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There is an embedding of affine vertex algebras V k(gln) ↪→
V k(sln+1), and the coset Ck(n) = Com(V k(gln), V k(sln+1)) is 
a natural generalization of the parafermion algebra of sl2. It 
was called the algebra of generalized parafermions by the third 
author and was shown to arise as a one-parameter quotient of 
the universal two-parameter W∞-algebra of type W(2, 3, . . . ). 
In this paper, we consider an analogous structure of orthogo-
nal type, namely Dk(n) = Com(V k(so2n), V k(so2n+1))Z2 . We 
realize this algebra as a one-parameter quotient of the two-
parameter even spin W∞-algebra of type W(2, 4, . . . ), and we 
classify all coincidences between its simple quotient Dk(n) and 
the algebras W�(so2m+1) and W�(so2m)Z2 . As a corollary, we 
show that for the admissible levels k = −(2n − 2) + 1

2 (2n +
2m − 1) for ŝo2n the simple affine algebra Lk(so2n) embeds 
in Lk(so2n+1), and the coset is strongly rational. As a con-
sequence, the category of ordinary modules of Lk(so2n+1) at 
such a level is a braided fusion category.
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1. Introduction

For n ≥ 1, the natural embedding of Lie algebras gln ↪→ sln+1 defined by

a �→
(
a 0
0 −tr(a)

)
,

induces a vertex algebra homomorphism

V k(gln) ↪→ V k(sln+1). (1.1)

The coset vertex algebra

Ck(n) = Com(V k(gln), V k(sln+1)) (1.2)

was called the algebra of generalized parafermions in [30]. The reason for this terminology 
is that for n = 1, Ck(1) is isomorphic to the parafermion algebra Nk(sl2) = Com(H, sl2), 
where H denotes the Heisenberg algebra corresponding to the Cartan subalgebra h ⊆ sl2.

By Theorem 8.1 of [30], Ck(n) is of type W(2, 3, . . . , n2 +3n +1), i.e., it has a minimal 
strong generating set consisting of one field in each weight 2, 3, . . . , n2 + 3n + 1. This 
generalizes the case n = 1, which appears in [20]. When k is a positive integer, (1.1)
descends to a map of simple affine vertex algebras Lk(gln) ↪→ Lk(sln+1), and the coset 
Com(Lk(gln), Lk(sln+1)) coincides with the simple quotient Ck(n) of Ck(n). By Theorem 
13.1 of [6], we have an isomorphism

Ck(n) ∼= W�(slk), � = −k + k + n

k + n + 1 . (1.3)

In particular, Ck(n) is strongly rational, that is, C2-cofinite and rational. This generalizes 
the case n = 1, which was proved earlier in [8].

A useful perspective on Ck(n) is that these algebras all arise in a uniform way as 
quotients of the universal two-parameter W∞-algebra W(c, λ) of type W(2, 3, . . . ); see 
Theorem 8.2 of [30]. This realization gives a nice conceptual explanation for the isomor-
phisms appearing in (1.3). Each one-parameter quotient of W(c, λ) corresponds to an 
ideal in C[c, λ], or equivalently, a curve in the parameter space C2 called the truncation 
curve. The truncation curves for W�(slm) and Ck(n) are given by Equations 7.8 and 8.4 
of [30], and the above isomorphisms correspond to intersection points on these curves.

The algebras Ck(n) appear naturally as building blocks for affine vertex algebras of 
type A. It is convenient to replace Ck(n) with C̃k(n) = H⊗Ck(n), where H is a rank one 
Heisenberg vertex algebra. Then we have

Com(V k(gln−1), V k(gln)) ∼= C̃k(n− 1),

so V k(gln) can be regarded as an extension of V k(gln−1) ⊗ C̃k(n − 1). Iterating this 
procedure, we see that V k(gln) is an extension of
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H⊗ C̃k(1) ⊗ C̃k(2) ⊗ · · · ⊗ C̃k(n− 1). (1.4)

Note that if k is a positive integer, the simple quotient Lk(gln) is then an extension of

H⊗ C̃k(1) ⊗ C̃k(2) ⊗ · · · ⊗ C̃k(n− 1) ∼= W�1(glk) ⊗W�2(glk) ⊗ · · · ⊗W�n(glk),

where �i = −k + k+n−i
k+n+1−i . In [6], this was regarded as a noncommutative analogue of 

the Gelfand-Tsetlin subalgebra of U(gln). Similarly, we may regard the subalgebra (1.4)
as the universal version of this structure.

