™

Check for
updates

How Does Heterogeneous Label Noise
Impact Generalization in Neural Nets?

Bidur Khanal'®) and Christopher Kanan'2?3

! Rochester Institute of Technology, Rochester, USA
{bk9618,kanan}@rit.edu
2 Paige, New York, USA
3 Cornell Tech, New York, USA

Abstract. Incorrectly labeled examples, or label noise, is common in
real-world computer vision datasets. While the impact of label noise on
learning in deep neural networks has been studied in prior work, these
studies have exclusively focused on homogeneous label noise, i.e., the
degree of label noise is the same across all categories. However, in the
real-world, label noise is often heterogeneous, with some categories being
affected to a greater extent than others. Here, we address this gap in the
literature. We hypothesized that heterogeneous label noise would only
affect the classes that had label noise unless there was transfer from
those classes to the classes without label noise. To test this hypothesis,
we designed a series of computer vision studies using MNIST, CIFAR-10,
CIFAR-100, and MS-COCO where we imposed heterogeneous label noise
during the training of multi-class, multi-task, and multi-label systems.
Our results provide evidence in support of our hypothesis: label noise
only affects the class affected by it unless there is transfer.

Keywords: Multi-class - Multi-task - Multi-label - Heterogeneous
label noise

1 Introduction

Supervised deep learning models have been successful in various tasks such as
large-scale image classification, object detection, semantic segmentation, and
many more [16,24,26]. One of the significant contributions behind the success of
supervised deep learning is the availability of well-labeled large datasets. How-
ever, such well-labeled datasets are only available for a handful of problems
[8,19]. Often tools like Amazon Mechanical Turk [6] and Computer Vision Anno-
tation Tool (CVAT) [3] are used to label them. The problem with these tools is
that they are expensive and require significant time and human effort to label.
To circumvent that, many datasets in the real world are either incompletely
labeled or extracted from sources that inherently contain label noise [9].

Label noise is detrimental to the training of any deep learning model as
it directly impacts the model’s learning ability [37]. Vision tasks learned with
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Fig. 1. An example of how class-dependent heterogeneous label noise is introduced by
corrupting the labels of CIFAR10 and MNIST Dataset. We investigated the impact
of noisy labels (red) on the model’s performance on clean labels (green). (Color figure
online)

noisy labels don’t generalize well, resulting in poor test performance [33]. It is
essential to thoroughly study the impact of noisy labels to understand how they
are associated with poor performance. This knowledge can be used to improve
the current methods that learn with noisy labels [18]. However, to the best of
our knowledge, most of the works studied up to now have mainly focused on
examining the performance of the deep learning model under the influence of
homogeneous noisy labels imposed by corrupting all the true labels with the
same degree [4,27].

We know that the noise may not always be homogeneous and can depend
on various heterogeneous sources [35]. Some of the labels might be affected to a
greater extent than others because of which the label noise is heterogeneous in
nature. The previous studies have not thoroughly investigated the heterogeneous
case in supervised vision tasks. Therefore, some open questions still exist. For
example: what is the impact of heterogeneous noisy labels of certain classes on
the performance of a class with clean labels (as shown in Fig. 1) when they are
trained together in a naive classification setting? We want to examine to what
extent the noise-free class is affected by class-dependent noisy labels. We further
extended the question to study the impact in other classification settings, such
as multi-task and multi-label learning.

Multi-task learning [1] is an approach where a single network is trained to
perform two or more tasks. While training a multi-task network, the tasks could
positively or negatively interfere resulting in positive or negative transfer respec-
tively. Positive transfer improves the performance of another task, while nega-
tive transfer impacts its performance. We hypothesized that if there is a positive
transfer between two or more tasks, then training with noisy tasks should impact
the performance of clean tasks. The transferred benefit obtained by training
tasks together should drop with an increase in label noise in helping tasks. In
this work, we verified our hypothesis with experiments.
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Finally, we also investigated the impact of label-dependent noisy labels in
multi-label learning, in which noise is present only in a certain group of labels,
and examined the impact on the group with clean labels. In summary, the key
contributions of our work are:

e Using the popular vision datasets: MNIST, CIFAR10, CIFAR100, and MS-
COCO dataset, we assessed the impact of class-dependent, task-dependent,
and label-dependent heterogeneous noisy labels on multi-class classification,
multi-task learning, and multi-label learning settings, respectively with an
attempt to the fill gap that previous studies didn’t cover.

