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1. Introduction

For n > 1, the natural embedding of Lie algebras gl,, < sl,, 1 defined by

@ (8 —t?(a))’

induces a vertex algebra homomorphism
VE(gl,) — VE(sly1). (1.1)
The coset vertex algebra
C*(n) = Com(V*(gl,), VF(sl,y1)) (1.2)

was called the algebra of generalized parafermions in [30]. The reason for this terminology
is that for n = 1, C¥(1) is isomorphic to the parafermion algebra N*(sly) = Com(H, sl3),
where H denotes the Heisenberg algebra corresponding to the Cartan subalgebra b C sls.

By Theorem 8.1 of [30], C¥(n) is of type W(2,3,...,n%+3n+1), i.e., it has a minimal
strong generating set consisting of one field in each weight 2,3,...,n% 4+ 3n + 1. This
generalizes the case n = 1, which appears in [20]. When k is a positive integer, (1.1)
descends to a map of simple affine vertex algebras Ly (gl,) < Lg(sl,41), and the coset
Com(Ly(gly), Lk (sl,41)) coincides with the simple quotient Cx(n) of C*(n). By Theorem
13.1 of [6], we have an isomorphism

k+n

Cr(n) = Wa(sly), t= —k‘f‘m'

(1.3)
In particular, Cx(n) is strongly rational, that is, Co-cofinite and rational. This generalizes
the case n = 1, which was proved earlier in [8].

A useful perspective on C¥(n) is that these algebras all arise in a uniform way as
quotients of the universal two-parameter Weo-algebra W(c, A) of type W(2,3,...); see
Theorem 8.2 of [30]. This realization gives a nice conceptual explanation for the isomor-
phisms appearing in (1.3). Each one-parameter quotient of W(e, A) corresponds to an
ideal in C[c, ], or equivalently, a curve in the parameter space C? called the truncation
curve. The truncation curves for W¥(sl,,,) and C*(n) are given by Equations 7.8 and 8.4
of [30], and the above isomorphisms correspond to intersection points on these curves.

The algebras C*(n) appear naturally as building blocks for affine vertex algebras of
type A. It is convenient to replace C¥(n) with C*(n) = H ®C*(n), where H is a rank one
Heisenberg vertex algebra. Then we have

Com(vk(g[n—l)a Vk(g[n)) = ék(n - 1)7

so V¥(gl,) can be regarded as an extension of V*(gl, 1) ® C¥(n — 1). Iterating this
procedure, we see that V*(gl,,) is an extension of
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HC* 1) ol*2)® - oCF(n—1). (1.4)

Note that if k is a positive integer, the simple quotient L(gl,) is then an extension of

H®Cr(1) ®Cr(2) ® -+ ®Cr(n— 1) X Wy, (gle) @ We, (ali) ® - © Wy, (ali),

where ¢; = —k + kfﬁill -. In [6], this was regarded as a noncommutative analogue of
the Gelfand-Tsetlin subalgebra of U(gl,,). Similarly, we may regard the subalgebra (1.4)
as the universal version of this structure.

The algebras C*(n) also appear as building blocks for various W-(super)algebras.
For example, an important conjecture of Ito [24] asserts that the principal W-algebra

% (slp41jn) has a coset realization as
Com(V*(gl,), VF(sl,11) ® F(2n)), (1.5)

where F(2n) denotes the rank 2n free fermion algebra, and (¢ + 1)(k +n + 1) = 1.
Ito’s conjecture was stated in this form in [16], and these algebras have the same strong
generating type by Lemma 7.12 of [16]. In the case n = 1, the conjecture clearly holds
because both sides are isomorphic to the N = 2 superconformal algebra. The first non-
trivial case n = 2 was proven in [22]. It was also shown in [22] that the coset (1.5) is
naturally an extension of W™ (gl,,) ® C*(n) for r = —n+ n+k+1
in the proof of Ito’s conjecture will be to show that W* (5[n+1|n) is indeed an extension
of W (gl,) ®C*(n). Note that C¥(n) is itself a subalgebra of a W-superalgebra of 0,41,
corresponding to a small hook-type nilpotent element [17].