The algebras Ck(n) also appear as building blocks for various W-(super)algebras. 
For example, an important conjecture of Ito [24] asserts that the principal W-algebra 
W�(sln+1|n) has a coset realization as

Com(V k+1(gln), V k(sln+1) ⊗F(2n)), (1.5)

where F(2n) denotes the rank 2n free fermion algebra, and (� + 1)(k + n + 1) = 1. 
Ito’s conjecture was stated in this form in [16], and these algebras have the same strong 
generating type by Lemma 7.12 of [16]. In the case n = 1, the conjecture clearly holds 
because both sides are isomorphic to the N = 2 superconformal algebra. The first non-
trivial case n = 2 was proven in [22]. It was also shown in [22] that the coset (1.5) is 
naturally an extension of Wr(gln) ⊗Ck(n) for r = −n + n+k

n+k+1 . An important ingredient 
in the proof of Ito’s conjecture will be to show that W�(sln+1|n) is indeed an extension 
of Wr(gln) ⊗Ck(n). Note that Ck(n) is itself a subalgebra of a W-superalgebra of sln+1|n
corresponding to a small hook-type nilpotent element [17].

Generalized parafermion algebras of orthogonal type There are two different analogues 
of Ck(n) in the orthogonal setting. We have natural embeddings so2n ↪→ so2n+1 ↪→
so2n+2, which induce homomorphisms of affine vertex algebras

V k(so2n) ↪→ V k(so2n+1) ↪→ V k(so2n+2). (1.6)

The cosets Com(V k(so2n), V k(so2n+1)) and Com(V k(so2n+1), V k(so2n+2)) both have 
actions of Z2, and we define

Dk(n) = Com(V k(so2n), V k(so2n+1))Z2 ,

Ek(n) = Com(V k(so2n+1), V k(so2n+2))Z2 .
(1.7)

Both these algebras arise as one-parameter quotients of the universal even spin W∞-
algebra Wev(c, λ) constructed recently by Kanade and the third author in [26]. Such 
quotients of Wev(c, λ) are in bijection with a family of ideals I in the polynomial ring 
C[c, λ], or equivalently, the truncation curves V (I) ⊆ C2. The main result in this paper 
is the explicit description of the truncation curve for Dk(n) for all n; see Theorem 3.3. 
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The proof is based on the coset realization of principal W-algebras of type D and a 
certain level-rank duality appearing in [6], which implies that

D2m(n) ∼= W�(so2m)Z2 , � = −(2m− 2) + 2m + 2n− 2
2m + 2n− 1 . (1.8)

Here D2m(n) denotes the simple quotient of D2m(n). This is analogous to the isomor-
phisms (1.3) in type A. Since a similar coset realization of type B principal W-algebras 
is not available, we are currently unable to obtain an explicit description of Ek(n), and 
in this paper we only study Dk(n).

As in type A, there is a similar description of affine vertex algebras of orthogonal type 
as extensions of Gelfand-Tsetlin type subalgebras. Clearly V k(so2n+2) is an extension of

H⊗Dk(1) ⊗ Ek(1) ⊗Dk(2) ⊗ Ek(2) ⊗ · · · ⊗ Dk(n− 1) ⊗ Ek(n− 1) ⊗Dk(n) ⊗ Ek(n),

and similarly, V k(so2n+1) is an extension of

H⊗Dk(1) ⊗ Ek(1) ⊗Dk(2) ⊗ Ek(2) ⊗ · · · ⊗ Dk(n− 1) ⊗ Ek(n− 1) ⊗Dk(n).

Additionally, Dk(n) is a building block for various W-(super)algebras. For example, 
consider the principal W-superalgebra W�(osp2n|2n) where (� +1)(k+2n − 1) = 1. Note 
that 1 and 2n − 1 are the dual Coxeter numbers of osp2n|2n and so2n+1, respectively. 
The free fermion algebra F(2n) carries an action of L1(so2n), and it is expected that

W�(osp2n|2n) ∼= Com(V k+1(so2n), V k(so2n+1) ⊗F(2n)). (1.9)

This algebra appears in physics in the duality of N = 1 superconformal field theories and 
higher spin supergravities [11,18], and this conjecture appeared in this context. Note that 
central charges coincide. It is apparent that the coset appearing in (1.9) is an extension 
of Wr(so2n) ⊗Dk(n) where r = −(2n − 2) + k+2n−2

k+2n−1 . As in the case of Ito’s conjecture, 
an important step in the proof of (1.9) will be to show that W�(osp2n|2n) is also an 
extension of this structure.

Applications The first application of our main result is to classify all isomorphisms be-
tween the simple quotient Dk(n) and the simple algebras W�(so2m+1) and W�(so2m)Z2 . 
Using results of [26], this can be achieved by finding the intersection points between the 
truncation curve for Dk(n), and the truncation curves for W�(so2m+1) and W�(so2m)Z2 , 
respectively. In the type A case, we find only one family of points where Ck(n) is isomor-
phic to a strongly rational W-algebra of type A; these appear in (1.3). In the orthogonal 
setting, the situation is more interesting. In addition to the isomorphisms (1.8) when k
is a positive integer, we also find that for k = −(2n − 2) + 1

2 (2n + 2m − 1), we have an 
embedding of simple affine vertex algebras Lk(so2n) → Lk(so2n+1), and an isomorphism
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Dk(n) = Com(Lk(so2n), Lk(so2n+1))Z2 ∼= W�(so2m+1),

� = −(2m− 1) + 2m + 2n− 1
2m + 2n + 1 .

