

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Generalized parafermions of orthogonal type

Thomas Creutzig $^{\rm a,1},$ Vladimir Kovalchuk $^{\rm b},$ Andrew R. Linshaw $^{\rm b,*,2}$

- ^a University of Alberta, Canada
- ^b University of Denver, United States of America

ARTICLE INFO

Article history: Received 1 December 2020 Available online 22 November 2021 Communicated by Volodymyr Mazorchuk

Keywords: Vertex algebra Affine Lie algebra Coset construction W-algebra

ABSTRACT

There is an embedding of affine vertex algebras $V^k(\mathfrak{gl}_n) \hookrightarrow$ $V^k(\mathfrak{sl}_{n+1})$, and the coset $\mathcal{C}^k(n) = \text{Com}(V^k(\mathfrak{gl}_n), V^k(\mathfrak{sl}_{n+1}))$ is a natural generalization of the parafermion algebra of \mathfrak{sl}_2 . It was called the algebra of generalized parafermions by the third author and was shown to arise as a one-parameter quotient of the universal two-parameter \mathcal{W}_{∞} -algebra of type $\mathcal{W}(2,3,\ldots)$. In this paper, we consider an analogous structure of orthogonal type, namely $\mathcal{D}^k(n) = \text{Com}(V^k(\mathfrak{so}_{2n}), V^k(\mathfrak{so}_{2n+1}))^{\mathbb{Z}_2}$. We realize this algebra as a one-parameter quotient of the twoparameter even spin \mathcal{W}_{∞} -algebra of type $\mathcal{W}(2,4,\dots)$, and we classify all coincidences between its simple quotient $\mathcal{D}_k(n)$ and the algebras $W_{\ell}(\mathfrak{so}_{2m+1})$ and $W_{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}$. As a corollary, we show that for the admissible levels $k = -(2n-2) + \frac{1}{2}(2n+1)$ 2m-1) for $\widehat{\mathfrak{so}}_{2n}$ the simple affine algebra $L_k(\mathfrak{so}_{2n})$ embeds in $L_k(\mathfrak{so}_{2n+1})$, and the coset is strongly rational. As a consequence, the category of ordinary modules of $L_k(\mathfrak{so}_{2n+1})$ at such a level is a braided fusion category.

© 2021 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

 $[\]label{lem:condition} \begin{tabular}{ll} E-mail\ addresses: $\operatorname{creutzig@ualberta.ca}$ (T.\ Creutzig),\ vladimir.kovalchuk@du.edu\ (V.\ Kovalchuk), andrew.linshaw@du.edu\ (A.R.\ Linshaw). \end{tabular}$

¹ T. C. is supported by NSERC Discovery Grant #RES0048511.

² A. L. is supported by Simons Foundation Grant 635650 and NSF Grant DMS-2001484.

1. Introduction

For $n \geq 1$, the natural embedding of Lie algebras $\mathfrak{gl}_n \hookrightarrow \mathfrak{sl}_{n+1}$ defined by

$$a \mapsto \begin{pmatrix} a & 0 \\ 0 & -\operatorname{tr}(a) \end{pmatrix},$$

induces a vertex algebra homomorphism

$$V^k(\mathfrak{gl}_n) \hookrightarrow V^k(\mathfrak{sl}_{n+1}).$$
 (1.1)

The coset vertex algebra

$$C^{k}(n) = \operatorname{Com}(V^{k}(\mathfrak{gl}_{n}), V^{k}(\mathfrak{sl}_{n+1})) \tag{1.2}$$

was called the algebra of generalized parafermions in [30]. The reason for this terminology is that for n = 1, $C^k(1)$ is isomorphic to the parafermion algebra $N^k(\mathfrak{sl}_2) = \text{Com}(\mathcal{H}, \mathfrak{sl}_2)$, where \mathcal{H} denotes the Heisenberg algebra corresponding to the Cartan subalgebra $\mathfrak{h} \subseteq \mathfrak{sl}_2$.

By Theorem 8.1 of [30], $C^k(n)$ is of type $W(2,3,\ldots,n^2+3n+1)$, i.e., it has a minimal strong generating set consisting of one field in each weight $2,3,\ldots,n^2+3n+1$. This generalizes the case n=1, which appears in [20]. When k is a positive integer, (1.1) descends to a map of simple affine vertex algebras $L_k(\mathfrak{gl}_n) \hookrightarrow L_k(\mathfrak{sl}_{n+1})$, and the coset $Com(L_k(\mathfrak{gl}_n), L_k(\mathfrak{sl}_{n+1}))$ coincides with the simple quotient $C_k(n)$ of $C^k(n)$. By Theorem 13.1 of [6], we have an isomorphism

$$C_k(n) \cong \mathcal{W}_{\ell}(\mathfrak{sl}_k), \qquad \ell = -k + \frac{k+n}{k+n+1}.$$
 (1.3)

In particular, $C_k(n)$ is *strongly rational*, that is, C_2 -cofinite and rational. This generalizes the case n = 1, which was proved earlier in [8].

A useful perspective on $\mathcal{C}^k(n)$ is that these algebras all arise in a uniform way as quotients of the universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c,\lambda)$ of type $\mathcal{W}(2,3,\ldots)$; see Theorem 8.2 of [30]. This realization gives a nice conceptual explanation for the isomorphisms appearing in (1.3). Each one-parameter quotient of $\mathcal{W}(c,\lambda)$ corresponds to an ideal in $\mathbb{C}[c,\lambda]$, or equivalently, a curve in the parameter space \mathbb{C}^2 called the *truncation curve*. The truncation curves for $\mathcal{W}^{\ell}(\mathfrak{sl}_m)$ and $\mathcal{C}^k(n)$ are given by Equations 7.8 and 8.4 of [30], and the above isomorphisms correspond to intersection points on these curves.

The algebras $C^k(n)$ appear naturally as building blocks for affine vertex algebras of type A. It is convenient to replace $C^k(n)$ with $\tilde{C}^k(n) = \mathcal{H} \otimes C^k(n)$, where \mathcal{H} is a rank one Heisenberg vertex algebra. Then we have

$$\operatorname{Com}(V^k(\mathfrak{gl}_{n-1}), V^k(\mathfrak{gl}_n)) \cong \tilde{\mathcal{C}}^k(n-1),$$

so $V^k(\mathfrak{gl}_n)$ can be regarded as an extension of $V^k(\mathfrak{gl}_{n-1}) \otimes \tilde{\mathcal{C}}^k(n-1)$. Iterating this procedure, we see that $V^k(\mathfrak{gl}_n)$ is an extension of

$$\mathcal{H} \otimes \tilde{\mathcal{C}}^k(1) \otimes \tilde{\mathcal{C}}^k(2) \otimes \cdots \otimes \tilde{\mathcal{C}}^k(n-1). \tag{1.4}$$

Note that if k is a positive integer, the simple quotient $L_k(\mathfrak{gl}_n)$ is then an extension of

$$\mathcal{H} \otimes \tilde{\mathcal{C}}_k(1) \otimes \tilde{\mathcal{C}}_k(2) \otimes \cdots \otimes \tilde{\mathcal{C}}_k(n-1) \cong \mathcal{W}_{\ell_1}(\mathfrak{gl}_k) \otimes \mathcal{W}_{\ell_2}(\mathfrak{gl}_k) \otimes \cdots \otimes \mathcal{W}_{\ell_n}(\mathfrak{gl}_k),$$

where $\ell_i = -k + \frac{k+n-i}{k+n+1-i}$. In [6], this was regarded as a noncommutative analogue of the Gelfand-Tsetlin subalgebra of $U(\mathfrak{gl}_n)$. Similarly, we may regard the subalgebra (1.4) as the universal version of this structure.