An important ingredient

Generalized parafermion algebras of orthogonal type There are two different analogues
of C*(n) in the orthogonal setting. We have natural embeddings s0s, < $02,41
5025,+2, Which induce homomorphisms of affine vertex algebras

V’“(ﬁogn) — V’“(ﬁognH) — Vk(502n+2). (1.6)

The cosets Com(V*(s02,,), V¥(509,11)) and Com(V*(s09,11), V¥(s02,12)) both have
actions of Zs, and we define

Dk(n) = Com(V’“(sogn), Vk(502n+1))227

1.7
Sk(n) = (JOI?(I(‘/]€(50271+1)7 Vk<502n+2>)zz. ( )

Both these algebras arise as one-parameter quotients of the universal even spin Wy.-
algebra W< (¢, \) constructed recently by Kanade and the third author in [26]. Such
quotients of W (¢, \) are in bijection with a family of ideals I in the polynomial ring
Cle, A], or equivalently, the truncation curves V(I) C C2. The main result in this paper
is the explicit description of the truncation curve for D¥(n) for all n; see Theorem 3.3.
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The proof is based on the coset realization of principal W-algebras of type D and a
certain level-rank duality appearing in [6], which implies that

2m + 2n — 2

~ Zy = — — a1 a. 1
Doy (n) = We(s02m)72, ¢ (2m —2) + 2m+2n—1

(1.8)
Here Dy,,(n) denotes the simple quotient of D?™(n). This is analogous to the isomor-
phisms (1.3) in type A. Since a similar coset realization of type B principal W-algebras
is not available, we are currently unable to obtain an explicit description of £¥(n), and
in this paper we only study D*(n).

As in type A, there is a similar description of affine vertex algebras of orthogonal type
as extensions of Gelfand-Tsetlin type subalgebras. Clearly V*(s02,2) is an extension of

HoD*1) e 1) eD"2) @& 2)® - @D (n—1)® (n—1) @ DF(n) ® £(n),
and similarly, V¥ (s09,1) is an extension of
HeD' 1) e 1) oD 2) e 2) @ @D n-1)® & (n-1) 2 D*0).

Additionally, D*(n) is a building block for various W-(super)algebras. For example,
consider the principal W-superalgebra W*(0spa, |2, ) where (¢ +1)(k+2n—1) = 1. Note
that 1 and 2n — 1 are the dual Coxeter numbers of 0spyy,|2, and $02,41, respectively.
The free fermion algebra F(2n) carries an action of Ly (502, ), and it is expected that

W (05panjan) = Com(VF (500, ), VF(502,11) ® F(2n)). (1.9)

This algebra appears in physics in the duality of N = 1 superconformal field theories and
higher spin supergravities [11,18], and this conjecture appeared in this context. Note that
central charges coincide. It is apparent that the coset appearing in (1.9) is an extension
of W7 (s02,) ® D¥(n) where r = —(2n — 2) + figﬁj As in the case of Ito’s conjecture,
an important step in the proof of (1.9) will be to show that W5(05p2n|2n) is also an

extension of this structure.

Applications The first application of our main result is to classify all isomorphisms be-
tween the simple quotient Dy (n) and the simple algebras Wy (502, 41) and Wi (s02,,)%2.
Using results of [26], this can be achieved by finding the intersection points between the
truncation curve for D*(n), and the truncation curves for W¥(s09,, 1) and W¥(s02,,)%2,
respectively. In the type A case, we find only one family of points where Ci(n) is isomor-
phic to a strongly rational W-algebra of type A; these appear in (1.3). In the orthogonal
setting, the situation is more interesting. In addition to the isomorphisms (1.8) when k
is a positive integer, we also find that for k = —(2n — 2) 4+ 1(2n + 2m — 1), we have an
embedding of simple affine vertex algebras L (s02,) — Li(502,+1), and an isomorphism
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Dy, (n) = Com(Lk(s02,), Li(502,11))%2 = Wi (509 11),

2m+2n—1
f——(Qm—l)—f—m.
Since £ is a nondegenerate admissible level for s09,,+1, We(s02m+1) is strongly rational
[1,2]. These are new examples of cosets of non-rational vertex algebras by admissible
level affine vertex algebras, which are strongly rational.

