cases the re-
play faithfully replicates activity learned during awake, a great deal of
evidence suggests that the content of replay is more than just a simple com-
bination of past activities. As the brain learns new memories that may try
to allocate synaptic resources belonging to the old memories, sleep may
not simply replay previously learned memories to avoid forgetting. Instead,
sleep may change representations of the old memories by reassigning dif-
ferent subsets of neurons and synapses to effectively orthogonalize memory
representations and allow for overlapping populations of neurons to store
multiple competing memories (González et al., 2020). In fact, orthogonal-
izing network representations was one of the earliest attempted solutions
to catastrophic forgetting in artificial networks (see French, 1999, for an
overview).

One of the outstanding questions about replay involves the selection of
replayed activity. As highlighted in previous work (McClelland et al., 2020),
given the limited time period of sleep, only a subset of memories is selected
for replay during sleep. This suggests that the neural activity during sleep
is selected to maximize consolidation while simultaneously preventing for-
getting. Machine learning algorithms could optimize directly for which old
memories to be replayed during consolidation to long-term memory; these
ideas could inform neuroscience research. While there are major differences
between the nature of activity in artificial and spiking networks, machine
learning–inspired replay methods could still provide insights into neural
activity selection during sleep replay.

3 Replay in Artificial Networks

When a deep neural network can be trained in an offline setting with
fixed training and testing datasets, gradient descent can be used to learn
a set of neural weights that minimize a loss function. However, when the
training set evolves in a nonstationary manner or the agent learns from a
sequence of experiences, gradient descent updates to the network cause
catastrophic forgetting of previously learned knowledge (McCloskey &
Cohen, 1989; Abraham & Robins, 2005). This forgetting occurs because
parametric models, including neural networks, assume that data are inde-
pendent and identically distributed (i.i.d.). In offline settings, models can
simulate the notion of i.i.d. experiences by shuffling data. However, in con-
tinual learning settings, the data stream is evolving in a non-i.i.d. manner
over time, which causes catastrophic forgetting of previous knowledge.

Further, offline machine learning setups are unable to continually learn
new data since they assume there are distinct periods of training versus
evaluation, that the training and testing data come from the same underly-
ing data distribution, and that all of the training data are available at once.
When these assumptions are violated, the performance of neural networks
degrades. The broad field of lifelong machine learning seeks to overcome
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these challenges to continually train networks from evolving non-i.i.d. data
streams. In addition to overcoming catastrophic forgetting, lifelong learn-
ing agents should be capable of using previous knowledge to learn similar
information better and more quickly, which is known as forward knowl-
edge transfer. This survey and much of the existing lifelong learning lit-
erature have focused on overcoming catastrophic forgetting using replay;
however, forward knowledge transfer is also an important aspect of lifelong
learning that has received little attention (Chaudhry, Dokania, Ajanthan,
& Torr, 2018; Lopez-Paz & Ranzato, 2017) and should be studied in more
detail.

Moreover, catastrophic forgetting occurs due to the stability-plasticity
dilemma, which requires networks to keep weights of the network sta-
ble in order to preserve previous knowledge, but also keep weights plas-
tic enough to learn new information. Three main types of methods for
mitigating forgetting have been proposed (Parisi et al., 2019; Kemker,
McClure, Abitino, Hayes, & Kanan, 2018; Delange et al., 2021): (1) regu-
larization schemes for constraining weight updates with gradient descent
(Kirkpatrick et al., 2017; Aljundi, Babiloni, Elhoseiny, Rohrbach, & Tuyte-
laars, 2018; Zenke, Poole, & Ganguli, 2017; Chaudhry et al., 2018; Ritter,
Botev, & Barber, 2018; Serra, Suris, Miron, & Karatzoglou, 2018; Dhar, Singh,
Peng, Wu, & Chellappa, 2019; Chaudhry, Ranzato, Rohrbach, & Elhoseiny,
2019; Lopez-Paz & Ranzato, 2017); (2) network expansion techniques for
adding new parameters to a network to learn new information (Rusu et al.,
2016; Yoon, Yang, Lee, & Hwang, 2018; Ostapenko, Puscas, Klein, Jähnichen,
& Nabi, 2019; Hou, Pan, Change Loy, Wang, & Lin, 2018); and (3) replay
mechanisms for storing a representation of previous data to mix with new
data when updating the network. Replay (or rehearsal) mechanisms have
been shown to be the most effective of these approaches and are inspired
by how the mammalian brain learns new information over time.