e By investigating task-dependent heterogeneous noisy labels, we showed that
if there is a positive transfer from one task to another, inducing label noise
in helping task should also impact the performance of other tasks that have
clean labels. The drop in task transfer benefit is proportional to the number
of noisy labels in helping tasks, i.e., the higher the noisy labels, the higher
the transfer drop.

2 Related Works

Label Noise is a topic of interest in the deep learning fraternity with a large
number of published works. Several surveys provide comprehensive literature
reviews on its impact. Song et al. [13] discussed the generalization problems
introduced by label noise in supervised learning methods. They categorically
reviewed the state-of-the-art methods used to improve the robustness against
label noise. Zhu et al. [37] categorized noise into attribute noise and class noise
(label noise) to study their impacts separately and highlighted the class noise to
be more harmful. Frenay et al. [9] further investigated the source of label noise
and its consequences in learning. Algan et al. [4] discussed various noise model-
free methods and noise model-based methods to train deep neural networks
for the image classification tasks efficiently. These studies highlight the growing
interest in developing algorithms that can learn with noisy labels.

Nowadays, several approaches have been used to improve the existing meth-
ods for robust noisy label learning. Some methods used techniques to reduce the
influence of incorrect labels in learning [11], while some modified the loss function
[29]. The possible negative influence of noisy labels can be predicted with reliable
techniques. Yao et al. [31] investigated the quality of the feature embedding that
can be used to identify how well the noisy labels could be trusted. Ghosh et al.
[10] initialized the network with embeddings learned from contrastive learning to
improve the supervised network for classification under noisy conditions. Zhang
et al. [34] and Yi et al. [32] used the label correction method to improve the
model’s robustness. While Song et al. [28], Harutyunyan et al. [12] and Lyu
et al. [21] focused on improving the model’s generalization ability itself. Nishi
et al. [23] used a combination of weak augmentation and strong augmentation
techniques to obtain the best performance in the dataset under noisy labels.

Every year, there is a growing number of papers that uniquely approach this
problem. Most of these methods test the robustness of their method by introduc-
ing the noise through instance-independent homogeneous corruption of labels
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in clean data. Lui et al. [20] highlight the challenges introduced by instance-
dependent label noise and showed that existing methods that learn from noisy
labels fail at instance labels. In their analysis, they discussed the problem of
memorizing instance-dependent noisy labels. Cheng et al. [7] and Xia et al.
[30] proposed methods to deal with bounded-instance and label-dependent noisy
labels. Though we see emerging interest in this area, we haven’t found works that
thoroughly studied the impact of heterogeneous and dependent noisy labels, as
a function of noise strength, in different learning settings. With this works, we
have tried to fill the gap in that direction, presenting some insights and verifying
our hypothesis that label noise only affects certain classes if there is transfer.

3 Problem Setup

We designed some methods to systematically corrupt the labels and introduce
heterogeneous label noise. We studied in three major classification settings:
multi-class classification, multi-task learning, and multi-label learning.

3.1 Multi-class Classification

In a multi-class classification problem, we have inputs [Xi, Xz, .., Xn] and our
goal is to assign correct target label to each inputs. Let us suppose there are
four possible target labels such that an input only corresponds to a particular
label t € [t1,t2,t3,t4]. To introduce label noise, we first select a label (say t1),
which won’t be corrupted (we term this uncorrupted or uncorrupt label). The
other remaining labels [t2,t3,t4] (grouped into a list termed as corrupt list)
are corrupted based on a probability value p, which determines the strength of
corruption, i.e. 0 means that a label will never be changed, while 1 means the
label is always replaced with other labels. We maintain a corrupt target list that
contains all the possible labels that a corrupted label can take. While corrupting
certain labels, we replace them with a randomly chosen value from the corrupt
target list.