This coset is also closely related to level-rank duality. Recall that 2n(2m + 1) free
fermions carry an action of Loy (502m+1) ® Lom+1(802,). The levels shifted by the re-
spective dual Coxeter numbers are 2n+2m — 1 in both cases. Therefore Ly (s025,+1) is an
extension of L (502,) ® Wi(502,41), where £ = —(2m — 1) 4 Zmt2n-1

2m—+2n+1"
k and ¢ shifted by the respective dual Coxeter numbers are of the form (2m +2n —1)/v

i.e., both levels

for v = 2 and v = 2 4+ 2m + 2n — 1. In particular, the shifted levels have the same
numerator as the original level-rank duality and the two denominators only differ by a
multiple of the numerator. Note that under certain vertex tensor category assumptions
the tensor product of two vertex algebras can be extended to a larger vertex algebra
with a certain multiplicity freeness condition if and only if the two vertex algebras have
subcategories that are braid-reversed equivalent, see [14, Main Thm. 3] for the precise
statement. Applied to our setting, this means that there are vertex algebra extensions
of Ly (s02,) and W ($02,,+1) that have subcategories of modules that are braid-reversed
equivalent.

The theory of vertex algebra extensions, especially [14, Thm. 5.12], then implies that
the category of ordinary modules of L (502,,41) at level k = —(2n —2) + 3(2n+2m —1)
is fusion, i.e. a rigid braided semisimple tensor category. This proves special cases of
Conjecture 1.1 of [12].

Finally, our rationality results for Dg(n) suggest the existence of a new series of
principal W-superalgebras of 0sps,|2, which are strongly rational. By Corollary 14.2
of [6], the coset Com(Lgy1(502p), Li(502,4+1) ® F(2n)) is strongly rational when k is a
positive integer. In view of the conjectured isomorphism (1.9), this implies that for k a
positive integer and £ satisfying (£ +1)(k+2n—1) = 1, Wy(05p2,|2,) is strongly rational.
Similarly, it follows from Corollary 1.1 of [14] that for k = —(2n — 2) + 1(2n + 2m — 1)
and ¢ satisfying (€4 1)(k+2n—1) = 1, the coset Com(Ly41(802,), L ($02n+1) @ F(2n))
is again strongly rational. This motivates the following

Conjecture 1.1. For k = —(2n—2)+3(2n+2m—1) and ¢ satisfying ((+1)(k+2n—1) =1,
Wi(05p2yj2n) is strongly rational.

The conjecture is true for the N = 2 super Virasoro algebra, i.e. the case n = 1 [4].
Otherwise strong rationality for principal W-superalgebras of orthosymplectic type is
completely open. There is, however, a Ca-cofiniteness results in the case of 0spy|2, [10,
Cor. 5.19].
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2. Vertex algebras

We shall assume that the reader is familiar with vertex algebras, and we use the
same notation and terminology as the papers [26,30]. We first recall the universal two-
parameter vertex algebra We (¢, \) of type W(2,4,...), which was recently constructed
in [26]. Tt is defined over the polynomial ring C[e, A] and is generated by a Virasoro field
L of central charge ¢, and a weight 4 primary field W*, and is strongly generated by
fields {L,W?| i > 2} where W2 = I/V(41)W2i’2 for ¢ > 3. The idea of the construction
is as follows.

(1) All structure constants in the OPEs of L(z)W? (w) and W2/ (2)W?2*(w) for 2i < 12
and 2j + 2k < 14, are uniquely determined as elements of C[c, A] by imposing the
Jacobi identities among these fields.

(2) This data uniquely and recursively determines all OPEs L(z)W?(w) and
W2 (2)W?2k(w) over the ring Clc, \] if a certain subset of Jacobi identities are im-
posed.

(3) By showing that the algebras WF(sp,,) all arise as one-parameter quotients of
W (c, M) after a suitable localization, we show that all Jacobi identities hold. Equiv-
alently, W (c, \) is freely generated by the fields { L, W?!| i > 2}, and is the universal
enveloping algebra of the corresponding nonlinear Lie conformal algebra [19].

