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Abstract. Dataset bias and spurious correlations can significantly im-
pair generalization in deep neural networks. Many prior efforts have ad-
dressed this problem using either alternative loss functions or sampling
strategies that focus on rare patterns. We propose a new direction: mod-
ifying the network architecture to impose inductive biases that make
the network robust to dataset bias. Specifically, we propose OccamNets,
which are biased to favor simpler solutions by design. OccamNets have
two inductive biases. First, they are biased to use as little network depth
as needed for an individual example. Second, they are biased toward us-
ing fewer image locations for prediction. While OccamNets are biased
toward simpler hypotheses, they can learn more complex hypotheses if
necessary. In experiments, OccamNets outperform or rival state-of-the-
art methods run on architectures that do not incorporate these inductive
biases. Furthermore, we demonstrate that when the state-of-the-art de-
biasing methods are combined with OccamNets4 results further improve.

1 Introduction

Frustra fit per plura quod potest fieri per pauciora

William of Occam, Summa Totius Logicae (1323 CE)

Spurious correlations and dataset bias greatly impair generalization in deep
neural networks [2, 6, 23, 62]. This problem has been heavily studied. The most
common approaches are re-sampling strategies [8, 15, 22, 57], altering optimiza-
tion to mitigate bias [55], adversarial unlearning [1, 20, 53, 77], learning invariant
representations [5, 11, 67], and ensembling with bias-amplified models [7, 12, 47].
Here, we propose a new approach: incorporating architectural inductive biases
that combat dataset bias.

4 https://github.com/erobic/occam-nets-v1
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Fig. 1: OccamNets focus on architectural inductive biases, which is an orthogonal
direction to tackling dataset biases compared to the existing works.

In a typical feedforward network, each layer can be considered as computing
a function of the previous layer, with each additional layer making the hypothesis
more complex. Given a system trained to predict multiple categories, with some
being highly biased, this means the network uses the same level of complexity
across all of the examples, even when some examples should be classified with
simpler hypotheses (e.g., less depth). Likewise, pooling in networks is typically
uniform in nature, so every location is used for prediction, rather than only
the minimum amount of information. In other words, typical networks violate
Occam’s razor. Consider the Biased MNIST dataset [62], where the task is to
recognize a digit while remaining invariant to multiple spuriously correlated
factors, which include colors, textures, and contextual biases. The most complex
hypothesis would exploit every factor during classification, including the digit’s
color, texture, or background context. A simple hypothesis would instead be to
focus on the digit’s shape and to ignore these spuriously correlated factors that
work very well during training but do not generalize. We argue that a network
should be capable of adapting its hypothesis space for each example, rather than
always resorting to the most complex hypothesis, which would help it to ignore
extraneous variables that hinder generalization.

Here, we propose convolutional OccamNets which have architectural induc-
tive biases that favor using the minimal amount of network depth and the min-
imal number of image locations during inference for a given example. The first
inductive bias is implemented using early exiting, which has been previously
studied for speeding up inference. The network is trained such that later layers
focus on examples earlier layers find hard, with a bias toward exiting early. The
second inductive bias replaces global average pooling before a classification layer
with a function that is regularized to favor pooling with fewer image locations
from class activation maps (CAMs). We hypothesize this would be especially
useful for combating background and contextual biases [3, 63]. OccamNets are
complementary to existing approaches and can be combined with them.

In this paper, we demonstrate that architectural inductive biases are effective at
mitigating dataset bias. Our specific contributions are:

– We introduce the OccamNet architecture, which has architectural inductive
biases for favoring simpler solutions to help overcome dataset biases. Oc-
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camNets do not require the biases to be explicitly specified during training,
unlike many state-of-the-art debiasing algorithms.

– In experiments using biased vision datasets, we demonstrate that Occam-
Nets greatly outperform architectures that do not use the proposed inductive
biases. Moreover, we show that OccamNets outperform or rival existing de-
biasing methods that use conventional network architectures.

– We combine OccamNets with four recent debiasing methods, which all show
improved results compared to using them with conventional architectures.

2 Related Work

Dataset Bias and Bias Mitigation. Deep networks trained with empirical
risk minimization (ERM) tend to exploit training set biases resulting in poor
test generalization [23, 45, 62, 70]. Existing works for mitigating this problem
have focused on these approaches: 1) focusing on rare data patterns through
re-sampling [8, 40], 2) loss re-weighting [15, 57], 3) adversarial debiasing [20, 34],
4) model ensembling [7, 12], 5) minority/counterfactual sample generation [8, 9,
35] and 6) invariant/robust risk minimization [5, 36, 56]. Most of these methods
require bias variables, e.g., sub-groups within a category, to be annotated [20,
34, 40, 57, 62]. Some recent methods have also attempted to detect and mitigate
biases without these variables by training separate bias-amplified models for
de-biasing the main model [13, 47, 58, 71]. This paper is the first to explore
architectural inductive biases for combating dataset bias.

Early Exit Networks. OccamNet is a multi-exit architecture designed to
encourage later layers to focus on samples that earlier layers find difficult. Multi-
exit networks have been studied in past work to speed up average inference time
by minimizing the amount of compute needed for individual examples [10, 31, 66,
74], but their impact on bias-resilience has not been studied. In [59], a unified
framework for studying early exit mechanisms was proposed, which included
commonly used training paradigms [26, 38, 64, 73] and biological plausibility [46,
49, 50]. During inference, multi-exit networks choose the earliest exit based on
either a learned criterion [10] or through a heuristic, e.g., exit if the confidence
score is sufficiently high [19], exit if there is low entropy [66], or exit if there is
agreement among multiple exits [79]. Recently, [19] proposed early exit networks
for long-tailed datasets; however, they used a class-balanced loss and did not
study robustness to hidden covariates, whereas, OccamNets generalize to these
hidden variables without oracle bias labels during training.

Exit Modules and Spatial Maps. OccamNets are biased toward using
fewer spatial locations for prediction, which we enable by using spatial activa-
tion maps [24, 44, 54]. While most recent convolutional neural networks (CNNs)
use global average pooling followed by a linear classification layer [25, 29, 32], al-
ternative pooling methods have been proposed, including spatial attention [4, 21,
30, 75] and dynamic pooling [30, 33, 37]. However, these methods have not been
explored for their ability to combat bias mitigation, with existing bias mitigation
methods adopting conventional architectures that use global average pooling in-
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stead. For OccamNets, each exit produces a class activation map, which is biased
toward using fewer visual locations.

3 OccamNets

Fig. 2: OccamNets are multi-exit architectures capable of exiting early through
the exit decision gates. The exits yield class activation maps that are trained to
use a constrained set of visual regions.

3.1 OccamNet Architecture for Image Classification

OccamNets have two inductive biases: a) they prefer exiting as early as possible,
and b) they prefer using fewer visual regions for predictions. Following Occam’s
principles, we implement these inductive biases using simple, intuitive ideas:
early exit is based on whether or not a sample is correctly predicted during
training and visual constraint is based on suppressing regions that have low
confidence towards the ground truth class. We implement these ideas in a CNN.
Recent CNN architectures, such as ResNets [25] and DenseNets [32], consist
of multiple blocks of convolutional layers. As shown in Fig. 2, these inductive
biases are enabled by attaching an exit module Ej to block Bj of the CNN, as
the blocks serve as natural endpoints for attaching them. Below, we describe
how we implement these two inductive biases in OccamNets.