The algebras $C^k(n)$ also appear as building blocks for various W-(super)algebras. For example, an important conjecture of Ito [24] asserts that the principal W-algebra $W^{\ell}(\mathfrak{sl}_{n+1|n})$ has a coset realization as

$$Com(V^{k+1}(\mathfrak{gl}_n), V^k(\mathfrak{sl}_{n+1}) \otimes \mathcal{F}(2n)), \tag{1.5}$$

where $\mathcal{F}(2n)$ denotes the rank 2n free fermion algebra, and $(\ell+1)(k+n+1)=1$. Ito's conjecture was stated in this form in [16], and these algebras have the same strong generating type by Lemma 7.12 of [16]. In the case n=1, the conjecture clearly holds because both sides are isomorphic to the N=2 superconformal algebra. The first nontrivial case n=2 was proven in [22]. It was also shown in [22] that the coset (1.5) is naturally an extension of $\mathcal{W}^r(\mathfrak{gl}_n)\otimes\mathcal{C}^k(n)$ for $r=-n+\frac{n+k}{n+k+1}$. An important ingredient in the proof of Ito's conjecture will be to show that $\mathcal{W}^\ell(\mathfrak{sl}_{n+1|n})$ is indeed an extension of $\mathcal{W}^r(\mathfrak{gl}_n)\otimes\mathcal{C}^k(n)$. Note that $\mathcal{C}^k(n)$ is itself a subalgebra of a \mathcal{W} -superalgebra of $\mathfrak{sl}_{n+1|n}$ corresponding to a small hook-type nilpotent element [17].

Generalized parafermion algebras of orthogonal type There are two different analogues of $C^k(n)$ in the orthogonal setting. We have natural embeddings $\mathfrak{so}_{2n} \hookrightarrow \mathfrak{so}_{2n+1} \hookrightarrow \mathfrak{so}_{2n+2}$, which induce homomorphisms of affine vertex algebras

$$V^k(\mathfrak{so}_{2n}) \hookrightarrow V^k(\mathfrak{so}_{2n+1}) \hookrightarrow V^k(\mathfrak{so}_{2n+2}).$$
 (1.6)

The cosets $Com(V^k(\mathfrak{so}_{2n}), V^k(\mathfrak{so}_{2n+1}))$ and $Com(V^k(\mathfrak{so}_{2n+1}), V^k(\mathfrak{so}_{2n+2}))$ both have actions of \mathbb{Z}_2 , and we define

$$\mathcal{D}^{k}(n) = \operatorname{Com}(V^{k}(\mathfrak{so}_{2n}), V^{k}(\mathfrak{so}_{2n+1}))^{\mathbb{Z}_{2}},$$

$$\mathcal{E}^{k}(n) = \operatorname{Com}(V^{k}(\mathfrak{so}_{2n+1}), V^{k}(\mathfrak{so}_{2n+2}))^{\mathbb{Z}_{2}}.$$
(1.7)

Both these algebras arise as one-parameter quotients of the universal even spin W_{∞} algebra $W^{\text{ev}}(c,\lambda)$ constructed recently by Kanade and the third author in [26]. Such
quotients of $W^{\text{ev}}(c,\lambda)$ are in bijection with a family of ideals I in the polynomial ring $\mathbb{C}[c,\lambda]$, or equivalently, the truncation curves $V(I) \subseteq \mathbb{C}^2$. The main result in this paper
is the explicit description of the truncation curve for $\mathcal{D}^k(n)$ for all n; see Theorem 3.3.

The proof is based on the coset realization of principal W-algebras of type D and a certain level-rank duality appearing in [6], which implies that

$$\mathcal{D}_{2m}(n) \cong \mathcal{W}_{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}, \qquad \ell = -(2m-2) + \frac{2m+2n-2}{2m+2n-1}.$$
 (1.8)

Here $\mathcal{D}_{2m}(n)$ denotes the simple quotient of $\mathcal{D}^{2m}(n)$. This is analogous to the isomorphisms (1.3) in type A. Since a similar coset realization of type B principal \mathcal{W} -algebras is not available, we are currently unable to obtain an explicit description of $\mathcal{E}^k(n)$, and in this paper we only study $\mathcal{D}^k(n)$.

As in type A, there is a similar description of affine vertex algebras of orthogonal type as extensions of Gelfand-Tsetlin type subalgebras. Clearly $V^k(\mathfrak{so}_{2n+2})$ is an extension of

$$\mathcal{H} \otimes \mathcal{D}^k(1) \otimes \mathcal{E}^k(1) \otimes \mathcal{D}^k(2) \otimes \mathcal{E}^k(2) \otimes \cdots \otimes \mathcal{D}^k(n-1) \otimes \mathcal{E}^k(n-1) \otimes \mathcal{D}^k(n) \otimes \mathcal{E}^k(n),$$

and similarly, $V^k(\mathfrak{so}_{2n+1})$ is an extension of

$$\mathcal{H} \otimes \mathcal{D}^k(1) \otimes \mathcal{E}^k(1) \otimes \mathcal{D}^k(2) \otimes \mathcal{E}^k(2) \otimes \cdots \otimes \mathcal{D}^k(n-1) \otimes \mathcal{E}^k(n-1) \otimes \mathcal{D}^k(n).$$

Additionally, $\mathcal{D}^k(n)$ is a building block for various \mathcal{W} -(super)algebras. For example, consider the principal \mathcal{W} -superalgebra $\mathcal{W}^{\ell}(\mathfrak{osp}_{2n|2n})$ where $(\ell+1)(k+2n-1)=1$. Note that 1 and 2n-1 are the dual Coxeter numbers of $\mathfrak{osp}_{2n|2n}$ and \mathfrak{so}_{2n+1} , respectively. The free fermion algebra $\mathcal{F}(2n)$ carries an action of $L_1(\mathfrak{so}_{2n})$, and it is expected that

$$\mathcal{W}^{\ell}(\mathfrak{osp}_{2n|2n}) \cong \operatorname{Com}(V^{k+1}(\mathfrak{so}_{2n}), V^{k}(\mathfrak{so}_{2n+1}) \otimes \mathcal{F}(2n)). \tag{1.9}$$

This algebra appears in physics in the duality of N=1 superconformal field theories and higher spin supergravities [11,18], and this conjecture appeared in this context. Note that central charges coincide. It is apparent that the coset appearing in (1.9) is an extension of $W^r(\mathfrak{so}_{2n}) \otimes \mathcal{D}^k(n)$ where $r = -(2n-2) + \frac{k+2n-2}{k+2n-1}$. As in the case of Ito's conjecture, an important step in the proof of (1.9) will be to show that $W^{\ell}(\mathfrak{osp}_{2n|2n})$ is also an extension of this structure.