We (e, ) is simple as a vertex algebra over C|c, A], but there is a certain discrete
family of prime ideals I = (p(c, A)) C Cle, A] for which the quotient

WL (e, X) = W (e, \)/T- W (¢, \),

is not simple as a vertex algebra over the ring Cle, \]/I. We denote by W$V(c, A) the
simple quotient of W*e¥'I(c, \) by its maximal proper graded ideal Z. After a suitable
localization, all one-parameter vertex algebras of type W(2,4,...,2N) for some N sat-
isfying some mild hypotheses, can be obtained as quotients of W (¢, A) in this way.
This includes the principal W-algebras W¥(s02,,+1) and the orbifolds W¥(s04,,)%2. The
generators p(c, A) for such ideals arise as irreducible factors of Shapovalov determinants,
and are in bijection with such one-parameter vertex algebras.
We also consider We¥+! (¢, \) for maximal ideals

I:(C—CO,A—)\O), co, Mg € C.

Then W (¢, \) and its quotients are vertex algebras over C. Given maximal ideals
Iy =(c—co,A\— o) and I} = (¢—c1, A — A1), let Wy and W be the simple quotients of
wevlo (e, X) and We¥I1 (¢, \). Theorem 8.1 of [26] gives a simple criterion for Wy and Wy
to be isomorphic. Aside from a few degenerate cases, we must have ¢y = ¢; and \g = A1.
This implies that aside from the degenerate cases, all other coincidences among the simple
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quotients of one-parameter vertex algebras WeV{(c, \) and We"/(c, ), correspond to
intersection points of their truncation curves V(I) and V(J).
We shall need the following result which is analogous to Theorem 6.2 of [30].

Theorem 2.1. Let W be a vertex algebra of type W(2,4,...,2N) which is defined over
some localization R of Clc, \]/I, for some prime ideal I. Suppose that W is generated by
the Virasoro field L and a weight 4 primary field W*. If in addition, the graded character
of W agrees with that of W (c,\) up to weight 13, then W is a quotient of W (c, \)
after localization.

Proof. First, note that Theorem 3.10 of [26] holds without the simplicity assumption;
see Remark 5.1 of [30] for a similar statement in the case of the algebra W(c, \) of type
W(2,3,...). By Theorem 3.10 of [26], it suffices to prove that the OPEs L(z)W?(w) and
W2 (2)W?2k(w) for 20 < 12 and 2j + 2k < 14 in W are the same as the corresponding
OPEs in W*® (¢, A) if the structure constants are replaced with their images in R. In this
notation, W2 = W(41)W2i72 for ¢ > 3. But this is automatic because the graded character
assumption implies that there are no null vectors of weight w < 13 in the (possibly
degenerate) nonlinear conformal algebra corresponding to {L,W?%|2<i< N}. O

3. Generalized parafermions of orthogonal type

For n > 1, the natural embedding s0s,, < 502,41 induces a vertex algebra homomor-
phism

Vk(sogn) — Vk(502n+1).

The action of s0s, on V¥ (802,4+1) given by the zero modes of the generating fields
integrates to an action of the orthogonal group Os,,. Therefore the coset

Com(V*(502,), VF(502n41)) = VF(509,41)72n 11
has a nontrivial action of Z,. We define
DF(n) = Com(V*(s02,), VF(s02n41))%2. (3.1)
It has Virasoro element L®°2n+1 — [*°2» with central charge

B kn(2k 4+ 2n — 3)
Thrm—ktr2n—1) (3:2)

Note that in the case n = 1, D*(n) = N*(sly)%> which is of type W(2,4,6,8,10) by
Theorem 10.1 of [26].
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Lemma 3.1. For all n > 1, D*(n) is of type W(2,4,...,2N) for some N satisfying
N > 2n2 + 3n. We conjecture, but do not prove, that N = 2n? + 3n. Moreover, for
generic values of k, D¥(n) is generated by the weight 4 primary field W*.

Proof. By Theorem 6.10 of [16], we have

lim D¥(n) = H(2n)%2",

k—o0
and a strong generating set for H(2n)92» corresponds to a strong generating set for D¥(n)
for generic values of k. Here H(2n) denotes the rank 2n Heisenberg vertex algebra. It
was shown in [29], Theorem 6.5, that H(2n)92" has the above strong generating type.
By Lemma 4.2 of [28], the weights 2 and 4 fields generate H(2n)©2~. In fact, it is easy to
check that only the weight 4 field is needed, and that it can be replaced with a primary
field which also generates the algebra. Finally, the statement that DF(n) inherits these
properties of H(2n)92" for generic values of k is also clear; the argument is similar to
the proof of Corollary 8.6 of [15]. O

Corollary 3.2. For all n > 1, there exists an ideal K,, C Clc, ] and a localization R, of
Cle, N/ K, such that D¥(n) is the simple quotient of W}?:L’K" (e, A).