In an OccamNet, each exit module Ej takes in feature maps produced by the
backbone network and processes them with Fj , which consists of two convolu-
tional layers, producing feature maps used by the following components:
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Suppressed CAM Predictors (Cj). Each Cj consists of a single convolu-
tional layer, taking in the feature maps from Fj to yield class activation maps, c.
The maps provide location wise predictions of classes. Following Occam’s princi-
ples, the usage of visual regions in these CAMs is suppressed through the CAM
suppression loss LCS described in Sec. 3.2.

Output Predictors (Oj). The output predictor applies global average pool-
ing on the suppressed CAMs predicted by Cj to obtain the output prediction
vector, ŷj ∈ RnY , where nY is the total number of classes. The entire network
is trained with the output prediction loss LO, which is a weighted sum of cross
entropy losses between the ground truth y and the predictions ŷj from each
of the exits. Specifically, the weighting scheme is formulated to encourage the
deeper layers to focus on the samples that the shallower layers find difficult. The
detailed training procedure is described in Sec. 3.3.

Exit Decision Gates (Gj). During inference, OccamNet needs to decide
whether or not to terminate the execution at Ej on a per-sample basis. For this,
each Ej consists of an exit decision gate, Gj that yields an exit decision score gj ,
which is interpreted as the probability that the sample can exit from Ej . Gj is
realized via a ReLU layer followed by a sigmoid layer, taking in representations
from Fj . The gates are trained via exit decision gate loss, LG which is based on
whether or not Oj made correct predictions. The loss and the training procedure
are elaborated further in Sec. 3.4.

The total loss used to train OccamNets is given by:

3.2 Training the Suppressed CAMs

To constrain the usage of visual regions, OccamNets regularize the CAMs so that
only some of the cells exhibit confidence towards the ground truth class, whereas
rest of the cells exhibit inconfidence i.e., have uniform prediction scores for all
the classes. Specifically, let cy ∈ Rh×w be the CAM where each cell encodes the
score for the ground truth class. Then, we apply regularization on the locations
that obtain softmax scores lower than the average softmax score for the ground
truth class. That is, let cy be the softmax score averaged over all the cells in cy,
then the cells at location l, cl ∈ RnY are regularized if the softmax score for the
ground truth class, cly is less than cy. The CAM suppression loss is:

LCS =

hw∑
l=1

1(cly < cy) KLD(cl,
1

nY
1), (1)

where, KLD(cl, 1
nY

1) is the KL-divergence loss with respect to a uniform class

distribution and 1(cly < cy) ensures that the loss is applied only if the ground
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truth class scores lower than cy. The loss weight for LCS is λCS , which is set to
0.1 for all the experiments.

3.3 Training the Output Predictors

The prediction vectors ŷ obtained by performing global average pooling on the
suppressed CAMs c are used to compute the output prediction losses. Specifi-
cally, we train a bias-amplified first exit E0, using a loss weight of: W0 = pγ0

0 ,
where, p0 is the softmax score for the ground truth class. Here, γ0 > 0 encour-
ages E0 to amplify biases i.e., it provides higher loss weights for the samples that
already have high scores for the ground truth class. This encourages E0 to focus
on the samples that it already finds easy to classify correctly. For all the experi-
ments, we set γ0 = 3 to sufficiently amplify the biases. The subsequent exits are
then encouraged to focus on samples that the preceding exits find difficult. For
this, the loss weights are defined as:

Wj = (1− gj−1 + ϵ), if j > 0, (2)

where, gj−1 is the exit decision score predicted by (j − 1)th exit decision gate
and ϵ = 0.1 is a small offset to ensure that all the samples receive a minimal,
non-zero loss weight. For the samples where gj−1 is low, the weight loss for jth

exit, Wj becomes high. The total output loss is then:

LO =

nE−1∑
j=0

Wj CE(ŷj , y), (3)

where, CE(ŷj , y) is the cross-entropy loss and nE is the total number of exits.
Note that Ej ’s are 0-indexed and the first bias-amplified exit E0 is not used
during inference. Furthermore, during training, we prevent the gradients of E0

from passing through B0(.) to avoid degrading the representations available for
the deeper blocks and exits.

3.4 Training the Exit Decision Gates

Each exit decision gate Gj(.) yields an exit probability score ĝj = Gj(.). During
inference, samples with ĝj ≥ 0.5 exit from Ej and samples with ĝj < 0.5 continue
to the next block Bj+1, if available. During training, all the samples use the entire
network depth and gj is used to weigh losses as described in Sec. 3.3. Now, we
specify the exit decision gate loss used to train Gj :

LG =
∑

k∈{0,1}

1(gj = k)BCE(gj , ĝj)√∑
1(gj = k)

, (4)

where gj is the ground truth value for the jth gate, which is set to 1 if the
predicted class y′ is the same as the ground truth class y and 0 otherwise. That
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is, Gj is trained to exit if the sample is correctly predicted at depth j, else
it is trained to continue onto the next block. Furthermore, the denominator:√∑

1(gj = k) balances out the contributions from the samples with g = 1 and
g = 0 to avoid biasing one decision over the other. With this setup, sufficiently
parameterized models that obtain 100% training accuracy will result in a trivial
solution where gj is always set to 1 i.e., the exit will learn that all the samples
can exit. To avoid this issue, we stop computing gj once Ej ’s mean-per-class
training accuracy reaches a predefined threshold τacc,j . During training, we stop
the gradients from G from passing through Fj(.) and B(.), since this improved
the training stability and overall accuracy in the preliminary experiments. The
loss weight λG is set to 1 in all the experiments.

4 Experimental Setup

4.1 Datasets

(a) Biased MNIST (b) COCO-on-Places (c) BAR

Fig. 3: For each dataset, the first two columns show bias-aligned (majority) sam-
ples, and the last column shows bias-conflicting (minority) samples. For BAR,
the train set does not contain any bias-conflicting samples.

Biased MNIST [62]. As shown in Fig. 3a, Biased MNIST requires classify-
ing MNIST digits while remaining robust to multiple sources of biases, including
color, texture, scale, and contextual biases. This is more challenging than the
widely used Colored MNIST dataset [5, 34, 40], where the only source of bias
is the spuriously correlated color. In our work, we build on the version created
in [62]. We use 160 × 160 images with 5 × 5 grids of cells, where the target
digit is placed in one of the grid cells and is spuriously correlated with: a) digit
size/scale (number of cells a digit occupies), b) digit color, c) type of background
texture, d) background texture color, e) co-occurring letters, and f) colors of the
co-occurring letters. Following [62], we denote the probability with which each
digit co-occurs with its biased property in the training set by pbias. For instance,
if pbias = 0.95, then 95% of the digit 1s are red, 95% of digit 1s co-occur with
letter ‘a’ (not necessarily colored red) and so on. We set pbias to 0.95 for all the
experiments. The validation and test sets are unbiased. Biased MNIST has 10
classes and 50K train, 10K validation, and 10K test samples.
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COCO-on-Places [3]. As shown in Fig. 3b, COCO-on-Places puts COCO
objects [41] on spuriously correlated Places backgrounds [78]. For instance, buses
mostly appear in front of balloons and birds in front of trees. The dataset pro-
vides three different test sets: a) biased backgrounds (in-distribution), which
reflects the object-background correlations present in the train set, b) unseen
backgrounds (non-systematic shift), where the objects are placed on backgrounds
that are absent from the train set and c) seen, but unbiased backgrounds (system-
atic shift) where the objects are placed on backgrounds that were not spuriously
correlated with the objects in the train set. Results in [3] show it is difficult to
maintain high accuracy on both the in-distribution and shifted-distribution test
sets. Apart from that, COCO-on-Places also includes an anomaly detection task,
where anomalous samples from unseen object class need to be distinguished from
the in-distribution samples. COCO-on-Places has 9 classes with 7200 train, 900
validation, and 900 test images.