3.1 Replay in Supervised Learning. The ability of agents to learn over
time from nonstationary data distributions without catastrophic forgetting
is known as continual learning. Within continual learning, there are two
major paradigms in which agents are trained (Parisi et al., 2019). The first
paradigm, known as incremental batch learning, is the more common (Cas-
tro et al., 2018; Chaudhry et al., 2018; Fernando et al., 2017; Hou, Pan, Wang,
Change Loy, & Lin, 2019; Kemker & Kanan, 2018; Kemker et al., 2018; Re-
buffi et al., 2017; Wu, Chen et al., 2019; Zenke et al., 2017). In incremental
batch learning, an agent is required to learn from a labeled dataset D that
is broken into T distinct batches. That is, D = ⋃T

t=1 Bt , where each Bt is a
batch of data consisting of Nt labeled training samples, Bt = {(xi, yi)}Nt

i=1 with
(xi, yi) denoting a training sample. At time t, the agent is required to learn
from batch Bt by looping over the batch several times and making updates,
before inference can be performed.
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2922 T.L. Hayes et al.

Although the incremental batch learning paradigm is popular in recent
literature, it comes with caveats. Learning from batches is not biologically
plausible, and it is slow, which is not ideal for immediate learning. More
specifically, mammals engage in resource-constrained online learning from
temporally correlated data streams, which is known as single-pass online
learning or streaming learning. Streaming learning is a special case of incre-
mental batch learning where the batch size is set to one (Nt = 1) and the
agent is allowed only a single epoch through the labeled training dataset
(Gama, 2010; Gama, Sebastião, & Rodrigues, 2013). This paradigm closely
resembles how humans and animals immediately learn from real-time data
streams and can use new knowledge immediately.

Replay is one of the earliest (Hetherington, 1989; Ratcliff, 1990) and most
effective mechanisms for overcoming forgetting in both the incremental
batch (Castro et al., 2018; Rebuffi et al., 2017; Wu, Chen et al., 2019; Hou
et al., 2019; Kemker & Kanan, 2018; Kemker et al., 2018) and streaming
(Hayes, Cahill, & Kanan, 2019; Hayes et al., 2020; Chaudhry et al., 2019;
Lopez-Paz & Ranzato, 2017) paradigms. There are two ways in which replay
has been used in artificial neural networks: partial replay and generative re-
play (pseudo-rehearsal). For partial replay, an agent will store either all or
a subset of previously learned inputs in a replay buffer. It then mixes either
all, or a subset of, these previous inputs with new samples and fine-tunes
the network on this mixture. For example, several of the most successful
models for incremental learning store a subset of previously learned raw
inputs in a replay buffer (Gepperth & Karaoguz, 2016; Rebuffi et al., 2017;
Lopez-Paz & Ranzato, 2017; Castro, Marín-Jiménez, Guil, Schmid, & Ala-
hari, 2018; Chaudhry et al., 2018; Nguyen, Li, Bui, & Turner, 2018; Hou et al.,
2018, 2019; Hayes et al., 2019; Wu, Chen et al., 2019; Lee, Lee, Shin, & Lee,
2019; Belouadah & Popescu, 2019, 2020; Chaudhry et al., 2019; Riemer et al.,
2019; Aljundi, Belilovsky et al., 2019; Aljundi, Lin, Goujaud, & Bengio, 2019;
He, Mao, Shao, & Zhu, 2020; Zhao, Xiao, Gan, Zhang, & Xia, 2020; Kurle,
Cseke, Klushyn, van der Smagt, & Günnemann, 2020; Chrysakis & Moens,
2020; Kim, Jeong, & Kim, 2020; Tao, Chang, Hong, Wei, & Gong, 2020; Douil-
lard, Cord, Ollion, Robert, & Valle, 2020). However, replaying raw pixels
is not biologically plausible. More recently, methods that store represen-
tations or features from the middle (latent) layers of a network for replay
have been developed (Hayes et al., 2020; Iscen et al., 2020; Caccia et al., 2020;
Pellegrini et al., 2019), and they are are more consistent with replay in the
mammalian brain, as suggested by hippocampal indexing theory (Teyler
& Rudy, 2007; see section 2). The challenge in using representational replay
comes in choosing which hidden layer(s) to use replay features from. While
choosing features from earlier layers in the network allows more of the net-
work to be trained incrementally, early features usually have larger spatial
dimensions and require more memory for storage. Choosing the ideal layer
for representational replay remains an open question.