Proof. This holds for n = 1 by Theorem 10.1 of [26]. For n > 1, the simplicity of D¥(n)
as a vertex algebra over a localization of C[k] follows from the simplicity of H(2n)%2,
which follows from [21]. In view of Theorems 2.1 and 3.1, it then suffices to show that
the graded characters of D¥(n) and W (¢, \) agree up to weight 13. This follows from
Weyl’s second fundamental theorem of invariant theory for O, [31], since there are no
relations among the generators of weight less than 4n? + 6n+2. O

Theorem 3.3. For all n > 2, D¥(n) is isomorphic to a localization of the quotient
W (¢, A), where the ideal K, C Cle, A] is described explicitly via the parametrization
k— (cn(k), A\n(k)) given by

kn(2k + 2n — 3) (k+2n—2)(k+2n—1)p,(k)
(k+2n—2)(k+2n—1)’ 7(k—2)(k+n—1)2n — 1)gn(k)ra(k)’
(k) = —112 + 188k — 62k% — 26k3 + 12k* 4 744n — 1336kn + 857k*n — 252kn
+ 36k*n — 172002 + 2534kn? — 1198k*n? + 188k3n? 4 1632n3 — 1544kn3
+ 304k%n® — 544n* + 152kn?,
qn(k) =20 — 19k + 6% — 42n + 28kn + 28n?,
7o (k) = 44 — 66k + 22k — 132n + 73kn + 10k*n + 88n? + 10kn?.

en(k) =

An(k) =

(3.3)

Proof. Let n be fixed. In view of Corollary 3.2 and the fact that all structure constants
in D¥(n) are rational functions of k, there is some rational function M, (k) of k such that
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DF(n) is obtained from We(c, ) by setting ¢ = ¢, (k) and A = A\, (k), and then taking
the simple quotient. It is not obvious yet that A, (k) is a rational function of n as well.

For k a positive integer, it is well known [25] that the map V¥(s04,) — V¥(s09,,41)
descends to a homomorphism of simple algebras Ly ($02,) — Li($02,41). Letting Dg(n)
denote the simple quotient of DF(n), it is apparent from Lemma 2.1 of [7] and Theorem
8.1 of [16] that Com(Ly($02y, ), Lk (s02,+1)) is simple and coincides with the simple quo-
tient of Com(V*(s02,,), V*(502,41)). Moreover, taking Z,-invariants preserves simplicity,
hence

Dy(n) = Com (L (502, ), Ly (502541))%2.

Next, by Corollary 1.3 of [6], for all n > 1 and m > 2, we have an isomorphism

((Lgm (502n+1) @ H‘,Qm(2mw1))502n [t])ZQ X Lo o~ W[(sogm),
2n 4 2m — 2 (3.4)

(= _(2m—2)4 2 T2m= 2
@m=2)+ 5 51

In this notation, w; denotes the first fundamental weight of 02,41 and Lo, (2mw;)
denotes the simple quotient of the corresponding Weyl module.

Note that (Lo, (502n41)°°2" [t])ZQ = Dy, (n) is manifestly a subalgebra of the left hand
side of (3.4). Also, the lowest-weight component of La,, (2mw1 ) has conformal weight m.
If m > 4, the left-hand side then has a unique primary weight 4 field which lies in
Do (n). Similarly, since Wy (s02,,) has strong generators in weights 2,4, ...,2m and m,
for m > 4 the right hand side has a unique primary weight 4 field, which lies in the
Zo-orbifold Wy (s09,,)%2.

Since DF(n) is generated by the weight 4 field as a one-parameter vertex algebra,
the weight 4 field must generate Da,,(n) for all m sufficiently large. By Corollary 6.1 of
[26], W¥(509,,)%2 is generated by the weight 4 field as a one-parameter vertex algebra;
equivalently, this holds for generic values of /. By the same argument as Proposition A.4
of [8], the vertex Poisson structure on the associated graded algebra gr W*(sos,,) with
respect to Li’s canonical filtration, is independent of £ for all noncritical values of £. In
particular this holds for the subalgebra (gr W¥(s509,,))%2 = gr(W'(s502,,)%?). Tt follows
from the same argument as Proposition A.3 of [8] that W¥(s02,,)%? is generated by the
weights 2 and 4 fields for all noncritical values of ¢, and the same therefore holds for the
simple quotient Wy(502,,)%2. Finally, for £ = —(2m —2) + g::igizj, it is straightforward
to verify that the Virasoro field can be generated from the weight 4 field, so the weight
4 field generates the whole algebra.