Since � is a nondegenerate admissible level for so2m+1, W�(so2m+1) is strongly rational 
[1,2]. These are new examples of cosets of non-rational vertex algebras by admissible 
level affine vertex algebras, which are strongly rational.

This coset is also closely related to level-rank duality. Recall that 2n(2m + 1) free 
fermions carry an action of L2n(so2m+1) ⊗ L2m+1(so2n). The levels shifted by the re-
spective dual Coxeter numbers are 2n +2m −1 in both cases. Therefore Lk(so2n+1) is an 
extension of Lk(so2n) ⊗W�(so2m+1), where � = −(2m − 1) + 2m+2n−1

2m+2n+1 , i.e., both levels 
k and � shifted by the respective dual Coxeter numbers are of the form (2m + 2n − 1)/v
for v = 2 and v = 2 + 2m + 2n − 1. In particular, the shifted levels have the same 
numerator as the original level-rank duality and the two denominators only differ by a 
multiple of the numerator. Note that under certain vertex tensor category assumptions 
the tensor product of two vertex algebras can be extended to a larger vertex algebra 
with a certain multiplicity freeness condition if and only if the two vertex algebras have 
subcategories that are braid-reversed equivalent, see [14, Main Thm. 3] for the precise 
statement. Applied to our setting, this means that there are vertex algebra extensions 
of Lk(so2n) and W�(so2m+1) that have subcategories of modules that are braid-reversed 
equivalent.

The theory of vertex algebra extensions, especially [14, Thm. 5.12], then implies that 
the category of ordinary modules of Lk(so2n+1) at level k = −(2n − 2) + 1

2 (2n +2m − 1)
is fusion, i.e. a rigid braided semisimple tensor category. This proves special cases of 
Conjecture 1.1 of [12].

Finally, our rationality results for Dk(n) suggest the existence of a new series of 
principal W-superalgebras of osp2n|2n which are strongly rational. By Corollary 14.2 
of [6], the coset Com(Lk+1(so2n), Lk(so2n+1) ⊗ F(2n)) is strongly rational when k is a 
positive integer. In view of the conjectured isomorphism (1.9), this implies that for k a 
positive integer and � satisfying (� +1)(k+2n −1) = 1, W�(osp2n|2n) is strongly rational. 
Similarly, it follows from Corollary 1.1 of [14] that for k = −(2n − 2) + 1

2 (2n + 2m − 1)
and � satisfying (� +1)(k+2n − 1) = 1, the coset Com(Lk+1(so2n), Lk(so2n+1) ⊗F(2n))
is again strongly rational. This motivates the following

Conjecture 1.1. For k = −(2n −2) + 1
2 (2n +2m −1) and � satisfying (� +1)(k+2n −1) = 1, 

W�(osp2n|2n) is strongly rational.

The conjecture is true for the N = 2 super Virasoro algebra, i.e. the case n = 1 [4]. 
Otherwise strong rationality for principal W-superalgebras of orthosymplectic type is 
completely open. There is, however, a C2-cofiniteness results in the case of osp2|2n [10, 
Cor. 5.19].



T. Creutzig et al. / Journal of Algebra 593 (2022) 178–192 183
2. Vertex algebras

We shall assume that the reader is familiar with vertex algebras, and we use the 
same notation and terminology as the papers [26,30]. We first recall the universal two-
parameter vertex algebra Wev(c, λ) of type W(2, 4, . . . ), which was recently constructed 
in [26]. It is defined over the polynomial ring C[c, λ] and is generated by a Virasoro field 
L of central charge c, and a weight 4 primary field W 4, and is strongly generated by 
fields {L, W 2i| i ≥ 2} where W 2i = W 4

(1)W
2i−2 for i ≥ 3. The idea of the construction 

is as follows.

(1) All structure constants in the OPEs of L(z)W 2i(w) and W 2j(z)W 2k(w) for 2i ≤ 12
and 2j + 2k ≤ 14, are uniquely determined as elements of C[c, λ] by imposing the 
Jacobi identities among these fields.

(2) This data uniquely and recursively determines all OPEs L(z)W 2i(w) and
W 2j(z)W 2k(w) over the ring C[c, λ] if a certain subset of Jacobi identities are im-
posed.