In contrast to storing previous examples explicitly, generative replay
methods train a generative model such as an auto-encoder or a generative
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Replay in Deep Learning 2923

Figure 3: Categorizations of supervised artificial replay algorithms. Veridical
replay (gray). Representational replay (purple). Generative veridical replay
(green). Generative representational replay (red). See appendix Table 2 for al-
gorithm citations.

adversarial network (GAN) (Goodfellow et al., 2014) to generate samples
from previously learned data (Draelos et al., 2017; Kemker & Kanan, 2018;
Robins, 1995, 1996; Ostapenko et al., 2019; Shin, Lee, Kim, & Kim, 2017; He
et al., 2018; French, 1997; Atkinson, McCane, Szymanski, & Robins, 2018).
The first generative replay method was proposed in Robins (1995), where it
was further suggested that these mechanisms might be related to memory
consolidation during sleep in mammals. Similar to partial replay methods,
generative replay methods can generate veridical inputs (Shin et al., 2017;
Kemker & Kanan, 2018; Parisi, Tani, Weber, and Wermter, 2018; He, Wang,
Shan, & Chen, 2018; Wu et al., 2018; Ostapenko et al., 2019; Abati et al.,
2020; Liu, Su, Liu, Schiele, & Sun, 2020; Titsias, Schwarz, de G. Matthews,
Pascanu, & Teh, 2020; von Oswald, Henning, Sacramento, & Grewe, 2020;
Ye & Bors, 2020) or midlevel CNN feature representations (van de Ven et al.,
2020; Lao, Jiang, Havaei, & Bengio, 2020). These generative approaches do
not require the explicit storage of data samples, which could potentially re-
duce storage requirements and mitigate some concerns regarding privacy.
However, the generator itself often contains as many parameters as the clas-
sification network, leading to large memory requirements. Additionally,
generative models are notoriously difficult to train due to convergence is-
sues and mode collapse, making these models less ideal for online learning.
One advantage to using an unsupervised generative replay method is that
the system could potentially be less susceptible to, but not completely un-
affected by, catastrophic forgetting (Gillies, 1991). Additionally, generative
replay is more biologically plausible as it is unrealistic to assume the human
brain could store previous inputs explicitly, as is the case in partial replay.
An overview of existing supervised replay methods for classification and
their associated categorizations is in Figure 3.

In addition to the models that perform replay by storing a subset
of previous inputs, several models use replay in conjunction with other
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mechanisms to mitigate forgetting, such as regularizing parameter updates.
For example, the gradient episodic memory (GEM) (Lopez-Paz & Ranzato,
2017) and averaged-GEM (Chaudhry et al., 2019) models store a subset of
previous inputs to use with a gradient regularization loss. Similarly, the
meta-experience replay model (Riemer et al., 2019) and variational contin-
ual learning model (Nguyen, Li, Bui, & Turner, 2018) use experience replay
in conjunction with meta-learning and Bayesian regularization techniques,
respectively.

For both partial replay and generative replay approaches, the agent must
decide what to replay. In Chaudhry et al. (2018), four selection strategies
are compared for storing a small set of previous exemplars to use with
a regularization approach. Namely, they compare uniform random sam-
pling, storing examples closest to class decision boundaries, storing exam-
ples with the highest entropy, and storing a mean vector for each class in
deep feature space. While they found that storing a representative mean
vector for each class performed the best, uniform random sampling per-
formed nearly as well with less compute. In Aljundi, Belilovsky et al.
(2019), samples that would be the most interfered with after network up-
dates are replayed to the network—that is, samples for which performance
would be harmed the most by parameter updates. In their experiments,
the authors found that replaying these interfered samples improved per-
formance over randomly replaying samples. Similarly, in Aljundi, Lin et al.
(2019) sample selection is formulated as a constrained optimization prob-
lem, which maximizes the chosen sample diversity. These authors further
propose a greedy sampling policy as an alternative to the optimization and
find that both sample selection policies improve performance over random
selection. Similarity scores have also been used to select replay samples
(McClelland et al., 2020). While selective replay has demonstrated promis-
ing results in some small-scale settings, several large-scale studies have
found that uniform random sampling works surprisingly well (Hayes et al.,
2020; Wu, Chen et al., 2019), achieving almost the same performance as
more complicated techniques while requiring less compute. The sample se-
lection problem is also closely related to active learning strategies (Cohn,
Atlas, & Ladner, 1994; Lin & Parikh, 2017; Wang, Zhang, Li, Zhang, & Lin,
2016; Settles, 2009; Yoo & So Kweon, 2019; Wei, Iyer, & Bilmes, 2015), with
the most common selection methods using uncertainty sampling (Lewis &
Gale, 1994; Culotta & McCallum, 2005; Scheffer, Decomain, & Wrobel, 2001;
Dagan & Engelson, 1995; Dasgupta & Hsu, 2008).