There are two possible ways to create a corrupt target list: include the uncor-
rupt label ¢; along with all other labels or just include labels from the corrupt
list. For instance, to corrupt a label t2, we might randomly replace it with a label
from a target label list [t1,13,t4] (strategy 1) or from [t3,14] (strategy 2). We
have used both strategies in our experiments and separately studied them. At
the end of the training, we examined the test classification accuracy in both cor-
rupted and uncorrupted label. Our primary interest is in the uncorrupted label
because we want to measure the impact on its performance while training with
noisy labels (corrupted).

3.2 Multi-task Learning

In multi-task learning, we aim to boost the performance in some tasks by training
tasks together. Let T1 and Ty be any arbitrary tasks that a joint network should
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learn together. In this setup, we first find a task T; that benefits by training
together with the other task Ts. The overall performance of task Ty, when there
is positive transfer, should be higher than that when task T is trained alone.
Our hypothesis says that inducing label noise in a helping task, i.e. Ty should
impact the performance of task T, resulting in a drop in its test performance.
First, task T, is trained independently to establish a single task performance
baseline. Then, a shared network is trained jointly on tasks T; and Ts, such
that positive transfer benefit is obtained in task T;.

After the transfer benefit is seen in task T;, the labels of task Ty are cor-
rupted by randomly changing the labels within the task. The labels of task T
shouldn’t be changed as we are interested in studying the impact in a clean task
on introducing noise in the helping task. The labels are corrupted in a similar
manner described in multi-class classification. In both the clean and corrupted
tasks, the test performance is measured as a function of label corruption strength
in helping tasks. We only used two tasks to make our experiments simpler and
tractable.

3.3 Multi-label Learning

Unlike the multi-class classification problem, in multi-label learning problem,
the inputs [X1, X2, .., Xn] can belong to one or more target labels [¢y, ta, ...ta1],
where N is the total number of input samples and M is the total number of
possible labels. The labels are no more treated as mutually exclusive targets,
and the input-output mapping can be one-to-many. We are interested in seeing
how the label noise in a certain category impacts the prediction performance in
a group of clean labels.

Let L1, Lo, Ly and L4 be any four arbitrary labels. We can divide the labels
into two categories, i.e., uncorrupted and corrupted lists. For instance, the uncor-
rupted list may contain label L; and Lo, and corrupted list may contain other
two labels L3 and L4. The labels can be grouped in any combination. We cor-
rupted labels in the corrupted list of training data by randomly swapping the
labels within the list with some probability as described in previous setups.After
training, the test performance of both uncorrupted and corrupted labels is eval-
uated as a function of corruption strength.

4 Experiments and Datasets

We now describe the three categories of experiments designed to study the
impact of heterogeneous noisy labels. The datasets and network architecture
selection are made based on the requirements and design of the experiments.

4.1 Multi-class Classification

Multi-class classification is a well-studied problem; therefore, there are many
open-source datasets available on the web. In our study, we have used two pop-
ular datasets: MNIST [17] and CIFAR10 [14]. MNIST contains 60,000 training
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Fig. 2. Overview of Multi-Task learning Architecture that was used in our experiment.
CIFARI100 was split into two tasks each containing 50 classes. The CNN features of
ResNet18 with twice the original width were used as the shared features.

images and 10,000 testing images of handwritten digits. Each image is a gray-
scaled image with 28 x 28 dimensions and represents one of ten digits. CIFAR10
contains 50000 training and 10000 test RGB images of dimension 32 x 32 cate-
gorized into ten classes. To classify the MNIST, we have used a basic LeNet-5
CNN architecture with dropout, ReLLU activation in the hidden layer, and a final
softmax layer. For CIFAR10, we have used a ResNet18 based architecture.