Therefore if m is sufficiently large, we obtain

2m + 2n — 2

~ Zy = — — P
Dom(n) = Welsozm)™, £ ==(2m =2)+ So—or—.

In fact, we will see later (Theorem 4.1) that this holds for all m > 2.
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Finally, the truncation curve that realizes Wy (502,,)%2 as a quotient of W (c, \) is
given by Theorem 6.3 of [26], and in parametric form by Equation (B.1) of [26]. In view
of (3.5), we must have A\, (2m) = A\, (¢) for £ = —(2m — 2) + % for m sufficiently
large, where A, (£) is given by Equation (B.1) of [26]. It follows that for infinitely many
values of k, A\, (k) is given by the above formula (3.3). Since A, (k) is a rational function

of k, this equality holds for all k where it is defined. This completes the proof. 0O
4. Coincidences

In this section, we shall use Theorem 3.3 to classify all coincidences between the simple
quotient Dy, (n) and the Zy-orbifold Wi (s09,,)%2, as well as Wy (s02,,11). We also classify
all coincidences between Dy(n) and Dy(m) for m # n.

Theorem 4.1. For n > 1 and m > 2, aside from the critical levels k = —2n + 2 and
k = —2n+1, and the degenerate cases c = %, —24, all isomorphisms Dy (n) = Wy(s02,,) %2

appear on the following list:

2n+2m — 2
1) k=2 - (2m -2y TEmT2
(1) m ¢ 2(m1 )+2n+2m—1’ ) ) )
n— m — 2n —
(2)k——(2n—2)—72(m_1), E——(Qm—2)+72(m_1) ,
n—m m-—n
- —(2n—2 — —(2m -2 .
(3 k=—Cn-2+"" " = omo2+ "

Proof. Recall first that Wy(s02,,)%2 is realized as the simple quotient of We¥/m (¢, \),
where the ideal J,, C C[e, A] is given in parametrized form by Equation (B.1) of [26].
First, we exclude the values of k and ¢ which are poles of the functions A, (k) given
by (3.3), and \,,(¢) given by Equation (B.1) of [26], since at these values, D¥(n) and
Wi(502,,)%2 are not quotients of W (¢, A). For all other noncritical values of k and
¢, D*(n) and Wy(s02,,)%2 are obtained as quotients of WeVIn (¢, \) and We¥/m (¢, \),
respectively. By Corollary 8.2 of [26], aside from the degenerate cases given by Theorem
8.1 of [26], all other coincidences Dy, (n) = Wy(s02,,)%? correspond to intersection points
on the truncation curves V(K,,) and V(Jp,). A calculation shows that V(K,,) NV (J,,)
consists of exactly five points (¢, A), namely,
1 2 mn(4m + 2n — 3)

(_24’_ﬁ)’ (5’_E>’ <(m+n—1)(2m+2n—1)’ Al)’

~ 2mn(3 —4m — 2n + 4mn) ) _ (2mn+m —2n)(2mn —m —n) )
2m —2n—1 P2 ) PR

m—-n

Here
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(m+n—1)(2m+2n—1)g
T(m—1)2m+n—1)(2n—1)gh’

f = —28 + 94m — 62m? — 52m?> + 48m* + 186n — 668mn + 857m?n — 504m>n
+144m’n — 430n* + 1267mn® — 1198m°n® + 376m°n® + 408n° — 772mn’ (4 9)
+ 304m?n® — 136n* + T6mn*,

g =10 — 19m + 12m? — 21n + 28mn + 14n?,

h = 22 — 66m + 44m? — 66n + 73mn + 20m>n + 44n* 4+ 10mn?.