In addition to improving accuracy, selective replay can also facilitate bet-
ter sample efficiency because the network requires fewer samples to learn
new information. Sample efficiency has been studied for continual learning
(Davidson & Mozer, 2020). Davidson and Mozer (2020) found that a con-
volutional neural network required fewer training epochs to reach a target
accuracy on a new task after having learned other visually similar tasks.
These findings are closely related to the multitask learning literature, where
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the relationship between task similarity and network performance in terms
of accuracy and time has been studied (Zhang & Yang, 2021; Ruder, 2017;
Standley et al., 2020; Liu, Johns, & Davison, 2019; Kendall, Gal, & Cipolla,
2018).

While the majority of supervised learning literature has focused on over-
coming forgetting in feedforward or convolutional neural networks, there
has also been work focused on using replay to mitigate forgetting in re-
current neural networks (Parisi, Tani, Weber, and Wermter, 2018; Sodhani,
Chandar, & Bengio, 2020). In Parisi, Tani, Weber, and Wermter (2018), a self-
organizing recurrent network architecture consisting of a semantic memory
and an episodic memory is introduced to replay previous neural reactiva-
tions. In Sodhani et al. (2020), a network expansion technique is combined
with gradient regularization and replay in a recurrent neural network to
mitigate forgetting.

In Hayes et al. (2020) and Greco, Plank, Fernández, and Bernardi (2019),
replay is used as an effective mechanism to mitigate forgetting for the prob-
lem of visual question answering, where an agent must answer natural lan-
guage questions about images. Similarly, replay has been used for continual
language learning (de Masson d’Autume, Ruder, Kong, & Yogatama, 2019).
Replay has also been used to perform continual semantic segmentation of
medical images (Ozdemir, Fuernstahl, & Goksel, 2018; Ozdemir & Goksel,
2019), remote sensing data (Tasar, Tarabalka, & Alliez, 2019; Wu, Wang et al.,
2019), and on standard computer vision benchmarks (Cermelli, Mancini,
Bulo, Ricci, & Caputo, 2020). In Acharya, Hayes, and Kanan (2020) and Liu,
Yang, Ravichandran, Bhotika, and Soatto (2020), replay is used to mitigate
forgetting for a continual object detection approach. Replay approaches
have also been explored in continual learning for robotics (Lesort et al., 2020;
Feng, Chan, Shi, Zhang, & She, 2019).

3.2 Replay in Reinforcement Learning. Experience replay has also
been widely used in reinforcement learning (Mnih et al., 2015, 2013;
Van Hasselt, Guez, & Silver, 2016; Lillicrap et al., 2016; Lin, 1992; Adam,
Busoniu, & Babuska, 2011; Foerster et al., 2017; Kapturowski, Ostrovski,
Dabney, Quan, & Munos, 2019; Atkinson et al., 2021). As in supervised
classification, experience replay in reinforcement learning is inspired by
the interplay between memory systems in the mammalian brain; its bio-
logical plausibility has been discussed in Schaul, Quan, Antonoglou, and
Silver (2016) and Hassabis, Kumaran, Summerfield, and Botvinick (2017).
The overall goal of reinforcement learning is to train an agent to appro-
priately take actions in an environment to maximize its reward, a natu-
rally realistic setup compared to existing supervised classification setups. In
online reinforcement learning, an agent is required to learn from a tempo-
rally correlated stream of experiences. However, the temporal correlation
of the input stream is not i.i.d. and violates the assumptions of conven-
tional, gradient-based optimization algorithms typically used for updating
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agents, resulting in catastrophic forgetting. Lin (1992) proposed experience
replay as a method for creating i.i.d. batches of data for an agent to learn
from, while also allowing the agent to store and replay experiences that are
rarely encountered. Specifically, the Deep Q-Network (DQN) (Mnih et al.,
2013, 2015) performed experience replay using a sliding window approach
where a uniformly selected set of previous transitions was replayed to the
agent. While the random experience selection policy helped stabilize train-
ing of the DQN, prioritized experience replay (Schaul et al., 2016) has been
shown to be more effective and efficient. Prioritized experience replay is
based on the assumption that some transitions between experiences may
be more surprising to the agent and that some experiences might not be
immediately relevant to an agent and should be replayed at a later point
during training (Schmidhuber, 1991).