Applications The first application of our main result is to classify all isomorphisms between the simple quotient $\mathcal{D}_k(n)$ and the simple algebras $\mathcal{W}_{\ell}(\mathfrak{so}_{2m+1})$ and $\mathcal{W}_{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}$. Using results of [26], this can be achieved by finding the intersection points between the truncation curve for $\mathcal{D}^k(n)$, and the truncation curves for $\mathcal{W}^{\ell}(\mathfrak{so}_{2m+1})$ and $\mathcal{W}^{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}$, respectively. In the type A case, we find only one family of points where $\mathcal{C}_k(n)$ is isomorphic to a strongly rational \mathcal{W} -algebra of type A; these appear in (1.3). In the orthogonal setting, the situation is more interesting. In addition to the isomorphisms (1.8) when k is a positive integer, we also find that for $k = -(2n-2) + \frac{1}{2}(2n+2m-1)$, we have an embedding of simple affine vertex algebras $L_k(\mathfrak{so}_{2n}) \to L_k(\mathfrak{so}_{2n+1})$, and an isomorphism

$$\mathcal{D}_k(n) = \operatorname{Com}(L_k(\mathfrak{so}_{2n}), L_k(\mathfrak{so}_{2n+1}))^{\mathbb{Z}_2} \cong \mathcal{W}_{\ell}(\mathfrak{so}_{2m+1}),$$
$$\ell = -(2m-1) + \frac{2m+2n-1}{2m+2n+1}.$$

Since ℓ is a nondegenerate admissible level for \mathfrak{so}_{2m+1} , $\mathcal{W}_{\ell}(\mathfrak{so}_{2m+1})$ is strongly rational [1,2]. These are new examples of cosets of non-rational vertex algebras by admissible level affine vertex algebras, which are strongly rational.

This coset is also closely related to level-rank duality. Recall that 2n(2m+1) free fermions carry an action of $L_{2n}(\mathfrak{so}_{2m+1})\otimes L_{2m+1}(\mathfrak{so}_{2n})$. The levels shifted by the respective dual Coxeter numbers are 2n+2m-1 in both cases. Therefore $L_k(\mathfrak{so}_{2n+1})$ is an extension of $L_k(\mathfrak{so}_{2n})\otimes \mathcal{W}_\ell(\mathfrak{so}_{2m+1})$, where $\ell=-(2m-1)+\frac{2m+2n-1}{2m+2n+1}$, i.e., both levels k and ℓ shifted by the respective dual Coxeter numbers are of the form (2m+2n-1)/v for v=2 and v=2+2m+2n-1. In particular, the shifted levels have the same numerator as the original level-rank duality and the two denominators only differ by a multiple of the numerator. Note that under certain vertex tensor category assumptions the tensor product of two vertex algebras can be extended to a larger vertex algebra with a certain multiplicity freeness condition if and only if the two vertex algebras have subcategories that are braid-reversed equivalent, see [14, Main Thm. 3] for the precise statement. Applied to our setting, this means that there are vertex algebra extensions of $L_k(\mathfrak{so}_{2n})$ and $\mathcal{W}_\ell(\mathfrak{so}_{2m+1})$ that have subcategories of modules that are braid-reversed equivalent.

The theory of vertex algebra extensions, especially [14, Thm. 5.12], then implies that the category of ordinary modules of $L_k(\mathfrak{so}_{2n+1})$ at level $k = -(2n-2) + \frac{1}{2}(2n+2m-1)$ is fusion, i.e. a rigid braided semisimple tensor category. This proves special cases of Conjecture 1.1 of [12].

Finally, our rationality results for $\mathcal{D}_k(n)$ suggest the existence of a new series of principal \mathcal{W} -superalgebras of $\mathfrak{osp}_{2n|2n}$ which are strongly rational. By Corollary 14.2 of [6], the coset $\mathrm{Com}(L_{k+1}(\mathfrak{so}_{2n}), L_k(\mathfrak{so}_{2n+1}) \otimes \mathcal{F}(2n))$ is strongly rational when k is a positive integer. In view of the conjectured isomorphism (1.9), this implies that for k a positive integer and ℓ satisfying $(\ell+1)(k+2n-1)=1$, $\mathcal{W}_{\ell}(\mathfrak{osp}_{2n|2n})$ is strongly rational. Similarly, it follows from Corollary 1.1 of [14] that for $k=-(2n-2)+\frac{1}{2}(2n+2m-1)$ and ℓ satisfying $(\ell+1)(k+2n-1)=1$, the coset $\mathrm{Com}(L_{k+1}(\mathfrak{so}_{2n}),L_k(\mathfrak{so}_{2n+1})\otimes \mathcal{F}(2n))$ is again strongly rational. This motivates the following

Conjecture 1.1. For $k = -(2n-2) + \frac{1}{2}(2n+2m-1)$ and ℓ satisfying $(\ell+1)(k+2n-1) = 1$, $\mathcal{W}_{\ell}(\mathfrak{osp}_{2n|2n})$ is strongly rational.

The conjecture is true for the N=2 super Virasoro algebra, i.e. the case n=1 [4]. Otherwise strong rationality for principal \mathcal{W} -superalgebras of orthosymplectic type is completely open. There is, however, a C_2 -cofiniteness results in the case of $\mathfrak{osp}_{2|2n}$ [10, Cor. 5.19].

2. Vertex algebras

We shall assume that the reader is familiar with vertex algebras, and we use the same notation and terminology as the papers [26,30]. We first recall the universal two-parameter vertex algebra $\mathcal{W}^{\mathrm{ev}}(c,\lambda)$ of type $\mathcal{W}(2,4,\ldots)$, which was recently constructed in [26]. It is defined over the polynomial ring $\mathbb{C}[c,\lambda]$ and is generated by a Virasoro field L of central charge c, and a weight 4 primary field W^4 , and is strongly generated by fields $\{L,W^{2i}|\ i\geq 2\}$ where $W^{2i}=W^4_{(1)}W^{2i-2}$ for $i\geq 3$. The idea of the construction is as follows.

- (1) All structure constants in the OPEs of $L(z)W^{2i}(w)$ and $W^{2j}(z)W^{2k}(w)$ for $2i \leq 12$ and $2j + 2k \leq 14$, are uniquely determined as elements of $\mathbb{C}[c,\lambda]$ by imposing the Jacobi identities among these fields.
- (2) This data uniquely and recursively determines all OPEs $L(z)W^{2i}(w)$ and $W^{2j}(z)W^{2k}(w)$ over the ring $\mathbb{C}[c,\lambda]$ if a certain subset of Jacobi identities are imposed.
- (3) By showing that the algebras $W^k(\mathfrak{sp}_{2m})$ all arise as one-parameter quotients of $W^{\text{ev}}(c,\lambda)$ after a suitable localization, we show that all Jacobi identities hold. Equivalently, $W^{\text{ev}}(c,\lambda)$ is freely generated by the fields $\{L,W^{2i}|i\geq 2\}$, and is the universal enveloping algebra of the corresponding nonlinear Lie conformal algebra [19].