(3) By showing that the algebras Wk(sp2m) all arise as one-parameter quotients of 
Wev(c, λ) after a suitable localization, we show that all Jacobi identities hold. Equiv-
alently, Wev(c, λ) is freely generated by the fields {L, W 2i| i ≥ 2}, and is the universal 
enveloping algebra of the corresponding nonlinear Lie conformal algebra [19].

Wev(c, λ) is simple as a vertex algebra over C[c, λ], but there is a certain discrete 
family of prime ideals I = (p(c, λ)) ⊆ C[c, λ] for which the quotient

Wev,I(c, λ) = Wev(c, λ)/I · Wev(c, λ),

is not simple as a vertex algebra over the ring C[c, λ]/I. We denote by Wev
I (c, λ) the 

simple quotient of Wev,I(c, λ) by its maximal proper graded ideal I. After a suitable 
localization, all one-parameter vertex algebras of type W(2, 4, . . . , 2N) for some N sat-
isfying some mild hypotheses, can be obtained as quotients of Wev(c, λ) in this way. 
This includes the principal W-algebras Wk(so2m+1) and the orbifolds Wk(so2m)Z2 . The 
generators p(c, λ) for such ideals arise as irreducible factors of Shapovalov determinants, 
and are in bijection with such one-parameter vertex algebras.

We also consider Wev,I(c, λ) for maximal ideals

I = (c− c0, λ− λ0), c0, λ0 ∈ C.

Then Wev,I(c, λ) and its quotients are vertex algebras over C. Given maximal ideals 
I0 = (c − c0, λ − λ0) and I1 = (c − c1, λ − λ1), let W0 and W1 be the simple quotients of 
Wev,I0(c, λ) and Wev,I1(c, λ). Theorem 8.1 of [26] gives a simple criterion for W0 and W1
to be isomorphic. Aside from a few degenerate cases, we must have c0 = c1 and λ0 = λ1. 
This implies that aside from the degenerate cases, all other coincidences among the simple 
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quotients of one-parameter vertex algebras Wev,I(c, λ) and Wev,J(c, λ), correspond to 
intersection points of their truncation curves V (I) and V (J).

We shall need the following result which is analogous to Theorem 6.2 of [30].

Theorem 2.1. Let W be a vertex algebra of type W(2, 4, . . . , 2N) which is defined over 
some localization R of C[c, λ]/I, for some prime ideal I. Suppose that W is generated by 
the Virasoro field L and a weight 4 primary field W 4. If in addition, the graded character 
of W agrees with that of Wev(c, λ) up to weight 13, then W is a quotient of WI(c, λ)
after localization.

Proof. First, note that Theorem 3.10 of [26] holds without the simplicity assumption; 
see Remark 5.1 of [30] for a similar statement in the case of the algebra W(c, λ) of type 
W(2, 3, . . . ). By Theorem 3.10 of [26], it suffices to prove that the OPEs L(z)W 2i(w) and 
W 2j(z)W 2k(w) for 2i ≤ 12 and 2j + 2k ≤ 14 in W are the same as the corresponding 
OPEs in Wev(c, λ) if the structure constants are replaced with their images in R. In this 
notation, W 2i = W 4

(1)W
2i−2 for i ≥ 3. But this is automatic because the graded character 

assumption implies that there are no null vectors of weight w ≤ 13 in the (possibly 
degenerate) nonlinear conformal algebra corresponding to {L, W 2i| 2 ≤ i ≤ N}. �
3. Generalized parafermions of orthogonal type

For n ≥ 1, the natural embedding so2n ↪→ so2n+1 induces a vertex algebra homomor-
phism

V k(so2n) → V k(so2n+1).

The action of so2n on V k(so2n+1) given by the zero modes of the generating fields 
integrates to an action of the orthogonal group O2n. Therefore the coset

Com(V k(so2n), V k(so2n+1)) = V k(so2n+1)so2n[t]

has a nontrivial action of Z2. We define

Dk(n) = Com(V k(so2n), V k(so2n+1))Z2 . (3.1)

It has Virasoro element Lso2n+1 − Lso2n with central charge

c = kn(2k + 2n− 3)
(k + 2n− 2)(k + 2n− 1) . (3.2)

Note that in the case n = 1, Dk(n) ∼= Nk(sl2)Z2 which is of type W(2, 4, 6, 8, 10) by 
Theorem 10.1 of [26].
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Lemma 3.1. For all n ≥ 1, Dk(n) is of type W(2, 4, . . . , 2N) for some N satisfying 
N ≥ 2n2 + 3n. We conjecture, but do not prove, that N = 2n2 + 3n. Moreover, for 
generic values of k, Dk(n) is generated by the weight 4 primary field W 4.