Biased Action Recognition (BAR) [47]. BAR reflects real world chal-
lenges where bias attributes are not explicitly labeled for debiasing algorithms,
with the test set containing additional correlations not seen during training.
The dataset consists of correlated action-background pairs, where the train set
consists of selected action-background pairs, e.g., climbing on a rock, whereas
the evaluation set consists of differently correlated action-background pairs, e.g.,
climbing on snowy slopes (see Fig. 3c). The background is not labeled for the
debiasing algorithms, making it a challenging benchmark. BAR has 6 classes
with 1941 train and 654 test samples.

4.2 Comparison Methods, Architectures and Other Details

We compare OccamNets with four state-of-the-art bias mitigation methods,
apart from the vanilla empirical risk minimization procedure:

– Empirical Risk Minimization (ERM) is the default method used by
most deep learning models and it often leads to dataset bias exploitation
since it minimizes the train loss without any debiasing procedure.

– Spectral Decoupling (SD) [51] applies regularization to model outputs
to help decouple features. This can help the model focus more on the signal.

– Group Upweighting (Up Wt) balances the loss contributions from the
majority and the minority groups by multiplying the loss by 1

nγ
g
, where ng

is the number of samples in group g and γ is a hyper-parameter.

– Group DRO (gDRO) [55] is an instance of a broader family of distri-
butionally robust optimization techniques [18, 48, 52], that optimizes for the
difficult groups in the dataset.

– Predictive Group Invariance (PGI) [3] is another grouping method,
that encourages matched predictive distributions across easy and hard groups
within each class. It penalizes the KL-divergence between predictive distri-
butions from within-class groups.
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Dataset Sub-groups. For debiasing, Up Wt, gDRO, and PGI require addi-
tional labels for covariates (sub-group labels). Past work has focused on these la-
bels being supplied by an oracle; however, having access to all relevant sub-group
labels is often impractical for large datasets. Some recent efforts have attempted
to infer these sub-groups. Just train twice (JTT) [42] uses a bias-prone ERM
model by training for a few epochs to identify the difficult groups. Environment
inference for invariant learning (EIIL) [14] learns sub-group assignments that
maximize the invariant risk minimization objective [5]. Unfortunately, inferred
sub-groups perform worse in general than when they are supplied by an ora-
cle [3, 42]. For the methods that require them, which excludes OccamNets, we
use oracle group labels (i.e., for Biased MNIST and COCO-on-Places). Inferred
group labels are used for BAR, as oracle labels are not available.

For Biased MNIST, all the samples having the same class and the same value
for all of the spurious factors are placed in a single group. For COCO-on-Places,
objects placed on spuriously correlated backgrounds form the majority group,
while the rest form the minority group. BAR does not specify oracle group
labels, so we adopt the JTT method. Specifically, we train an ERM model for
single epoch, reserving 20% of the samples with the highest losses as the difficult
group and the rest as the easy group. We chose JTT over EIL for its simplicity.
OccamNets, of course do not require such group labels to be specified.

Architectures. ResNet-18 is used as the standard baseline architecture
for our studies. We compare it with an OccamNet version of ResNet-18, i.e.,
OccamResNet-18. To create this architecture, we add early exit modules to
each of ResNet-18’s convolutional blocks. To keep the number of parameters
in OccamResNet-18 comparable to ResNet-18, we reduce the feature map width
from 64 to 48. Assuming 1000 output classes, ResNet-18 has 12M parameters
compared to 8M in OccamResNet-18. Further details are in the appendix.

Metrics and Model Selection. We report the means and standard de-
viations of test set accuracies computed across five different runs for all the
datasets. For Biased MNIST, we report the unbiased test set accuracy (i.e.,
pbias = 0.1) alongside the majority and minority group accuracies for each bias
variable. For COCO-on-Places, unless otherwise specified, we report accuracy
on the most challenging test split: with seen, but unbiased backgrounds. We
also report the average precision score to measure the ability to distinguish 100
anomalous samples from the in-distribution samples for the anomaly detection
task of COCO-on-Places. For BAR, we report the overall test accuracies. We use
unbiased validation set of Biased MNIST and validation set with unbiased back-
grounds for COCO-on-Places for hyperparameter tuning. The hyperparameter
search grid and selected values are specified in the appendix.

5 Results and Analysis

5.1 Overall Results

OccamNets vs. ERM and Recent Bias Mitigation Methods. To examine
how OccamNets fare against ERM and state-of-the-art bias mitigation meth-
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Table 1: Unbiased test set accuracies comparing OccamResNet to the more con-
ventional ResNet architectures without early exits and constrained class activa-
tion maps. We format the first, second and third best results.

Architecture+Method Biased MNIST COCO-on-Places BAR

Results on Standard ResNet-18
ResNet+ERM 36.8 ± 0.7 35.6 ± 1.0 51.3 ±1.9

ResNet+SD [51] 37.1 ± 1.0 35.4 ± 0.5 51.3 ±2.3

ResNet+Up Wt 37.7 ± 1.6 35.2 ± 0.4 51.1 ±1.9

ResNet+gDRO [56] 19.2 ± 0.9 35.3 ±0.1 38.7 ±2.2

ResNet+PGI [3] 48.6 ± 0.7 42.7 ± 0.6 53.6 ±0.9

Results on OccamResNet-18
OccamResNet 65.0 ±1.0 43.4 ± 1.0 52.6 ±1.9

Table 2: Unbiased accuracies alongside improvement/ impairment when the
comparison methods are run on OccamResNet instead of ResNet.

Architecture+Method Biased MNIST COCO-on-Places BAR

OccamResNet 65.0 (+28.2) 43.4 (+7.8) 52.6 (+1.3)
OccamResNet+SD [51] 55.2 (+18.1) 39.4 (+4.0) 52.3 (+1.0)
OccamResNet+Up Wt 65.7 (+28.0) 42.9 (+7.7) 52.2 (+1.1)
OccamResNet+gDRO [56] 29.8 (+10.6) 40.7 (+5.4) 52.9 (+14.2)
OccamResNet+PGI [3] 69.6 (+21.0) 43.6 (+0.9) 55.9 (+2.3)

ods, we run the comparison methods on ResNet and compare the results with
OccamResNet. Results are given in Table 1. OccamResNet outperforms state-
of-the-art methods on Biased MNIST and COCO-on-Places and rivals PGI on
BAR, demonstrating that architectural inductive biases alone can help mitigate
dataset bias. The gap between OccamResNet and other methods is large on Bi-
ased MNIST (16.4 - 46.0% absolute difference). For COCO-on-Places, PGI rivals
OccamResNet, and clearly outperforms all other methods, in terms of accuracy
on the test split with seen, but unbiased backgrounds. OccamResNet’s results
are impressive considering that Up Wt, gDRO, and PGI all had access to the
bias group variables, unlike OccamNet, ERM, and SD.

Combining OccamNets with Recent Bias Mitigation Methods. Be-
cause OccamNets are a new network architecture, we used OccamResNet-18
with each of the baseline methods instead of ResNet-18. These results are shown
in Table 2, where we provide unbiased accuracy along with any improvement or
impairment of performance when OccamResNet-18 is used instead of ResNet-
18. All methods benefit from using the OccamResNet architecture compared to
ResNet-18, with gains of 10.6% - 28.2% for Biased MNIST, 0.9% - 7.8% for
COCO-on-Places, and 1.0% - 14.2% for BAR.
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(a) Biased MNIST (b) COCO-on-Places (c) BAR

Fig. 4: Percentage of samples exited (Exit%) from each exit (barring E0).