In Schaul et al. (2016), prioritized experience replay was performed
based on the magnitude of an experience’s temporal-difference (TD) error,
which measures an agent’s learning progress and is consistent with biolog-
ical findings (Singer & Frank, 2009; McNamara, Tejero-Cantero, Trouche,
Campo-Urriza, & Dupret, 2014). However, using TD error alone can re-
sult in less diverse samples being replayed and must be combined with an
importance-based sampling procedure. Isele and Cosgun (2018) compared
four experience selection strategies to augment a first-in first-out queue: TD
error, absolute reward, distribution matching based on reservoir sampling,
and state-space coverage maximization based on the nearest neighbors to
an experience. They found that experience selection based on TD error and
absolute reward did not work well in mitigating forgetting, while selection
based on distribution matching and state-space coverage had comparable
performance to an unlimited replay buffer. Although replay selection strate-
gies have not shown as much benefit for the supervised learning scenario,
they have significantly improved the performance and efficiency of training
in reinforcement learning agents (Moore & Atkeson, 1993).

In standard prioritized experience replay, each experience is typically
associated with a single goal (reward). In contrast, hindsight experience re-
play (Andrychowicz et al., 2017) allows experiences to be replayed with
various rewards, which has several advantages. First, it allows learning
when reward signals are sparse or binary, which is a common challenge
in reinforcement learning agents. Overcoming sparse reward signals leads
to sample efficiency. More interestingly, hindsight experience replay can
serve as a form of curriculum learning (Bengio, Louradour, Collobert, &
Weston, 2009) by structuring the rewards such that they start off simple
and grow increasingly more complex during training. Curriculum learning
has been shown to speed up the training of neural networks, while also
leading to better generalization (Bengio et al., 2009; Graves, Bellemare,
Menick, Munos, & Kavukcuoglu, 2017; Hunziker et al., 2019; Zhou &
Bilmes, 2018; Fan, Tian, Qin, Li, & Liu, 2018; Achille, Rovere, & Soatto, 2018).
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Additionally, curriculum learning is important for cognitive development
in humans (Lenneberg, 1967; Senghas, Kita, & Özyürek, 2004).

In addition to experience replay alone, several methods have also incor-
porated other brain-inspired mechanisms into their online reinforcement
learning agents. For example (Pritzel et al., 2017; Lengyel & Dayan, 2008;
Blundell et al., 2016) take inspiration from the role the hippocampus plays
in making decisions to develop agents that learn much faster than other
approaches. Chen, Chen, Zhang, and Hu (2019) propose using only the
raw environment pixel inputs for their agent in a trial-and-error scenario,
which closely resembles how humans learn about and navigate their envi-
ronments. Lake, Ullman, Tenenbaum, & Gershman (2017) argue that human
brains are similar to model-free reinforcement learning agents for discrim-
ination and associative learning tasks.

3.3 Replay in Unsupervised Learning. Although replay has been more
extensively explored in supervised classification and reinforcement learn-
ing, it has also been explored in unsupervised learning settings (Lesort
et al., 2019; Wu et al., 2018). For example, replay has been explored in con-
tinual learning of GANs for image and scene generation. Specifically, the
Exemplar-Supported Generative Reproduction model (He et al., 2018) uses
a GAN to generate pseudo-examples for replay during continual learning,
while the dynamic generative memory model (Ostapenko et al., 2019), the
deep generative replay model (Shin et al., 2017), the Memory Replay GAN
model (Wu et al., 2018), and the Closed-Loop GAN model (Rios & Itti, 2019)
are all used to continually learn to generate images and scenes. Continual
learning with replay in GANs has also been used for reinforcement learn-
ing (Caselles-Dupré, Garcia-Ortiz, & Filliat, 2019). Moreover, unsupervised
learning techniques such as auto-encoders and GANs are widely used to
generate replay samples in supervised learning algorithms (Draelos et al.,
2017; Kemker & Kanan, 2018).