Proof. By Theorem 6.10 of [16], we have

lim
k→∞

Dk(n) ∼= H(2n)O2n ,

and a strong generating set for H(2n)O2n corresponds to a strong generating set for Dk(n)
for generic values of k. Here H(2n) denotes the rank 2n Heisenberg vertex algebra. It 
was shown in [29], Theorem 6.5, that H(2n)O2n has the above strong generating type. 
By Lemma 4.2 of [28], the weights 2 and 4 fields generate H(2n)O2n . In fact, it is easy to 
check that only the weight 4 field is needed, and that it can be replaced with a primary 
field which also generates the algebra. Finally, the statement that Dk(n) inherits these 
properties of H(2n)O2n for generic values of k is also clear; the argument is similar to 
the proof of Corollary 8.6 of [15]. �
Corollary 3.2. For all n ≥ 1, there exists an ideal Kn ⊆ C[c, λ] and a localization Rn of 
C[c, λ]/Kn such that Dk(n) is the simple quotient of Wev,Kn

Rn
(c, λ).

Proof. This holds for n = 1 by Theorem 10.1 of [26]. For n > 1, the simplicity of Dk(n)
as a vertex algebra over a localization of C[k] follows from the simplicity of H(2n)O2n , 
which follows from [21]. In view of Theorems 2.1 and 3.1, it then suffices to show that 
the graded characters of Dk(n) and Wev(c, λ) agree up to weight 13. This follows from 
Weyl’s second fundamental theorem of invariant theory for O2n [31], since there are no 
relations among the generators of weight less than 4n2 + 6n + 2. �
Theorem 3.3. For all n ≥ 2, Dk(n) is isomorphic to a localization of the quotient 
Wev

Kn
(c, λ), where the ideal Kn ⊆ C[c, λ] is described explicitly via the parametrization 

k �→ (cn(k), λn(k)) given by

cn(k) = kn(2k + 2n− 3)
(k + 2n− 2)(k + 2n− 1) , λn(k) = (k + 2n− 2)(k + 2n− 1)pn(k)

7(k − 2)(k + n− 1)(2n− 1)qn(k)rn(k) ,

pn(k) = −112 + 188k − 62k2 − 26k3 + 12k4 + 744n− 1336kn + 857k2n− 252k3n

+ 36k4n− 1720n2 + 2534kn2 − 1198k2n2 + 188k3n2 + 1632n3 − 1544kn3

+ 304k2n3 − 544n4 + 152kn4,

qn(k) = 20 − 19k + 6k2 − 42n + 28kn + 28n2,

rn(k) = 44 − 66k + 22k2 − 132n + 73kn + 10k2n + 88n2 + 10kn2.

(3.3)

Proof. Let n be fixed. In view of Corollary 3.2 and the fact that all structure constants 
in Dk(n) are rational functions of k, there is some rational function λn(k) of k such that 
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Dk(n) is obtained from Wev(c, λ) by setting c = cn(k) and λ = λn(k), and then taking 
the simple quotient. It is not obvious yet that λn(k) is a rational function of n as well.

For k a positive integer, it is well known [25] that the map V k(so2n) → V k(so2n+1)
descends to a homomorphism of simple algebras Lk(so2n) → Lk(so2n+1). Letting Dk(n)
denote the simple quotient of Dk(n), it is apparent from Lemma 2.1 of [7] and Theorem 
8.1 of [16] that Com(Lk(so2n), Lk(so2n+1)) is simple and coincides with the simple quo-
tient of Com(V k(so2n), V k(so2n+1)). Moreover, taking Z2-invariants preserves simplicity, 
hence

Dk(n) ∼= Com(Lk(so2n), Lk(so2n+1))Z2 .

Next, by Corollary 1.3 of [6], for all n ≥ 1 and m ≥ 2, we have an isomorphism

((
L2m(so2n+1) ⊕ L2m(2mω1)

)so2n[t])Z2×Z2 ∼= W�(so2m),

� = −(2m− 2) + 2n + 2m− 2
2n + 2m− 1 .

(3.4)

In this notation, ω1 denotes the first fundamental weight of so2n+1 and L2m(2mω1)
denotes the simple quotient of the corresponding Weyl module.

Note that 
(
L2m(so2n+1)so2n[t])Z2 = D2m(n) is manifestly a subalgebra of the left hand 

side of (3.4). Also, the lowest-weight component of L2m(2mω1) has conformal weight m. 
If m > 4, the left-hand side then has a unique primary weight 4 field which lies in 
D2m(n). Similarly, since W�(so2m) has strong generators in weights 2, 4, . . . , 2m and m, 
for m > 4 the right hand side has a unique primary weight 4 field, which lies in the 
Z2-orbifold W�(so2m)Z2 .