Using the method discussed in the setup Sect. 3.1, we corrupted any nine out
of ten classes in training sets of MNIST and CIFAR10 with a certain probability
value while keeping the tenth class as it is. The mean classification accuracy of
each corrupted class and the uncorrupted class was evaluated at each corrup-
tion probability. We chose eight corruption probability values from 0 to 1 to
experiment with, and at each probability, we performed ten sets of experiments,
using a different uncorrupted class at each for robustness. There were 80 sets
of training experiments combining eight corruption probability and ten sets of
experiments. In all of these eighty experiments, we didn’t include the uncor-
rupted class in any of the corrupt target lists. We also performed another 80 sets
of experiments with the exact setting, but this time, including the uncorrupted
class in the corrupt target lists. For the final result, we averaged the values at
each corruption probability.

4.2 Multi-task Learning

We used two tasks to study the impact of task-specific label noise in a multi-
task learning scenario. We split 100 classes of the CIFAR100 [15] into two 50-
class classification tasks: Taskl and Task2 and trained multi-task network. We
monitored the validation loss in Taskl to save the best model for testing.

In our experiment, we tried three random splits for robustness. Each split had
different classes assigned to the tasks. After the splits, we also trained a single
task network for task Ty of each three splits, which provided us the baseline to
compare multi-task performance. We averaged the single task performance of all
the splits to get a mean single-task performance. Similarly, we also averaged the
multi-task performance of all the splits across respective tasks and corruption
probability to find respective mean values.

As shown in Fig. 2, we used a 2-head classification network with a shared
ResNet18 backbone. We doubled the width of the ResNetl8 architecture to
obtain a higher transfer benefit than its single-task counterpart with the same
width. Further, we used Mish activation function [22] instead of ReLU because of
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Fig. 3. Overview of Multi-Label Classification Architecture that was used in our exper-
iment. The last CNN layer of ResNetl8 was connected to an 80-dimensional fully
connected layer having sigmoid activation function. We corrupted a group of labels
(corrupted labels) by randomly changing their values to other values within the group
and trained them with the unchanged (uncorrupted) group of labels.

its higher performance [22]. The images from two tasks were fed to the network
alternatively while training. The categorical cross-entropy loss was computed
separately for each output head and then summed and back-propagated. We
then introduced label noise in Task2 by corrupting the labels of 50 classes with
some probability as done in multi-class classification. The test classification accu-
racy in both the tasks at that particular corruption probability was evaluated.
For this experiment, we chose 12 different probability values in the range from
0 to 1. At each corruption probability, we trained three times and averaged the
test accuracy for robustness.

4.3 Multi-label Learning

For multi-label learning, we used a small subset of MS-COCO dataset; we call
it mini MS-COCO [2]. This version contains randomly selected 20% MS-COCO
training images such that datasets’ statistics match that of the original dataset.
We downsampled all the images to the fixed size of 128 x 128. An image can
contain one or more labels out of 80 labels.

We modified the Resnet18 for multi-label classification by changing the soft-
max activation function in the last layer into a sigmoid function for each output
node (Fig. 3). Instead of outputting a probability value for each node, the net-
work outputs a one-hot encoded vector. We induced label noise in the training
examples by corrupting the class labels. We divided the 80 labels into two cat-
egories: category 1, which contained corrupted labels and category 2 which
contained uncorrupted labels. The labels in category 1 were corrupted by ran-
domly changing the true labels to other labels within the category using a certain
probability, while category 2 was not changed at all. Corruption can be done
in two ways: either the number of corrupted labels is greater or less than the
number of uncorrupted labels. For both the case, we experimented with 12 dif-
ferent probability values in the range from 0 to 1 and measured mean average
precision for each.
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5 Results

We now analyze the results in multi-class classification, multi-task learning and
multi-label learning settings.
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Fig. 4. Result of multi-class classification in MNIST and CIFAR10: Average classifi-
cation accuracy in corrupted class and uncorrupted class as a function of corruption
probability (strength). In the left plot of (a) and (b), the corrupted label can take the
label of uncorrupted class while in the right plot of (a) and (b), the corrupted label
can not take the label of uncorrupted class. In both datasets, the classification accuracy
of the uncorrupted class is not affected by the noisy labels of corrupted classes.