 $\mathcal{W}^{\text{ev}}(c,\lambda)$ is simple as a vertex algebra over $\mathbb{C}[c,\lambda]$, but there is a certain discrete family of prime ideals $I=(p(c,\lambda))\subseteq\mathbb{C}[c,\lambda]$ for which the quotient

$$\mathcal{W}^{\text{ev},I}(c,\lambda) = \mathcal{W}^{\text{ev}}(c,\lambda)/I \cdot \mathcal{W}^{\text{ev}}(c,\lambda),$$

is not simple as a vertex algebra over the ring $\mathbb{C}[c,\lambda]/I$. We denote by $\mathcal{W}_I^{\mathrm{ev}}(c,\lambda)$ the simple quotient of $\mathcal{W}^{\mathrm{ev},I}(c,\lambda)$ by its maximal proper graded ideal \mathcal{I} . After a suitable localization, all one-parameter vertex algebras of type $\mathcal{W}(2,4,\ldots,2N)$ for some N satisfying some mild hypotheses, can be obtained as quotients of $\mathcal{W}^{\mathrm{ev}}(c,\lambda)$ in this way. This includes the principal \mathcal{W} -algebras $\mathcal{W}^k(\mathfrak{so}_{2m+1})$ and the orbifolds $\mathcal{W}^k(\mathfrak{so}_{2m})^{\mathbb{Z}_2}$. The generators $p(c,\lambda)$ for such ideals arise as irreducible factors of Shapovalov determinants, and are in bijection with such one-parameter vertex algebras.

We also consider $W^{\text{ev},I}(c,\lambda)$ for maximal ideals

$$I = (c - c_0, \lambda - \lambda_0), \quad c_0, \lambda_0 \in \mathbb{C}.$$

Then $\mathcal{W}^{\text{ev},I}(c,\lambda)$ and its quotients are vertex algebras over \mathbb{C} . Given maximal ideals $I_0 = (c - c_0, \lambda - \lambda_0)$ and $I_1 = (c - c_1, \lambda - \lambda_1)$, let \mathcal{W}_0 and \mathcal{W}_1 be the simple quotients of $\mathcal{W}^{\text{ev},I_0}(c,\lambda)$ and $\mathcal{W}^{\text{ev},I_1}(c,\lambda)$. Theorem 8.1 of [26] gives a simple criterion for \mathcal{W}_0 and \mathcal{W}_1 to be isomorphic. Aside from a few degenerate cases, we must have $c_0 = c_1$ and $\lambda_0 = \lambda_1$. This implies that aside from the degenerate cases, all other coincidences among the simple

quotients of one-parameter vertex algebras $\mathcal{W}^{\text{ev},I}(c,\lambda)$ and $\mathcal{W}^{\text{ev},J}(c,\lambda)$, correspond to intersection points of their truncation curves V(I) and V(J).

We shall need the following result which is analogous to Theorem 6.2 of [30].

Theorem 2.1. Let W be a vertex algebra of type $W(2,4,\ldots,2N)$ which is defined over some localization R of $\mathbb{C}[c,\lambda]/I$, for some prime ideal I. Suppose that W is generated by the Virasoro field L and a weight 4 primary field W^4 . If in addition, the graded character of W agrees with that of $W^{\text{ev}}(c,\lambda)$ up to weight 13, then W is a quotient of $W^I(c,\lambda)$ after localization.

Proof. First, note that Theorem 3.10 of [26] holds without the simplicity assumption; see Remark 5.1 of [30] for a similar statement in the case of the algebra $\mathcal{W}(c,\lambda)$ of type $\mathcal{W}(2,3,\ldots)$. By Theorem 3.10 of [26], it suffices to prove that the OPEs $L(z)W^{2i}(w)$ and $W^{2j}(z)W^{2k}(w)$ for $2i \leq 12$ and $2j + 2k \leq 14$ in \mathcal{W} are the same as the corresponding OPEs in $\mathcal{W}^{\text{ev}}(c,\lambda)$ if the structure constants are replaced with their images in R. In this notation, $W^{2i} = W^4_{(1)}W^{2i-2}$ for $i \geq 3$. But this is automatic because the graded character assumption implies that there are no null vectors of weight $w \leq 13$ in the (possibly degenerate) nonlinear conformal algebra corresponding to $\{L, W^{2i} | 2 \leq i \leq N\}$. \square

3. Generalized parafermions of orthogonal type

For $n \geq 1$, the natural embedding $\mathfrak{so}_{2n} \hookrightarrow \mathfrak{so}_{2n+1}$ induces a vertex algebra homomorphism

$$V^k(\mathfrak{so}_{2n}) \to V^k(\mathfrak{so}_{2n+1}).$$

The action of \mathfrak{so}_{2n} on $V^k(\mathfrak{so}_{2n+1})$ given by the zero modes of the generating fields integrates to an action of the orthogonal group O_{2n} . Therefore the coset

$$\operatorname{Com}(V^k(\mathfrak{so}_{2n}), V^k(\mathfrak{so}_{2n+1})) = V^k(\mathfrak{so}_{2n+1})^{\mathfrak{so}_{2n}[t]}$$

has a nontrivial action of \mathbb{Z}_2 . We define

$$\mathcal{D}^k(n) = \operatorname{Com}(V^k(\mathfrak{so}_{2n}), V^k(\mathfrak{so}_{2n+1}))^{\mathbb{Z}_2}. \tag{3.1}$$

It has Virasoro element $L^{\mathfrak{so}_{2n+1}} - L^{\mathfrak{so}_{2n}}$ with central charge

$$c = \frac{kn(2k+2n-3)}{(k+2n-2)(k+2n-1)}. (3.2)$$

Note that in the case n=1, $\mathcal{D}^k(n)\cong N^k(\mathfrak{sl}_2)^{\mathbb{Z}_2}$ which is of type $\mathcal{W}(2,4,6,8,10)$ by Theorem 10.1 of [26].

Lemma 3.1. For all $n \geq 1$, $\mathcal{D}^k(n)$ is of type $\mathcal{W}(2,4,\ldots,2N)$ for some N satisfying $N \geq 2n^2 + 3n$. We conjecture, but do not prove, that $N = 2n^2 + 3n$. Moreover, for generic values of k, $\mathcal{D}^k(n)$ is generated by the weight 4 primary field W^4 .

Proof. By Theorem 6.10 of [16], we have

$$\lim_{k \to \infty} \mathcal{D}^k(n) \cong \mathcal{H}(2n)^{\mathcal{O}_{2n}},$$

and a strong generating set for $\mathcal{H}(2n)^{\mathcal{O}_{2n}}$ corresponds to a strong generating set for $\mathcal{D}^k(n)$ for generic values of k. Here $\mathcal{H}(2n)$ denotes the rank 2n Heisenberg vertex algebra. It was shown in [29], Theorem 6.5, that $\mathcal{H}(2n)^{\mathcal{O}_{2n}}$ has the above strong generating type. By Lemma 4.2 of [28], the weights 2 and 4 fields generate $\mathcal{H}(2n)^{\mathcal{O}_{2n}}$. In fact, it is easy to check that only the weight 4 field is needed, and that it can be replaced with a primary field which also generates the algebra. Finally, the statement that $\mathcal{D}^k(n)$ inherits these properties of $\mathcal{H}(2n)^{\mathcal{O}_{2n}}$ for generic values of k is also clear; the argument is similar to the proof of Corollary 8.6 of [15]. \square

Corollary 3.2. For all $n \geq 1$, there exists an ideal $K_n \subseteq \mathbb{C}[c, \lambda]$ and a localization R_n of $\mathbb{C}[c, \lambda]/K_n$ such that $\mathcal{D}^k(n)$ is the simple quotient of $\mathcal{W}_{R_n}^{\text{ev}, K_n}(c, \lambda)$.