Since Dk(n) is generated by the weight 4 field as a one-parameter vertex algebra, 
the weight 4 field must generate D2m(n) for all m sufficiently large. By Corollary 6.1 of 
[26], W�(so2m)Z2 is generated by the weight 4 field as a one-parameter vertex algebra; 
equivalently, this holds for generic values of �. By the same argument as Proposition A.4 
of [8], the vertex Poisson structure on the associated graded algebra gr W�(so2m) with 
respect to Li’s canonical filtration, is independent of � for all noncritical values of �. In 
particular this holds for the subalgebra (gr W�(so2m))Z2 = gr(W�(so2m)Z2). It follows 
from the same argument as Proposition A.3 of [8] that W�(so2m)Z2 is generated by the 
weights 2 and 4 fields for all noncritical values of �, and the same therefore holds for the 
simple quotient W�(so2m)Z2 . Finally, for � = −(2m −2) + 2n+2m−2

2n+2m−1 , it is straightforward 
to verify that the Virasoro field can be generated from the weight 4 field, so the weight 
4 field generates the whole algebra.

Therefore if m is sufficiently large, we obtain

D2m(n) ∼= W�(so2m)Z2 , � = −(2m− 2) + 2m + 2n− 2
2m + 2n− 1 . (3.5)

In fact, we will see later (Theorem 4.1) that this holds for all m ≥ 2.
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Finally, the truncation curve that realizes W�(so2m)Z2 as a quotient of Wev(c, λ) is 
given by Theorem 6.3 of [26], and in parametric form by Equation (B.1) of [26]. In view 
of (3.5), we must have λn(2m) = λm(�) for � = −(2m − 2) + 2n+2m−2

2n+2m−1 for m sufficiently 
large, where λm(�) is given by Equation (B.1) of [26]. It follows that for infinitely many 
values of k, λn(k) is given by the above formula (3.3). Since λn(k) is a rational function 
of k, this equality holds for all k where it is defined. This completes the proof. �
4. Coincidences

In this section, we shall use Theorem 3.3 to classify all coincidences between the simple 
quotient Dk(n) and the Z2-orbifold W�(so2m)Z2 , as well as W�(so2m+1). We also classify 
all coincidences between Dk(n) and D�(m) for m �= n.

Theorem 4.1. For n ≥ 1 and m ≥ 2, aside from the critical levels k = −2n + 2 and 
k = −2n +1, and the degenerate cases c = 1

2 , −24, all isomorphisms Dk(n) ∼= W�(so2m)Z2

appear on the following list:

(1) k = 2m, � = −(2m − 2) + 2n + 2m− 2
2n + 2m− 1 ,

(2) k = −(2n − 2) − 2n− 1
2(m− 1) , � = −(2m − 2) + 2m− 2n− 1

2(m− 1) ,

(3) k = −(2n − 2) + n−m

m
, � = −(2m − 2) + m− n

m
.

Proof. Recall first that W�(so2m)Z2 is realized as the simple quotient of Wev,Jm(c, λ), 
where the ideal Jm ⊆ C[c, λ] is given in parametrized form by Equation (B.1) of [26]. 
First, we exclude the values of k and � which are poles of the functions λn(k) given 
by (3.3), and λm(�) given by Equation (B.1) of [26], since at these values, Dk(n) and 
W�(so2m)Z2 are not quotients of Wev(c, λ). For all other noncritical values of k and 
�, Dk(n) and W�(so2m)Z2 are obtained as quotients of Wev,In(c, λ) and Wev,Jm(c, λ), 
respectively. By Corollary 8.2 of [26], aside from the degenerate cases given by Theorem 
8.1 of [26], all other coincidences Dk(n) ∼= W�(so2m)Z2 correspond to intersection points 
on the truncation curves V (Kn) and V (Jm). A calculation shows that V (Kn) ∩ V (Jm)
consists of exactly five points (c, λ), namely,

(
− 24,− 1

245

)
,

(
1
2 ,−

2
49

)
,

(
mn(4m + 2n− 3)

(m + n− 1)(2m + 2n− 1) , λ1

)
,

(
− 2mn(3 − 4m− 2n + 4mn)

2m− 2n− 1 , λ2

)
,

(
− (2mn + m− 2n)(2mn−m− n)

m− n
, λ3

)
.

(4.1)

Here
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λ1 = (m + n− 1)(2m + 2n− 1)g
7(m− 1)(2m + n− 1)(2n− 1)gh,

f = −28 + 94m− 62m2 − 52m3 + 48m4 + 186n− 668mn + 857m2n− 504m3n

+ 144m4n− 430n2 + 1267mn2 − 1198m2n2 + 376m3n2 + 408n3 − 772mn3

+ 304m2n3 − 136n4 + 76mn4,

g = 10 − 19m + 12m2 − 21n + 28mn + 14n2,

h = 22 − 66m + 44m2 − 66n + 73mn + 20m2n + 44n2 + 10mn2.