5.2 Analysis of the Proposed Inductive Biases

In this section, we analyze the impacts of each of the proposed modifications in
OccamNets and their success in achieving the desired behavior.

Analysis of Early Exits. OccamResNet has four exits, the first exit is
used for bias amplification and the rest are used to potentially exit early during
inference. To analyze the usage of the earlier exits, we plot the percentage of
samples that exited from each exit in Fig. 4. For Biased MNIST dataset, a large
portion of the samples, i.e., 59.8% exit from the shallowest exit of E1 and only
13.3% exit from the final exit E3. For COCO-on-Places and BAR, 50.4% and
44.1% samples exit before E3, with 49.6% and 55.9% samples using the full
depth respectively. These results show that the OccamNets favor exiting early,
but that they do use the full network depth if necessary.

Fig. 5: Original image, and Grad-CAM visualizations for ERM and PGI on
ResNet, and CAM visualizations on OccamResNet. The visualizations are for
the ground truth.

CAM Visualizations. To compare the localization capabilities of Occam-
ResNets to ResNets, we present CAM visualizations in Fig. 5. For ResNets that
were run with ERM and PGI, we show Grad-CAM visualizations [60], whereas
for OccamResNets, we directly visualize the CAM heatmaps obtained from the
earliest exit used for each sample. As shown in the figure, OccamResNet gener-
ally prefers smaller regions that include the target object. On the other hand,
comparison methods tend to focus on larger visual regions that include irrelevant
object/background cues leading to lower accuracies.

Ablations. To study the importance of the proposed inductive biases, we
perform ablations on Biased MNIST and COCO-on-Places. First, to examine if
the multi-exit setup is helpful, we train networks with single exit attached to
the end of the network. This caused accuracy drops of 29.1% on Biased MNIST
and 8.4% on COCO-on-Places, indicating that the multi-exit setup is critical.
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Table 3: Ablation Studies on OccamResNet
Ablation Description Biased MNIST COCO-on-Places

Using only one exit at the end 35.9 35.0
Weighing all the samples equally i.e., Wj = 1 66.3 40.8
Without the CAM suppression loss i.e., λCS = 0 48.2 37.1

Full OccamResNet 65.0 43.4

To examine if the weighted output prediction losses are helpful or harmful, we
set all the loss weights (Wj) to 1. This resulted in an accuracy drop of 2.6% on
COCO-on-Places. However, it improved accuracy on Biased MNIST by 1.3%.
We hypothesize that since the earlier exits suffice for a large number of samples
in Biased MNIST (as indicated in Fig. 4a), the later exits may not receive suffi-
cient training signal with the weighted output prediction losses. Finally, we ran
experiments without the CAM suppression loss by setting λCS to 0. This caused
large accuracy drops of 16.8% on Biased MNIST and 6.3% on COCO-on-Places.
These results show that both inductive biases are vital for OccamNets.

5.3 Robustness to Different Types of Shifts

A robust system must handle different types of bias shifts. To test this ability,
we examine the robustness to each bias variable in Biased MNIST and we also
compare the methods on the differently shifted test splits of COCO-on-Places.

Table 4: Accuracies on majority (maj)/minority (min) groups for each bias vari-
able in Biased MNIST (pbias = 0.95). We embolden the results with the lowest
differences between the groups.

Architecture+Method
Digit
Scale

Digit
Color

Texture
Texture
Color

Letter
Letter
Color

Test
Acc.

maj/min maj/min maj/min maj/min maj/min maj/min

ResNet+ERM 36.8 87.2/31.3 78.5/32.1 76.1/32.4 41.9/36.3 46.7/35.7 45.7/35.9
ResNet+PGI 48.6 91.9/43.8 84.8/44.6 79.5/45.1 51.3/48.3 67.2/46.5 55.8/47.9

OccamResNet 65.0 94.6/61.7 96.3/61.5 81.6/63.1 66.8/64.8 64.7/65.1 64.7/65.1
OccamResNet+PGI 69.6 95.4/66.7 97.0/66.5 88.6/67.4 71.4/69.4 69.6/69.6 70.5/69.5

In Table 4, we compare how ResNet and OccamResNet are affected by the
different bias variables in Biased MNIST. For this, we present majority and mi-
nority group accuracies for each variable. Bias variables with large differences be-
tween the majority and the minority groups, i.e., large majority/minority group
discrepancy (MMD) are the most challenging spurious factors. OccamResNets,
with and without PGI, improve on both majority and minority group accura-
cies across all the bias variables. OccamResNets are especially good at ignoring
the distracting letters and their colors, obtaining MMD values between 0-1%.
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Table 5: Accuracies on all three test splits of COCO-on-Places, alongside mean
average precision for the anomaly detection task.

Architecture+Method
Biased

Backgrounds
Unseen

Backgrounds

Seen, but
Non-Spurious
Backgrounds

Anomaly
Detection

Results on Standard ResNet-18
ResNet+ERM 84.9 ± 0.5 53.2 ±0.7 35.6 ±1.0 20.1 ±1.5

ResNet+PGI [3] 77.5 ±0.6 52.8 ±0.7 42.7 ±0.6 20.6 ±2.1

Results on OccamResNet-18
OccamResNet 84.0 ±1.0 55.8 ±1.2 43.4 ±1.0 22.3 ±2.8

OccamResNet+PGI [3] 82.8 ±0.6 55.3 ±1.3 43.6 ± 0.6 21.6 ±1.6

ResNets, on the other hand are susceptible to those spurious factors, obtaining
MMD values between 7.9-20.7%. Among all the variables, digit scale and digit
color are the most challenging ones and OccamResNets mitigate their exploita-
tion to some extent. Next, we show accuracies for base method and PGI on both
ResNet-18 and OccamResNet-18 on all of the test splits of COCO-on-Places
in Table 5. The different test splits have different kinds of object-background
combinations, and ideally the method should work well on all three test splits.
PGI run on ResNet-18 improves on the split with seen, but non-spurious back-
grounds but incurs a large accuracy drop of 7.4% on the in-distribution test set,
with biased backgrounds. On the other hand, OccamResNet-18 shows only 0.9%
drop on the biased backgrounds, while showing 2.6% accuracy gains on the split
with unseen backgrounds and 7.8% accuracy gains on the split with seen, but
non-spurious backgrounds. It further obtains 2.2% gains on the average preci-
sion metric for the anomaly detection task. PGI run on OccamResNet exhibits
a lower drop of 2.1% on the in-distribution split as compared to the PGI run on
ResNet, while obtaining larger gains on rest of the splits. These results exhibit
that OccamNets obtain high in-distribution and shifted-distribution accuracies.

5.4 Evaluation on Other Architectures

To examine if the proposed inductive biases improve bias-resilience in other
architectures too, we created OccamEfficientNet-B2 and OccamMobileNet-v3
by modifying EfficientNet-B2 [65] and MobileNet-v3 [28, 29]. OccamNet variants
outperform standard architectures on both Biased MNIST (OccamEfficientNet-
B2: 59.2 vs. EfficientNet-B2: 34.4 and OccamMobileNet-v3: 49.9 vs. MobileNet-
v3: 40.4) and COCO-on-Places (OccamEfficientNet-B2: 39.2 vs. EfficientNet-B2:
34.2 and OccamMobileNet-v3: 40.1 vs. MobileNet-v3: 34.9). The gains show that
the proposed modifications help other architectures too.