4 Juxtaposing Biological and Artificial Replay

Recently, machine learning researchers have tried to bridge some of the dif-
ferences between biological replay and artificial replay. For example, sev-
eral methods using representational replay (Hayes et al., 2020; Caccia et al.,
2020; Pellegrini et al., 2019; Iscen et al., 2020) or generative representational
replay (van de Ven et al., 2020; Lao et al., 2020), instead of veridical (raw
pixel) replay, have been proposed to improve continual learning perfor-
mance. Moreover, McClelland et al. (2020) use similarity scores in selecting
which samples to replay based on evidence of replay in the hippocampus
and cortex. Furthermore, Tadros, Krishnan, Ramyaa, & Bazhenov (2020a,
2020b) and Krishnan, Tadros, Ramyaa, and Bazhenov (2019) implement a
sleep-inspired mechanism in a converted spiking neural network to reduce
catastrophic forgetting. More recently, van de Ven et al. (2020) incorporated
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several brain-inspired mechanisms into their artificial network, including
feedback connections, context gating mechanisms, and generative repre-
sentational replay.

However, many replay algorithms still differ from how humans learn
and assimilate new information. For example, few existing techniques use
Hebbian or error-based learning (Tao et al., 2020; Parisi et al., 2018), and
most rely on supervised labels during training. Moreover, epigenetic tag-
ging mechanisms in medial prefrontal cortex have largely been ignored
by existing artificial network approaches, and some approaches largely fo-
cus on replay during waking hours instead of replay during sleep (Hayes,
Cahill, & Kanan, 2019; Hayes, Kafle, Shrestha, Acharya, & Kanan, 2020).
In biological networks, replay happens both independently and concur-
rently in several different brain regions, whereas artificial replay imple-
mentations only perform replay at a single layer within the neural network.
Furthermore, many existing artificial replay implementations do not purge
their memory buffer, which is not consistent with biology (Nádasdy et al.,
1999; Karlsson & Frank, 2009) and do not have a notion of waking (stream-
ing/online) learning.