(4.2)

λ2 = (1 − 2m + 2n)f
7(1 − 2m + 2mn)(−1 − 2n + 4mn)gh,

f = 14 − 33m− 2m2 + 24m3 + 74n− 404mn + 873m2n− 696m3n + 144m4n

+ 80n2 − 178mn2 − 260m2n2 + 452m3n2 − 112m4n2 − 24n3 + 264mn3

− 348m2n3 + 256m3n3 − 64m4n3 + 72mn4 − 128m2n4

− 48m3n4 + 32m4n4,

g = −10 + 19m− 12m2 − 2n + 22mn− 8m2n− 12n2 − 8mn2 + 8m2n2,

h = 11 − 22m + 22n + 15mn− 20m2n− 10mn2 + 20m2n2.

(4.3)

λ3 = (n−m)f
7(m− 1)(2n− 1)(m− n + 2mn)gh,

f = −34m3 + 19m4 + 68m2n− 38m3n− 22mn2 − 185m2n2 + 302m3n2

− 80m4n2

− 12n3 + 204mn3 − 302m2n3 + 80m3n3 − 36n4 + 100mn4 − 40m2n4

− 40m3n4 + 16m4n4,

g = −7m2 + 7mn− 6n2 − 4mn2 + 4m2n2,

h = −22m− 5m2 + 22n + 5mn + 10n2 − 30mn2 + 20m2n2.

(4.4)

By Theorem 8.1 of [26], the first two intersection points occur at degenerate values of 
c. By replacing the parameter c with the levels k and �, we see that the remaining inter-
section points yield the nontrivial isomorphisms in Theorem 4.1. Moreover, by Corollary 
8.2 of [26], these are the only such isomorphisms except possibly at the values of k, �
excluded above.

Finally, suppose that k is a pole of the function λn(k) given by (3.3). It is not difficult 
to check that the corresponding values of � for which cn(k) = cm(�), are not poles of 
λm(�). As above, cn(k) and λn(k) are given by (3.3), and cm(�) and λm(�) are given 
by Equation (B.1) of [26]. It follows that there are no additional coincidences at the 
excluded points. �

Next, we classify the coincidences between Dk(n) and W�(so2m+1).
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Theorem 4.2. For n ≥ 1 and m ≥ 2, aside from the critical levels k = −2n + 2 and 
k = −2n +1, and the degenerate cases c = 1

2 , −24, all isomorphisms Dk(n) ∼= W�(so2m+1)
appear on the following list:

(1) k = −(2n − 2) + 1
2(2n + 2m − 1), � = −(2m − 1) + 2m + 2n− 1

2m + 2n + 1 ,

(2) k = −(2n − 2) + 2n− 2m− 1
2m + 2 , � = −(2m − 1) + 2m− 2n + 1

2m + 2 ,

(3) k = −(2n − 2) − n

m
, � = −(2m − 1) + m− n

m
,

(4) k = −(2n − 2) − 2(n− 1)
2m− 1 , � = −(2m − 1) + 2m− 1

2m− 2n + 1 .

(5) k = −(2n − 2) + 2(n−m− 1)
2m + 1 , � = −(2m − 1) + 2m + 1

2(m− n + 1) .

Proof. The argument is the same as the proof of Theorem 4.1. First, W�(so2m+1) is real-
ized as the simple quotient of Wev,Im(c, λ) where the ideal Im ⊆ C[c, λ] is parametrized 
explicitly by Equation (A.3) of [26]. The above isomorphisms all arise from the intersec-
tion points between the truncation curves V (Kn) for Dk(n) and V (Im) for W�(so2m+1). 
A calculation shows that there are exactly 7 intersection points: the degenerate points 
(1
2 , −

2
49 ) and (−24, − 1

245 ), and the five nontrivial ones appearing above. One then has to 
rule out additional coincidences at the points where Dk(n) does not arise as a quotient 
of Wev(c, λ), namely, the poles of λn(k). The details are straightforward and are left to 
the reader. �

Finally, we classify all isomorphisms Dk(m) ∼= D�(n) for n �= m.

Theorem 4.3. For m, n ≥ 1 and n �= m, aside from the degenerate cases c = 1
2 , −24 and 

poles of cn(k), λn(k) and cm(k), λm(k) the complete list of isomorphisms Dk(m) ∼= D�(n)
is the following:

(1) k = −(2m − 2) + 2(m− 1)
1 + 2n , � = −(2n − 2) − 2m + 2n− 1

2(m− 1) ,

(2) k = −(2m − 2) − 2m + 2n− 1
2(n− 1) , � = −(2n − 2) + 2(n− 1)

1 + 2m .

The proof is similar to the proof of Theorem 4.1 and is omitted.