5.5 Do OccamNets Work on Less Biased Datasets?

To examine if OccamNets also work well on datasets with less bias, we train
ResNet-18 and OccamResNet-18 on 100 classes of the ImageNet dataset [16].
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OccamResNet-18 obtains competitive numbers compared to the standard ResNet-
18 (OccamResNet-18: 92.1, vs. ResNet-18: 92.6, top-5 accuracies). However, as
described in rest of this paper, OccamResNet-18 achieves this with improved
resistance to bias (e.g., if the test distributions were to change in future). Ad-
ditionally, it also reduces the computations with 47.6% of the samples exiting
from E1 and 13.3% of samples exiting from E2. As such, OccamNets have the
potential to be the de facto network choice for visual recognition tasks regardless
of the degree of bias.

6 Discussion

Relation to Mixed Capacity Models. Recent studies show that sufficiently
simple models, e.g., with fewer parameters [13, 27] or models trained for a few
epochs [42, 71] amplify biases. Specifically, [27] shows that model compression
disproportionately hampers minority samples. Seemingly, this is an argument
against smaller models (simpler hypotheses), i.e., against Occam’s principles.
However, [27] does not study network depth, unlike our work. Our paper suggests
that using only the necessary capacity for each example yields greater robustness.

Relation to Multi-Hypothesis Models. Some recent works generate mul-
tiple plausible hypotheses [39, 68] and use extra information at test time to
choose the best hypothesis. The techniques include training a set of models with
dissimilar input gradients [68] and training multiple prediction heads that dis-
agree on a target distribution [39]. An interesting extension of OccamNets could
be making diverse predictions through the multiple exits and through CAMs
that focus on different visual regions. This could help avoid discarding complex
features in favor of simpler ones [61]. This may also help with under-specified
tasks, where there are equally viable ways of making the predictions [39].

Other Architectures and Tasks.We tested OccamNets implemented with
CNNs; however, they may be beneficial to other architectures as well. The abil-
ity to exit dynamically could be used with transformers, graph neural networks,
and feed-forward networks more generally. There is some evidence already for
this on natural language inference tasks, where early exits improved robustness
in a transformer architecture [79]. While the spatial bias is more vision spe-
cific, it could be readily integrated into recent non-CNN approaches for image
classification [17, 43, 69, 76].

Conclusion. In summary, the proposed OccamNets have architectural in-
ductive biases favoring simpler solutions. The experiments show improvements
over state-of-the-art bias mitigation techniques. Furthermore, existing methods
tend to do better with OccamNets as compared to the standard architectures.
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A Appendix

A.1 Detailed Results on Each Dataset

Biased MNIST. In Table A6, we present the unbiased test accuracies and ma-
jority/minority group accuracies for each bias variable. Methods run on Occam
ResNet-18 lower the majority/minority discrepancy (MMD) compared to the
methods run on ResNet-18 for all of the variables, indicating that OccamNets
lower the tendencies to latch onto all of the spurious factors. OccamResNet-18
is especially robust to letter, letter color and texture color biases as shown by
the low MMD values of 0− 2.8% compared to the larger MMD values obtained
by ResNet-18.

Table A6: Accuracies on majority (maj)/minority (min) groups for each bias
variable in Biased MNIST (pbias = 0.95).

Architecture+Method
Digit
Scale

Digit
Color

Texture
Texture
Color

Letter
Letter
Color

Test
Acc.

maj/min maj/min maj/min maj/min maj/min maj/min

Results on ResNet-18
ResNet+ERM 36.8 87.2/31.3 78.5/32.1 76.1/32.4 41.9/36.3 46.7/35.7 45.7/35.9
ResNet+SD [51] 37.1 83.4/32.0 76.9/32.7 76.7/32.7 42.3/36.6 48.3/35.8 48.9/35.9
ResNet+UpWt 37.7 88.0/32.1 80.4/32.9 75.6/33.4 41.9/37.2 46.7/36.6 46.9/36.7
ResNet+gDRO [56] 19.2 55.0/15.2 50.2/15.7 63.4/14.2 24.8/18.6 26.7/18.3 29.5/18.1
ResNet+PGI [3] 48.6 91.9/43.8 84.8/44.6 79.5/45.1 51.3/48.3 67.2/46.5 55.8/47.9

Results on OccamResNet-18
OccamResNet 65.0 94.6/61.7 96.3/61.5 81.6/63.1 66.8/64.8 64.7/65.1 64.7/65.1
OccamResNet+SD [51] 55.2 92.3/51.1 92.9/50.9 78.9/52.5 57.4/54.9 55.9/55.1 55.3/55.2
OccamResNet+UpWt 65.7 95.1/62.5 96.3/62.3 82.4/63.9 68.3/65.5 65.3/65.8 65.3/65.8
OccamResNet+gDRO [56] 29.8 72.8/25.0 69.5/25.3 45.8/28.0 39.4/28.8 29.7/29.8 36.1/29.1
OccamResNet+PGI [3] 69.6 95.4/66.7 97.0/66.5 88.6/67.4 71.4/69.4 69.6/69.6 70.5/69.5

COCO-on-Places. In Table A7, we present the accuracies on each of the
test splits of COCO-on-Places, alongside the average precision for the anomaly
detection task. As discussed in 5.1, methods run on OccamResNet-18 show im-
provements over the methods run on ResNet-18 on the shifted test splits and
the anomaly detection task. Furthermore, while PGI run on ResNet-18 shows a
large drop of 7.4% on the in-distribution test split, methods (barring gDRO) run
on OccamResNet-18 show smaller drops of 0.1− 2.1%, indicating robustness to
distributions consisting of the same or different biases as compared to the train
distribution.

BAR. First of all, BAR consists of only 1941 samples, so we pre-trained
ResNet-18 and OccamResNet-18 on 100 classes of ImageNet (obtaining 92.6%
and 92.1% top-5 accuracies respectively) before training on BAR. Without the
pre-trained weights, BAR obtains 15-20% lower test set accuracies for both
ResNet and OccamResNet as compared to the results with pre-trained weights.
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Table A7: Accuracy on the three splits of COCO-on-Places, alongside average
precision for the anomaly detection task.

Methods
In-

Distribution
Unseen

Backgrounds

Seen, but
Non-Spurious
Backgrounds

Anomaly
Detection

Results on ResNet-18
ResNet+ERM 84.9 ± 0.5 53.2 ±0.7 35.6 ±1.0 20.1 ±1.5

ResNet+SD [51] 85.3 ±0.3 52.8 ±0.9 35.4 ±0.5 19.9 ±1.4

ResNet+UpWt 84.9 ±0.6 52.3 ± 0.7 35.2 ± 0.4 20.4 ±1.9

ResNet+gDRO [56] 81.6 ±0.7 49.3 ±1.3 35.3 ±0.1 19.6 ±1.7

ResNet+PGI [3] 77.5 ±0.6 52.8 ±0.7 42.7 ±0.6 20.6 ±2.1

Results on OccamResNet-18
OccamResNet 84.0 ±1.0 55.8 ±1.2 43.4 ±1.0 22.3 ±2.8

OccamResNet+SD [51] 84.8 ±0.4 55.3 ±0.5 39.4 ±0.6 20.3 ±1.0

OccamResNet+Up Wt 82.9 ±0.5 56.6 ±1.0 42.9 ±0.8 21.0 ±0.9

OccamResNet+gDRO [56] 78.6 ±0.7 50.7 ±2.0 40.7 ± 1.5 19.3 ±2.3

OccamResNet+PGI [3] 82.8 ±0.6 55.3 ±1.3 43.6 ± 0.6 21.6 ±1.6

Now, as shown in Table A8, methods run on OccamResNet show gains in terms
of the overall test set accuracies over the methods run on ResNet. The per-
class standard deviations are larger (1.8-16.2%) as compared to the standard
deviations for the overall test set accuracies (0.7-2.4%). That is, across the five
different experiments run with different random seeds, the same methods run
on the same architectures end up favoring different classes. We hypothesize that
despite starting off from the same initial conditions i.e., the same pre-trained pa-
rameters, the randomness in the mini-batches drive the models to favor certain
classes over the others. Tuning the optimizer e.g., switching to SGD, lowering
the learning rates or increasing the weight decay can potentially help mitigate
the unstable behavior.