Proof. This holds for n=1 by Theorem 10.1 of [26]. For n>1, the simplicity of $\mathcal{D}^k(n)$ as a vertex algebra over a localization of $\mathbb{C}[k]$ follows from the simplicity of $\mathcal{H}(2n)^{\mathcal{O}_{2n}}$, which follows from [21]. In view of Theorems 2.1 and 3.1, it then suffices to show that the graded characters of $\mathcal{D}^k(n)$ and $\mathcal{W}^{\text{ev}}(c,\lambda)$ agree up to weight 13. This follows from Weyl's second fundamental theorem of invariant theory for \mathcal{O}_{2n} [31], since there are no relations among the generators of weight less than $4n^2+6n+2$. \square

Theorem 3.3. For all $n \geq 2$, $\mathcal{D}^k(n)$ is isomorphic to a localization of the quotient $\mathcal{W}_{K_n}^{ev}(c,\lambda)$, where the ideal $K_n \subseteq \mathbb{C}[c,\lambda]$ is described explicitly via the parametrization $k \mapsto (c_n(k), \lambda_n(k))$ given by

$$c_n(k) = \frac{kn(2k+2n-3)}{(k+2n-2)(k+2n-1)}, \quad \lambda_n(k) = \frac{(k+2n-2)(k+2n-1)p_n(k)}{7(k-2)(k+n-1)(2n-1)q_n(k)r_n(k)},$$

$$p_n(k) = -112 + 188k - 62k^2 - 26k^3 + 12k^4 + 744n - 1336kn + 857k^2n - 252k^3n + 36k^4n - 1720n^2 + 2534kn^2 - 1198k^2n^2 + 188k^3n^2 + 1632n^3 - 1544kn^3 + 304k^2n^3 - 544n^4 + 152kn^4,$$

$$q_n(k) = 20 - 19k + 6k^2 - 42n + 28kn + 28n^2,$$

$$r_n(k) = 44 - 66k + 22k^2 - 132n + 73kn + 10k^2n + 88n^2 + 10kn^2.$$
(3.3)

Proof. Let n be fixed. In view of Corollary 3.2 and the fact that all structure constants in $\mathcal{D}^k(n)$ are rational functions of k, there is some rational function $\lambda_n(k)$ of k such that

 $\mathcal{D}^k(n)$ is obtained from $\mathcal{W}^{\text{ev}}(c,\lambda)$ by setting $c = c_n(k)$ and $\lambda = \lambda_n(k)$, and then taking the simple quotient. It is not obvious yet that $\lambda_n(k)$ is a rational function of n as well.

For k a positive integer, it is well known [25] that the map $V^k(\mathfrak{so}_{2n}) \to V^k(\mathfrak{so}_{2n+1})$ descends to a homomorphism of simple algebras $L_k(\mathfrak{so}_{2n}) \to L_k(\mathfrak{so}_{2n+1})$. Letting $\mathcal{D}_k(n)$ denote the simple quotient of $\mathcal{D}^k(n)$, it is apparent from Lemma 2.1 of [7] and Theorem 8.1 of [16] that $\operatorname{Com}(L_k(\mathfrak{so}_{2n}), L_k(\mathfrak{so}_{2n+1}))$ is simple and coincides with the simple quotient of $\operatorname{Com}(V^k(\mathfrak{so}_{2n}), V^k(\mathfrak{so}_{2n+1}))$. Moreover, taking \mathbb{Z}_2 -invariants preserves simplicity, hence

$$\mathcal{D}_k(n) \cong \operatorname{Com}(L_k(\mathfrak{so}_{2n}), L_k(\mathfrak{so}_{2n+1}))^{\mathbb{Z}_2}.$$

Next, by Corollary 1.3 of [6], for all $n \ge 1$ and $m \ge 2$, we have an isomorphism

$$\left(\left(L_{2m}(\mathfrak{so}_{2n+1}) \oplus \mathbb{L}_{2m}(2m\omega_1)\right)^{\mathfrak{so}_{2n}[t]}\right)^{\mathbb{Z}_2 \times \mathbb{Z}_2} \cong \mathcal{W}_{\ell}(\mathfrak{so}_{2m}),$$

$$\ell = -(2m-2) + \frac{2n+2m-2}{2n+2m-1}.$$
(3.4)

In this notation, ω_1 denotes the first fundamental weight of \mathfrak{so}_{2n+1} and $\mathbb{L}_{2m}(2m\omega_1)$ denotes the simple quotient of the corresponding Weyl module.

Note that $(L_{2m}(\mathfrak{so}_{2n+1})^{\mathfrak{so}_{2n}[t]})^{\mathbb{Z}_2} = \mathcal{D}_{2m}(n)$ is manifestly a subalgebra of the left hand side of (3.4). Also, the lowest-weight component of $\mathbb{L}_{2m}(2m\omega_1)$ has conformal weight m. If m > 4, the left-hand side then has a unique primary weight 4 field which lies in $\mathcal{D}_{2m}(n)$. Similarly, since $\mathcal{W}_{\ell}(\mathfrak{so}_{2m})$ has strong generators in weights $2, 4, \ldots, 2m$ and m, for m > 4 the right hand side has a unique primary weight 4 field, which lies in the \mathbb{Z}_2 -orbifold $\mathcal{W}_{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}$.

Since $\mathcal{D}^k(n)$ is generated by the weight 4 field as a one-parameter vertex algebra, the weight 4 field must generate $\mathcal{D}_{2m}(n)$ for all m sufficiently large. By Corollary 6.1 of [26], $\mathcal{W}^{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}$ is generated by the weight 4 field as a one-parameter vertex algebra; equivalently, this holds for generic values of ℓ . By the same argument as Proposition A.4 of [8], the vertex Poisson structure on the associated graded algebra gr $\mathcal{W}^{\ell}(\mathfrak{so}_{2m})$ with respect to Li's canonical filtration, is independent of ℓ for all noncritical values of ℓ . In particular this holds for the subalgebra (gr $\mathcal{W}^{\ell}(\mathfrak{so}_{2m}))^{\mathbb{Z}_2} = \operatorname{gr}(\mathcal{W}^{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2})$. It follows from the same argument as Proposition A.3 of [8] that $\mathcal{W}^{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}$ is generated by the weights 2 and 4 fields for all noncritical values of ℓ , and the same therefore holds for the simple quotient $\mathcal{W}_{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}$. Finally, for $\ell = -(2m-2) + \frac{2n+2m-2}{2n+2m-1}$, it is straightforward to verify that the Virasoro field can be generated from the weight 4 field, so the weight 4 field generates the whole algebra.

Therefore if m is sufficiently large, we obtain

$$\mathcal{D}_{2m}(n) \cong \mathcal{W}_{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}, \qquad \ell = -(2m-2) + \frac{2m+2n-2}{2m+2n-1}.$$
 (3.5)

In fact, we will see later (Theorem 4.1) that this holds for all $m \geq 2$.