5.1 Multi-class Classification

We present the classification accuracies of corrupted and uncorrupted classes
as a function of corruption probability in Fig.4. The trend lines start at zero
corruption baseline and end horizontally at full corruption probability.

As expected, the performance of corrupted classes in both MNIST and
CIFARI10 datasets dropped with the increase in corruption probability as shown
by Fig. 4. But, the performance drop was not seen until a large number of labels
were corrupted, which highlights that neural networks are inherently robust to a
certain level of noisy labels. In MNIST, the corrupted class performance didn’t
drop off until 80% corruption. Similar behavior is shown by the bigger network
(ResNet18) in CIFAR10 dataset. The model’s performance in corrupted classes
started to drop off after 60% label corruption. We also saw that bigger networks
start to memorize the noisy labels if overtrained. In contrast to LeNet-5, the
ResNet18 architecture was able to overfit even the noisy labels at later epochs of
training. This behavior is similar to what the [33] paper discusses. These plots
in Fig. 4 also underline that the performance of the uncorrupted class remained
almost consistent and didn’t drop with an increase in the corruption probability.
This behavior is consistent in both datasets. These experiments were done in two
settings in which the corrupted label can either take the label of uncorrupted
class or not. In both settings, we observed a similar trend in the accuracy of
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uncorrupted classes. The results strongly suggest that the class-dependent label
noise of corrupted classes do not perturb the feature learning of the uncorrupted
class.

5.2 Multi-task Learning

As described in the experiment section, Taskl (50 classes of CIFAR100) bene-
fits from training together with Task2 (other 50 classes of CIFAR100) in hard
parameter sharing configuration. In single-task learning, the average accuracy of
Taskl was about 75.63 %. When Taskl was trained with Task2 in a multi-task
learning setting, the average accuracy improved to 79.50 %, which is about 3.87
raw improvement (equivalently 5.11% improvement).

The average classification accuracy in Task2 was 80.9% at zero corruption.
As shown in Fig.5, the blue trend line starts at high accuracy and falls with
an increase in corruption probability. The line falls slowly at first but drops
drastically later, approaching close to zero. The trend line of Taskl (red) is of
greater importance to us than the trend in Task2. Initially, the line starts with
a positive offset from the STL line due to the task transfer benefit achieved by
training with Task2. Interestingly we start to lose the transfer benefit as Task2
is corrupted. At full corruption, the task transfer benefit completely vanishes
and the multi-task learning performance in Taskl is almost the same as single-
task performance. This result validates the hypothesis we proposed that the
task-specific noisy labels impact the task transfer benefit. It is important to
note that multi-task test performance does not fall far below the single task
test performance line. It suggests that task-specific corruption doesn’t introduce
negative interference but only reduces the task transfer benefit achieved from
multi-task learning.

Accuracy
B
(=]

STL Task1 Acc 75.63%
20| — STL: Taskl MTL Task1 Acc (Max) | 79.50%
—— MTL: Task2 MTL Task1 Acc (Min) | 75.06%

—— MTL: Taksl

MTL Task2 Acc (Max) |80.9%

0.00 0.25 0.50 0.75 1.00
Corrupt Probability

Fig. 5. Average classification accuracy in two tasks as a function of label corruption
in one of the tasks. Taskl represents the classification task of 50 classes of CIFAR100,
while Task2 represents the classification task of the other 50 classes. Task2 labels
are corrupted incrementally, while Taskl labels are not changed at all. STL (green
line) is the single task learning baseline performance in Taskl. MTL (blue line) and
MTL (red line) are the performance of Task2 and Taskl, respectively, in a multi-task
learning setting. This plot shows the average value across three experiments (that used
differently split 100 classes into two 50-50 class tasks) across each probability value.
(Color figure online)
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5.3 Multi-label Learning