A.2 Early Exit Statistics

To examine the efficiency and robustness of each exit for all of the datasets, we
present the exit %, accuracy on the exited samples and overall exit-wise accura-
cies on all the samples for OccamResNet-18 in Table A9. For Biased MNIST, the
earliest exits E1 and E2 have high exit percentages of 59.8% and 26.9% respec-
tively, alongside high accuracies on the exited samples: 68.1% and 64.8% respec-
tively. These results show that OccamResNet has learned to identify and trigger
earlier exits whenever appropriate. For COCO-on-Places, we observe large ac-
curacies of 50.8% and 50.2% on the 13.9% and 49.6% samples exited from E2

and E3 respectively. The large percentage of samples exiting from E3 shows that
OccamResNet is capable of using the full network depth whenever needed. The
accuracy on the samples that exited from E1 is however low: 31.3%, even though
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Table A8: Overall and per-class accuracies on BAR

Methods Overall Climbing Diving Fishing
Pole

Vaulting
Racing Throwing

Results on ResNet-18
ResNet+ERM 51.3 ±1.9 69.5 ±7.5 29.2 ±1.8 39.9 ±16.2 55.5 ±6.4 75.6 ±5.6 31.8 ±4.3

ResNet+SD [51] 51.3 ±2.3 62.1 ±7.5 35.8 ±2.0 51.2 ±6.4 62.4 ±9.2 71.6 ±10.0 18.5 ±6.7

ResNet+Up Wt 51.1 ±1.9 61.7 ±13.2 43.9 ±5.8 42.3 ±8.3 52.3 ±7.4 67.9 ±6.7 28.2 ±12.8

ResNet+gDRO [56] 38.7 ±2.2 49.5 ±8.5 40.3 ±8.4 44.0 ±10.4 39.9 ±7.1 41.7 ±4.0 13.5 ±5.9

ResNet+PGI [3] 53.6 ±0.9 61.2 ±10.4 38.4 ±4.1 42.9 ±8.4 73.3 ±3.7 68.9 ±5.9 23.5 ±1.9

Results on OccamResNet-18
OccamResNet 52.6 ±1.9 59.3 ±3.8 42.3 ±7.5 44.6 ±14.9 60.5 ±8.6 74.1 ±7.2 22.1 ±3.9

OccamResNet+SD [51] 52.3 ±2.4 56.4 ±6.8 34.3 ±5.8 55.4 ±7.4 69.1 ±4.9 72.9 ±4.2 21.8 ±2.1

OccamResNet+Up Wt 52.2 ±1.4 57.9 ±1.8 35.7 ±7.5 51.8 ±11.2 64.3 ±8.8 71.8 ±3.8 27.4 ±3.5

OccamResNet+gDRO [56] 52.9 ±0.8 51.2 ±9.6 42.8 ±8.2 52.3 ±5.1 63.5 ±7.3 74.2 ±5.2 25.3 ±4.5

OccamResNet+PGI [3] 55.9 ±0.7 64.2 ±5.1 52.3 ±6.4 51.4 ±8.3 64.4 ±4.1 70.9 ±8.1 18.6 ±6.8

the overall accuracy is 42.4%, indicating need for improvement in terms of train-
ing the earlier exit gates. We believe that tuning the training thresholds more
comprehensively can potentially close this gap. Finally, for BAR, more than half
i.e., 55.9% of the samples exit from E3. The accuracies on the samples exited
from E1 and E2: 55.0% and 65.3% are higher than the overall accuracies com-
puted on all the samples i.e., 47.4% and 52.3% respectively. This again shows
the ability to exit early whenever appropriate and the ability to utilize the full
network depth only for the remaining samples.

Table A9: Percentage samples exited: (Exit %), accuracy (Acc.) on exited sam-
ples and accuracy on all the samples for each exit (Ej).

Biased MNIST COCO-on-Places BAR
E0 E1 E2 E3 E0 E1 E2 E3 E0 E1 E2 E3

Exit% 0.0 59.8 26.9 13.3 0.0 36.5 13.9 49.6 0.0 23.7 20.3 55.9
Acc. (exited) N/A 68.1 64.8 52.1 N/A 31.3 50.8 50.2 N/A 55.0 65.3 46.6
Acc. (all) 12.7 65.1 65.5 65.5 10.0 42.4 43.4 41.4 26.5 47.4 52.3 52.5

Table A10: Exit comparison on models trained with different levels of biases
on Biased MNIST. We present the percentage samples exited: (Exit %) and
accuracy on all the samples for each exit (Ej).

pbias = 0.5 pbias = 0.95
E0 E1 E2 E3 E0 E1 E2 E3

Exit% 0.0 67.3 23.8 8.9 0.0 53.6 34.2 12.2
Acc. (all) N/A 98.2 98.1 98.1 N/A 63.3 63.3 62.6
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Table A11: Exit comparison on different test splits of COCO-on-Places. We
present the percentage samples exited: (Exit %), accuracy (Acc.) on exited sam-
ples and accuracy on all the samples for each exit (Ej).

In-Distribution Unseen Backgrounds Unbiased Backgrounds
E0 E1 E2 E3 E0 E1 E2 E3 E0 E1 E2 E3

Exit% 0.0 54.6 12.4 33.0 0.0 13.1 9.7 77.2 0.0 39.4 14.5 46.1
Acc. (exited) N/A 94.7 86.5 66.9 N/A 58.9 67.8 52.3 N/A 27.5 55.4 49.2
Acc. (all) 67.2 81.1 84.0 85.3 20.9 51.7 55.1 55.4 11.2 40.1 41.6 39.4

Exit Statistics on differently shifted distributions.
In general, we find that earlier exits are triggered more often for in-distribution

(easier) test samples as compared to shifted distribution (more difficult) test
samples. As shown in Table A10, for BiasedMNIST, when pbias is increased
from 0.5 (easy) to 0.95 (hard), exit% of the earliest exit: E1 drops from 67.3%
to 53.6%. Similarly, as shown in Table A11, for COCO-on-Places, E1’s exit%
on in-distribution (easy) split is 54.6%, whereas it is 39.4% on unbiased back-
grounds (hard) split. However, for the test split with unseen backgrounds, E1’s
exit%: 13.1% is lower than the exit% of 39.4% obtained for the test split with
unbiased backgrounds, despite the latter being more difficult. OccamNet failed
to trigger earlier exits even though E1 was accurate for 51.7% of the samples
E2 was comparable with E3 in terms of overall accuracy. We hypothesize that
the earlier exits failed to trigger since they had not been trained to exit when
the backgrounds are out-of-distribution. Thus, one area for improvement is to
enable the ability to exit confidently in spite of the presence of previously unseen
factors. Note that this analysis was performed on a single run, so may have small
differences with the multi-run averages presented elsewhere.