Finally, the truncation curve that realizes $W_{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}$ as a quotient of $W^{\text{ev}}(c,\lambda)$ is given by Theorem 6.3 of [26], and in parametric form by Equation (B.1) of [26]. In view of (3.5), we must have $\lambda_n(2m) = \lambda_m(\ell)$ for $\ell = -(2m-2) + \frac{2n+2m-2}{2n+2m-1}$ for m sufficiently large, where $\lambda_m(\ell)$ is given by Equation (B.1) of [26]. It follows that for infinitely many values of k, $\lambda_n(k)$ is given by the above formula (3.3). Since $\lambda_n(k)$ is a rational function of k, this equality holds for all k where it is defined. This completes the proof. \square

4. Coincidences

In this section, we shall use Theorem 3.3 to classify all coincidences between the simple quotient $\mathcal{D}_k(n)$ and the \mathbb{Z}_2 -orbifold $\mathcal{W}_{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}$, as well as $\mathcal{W}_{\ell}(\mathfrak{so}_{2m+1})$. We also classify all coincidences between $\mathcal{D}_k(n)$ and $\mathcal{D}_{\ell}(m)$ for $m \neq n$.

Theorem 4.1. For $n \geq 1$ and $m \geq 2$, aside from the critical levels k = -2n + 2 and k = -2n + 1, and the degenerate cases $c = \frac{1}{2}, -24$, all isomorphisms $\mathcal{D}_k(n) \cong \mathcal{W}_{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}$ appear on the following list:

$$\begin{aligned} &(1) \ k=2m, \qquad \ell=-(2m-2)+\frac{2n+2m-2}{2n+2m-1}, \\ &(2) \ k=-(2n-2)-\frac{2n-1}{2(m-1)}, \qquad \ell=-(2m-2)+\frac{2m-2n-1}{2(m-1)}, \\ &(3) \ k=-(2n-2)+\frac{n-m}{m}, \qquad \ell=-(2m-2)+\frac{m-n}{m}. \end{aligned}$$

Proof. Recall first that $W_{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}$ is realized as the simple quotient of $W^{\mathrm{ev},J_m}(c,\lambda)$, where the ideal $J_m \subseteq \mathbb{C}[c,\lambda]$ is given in parametrized form by Equation (B.1) of [26]. First, we exclude the values of k and ℓ which are poles of the functions $\lambda_n(k)$ given by (3.3), and $\lambda_m(\ell)$ given by Equation (B.1) of [26], since at these values, $\mathcal{D}^k(n)$ and $W_{\ell}(\mathfrak{so}_{2m})^{\mathbb{Z}_2}$ are not quotients of $W^{\mathrm{ev}}(c,\lambda)$. For all other noncritical values of k and ℓ , ℓ and ℓ are obtained as quotients of ℓ and ℓ are obtained as quotients of ℓ and ℓ are spectively. By Corollary 8.2 of [26], aside from the degenerate cases given by Theorem 8.1 of [26], all other coincidences ℓ and ℓ are ℓ are obtained as quotients of the degenerate cases given by Theorem 8.1 of [26], all other coincidences ℓ and ℓ are ℓ and ℓ and ℓ are correspond to intersection points on the truncation curves ℓ and ℓ and ℓ are calculation shows that ℓ and ℓ consists of exactly five points ℓ and ℓ are realized as the simple quotient of ℓ and ℓ are realized as the simple quotient of ℓ and ℓ are realized form by Equation (B.1) of [26].

$$\left(-24, -\frac{1}{245}\right), \quad \left(\frac{1}{2}, -\frac{2}{49}\right), \quad \left(\frac{mn(4m+2n-3)}{(m+n-1)(2m+2n-1)}, \ \lambda_1\right),$$

$$\left(-\frac{2mn(3-4m-2n+4mn)}{2m-2n-1}, \ \lambda_2\right), \quad \left(-\frac{(2mn+m-2n)(2mn-m-n)}{m-n}, \ \lambda_3\right).$$

$$(4.1)$$

Here

$$\lambda_{1} = \frac{(m+n-1)(2m+2n-1)g}{7(m-1)(2m+n-1)(2n-1)gh},$$

$$f = -28 + 94m - 62m^{2} - 52m^{3} + 48m^{4} + 186n - 668mn + 857m^{2}n - 504m^{3}n + 144m^{4}n - 430n^{2} + 1267mn^{2} - 1198m^{2}n^{2} + 376m^{3}n^{2} + 408n^{3} - 772mn^{3} + 304m^{2}n^{3} - 136n^{4} + 76mn^{4},$$

$$g = 10 - 19m + 12m^{2} - 21n + 28mn + 14n^{2},$$

$$h = 22 - 66m + 44m^{2} - 66n + 73mn + 20m^{2}n + 44n^{2} + 10mn^{2}.$$

$$\lambda_{2} = \frac{(1 - 2m + 2n)f}{7(1 - 2m + 2mn)(-1 - 2n + 4mn)gh},$$

$$f = 14 - 33m - 2m^{2} + 24m^{3} + 74n - 404mn + 873m^{2}n - 696m^{3}n + 144m^{4}n + 80n^{2} - 178mn^{2} - 260m^{2}n^{2} + 452m^{3}n^{2} - 112m^{4}n^{2} - 24n^{3} + 264mn^{3} - 348m^{2}n^{3} + 256m^{3}n^{3} - 64m^{4}n^{3} + 72mn^{4} - 128m^{2}n^{4}$$

$$- 48m^{3}n^{4} + 32m^{4}n^{4},$$

$$g = -10 + 19m - 12m^{2} - 2n + 22mn - 8m^{2}n - 12n^{2} - 8mn^{2} + 8m^{2}n^{2},$$

$$h = 11 - 22m + 22n + 15mn - 20m^{2}n - 10mn^{2} + 20m^{2}n^{2}.$$

$$\lambda_{3} = \frac{(n - m)f}{7(m - 1)(2n - 1)(m - n + 2mn)gh},$$

$$f = -34m^{3} + 19m^{4} + 68m^{2}n - 38m^{3}n - 22mn^{2} - 185m^{2}n^{2} + 302m^{3}n^{2} - 80m^{4}n^{2}$$

$$- 12n^{3} + 204mn^{3} - 302m^{2}n^{3} + 80m^{3}n^{3} - 36n^{4} + 100mn^{4} - 40m^{2}n^{4}$$

$$- 40m^{3}n^{4} + 16m^{4}n^{4},$$

$$g = -7m^{2} + 7mn - 6n^{2} - 4mn^{2} + 4m^{2}n^{2},$$

$$h = -22m - 5m^{2} + 22n + 5mn + 10n^{2} - 30mn^{2} + 20m^{2}n^{2}.$$

By Theorem 8.1 of [26], the first two intersection points occur at degenerate values of c. By replacing the parameter c with the levels k and ℓ , we see that the remaining intersection points yield the nontrivial isomorphisms in Theorem 4.1. Moreover, by Corollary 8.2 of [26], these are the only such isomorphisms except possibly at the values of k, ℓ excluded above.

Finally, suppose that k is a pole of the function $\lambda_n(k)$ given by (3.3). It is not difficult to check that the corresponding values of ℓ for which $c_n(k) = c_m(\ell)$, are not poles of $\lambda_m(\ell)$. As above, $c_n(k)$ and $\lambda_n(k)$ are given by (3.3), and $c_m(\ell)$ and $\lambda_m(\ell)$ are given by Equation (B.1) of [26]. It follows that there are no additional coincidences at the excluded points. \square

Next, we classify the coincidences between $\mathcal{D}_k(n)$ and $\mathcal{W}_{\ell}(\mathfrak{so}_{2m+1})$.