A=

(1—2m+2n)f
7(1 —2m + 2mn)(—1 — 2n + 4mn)gh’

f =14 —33m — 2m? + 24m> + 74n — 404mn + 873m3n — 696m>n + 144m*n
+80n? — 178mn? — 260m?n? + 452m3n? — 112m*n? — 24n3 + 264mn>

Ay =

— 348m?2n? + 256m>n3 — 64m*n® + 72mn* — 128m>*n* (4.3)
— 48m3n* + 32mn?,
g=—10+19m — 12m? — 2n + 22mn — 8m?n — 12n* — 8mn? + 8m?n?,
h =11 — 22m + 22n + 15mn — 20m®n — 10mn® + 20m>n.
. (n—m)f |
T(m —1)(2n — 1)(m — n + 2mn)gh
f = —=34m3 4+ 19m* + 68m>n — 38m3n — 22mn? — 185m?n? + 302m>n?
— 80m*n?
(4.4)

—12n3 + 204mn® — 302m3n> + 80m>n> — 36n* + 100mn* — 40m?n*
— 40m>n* + 16mn?,

g = —Tm? + Tmn — 6n° — 4mn? + 4m>n?,

h = —22m — 5m? + 22n + 5mn + 10n? — 30mn? + 20m2n>.

By Theorem 8.1 of [26], the first two intersection points occur at degenerate values of
c. By replacing the parameter ¢ with the levels k and ¢, we see that the remaining inter-
section points yield the nontrivial isomorphisms in Theorem 4.1. Moreover, by Corollary
8.2 of [26], these are the only such isomorphisms except possibly at the values of k, ¢
excluded above.

Finally, suppose that k is a pole of the function A, (k) given by (3.3). It is not difficult
to check that the corresponding values of ¢ for which ¢, (k) = ¢ (£), are not poles of
Am(€). As above, ¢, (k) and A, (k) are given by (3.3), and ¢, (€) and A, (€) are given
by Equation (B.1) of [26]. It follows that there are no additional coincidences at the
excluded points. O

Next, we classify the coincidences between Dy (n) and Wi(s02m+1).
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Theorem 4.2. For n > 1 and m > 2, aside from the critical levels k = —2n + 2 and
k = —2n+1, and the degenerate cases c = &, —24, all isomorphisms Dy (n) = Wy(502:,11)
appear on the following list:

1 2m+2n—1
1) k=—2n—-2 —(2 2m — 1 {=—-2m -1 _
(1) k= (20 =2) + (20 +2m 1), @m—1)+ S

2n—2m—1 2m —2n+1

(2) k=—(2n—2)+ . L=—(2m—1)+

)

;j k:—;n—zi— L%”*l) (zz_(z)m_lq)?:_m—l
om—1" om —2n+1

Proof. The argument is the same as the proof of Theorem 4.1. First, W;(s02y,+1) is real-
ized as the simple quotient of WeV:Im (¢, \) where the ideal I,,, C C|e, ] is parametrized
explicitly by Equation (A.3) of [26]. The above isomorphisms all arise from the intersec-
tion points between the truncation curves V(K,,) for D*(n) and V(I,,,) for Wy (s02,,+1)-
A calculation shows that there are exactly 7 intersection points: the degenerate points
(%, f%) and (—24, 72715), and the five nontrivial ones appearing above. One then has to
rule out additional coincidences at the points where Dy(n) does not arise as a quotient
of W (¢, \), namely, the poles of A, (k). The details are straightforward and are left to

the reader. 0O
Finally, we classify all isomorphisms Dy (m) = Dy(n) for n # m.
Theorem 4.3. For m,n > 1 and n # m, aside from the degenerate cases ¢ = % —24 and

poles of cn(k), A (k) and ¢, (k), A\ (k) the complete list of isomorphisms Dy (m) = Dy(n)
is the following:

_ 2(m—1) B 2m+2n—1
(Z)k—*(2m72)+1+72n, e—f(QTL*Q)fm,
. 2m +2n —1 B 2(n—1)
() k=-Cm=2) ==y =Tl

The proof is similar to the proof of Theorem 4.1 and is omitted.
5. Some rational cosets

By composing the map V*(s0s,,) — V*(509,,+1) with the quotient map V*(s09,11) —
L ($02,+1), we obtain an embedding

Vk(sogn) — Lj(s02n41),
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where Vk(sogn) denotes the quotient of V*(s04,) by the kernel J of the above com-
position. In general, it is a difficult and important problem to determine when Jj
is the maximal proper graded ideal, or equivalently, when V*(s09,) = Lj(s02,). In
the case where k is an admissible level for $os,, Lemma 2.1 of [7] would then im-
ply that Com(Ly(s02,), Lx(s02,+1)) is simple, and hence its orbifold Com(Ly(s02y,),
Ly (502,41))%2 would be simple as well [21]. Additionally, Theorem 8.1 of [16] would
imply that Com(L(502,), Li(502,41))%? coincides with the simple quotient Dy(n) of
D¥(n). This is particularly interesting in the cases where Dy (n) is strongly rational.