A.3 Using comparable # of parameters

In the main paper, we compared OccamResNet-18 with 8M parameters (feature
width = 48) and ResNet-18 with 12M parameters (feature width = 64). To ex-
amine if the lower number number of parameters is helping e.g., due to implicit
regularization, we test an OccamResNet-18 with 12M parameters by setting the
feature width to 58. As shown in Table A12, OccamResNet-18 with 12M param-
eters shows small improvements over OccamResNet-18 with 8M parameters in
all the datasets. A more thorough analysis of model sizes and their impacts on
accuracy is an interesting study and we leave this to future work.

A.4 Sample Complexity

It is desirable to have models that generalize despite being trained with a limited
number of samples i.e., with reduced sample complexity. This is especially true
for biased datasets, where reducing the train set size can amplify biases [72]. To
study the ability to generalize when only a subset of the training data is available,
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Table A12: We train on OccamResNet-18-width-58 with 12M parameters (fea-
ture width set to 58) to make the number of parameters comparable to ResNet-18
(12M parameters, feature width=48).

Architecture+Method Biased MNIST COCO-on-Places BAR

Results on Standard ResNet-18 (12M parameters, feature width=64)
ResNet+ERM 36.8 ± 0.7 35.6 ± 1.0 51.3 ±1.9

ResNet+SD [51] 37.1 ± 1.0 35.4 ± 0.5 51.3 ±2.3

ResNet+Up Wt 37.7 ± 1.6 35.2 ± 0.4 51.1 ±1.9

ResNet+gDRO [56] 19.2 ± 0.9 35.3 ±0.1 38.7 ±2.2

ResNet+PGI [3] 48.6 ± 0.7 42.7 ± 0.6 53.6 ±0.9

Results on OccamResNet-18 (8M parameters, feature width=48)
OccamResNet 65.0 ±1.0 43.4 ± 1.0 52.6 ±1.9

Results on OccamResNet-18-width-58 (12M parameters, feature width=58)
OccamResNet 65.9 ±1.3 43.8 ± 1.1 53.5 ±2.2

Fig.A6: Unbiased accuracies obtained when trained with the indicated percent
of training data.

we train ResNet and OccamResNet on 1%, 5%, 10%, 25%, 50%, 100% of Biased
MNIST’s train set. As shown in Fig. A6, OccamResNet (without PGI) trained
on only 25% of the data outperforms ResNet+ERM and ResNet+PGI trained
on 100% of the data showing increased sample complexity. When trained on only
10% of the training set, OccamResNet+PGI outperforms rest of the methods
by large margins of 11.5− 16.2% showing that OccamResNet with group labels
show the greatest efficacy in the low-shot data regime. When only 1% of the
training data is available, all the methods obtain chance-level accuracies (i.e.,
near 10%) indicating lack of enough sufficient training samples for classification.
For the rest, methods run on OccamResNet-18 outperform the methods run on
ResNet-18, showing improved sample complexity.



A26 R. Shrestha et al.

A.5 Robustness to Varying Levels of Bias in Biased MNIST

Fig.A7: Unbiased accuracies at varying bias levels (pbias) in Biased MNIST.

To gauge the robustness of models, it is important to examine their be-
haviors across varying levels of biases. For this, we present the unbiased ac-
curacies obtained by training separate models on training sets with pbias ∈
{0.75, 0.9, 0.95, 0.99}. As shown in fig. A7, all of the methods obtain similar accu-
racies at pbias = 0.75, where bias is not severe. OccamResNet+PGI outperform
rest of the methods at pbias = {0.9, 0.95, 0.99}. The gap between OccamRes-
Net+PGI and other methods are especially drastic for pbias = 0.99, indicating
that when OccamResNet is trained to have similar prediction distributions across
groups, it is capable of tackling highly biased training distributions too.

A.6 Evaluation on Other Architectures

Apart from ResNet, we also tested the proposed inductive biases on EfficientNet
and MobileNet. The results are presented in Table A13. For both Biased MNIST
and COCO-on-Places, Occam variants outperform the standard architectures,
showing the efficacy of the proposed modifications.

A.7 OccamNet Implementation Details

In OccamNet, each exit module Ej takes in feature maps produced by the corre-
sponding block Bj of the backbone network. Ej consists of two 3×3 convolutional
layers (Fj) for the initial pre-processing of the feature maps. Fj consists of con-

volutional layers with the number of channels set to: max(
dj

4 , dmin), where dj is
the number of channels in the feature maps produced by Bj , and dmin is set to 32
for OccamResNet and OccamMobileNet and 16 for OccamEfficientNet. Feature



OccamNets A27

Table A13: Unbiased test set accuracies comparing the standard and Occam vari-
ants of ResNet-18, EfficientNet-B2 and MobileNetv3 architectures, run without
additional debiasing procedures.

Architecture
Number of
Parameters

Biased MNIST COCO-on-Places

ResNet-18 12M 36.8 35.6
OccamResNet-18 12M 65.9 43.8
EfficientNet-B2 9M 34.4 34.2
OccamEfficientNet-B2 9M 59.2 39.2
MobileNet-v3 5.5M 40.4 34.9
OccamMobileNet-v3 5.5M 49.9 40.1

maps from Fj are fed into the CAM predictor Cj and the exit gate Gj . Cj is a
1× 1 convolutional layer with the number of output channels set to the number
of classes, nY . Gj consists of a 16-dimensional hidden ReLU layer followed by a
sigmoid layer that predicts the exit probability.

Exit Details. For convenience, we specify the exit locations with reference
to PyTorch 1.7.1 implementations of the architectures. For ResNet, the residual
layers that yield the same number of output channels are grouped together and
we refer to each of those groups as a ‘block’. ResNet-18 consists of 4 blocks
and we attach an exit to each of the blocks. For OccamResNet-18, with feature
width of 58, the exit-wise input dimensions are: E0 : 58, E1 : 116, E2 : 232
and E3 : 464. Similarly, EfficientNet-B2 consists of 9 blocks and we attach the
exits to the 3rd, 5th, 7th and 9th blocks. We decrease the width multiplier of 1.1
in the standard architecture to 0.88 in OccamEfficientNet-B2 to create a model
with comparable number of parameters of 9M for both. The input dimensions
of the corresponding exits are: E0 : 24, E1 : 72, E2 : 168 and E3 : 1120. Fi-
nally, MobileNetv3-large consists of 17 blocks, and the exits are attached to the
2nd, 7th, 13th and the 17th blocks. We decrease the width multiplier from a value
of 1 in MobileNet-v3-large to 0.95 in OccamMobileNet-v3-large, so that both
models have 5.5M parameters. The input dimensions of the corresponding exits
are: E0 : 16, E1 : 40, E2 : 104, E3 : 912.

Modifications for COCO-on-Places. For COCO-on-Places, the images
are small (64× 64), so for ResNet-18 and OccamResNet-18, we replace the first
convolutional layer (kernel size=7, padding=3, stride=2), with a smaller layer
(kernel size=3, padding=1 and stride=1) and also remove the initial max pooling
layer. For the standard and Occam variants of EfficientNet-B2 and MobileNet-
v3, we scale up the image size to 224× 224, which improved the accuracy.