Theorem 4.2. For $n \geq 1$ and $m \geq 2$, aside from the critical levels k = -2n + 2 and k = -2n + 1, and the degenerate cases $c = \frac{1}{2}, -24$, all isomorphisms $\mathcal{D}_k(n) \cong \mathcal{W}_{\ell}(\mathfrak{so}_{2m+1})$ appear on the following list:

$$(1) \ k = -(2n-2) + \frac{1}{2}(2n+2m-1), \qquad \ell = -(2m-1) + \frac{2m+2n-1}{2m+2n+1},$$

$$(2) \ k = -(2n-2) + \frac{2n-2m-1}{2m+2}, \qquad \ell = -(2m-1) + \frac{2m-2n+1}{2m+2},$$

$$(3) \ k = -(2n-2) - \frac{n}{m}, \qquad \ell = -(2m-1) + \frac{m-n}{m},$$

$$(4) \ k = -(2n-2) - \frac{2(n-1)}{2m-1}, \qquad \ell = -(2m-1) + \frac{2m-1}{2m-2n+1}.$$

$$(5) \ k = -(2n-2) + \frac{2(n-m-1)}{2m+1}, \qquad \ell = -(2m-1) + \frac{2m+1}{2(m-n+1)}.$$

Proof. The argument is the same as the proof of Theorem 4.1. First, $\mathcal{W}_{\ell}(\mathfrak{so}_{2m+1})$ is realized as the simple quotient of $\mathcal{W}^{\mathrm{ev},I_m}(c,\lambda)$ where the ideal $I_m \subseteq \mathbb{C}[c,\lambda]$ is parametrized explicitly by Equation (A.3) of [26]. The above isomorphisms all arise from the intersection points between the truncation curves $V(K_n)$ for $\mathcal{D}^k(n)$ and $V(I_m)$ for $\mathcal{W}_{\ell}(\mathfrak{so}_{2m+1})$. A calculation shows that there are exactly 7 intersection points: the degenerate points $(\frac{1}{2}, -\frac{2}{49})$ and $(-24, -\frac{1}{245})$, and the five nontrivial ones appearing above. One then has to rule out additional coincidences at the points where $\mathcal{D}_k(n)$ does not arise as a quotient of $\mathcal{W}^{\mathrm{ev}}(c,\lambda)$, namely, the poles of $\lambda_n(k)$. The details are straightforward and are left to the reader. \square

Finally, we classify all isomorphisms $\mathcal{D}_k(m) \cong \mathcal{D}_{\ell}(n)$ for $n \neq m$.

Theorem 4.3. For $m, n \geq 1$ and $n \neq m$, aside from the degenerate cases $c = \frac{1}{2}, -24$ and poles of $c_n(k)$, $\lambda_n(k)$ and $c_m(k)$, $\lambda_m(k)$ the complete list of isomorphisms $\mathcal{D}_k(m) \cong \mathcal{D}_\ell(n)$ is the following:

(1)
$$k = -(2m-2) + \frac{2(m-1)}{1+2n}$$
, $\ell = -(2n-2) - \frac{2m+2n-1}{2(m-1)}$,
(2) $k = -(2m-2) - \frac{2m+2n-1}{2(n-1)}$, $\ell = -(2n-2) + \frac{2(n-1)}{1+2m}$.

The proof is similar to the proof of Theorem 4.1 and is omitted.

5. Some rational cosets

By composing the map $V^k(\mathfrak{so}_{2n}) \to V^k(\mathfrak{so}_{2n+1})$ with the quotient map $V^k(\mathfrak{so}_{2n+1}) \to L_k(\mathfrak{so}_{2n+1})$, we obtain an embedding

$$\tilde{V}^k(\mathfrak{so}_{2n}) \hookrightarrow L_k(\mathfrak{so}_{2n+1}),$$

where $\tilde{V}^k(\mathfrak{so}_{2n})$ denotes the quotient of $V^k(\mathfrak{so}_{2n})$ by the kernel \mathcal{J}_k of the above composition. In general, it is a difficult and important problem to determine when \mathcal{J}_k is the maximal proper graded ideal, or equivalently, when $\tilde{V}^k(\mathfrak{so}_{2n}) = L_k(\mathfrak{so}_{2n})$. In the case where k is an admissible level for $\widehat{\mathfrak{so}_{2n}}$, Lemma 2.1 of [7] would then imply that $\operatorname{Com}(L_k(\mathfrak{so}_{2n}), L_k(\mathfrak{so}_{2n+1}))$ is simple, and hence its orbifold $\operatorname{Com}(L_k(\mathfrak{so}_{2n}), L_k(\mathfrak{so}_{2n+1}))^{\mathbb{Z}_2}$ would be simple as well [21]. Additionally, Theorem 8.1 of [16] would imply that $\operatorname{Com}(L_k(\mathfrak{so}_{2n}), L_k(\mathfrak{so}_{2n+1}))^{\mathbb{Z}_2}$ coincides with the simple quotient $\mathcal{D}_k(n)$ of $\mathcal{D}^k(n)$. This is particularly interesting in the cases where $\mathcal{D}_k(n)$ is strongly rational.

We conclude by proving this for first family in Theorem 4.2. These are new examples of cosets of non-rational vertex algebras by admissible level affine vertex algebras, which are strongly rational.

Lemma 5.1. For $n \geq 2$ and $m \geq 0$, we have an embedding of simple affine vertex algebras

$$L_k(\mathfrak{so}_{2n}) \hookrightarrow L_k(\mathfrak{so}_{2n+1}), \qquad k = -(2n-2) + \frac{1}{2}(2n+2m-1).$$

Proof. We proceed by induction on m. In the case m=0, we have $k=-n+\frac{3}{2}$, and it is well known that there exists a conformal embedding $L_k(\mathfrak{so}_{2n}) \hookrightarrow L_k(\mathfrak{so}_{2n+1})$, see e.g. Section 3 of [5]. Next, we assume the result for m-1, so that $k=-n+\frac{3}{2}+m-1$. Recall that the rank 2n+1 free fermion algebra $\mathcal{F}(2n+1)$ admits an action of $L_1(\mathfrak{so}_{2n+1})$, as well as an action of $L_1(\mathfrak{so}_{2n})$ via the embedding $L_1(\mathfrak{so}_{2n}) \hookrightarrow L_1(\mathfrak{so}_{2n+1})$. The image of $L_1(\mathfrak{so}_{2n})$ lies in the subalgebra $\mathcal{F}(2n) \subseteq \mathcal{F}(2n+1)$.