5. Some rational cosets

By composing the map V k(so2n) → V k(so2n+1) with the quotient map V k(so2n+1) →
Lk(so2n+1), we obtain an embedding

Ṽ k(so2n) ↪→ Lk(so2n+1),
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where Ṽ k(so2n) denotes the quotient of V k(so2n) by the kernel Jk of the above com-
position. In general, it is a difficult and important problem to determine when Jk

is the maximal proper graded ideal, or equivalently, when Ṽ k(so2n) = Lk(so2n). In 
the case where k is an admissible level for ŝo2n, Lemma 2.1 of [7] would then im-
ply that Com(Lk(so2n), Lk(so2n+1)) is simple, and hence its orbifold Com(Lk(so2n),
Lk(so2n+1))Z2 would be simple as well [21]. Additionally, Theorem 8.1 of [16] would 
imply that Com(Lk(so2n), Lk(so2n+1))Z2 coincides with the simple quotient Dk(n) of 
Dk(n). This is particularly interesting in the cases where Dk(n) is strongly rational.

We conclude by proving this for first family in Theorem 4.2. These are new examples 
of cosets of non-rational vertex algebras by admissible level affine vertex algebras, which 
are strongly rational.

Lemma 5.1. For n ≥ 2 and m ≥ 0, we have an embedding of simple affine vertex algebras

Lk(so2n) ↪→ Lk(so2n+1), k = −(2n− 2) + 1
2(2n + 2m− 1).

Proof. We proceed by induction on m. In the case m = 0, we have k = −n + 3
2 , and it 

is well known that there exists a conformal embedding Lk(so2n) ↪→ Lk(so2n+1), see e.g. 
Section 3 of [5]. Next, we assume the result for m −1, so that k = −n + 3

2 +m −1. Recall 
that the rank 2n + 1 free fermion algebra F(2n + 1) admits an action of L1(so2n+1), as 
well as an action of L1(so2n) via the embedding L1(so2n) ↪→ L1(so2n+1). The image of 
L1(so2n) lies in the subalgebra F(2n) ⊆ F(2n + 1).

Since k is admissible for so2n+1, it is known [25] that we have a diagonal embedding 
of simple affine vertex algebras

Lk+1(so2n+1) ↪→ Lk(so2n+1) ⊗F(2n + 1). (5.1)

By induction, we have the map Lk(so2n) ↪→ Lk(so2n+1). Then we have an embedding

Lk+1(so2n) ↪→ Lk(so2n) ⊗F(n) ↪→ Lk(so2n+1) ⊗F(2n + 1), (5.2)

where F(2n) ↪→ F(2n + 1) is the isomorphism onto the first 2n copies. Since the image 
of (5.2) lies in the image of (5.1), it follows that Lk+1(so2n) embeds in Lk+1(so2n+1). �

This has the following immediate consequence.

Corollary 5.2. For n ≥ 2, m ≥ 0, and k = −(2n − 2) + 1
2 (2n + 2m − 1), we have an 

isomorphism

Com(Lk(so2n), Lk(so2n+1))Z2 ∼= W�(so2m+1), � = −(2m− 1) + 2m + 2n− 1
2m + 2n + 1 .

In particular, Com(Lk(so2n), Lk(so2n+1))Z2 is strongly rational.
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Proof. This follows from Theorem 4.2 together with the fact that Com(Lk(so2n),
Lk(so2n+1))Z2 is simple, and the map Dk(n) → Com(Lk(so2n), Lk(so2n+1))Z2 is sur-
jective. �

Recall that the category of ordinary modules of an affine vertex algebra at ad-
missible level is semisimple [3] and a vertex tensor category [12]. Conjecturally, this 
category is fusion [12] and this has been proven for simply-laced Lie algebras [9]. 
For type so2n+1 and level k = −(2n − 2) + 1

2(2n + 2m − 1) this conjecture is also 
true. First, Com(Lk(so2n), Lk(so2n+1)) is a simple current extension, call it V�(so2m+1), 
of W�(so2m+1) and thus rational as well [27]. It follows that Lk(so2n+1) is a simple 
Z-graded extension of Lk(so2n) ⊗ V�(so2m+1) in a rigid vertex tensor category C of 
Lk(so2n) ⊗ V�(so2m+1)-modules, namely the Deligne product of the categories of ordi-
nary Lk(so2n)-modules and V�(so2m+1)-modules. Every ordinary module for Lk(so2n+1)
must be an object in this category C. This means that as a braided tensor category the 
category of ordinary modules of Lk(so2n+1) is equivalent to the category of local modules 
for Lk(so2n+1) viewed as an algebra object in C [13,23]. All assumptions of Theorem 5.12 
of [14] are satisfied (with U = V�(so2m+1) and V = Lk(so2n)) and so

Corollary 5.3. The category of ordinary modules of Lk(so2n+1) at level k = −(2n − 2) +
1
2(2n + 2m − 1) is fusion.
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