While selective experience replay has yielded significant performance
gains in reinforcement learning, uniform random sampling still works well
and is widely used in supervised classification, which is not consistent with
how memories are selectively replayed in the brain. It is biologically in-
feasible to store everything a mammal encounters in its lifetime, and it is
not ideal for machine learning agents to store all previous data. In the case
of partial replay, several different strategies have been explored for priori-
tizing what memories should be replayed (Chaudhry et al., 2018; Aljundi,
Belilovsky et al., 2019; Aljundi, Lin et al., 2019; McClelland et al., 2020).
While there have been several replay selection methods proposed, many
existing works have found uniform random sampling of previous memo-
ries to work well, especially for large-scale problems (Chaudhry et al., 2018;
Wu, Chen et al., 2019; Hayes et al., 2020). While sampling strategies have
not demonstrated significant success for supervised learning problems, the
reinforcement learning community has seen more benefit from these ap-
proaches, for example, prioritized experience replay (Schaul et al., 2016)
and hindsight replay (Andrychowicz et al., 2017). Exploring selective re-
play strategies in machine learning could help inform biologists about what
might be replayed in the brain. Further, the efficiency of selective replay in
machine learning has largely been ignored, with most researchers develop-
ing selective replay methods that only yield better performance. By study-
ing selective replay techniques that are efficient, the agent could potentially
learn information better and more quickly, which is closely related to for-
ward knowledge transfer in humans. Moreover, humans generate novel
memories that are not generated from external world inputs during REM
sleep (Lewis et al., 2018). Exploring schemes to generate novel memories in
machine learning could further improve performance.
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In machine learning and computer vision, there have been several mod-
els inspired by CLS theory in biological networks (Gepperth & Karaoguz,
2016; French, 1997; Ans & Rousset, 1997; Kemker & Kanan, 2018; Robins,
1995, 1996). All of these models have, or presuppose, a fast-learning
hippocampal-inspired network and consolidate knowledge to a medial pre-
frontal cortex network that learns more slowly. Furthermore, Gepperth and
Karaoguz (2016), Kemker and Kanan (2018), and Draelos et al. (2017) inte-
grate neurogenesis into their models where new neurons are created to form
new memories. Such neurogenesis-inspired mechanisms have been stud-
ied experimentally in biology (Kumar et al., 2020; Deng, Aimone, & Gage,
2010; Aimone et al., 2014; Aimone, Deng, & Gage, 2011). Several of these
CLS-inspired models focus on using generative replay to generate new in-
puts during training (French, 1997; Ans & Rousset, 1997; Kemker & Kanan,
2018; Robins, 1995) instead of storing raw inputs explicitly (Gepperth &
Karaoguz, 2016). However, the vast majority of existing replay approaches
in artificial neural networks replay raw pixel inputs (Hou et al., 2019; Re-
buffi et al., 2017; Castro et al., 2018; Wu, Chen et al., 2019). A few approaches
store high-level feature representations (feature maps) of inputs instead
of using generative replay (Hayes et al., 2019, 2020; Pellegrini et al., 2019;
Caccia et al., 2020), which is more biologically plausible than replay from
raw pixels. While there have been several models inspired by CLS theory
(Gepperth & Karaoguz, 2016; French, 1997; Ans & Rousset, 1997; Kemker
& Kanan, 2018; Robins, 1995), many existing replay approaches have only
focused on modeling medial prefrontal cortex directly and do not have a
fast learning network. Moreover, Kemker and Kanan (2018) introduce the
only CLS-inspired model that integrates a non-oracle basolateral amyg-
dala network for decision-making during inference. Lastly, none of the
aforementioned CLS-inspired models use information from the neocortex-
inspired network to influence training of the hippocampal-inspired net-
work, whereas the neocortex influences learning in the hippocampus and
vice versa in biological networks.

Further, CLS theory assumes that different awake and sleep states cor-
respond to periods of encoding memories in hippocampus and the subse-
quent transfer of memories from hippocampus to cortex. This suggests that
artificial neural networks could benefit from the inclusion of explicit awake
and sleep states, inspired by the mammalian brain. Moreover, one open
question in biology involves what happens to memories after they have
been consolidated from the hippocampus to the neocortex. These memo-
ries in hippocampus could be erased entirely, or they could still be encoded
in the hippocampus but never reactivated again. While this is an open ques-
tion in biology, its exploration in machine learning could inform the neuro-
scientific community and lead to new discoveries.

While the CLS memory model (i.e., fast learning in hippocampus fol-
lowed by slow learning in the cortex) is widely accepted as a core prin-
ciple of how the brain learns declarative memories, it is likely not the
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only memory model the brain uses. Indeed, procedural, presumably
hippocampus-independent memories, such as some motor tasks (Fogel &
Smith, 2006), can be learned without forgetting old skills and replayed dur-
ing REM sleep when the hippocampus is effectively disconnected from the
neocortex. Even if the hippocampus may be important for early phases of
motor learning, subsequent training and replay rely on motor cortex and
striatal networks (Lemke, Ramanathan, Guo, Won, & Ganguly, 2019). There-
fore, while typical machine learning replay approaches interleave new
training data with old knowledge from hippocampus-like networks, the bi-
ological cortex is capable of replaying old traces on its own. For example,
very few researchers have explored “self-generated” replay as a mechanism
to protect old knowledge for continual learning (Tadros, Krishnan, Ramyaa,
& Bazhenov, 2020a, 2020b; Krishnan, Tadros, Ramyaa, and Bazhenov, 2019).
Another alternative to CLS theory is the idea of using both fast and slow
weights between units for each connection in the network (Hinton & Plaut,
1987). While the fast weights are used to learn new information, the slow
weights can be used for generative replay (Robins, 1997, 2004).

Beyond CLS theory, more interesting computational models of HC have
been explored. For example, Káli and Dayan (2004) proposed a model
where the HC and cortex were modeled as a lookup table and a restricted-
Boltzmann-machine, respectively. In this model, the HC network played
a critical role in memory retrieval, beyond serving as an offline replay
buffer, which is how HC is commonly modeled in modern neural net-
work implementations. The authors further discuss index maintenance and
extension. More recently, Whittington et al. (2020) proposed the Tolman
Eichenbaum machine, where the HC network performs space and relational
inference. Replay in the Tolman Eichenbaum machine allowed for the or-
ganization of sequences into structures that could facilitate abstraction and
generalization.