After the experiments in Sect. 4.3, we analyzed the impact of label-dependent
noisy labels in the performance of clean labels in the multi-label classification
setting. Figure 6 shows the mean average precision (mAP) as trend lines, which
are functions of corruption probability in category 1.
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Fig. 6. Results in Multi-Label Classification of mini MS-COCO dataset in two cases
where the number of corrupted labels is either greater (left figure) or less (right
figure) than the number of uncorrupted labels. Three trend lines: Uncorrupted mAP,
Corrupt mAP, and Overall mAP, show the mean average precision as a function of
corruption probability (strength) in labels belonging to the corrupted category. mAP of
corrupted category and the overall dataset falls with increase in corruption probability.
The consistent trend line of uncorrupted labels shows that their mAP isn’t affected
by label corruption in the other category. The shades in the line show the standard
deviation across multiple experiments with random weight initialization.

Our baseline, even at no corruption, starts with a lesser mAP than com-
pared to the state-of-the-art methods for multi-label classification because we
have used a smaller architecture ResNetl8 in a naive configuration, without
any hyperparameter tuning. State-of-the-art methods [5,25,36] obtained higher
mAP using larger model. We didn’t use pre-trained weights as we are interested
in finding if a network can generalize well from the start if we train with depen-
dent heterogeneous noisy labels. In the first case where the number of corrupted
labels is greater than the uncorrupted labels, initially, the mAP in category 1
is 31.30%. With label corruption, the performance falls and ultimately drops to
the minimum value of 6.38% at maximum corruption. A similar trend is seen in
the second case, where the number of corrupted labels is less than the number of
uncorrupted labels. In second case, the maximum mAP in category 1 is 27.97%
while the minimum mAP after full corruption is 11.42%.

The trend line of the uncorrupted category (blue, category 2) shows that
the corrupted labels didn’t impact its performance at all. The line stays consis-
tent throughout the horizontal axis. It is important to note that the corrupted
mAP and uncorrupted mAP start at different offsets because the mean average
precision across the two categories isn’t the same. We also showed the overall
mAP trend line follows the dominant category with more samples. Our work
shows that in a naive setup, the label-dependent noisy labels do not affect the
performance of clean labels even on training together.
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6 Discussion

Both the multi-class and the multi-label classification showed that the corrupted
labels do not affect the network’s performance in classifying clean labels. This
behavior strongly hints that noisy labels don’t impact the learning of low-level
features much, otherwise, the network wouldn’t have performed well in clean
labels either. An interesting future work could be to investigate how the het-
erogeneous noisy labels impact the features learned at each layer in a deeper
network.

In multi-task learning, we found that the performance in a clean task drops
if the helping task is corrupted. While training, we also observed that the over-
fitting of label noise is an issue in a multi-task setting as well, which can be
prevented by a properly tuned regularizer. But if the model somehow overfits,
the performance in both the corrupted task and uncorrupted task drops no mat-
ter whether there is a positive or negative transfer between tasks. In such a
case, we saw that the test performance in the clean task decreased below the
single-task performance baseline, at high corruption in the helping task. How-
ever, if the overfitting was avoided, the corruption in helping task affected the
clean task but the performance in the clean task didn’t drop below its single
task performance even at full corruption in helping task.

All our experiments investigated the classification case. However, in the real
world, the heterogeneous label noise can appear in regression tasks as well. In
future work, we are interested in investigating how the label noise in a certain
range affects the overall generalization of the regression task.

7 Conclusion

In this work, we investigated the impact of heterogeneous noisy labels in three
supervised classification settings. In multi-class classification, we found that
training with the class-dependent noisy labels of certain classes doesn’t affect the
model’s performance on classes with clean labels. On examining the multi-task
learning, we observed that task transfer benefit is affected by task-dependent
noise in helping tasks. The transferred benefit decreases with the increase in
label corruption in helping tasks and reaches a minimum at full corruption
where multi-task performance is approximately the same as single-task perfor-
mance. Finally, we showed that label noise in certain categories of labels in the
multi-label classification also doesn’t affect the performance in clean labels when
trained together.
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