We conclude by proving this for first family in Theorem 4.2. These are new examples
of cosets of non-rational vertex algebras by admissible level affine vertex algebras, which
are strongly rational.

Lemma 5.1. Forn > 2 and m > 0, we have an embedding of simple affine vertex algebras
1
Ly (s09,) < Li(s02541), k=—-02n-2)+ 5(271 +2m —1).

Proof. We proceed by induction on m. In the case m = 0, we have k = —n + %, and it
is well known that there exists a conformal embedding Ly (s02,,) < Lk (502,41), see e.g.
Section 3 of [5]. Next, we assume the result for m —1, so that k = —n+ 2 +m — 1. Recall
that the rank 2n 4 1 free fermion algebra F(2n + 1) admits an action of L;(s025,41), as
well as an action of Lj(s0g,) via the embedding Lj($02,) < L1(502,+1). The image of
Li(so02y,) lies in the subalgebra F(2n) C F(2n + 1).

Since k is admissible for s02,,41, it is known [25] that we have a diagonal embedding
of simple affine vertex algebras

Liy1(802p41) — Lp(s502p41) @ F(2n 4+ 1). (5.1)
By induction, we have the map L (s502,,) < Li(5025,41). Then we have an embedding
Li1(s502y,) < Li(502,) @ F(n) < Li(s02n41) ® F(2n + 1), (5.2)

where F(2n) — F(2n + 1) is the isomorphism onto the first 2n copies. Since the image
of (5.2) lies in the image of (5.1), it follows that Lj11(s02,) embeds in Li41(502,41). O

This has the following immediate consequence.

Corollary 5.2. For n > 2, m > 0, and k = —(2n — 2) + 1(2n + 2m — 1), we have an
isomorphism

2m+2n—1

Com(Ly,(502,), Li(502,41))%* = m+1), b= —(2m—1) 4 o
om(Ly(502,), Lx(502n11)) W (s02m+1) (2m )+2m+2n+1

In particular, Com(Ly,(s02,), Li(502,41))%2 is strongly rational.
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Proof. This follows from Theorem 4.2 together with the fact that Com(Lg(s02,),
Li(502,41))%2 is simple, and the map DF(n) — Com(Ly(s02,), Lr(502,11))%2 is sur-
jective. 0O

Recall that the category of ordinary modules of an affine vertex algebra at ad-
missible level is semisimple [3] and a vertex tensor category [12]. Conjecturally, this
category is fusion [12] and this has been proven for simply-laced Lie algebras [9].
For type s02,11 and level k = —(2n — 2) + 2(2n + 2m — 1) this conjecture is also
true. First, Com(Lg(s02,,), L (502,+1)) is a simple current extension, call it Ve(s02p,+1),
of Wy($02m+1) and thus rational as well [27]. It follows that Lj(s02,41) is a simple
Z-graded extension of Ly(s02,) ® Vi(s02,,+1) in a rigid vertex tensor category C of
Lk (502,) ® Ve($02,m41)-modules, namely the Deligne product of the categories of ordi-
nary Ly (802, )-modules and Vy($02,,+1)-modules. Every ordinary module for Ly (s025,+1)
must be an object in this category C. This means that as a braided tensor category the
category of ordinary modules of Ly (s02,1) is equivalent to the category of local modules
for Ly (s02,+41) viewed as an algebra object in C [13,23]. All assumptions of Theorem 5.12
of [14] are satisfied (with U = Vy(s02,+1) and V' = Ly(s02,,)) and so

Corollary 5.3. The category of ordinary modules of Ly (s02,41) at level k = —(2n — 2) +
$(2n+2m — 1) is fusion.
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