Another critical difference between biological and artificial implemen-
tations of replay is the notion of regularization. In biological networks,
normalization and synaptic changes co-occur with replay (Chauvette,
Seigneur, & Timofeev, 2012; Tononi & Cirelli, 2014). However, in artifi-
cial networks, regularization and replay approaches for mitigating catas-
trophic forgetting have largely been explored independently. While some
deep learning methods combine replay and regularization (Chaudhry et al.,
2019; Lopez-Paz & Ranzato, 2017), each mechanism operates largely with-
out informed knowledge of the other, unlike the co-occurrence and direct
communication between the two mechanisms in biology. By integrating the
two mechanisms with more communication in artificial networks, perfor-
mance could be improved further and each mechanism could potentially
strengthen the other component. For example, replay-informed regular-
ization could help strengthen connections specific to a particular memory,
while regularization-informed replay could help identify which samples to
replay that will enable more transfer or less forgetting.
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5 Conclusion

Although humans and animals are able to continuously acquire new infor-
mation over their lifetimes without catastrophically forgetting prior knowl-
edge, artificial neural networks lack these capabilities (Parisi et al., 2019;
Kemker et al., 2018; Delange et al., 2021). Replay of previous experiences
or memories in humans has been identified as the primary mechanism
for overcoming forgetting and enabling continual knowledge acquisition
(Walker & Stickgold, 2004). While replay-inspired mechanisms have en-
abled artificial networks to learn from nonstationary data distributions,
these mechanisms differ from biological replay in several ways. Moreover,
current artificial replay implementations are computationally expensive to
deploy. In this letter, we have given an overview of the current state of re-
search in both artificial and biological implementations of replay and fur-
ther identified several gaps between the two fields. By incorporating more
biological mechanisms into artificial replay implementations, we hope deep
networks will exhibit better transfer, abstraction, and generalization. Fur-
ther, we hope that advancing replay in artificial networks can inform future
neuroscientifc studies of replay in biology.

Appendix

Table 2: Replay Algorithm Citations from Figure 3.

Algorithm Citation

Veridical Replay
GeppNet (Gepperth & Karaoguz, 2016)
iCaRL (Rebuffi et al., 2017)
GEM (Lopez-Paz & Ranzato, 2017)
End-to-End (Castro et al., 2018)
RWALK (Chaudhry et al., 2018)
VCL (Nguyen et al., 2018)
AD (Hou et al., 2018)
ExStream (Hayes et al., 2019)
LUCIR (Hou et al., 2019)
BiC (Wu, Chen et al., 2019)
GD (Lee, Lee, Shin, & Lee, 2019)
IL2M (Belouadah & Popescu, 2019)
A-GEM (Chaudhry et al., 2019)
MER (Riemer et al., 2019)
MIR (Aljundi, Belilovsky et al., 2019)
GSS (Aljundi, Lin et al., 2019)
ScaIL (Belouadah & Popescu, 2020)
ILOS (He et al., 2020)
WA (Zhao et al., 2020)
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Table 2: Continued.

Algorithm Citation

GRS (Kurle et al., 2020)
CBRS (Chrysakis & Moens, 2020)
PRS (Kim et al., 2020)
TPCIL (Tao et al., 2020)
PODNet (Douillard et al., 2020)

Representational Replay
REMIND (Hayes et al., 2020)
FA (Iscen et al., 2020)
AQM (Caccia et al., 2020)
AR1* (Pellegrini et al., 2019)

Generative Veridical Replay
DGR (Shin et al., 2017)
FearNet (Kemker & Kanan, 2018)
GDM (Parisi et al., 2018)
ESGR (He et al., 2018)
MeRGAN (Wu et al., 2018)
DGM (Ostapenko et al., 2019)
CCG (Abati et al., 2020)
Mnemonics (Liu et al., 2020)
FRCL (Titsias et al., 2020)
HNET (von Oswald et al., 2020)
L-VAEGAN (Ye & Bors, 2020)

Generative Representational Replay
BI-R (van de Ven et al., 2020)
DAFR (Lao et al., 2020)
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