Computational Costs and Training Durations OccamResNet18 incurs
additional multiply-accumulate (Mac) operations, requiring 2.11 GMacs com-
pared to 1.82 GMacs required by ResNet18. While OccamResNet is slower than
ERM on ResNet, it is faster than PGI run on ResNet. Average training dura-
tions per epoch for ERM on ResNet, PGI on ResNet and OccamResNet are: 10,
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17, 14 secs for COCO-on-Places and 40, 67, 60 secs for BiasedMNIST on a Titan
RTX.

A.8 Hyperparameters and Other Settings

In Table A14, we present the details about optimizers, training epochs and other
hyperparameters for each method on each dataset. The hyperparameter search
grids for OccamResNet-18 and all of the comparison methods are shown below.
For each dataset, we tune ResNet-18 and OccamResNet-18 separately.

Spectral Decoupling (SD). The output decay term λ is used to penalize
the model predictions by using a regularizer: λ

2 ||ŷ||
2
2. We search for the output

decay term λ ∈ {1, 0.1, 0.01, 10−3, 10−4}.
Group Upweighting (UpWt). Group adjustment hyperparameter, i.e.,

the exponentiation factor γ is used to balance the group-wise contributions 1
nγ
g
,

where ng is the number of samples in group g. We search for γ ∈ {0.5, 1, 2, 3}.
Group DRO (gDRO). Again, we search for the group adjustment hy-

perparameter, i.e., γ ∈ {0.5, 1, 2, 3}. Group weight step size, which is used to
control the group-wise loss weights is selected by searching from these values:
{0.1, 0.01, 10−3, 10−4}.

Predictive Group Invariance (PGI). The search range for the invariance
penalty loss, i.e., the KLD loss between different groups from the same class is:
{1, 10, 50, 100, 500, 1000}.

OccamNets. For OccamNets, we recommend tuning the accuracy threshold
of the first exit: (τacc,0) on a validation set, but fixing rest of the hyperparameters,
based on the following observations:

– Bias Amplification Factor (γ0) and Weight offset (ϵ): We tuned γ0 and ϵ on
COCO-on-Places, but fixed the values for rest of the datasets. We observe
that γ0 ≥ 3 ensures sufficient bias amplification, so recommend using γ0 =
3. Furthermore, ϵ = 0.1 ensures non-zero losses in all the datasets, so we
recommend using this default value.

– Accuracy Thresholds (τacc): We use arithmetic progression for the mean-
per-class accuracy thresholds τacc, with the difference ∆τacc,j , set to 0.1,
i.e., the threshold is increased by 0.1 every subsequent exit. We search for
the initial training threshold τacc,0 ∈ {0.1, 0.3, 0.5}. BMNIST and COCO
were relatively insensitive to τacc,0, with absolute differences of only: 1-2%
in accuracy and 1-4% in exit%. For BAR and ImageNet, we decreased τacc,0
to 0.1 since higher values increase exit% of E1, which decreases the overall
accuracy. So, we recommend tuning τacc,0.

– Normalization term: The balancing/normalization in equation 4 can be gen-
eralized as ( 1∑

1(gj=k)
)β . We searched for β in {0.5, 1.0}. With β = 1, only

8.8% samples exited from E1 for BMNIST, compared to 59.8% with β = 0.5.
Accuracies for β =0.5/1.0 were similar: e.g., 65.0%/64.2% for BMNIST and
44.1%/44.0% for COCO (single runs), so we chose β = 0.5 to favor earlier
exits on all the datasets.
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Table A14: Hyperparameters and other settings used for each method on all of
the datasets.
Datasets/
Methods

Setting
Biased
MNIST

COCO on
Places

BAR

Common to all the methods Optimizer Adam SGD Adam
Learning Rate (LR) 10−3 0.1 5e-4
LR Decay Milestones [50,70] [100,120,140] -
LR Decay Gamma 0.1 0.1 -
Weight Decay 5 × 10−4 5 × 10−4 5 × 10−4

Momentum - 0.9 -
Batch Size 128 64 128
Epochs 90 150 150

Spectral Decoupling (SD)
on ResNet-18 [51]

Output Decay (λ) λ = 0.1
λmin. = 10−3

λmaj. = 0.1
λ = 0.1

Spectral Decoupling (SD)
on OccamResNet-18 [51]

Output Decay (λ) λ = 10−3 λmin. = 10−3

λmaj. = 0.1
λ = 10−3

Up Wt
Exponentiation
Factor (γ)

2 1 1

Group DRO (gDRO)
on ResNet-18 [56]

Step size 10−3 10−3 0.01

Exponentiation
Factor (γ)

0.5 1 0.01

Group DRO (gDRO)
on OccamResNet-18 [56]

Step size 10−3 10−4 0.01

Exponentiation
Factor (γ)

0.5 0.5 0.5

Predictive Group
Invariance (PGI)
on ResNet-18 [3]

Invariance Loss
Weight

100 50 10

Predictive Group
Invariance (PGI)
on OccamResNet-18 [3]

Invariance Loss
Weight

50 1 50

OccamNets
Threshold
for E0 (τacc,0)

0.5 0.5 0.1

CAM Suppression
Loss Weight (λCS)

0.1 0.1 0.1

A.9 Issues Training with GroupDRO (gDRO)

We find that gDRO on Biased MNIST and ResNet+gDRO on BAR obtain ac-
curacies lower than ResNet+ERM. To alleviate this issue, we tried to tune the
hyperparameters by lowering the learning rates to {10−4, 10−5} and increasing
the weight decays to {0.1, 0.01, 10−3} as suggested in [56], yet gDRO obtained
low accuracies. We believe the challenge stems from the large number of dataset
groups in Biased MNIST and the small training set size of BAR. While optimiz-
ing gDRO on such conditions still remains a challenge, gDRO run on Occam-
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ResNet showed accuracy gains of 10.6% on Biased MNIST and 14.2% on BAR
over gDRO run on ResNet, indicating that OccamNets also offer better training
process.

A.10 Augmentations

Biased MNIST. We do not perform any augmentation.
COCO-on-Places. Following [3], we apply random cropping by padding

the original images by 8 pixels on all the sides (reflection padding) and taking
64× 64 random crops. We also apply random horizontal flips.

BAR. We apply random resized crops using a scale range of 0.7 to 1.0 and
selecting aspect ratios between 1.0 to 4

3 . We also apply random horizontal flips.

A.11 Model Calibration

In Fig. A8 and A9 we show the reliability diagrams for ERM model (leftmost
column) and for each exit (E1−E3) for OccamResNet for COCO-on-Places and
Biased MNIST respectively. In terms of model calibration, OccamNet reduces
the expected calibration error (ECE) to some extent, yet there is a large room
for improvement, which is an interesting direction to pursue.

Fig. A8: Reliability diagrams for the classifier trained with ERM (leftmost col-
umn) versus exit gate calibrations for E1−E3 (right hand columns) on COCO-
on-Places (unbiased backgrounds test split).

Fig. A9: Reliability diagrams for the classifier trained with ERM (leftmost col-
umn) versus exit gate calibrations for E1−E3 (right hand columns) on Biased
MNIST.
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A.12 Other Architectures and Tasks.

We tested OccamNets implemented with CNNs; however, they may be beneficial
to other architectures as well. The ability to exit dynamically could be used with
transformers, graph neural networks, and feed-forward networks more generally.
There is some evidence already for this on natural language inference tasks,
where early exits improved robustness in a transformer architecture [79]. It would
be interesting to evaluate multiple existing early exit mechanisms [59] for their
abilities to discard spurious correlations. Furthermore, adapting the early exit
ideas to non-classification tasks e.g., regression may require small changes e.g.,
exiting based on continuous error, which can be explored in future works.