Since k is admissible for \mathfrak{so}_{2n+1} , it is known [25] that we have a diagonal embedding of simple affine vertex algebras

$$L_{k+1}(\mathfrak{so}_{2n+1}) \hookrightarrow L_k(\mathfrak{so}_{2n+1}) \otimes \mathcal{F}(2n+1).$$
 (5.1)

By induction, we have the map $L_k(\mathfrak{so}_{2n}) \hookrightarrow L_k(\mathfrak{so}_{2n+1})$. Then we have an embedding

$$L_{k+1}(\mathfrak{so}_{2n}) \hookrightarrow L_k(\mathfrak{so}_{2n}) \otimes \mathcal{F}(n) \hookrightarrow L_k(\mathfrak{so}_{2n+1}) \otimes \mathcal{F}(2n+1),$$
 (5.2)

where $\mathcal{F}(2n) \hookrightarrow \mathcal{F}(2n+1)$ is the isomorphism onto the first 2n copies. Since the image of (5.2) lies in the image of (5.1), it follows that $L_{k+1}(\mathfrak{so}_{2n})$ embeds in $L_{k+1}(\mathfrak{so}_{2n+1})$. \square

This has the following immediate consequence.

Corollary 5.2. For $n \ge 2$, $m \ge 0$, and $k = -(2n - 2) + \frac{1}{2}(2n + 2m - 1)$, we have an isomorphism

$$Com(L_k(\mathfrak{so}_{2n}), L_k(\mathfrak{so}_{2n+1}))^{\mathbb{Z}_2} \cong \mathcal{W}_{\ell}(\mathfrak{so}_{2m+1}), \qquad \ell = -(2m-1) + \frac{2m+2n-1}{2m+2n+1}.$$

In particular, $Com(L_k(\mathfrak{so}_{2n}), L_k(\mathfrak{so}_{2n+1}))^{\mathbb{Z}_2}$ is strongly rational.

Proof. This follows from Theorem 4.2 together with the fact that $Com(L_k(\mathfrak{so}_{2n}), L_k(\mathfrak{so}_{2n+1}))^{\mathbb{Z}_2}$ is simple, and the map $\mathcal{D}^k(n) \to Com(L_k(\mathfrak{so}_{2n}), L_k(\mathfrak{so}_{2n+1}))^{\mathbb{Z}_2}$ is surjective. \square

Recall that the category of ordinary modules of an affine vertex algebra at admissible level is semisimple [3] and a vertex tensor category [12]. Conjecturally, this category is fusion [12] and this has been proven for simply-laced Lie algebras [9]. For type \mathfrak{so}_{2n+1} and level $k = -(2n-2) + \frac{1}{2}(2n+2m-1)$ this conjecture is also true. First, $\mathrm{Com}(L_k(\mathfrak{so}_{2n}), L_k(\mathfrak{so}_{2n+1}))$ is a simple current extension, call it $\mathcal{V}_{\ell}(\mathfrak{so}_{2m+1})$, of $\mathcal{W}_{\ell}(\mathfrak{so}_{2m+1})$ and thus rational as well [27]. It follows that $L_k(\mathfrak{so}_{2n+1})$ is a simple \mathbb{Z} -graded extension of $L_k(\mathfrak{so}_{2n}) \otimes \mathcal{V}_{\ell}(\mathfrak{so}_{2m+1})$ in a rigid vertex tensor category \mathcal{C} of $L_k(\mathfrak{so}_{2n}) \otimes \mathcal{V}_{\ell}(\mathfrak{so}_{2m+1})$ -modules, namely the Deligne product of the categories of ordinary $L_k(\mathfrak{so}_{2n})$ -modules and $\mathcal{V}_{\ell}(\mathfrak{so}_{2m+1})$ -modules. Every ordinary module for $L_k(\mathfrak{so}_{2n+1})$ must be an object in this category \mathcal{C} . This means that as a braided tensor category the category of ordinary modules of $L_k(\mathfrak{so}_{2n+1})$ is equivalent to the category of local modules for $L_k(\mathfrak{so}_{2n+1})$ viewed as an algebra object in \mathcal{C} [13,23]. All assumptions of Theorem 5.12 of [14] are satisfied (with $U = \mathcal{V}_{\ell}(\mathfrak{so}_{2m+1})$ and $V = L_k(\mathfrak{so}_{2n})$) and so

Corollary 5.3. The category of ordinary modules of $L_k(\mathfrak{so}_{2n+1})$ at level $k = -(2n-2) + \frac{1}{2}(2n+2m-1)$ is fusion.

References

- T. Arakawa, Associated varieties of modules over Kac-Moody algebras and C₂-cofiniteness of Walgebras, Int. Math. Res. Not. 2015 (2015) 11605–11666.
- [2] T. Arakawa, Rationality of W-algebras: principal nilpotent cases, Ann. Math. 182 (2) (2015) 565–694.
- [3] T. Arakawa, Rationality of admissible affine vertex algebras in the category O, Duke Math. J. 165 (1) (2016) 67–93.
- [4] D. Adamovic, Rationality of Neveu-Schwarz vertex operator superalgebras, Int. Math. Res. Not. 1997 (1997) 865–874.
- [5] D. Adamović, V.G. Kac, P. Möseneder Frajria, P. Papi, O. Perše, Finite vs. infinite decompositions in conformal embeddings, Commun. Math. Phys. 348 (2) (2016) 445–473.
- [6] T. Arakawa, T. Creutzig, A. Linshaw, W-algebras as coset vertex algebras, Invent. Math. 218 (1) (2019) 145–195.
- [7] T. Arakawa, T. Creutzig, K. Kawasetsu, A. Linshaw, Orbifolds and cosets of minimal W-algebras, Commun. Math. Phys. 355 (1) (2017) 339–372.
- [8] T. Arakawa, C.H. Lam, H. Yamada, Parafermion vertex operator algebras and W-algebras, Trans. Am. Math. Soc. 371 (6) (2019) 4277–4301.
- [9] T. Creutzig, Fusion categories for affine vertex algebras at admissible levels, Sel. Math. New Ser. 25 (2) (2019) 27.
- [10] T. Creutzig, N. Genra, S. Nakatsuka, Duality of subregular W-algebras and principal W-superalgebras, Adv. Math. 383 (2021) 107685.
- [11] T. Creutzig, Y. Hikida, P.B. Rønne, N=1 supersymmetric higher spin holography on AdS_3 , J. High Energy Phys. 02 (2013) 019.
- [12] T. Creutzig, Y.Z. Huang, J. Yang, Braided tensor categories of admissible modules for affine Lie algebras, Commun. Math. Phys. 362 (3) (2018) 827–854.
- [13] T. Creutzig, S. Kanade, R. McRae, Tensor categories for vertex operator superalgebra extensions, Mem. Am. Math. Soc. (2021), in press, arXiv:1705.05017.
- [14] T. Creutzig, S. Kanade, R. McRae, Glueing vertex algebras, arXiv:1906.00119.

- [15] T. Creutzig, A. Linshaw, The super $W_{1+\infty}$ algebra with integral central charge, Trans. Am. Math. Soc. 367 (8) (2015) 5521–5551.
- [16] T. Creutzig, A. Linshaw, Cosets of affine vertex algebras inside larger structures, J. Algebra 517 (2019) 396–438.
- [17] T. Creutzig, A. Linshaw, Trialities of W-algebras, arXiv:2005.10234.
- [18] C. Candu, C. Vollenweider, The $\mathcal{N}=1$ algebra $\mathcal{W}_{\infty}[\mu]$ and its truncations, J. High Energy Phys. 11 (2013) 032.
- [19] A. De Sole, V. Kac, Freely generated vertex algebras and non-linear Lie conformal algebras, Commun. Math. Phys. 254 (3) (2005) 659–694.
- [20] C. Dong, C. Lam, H. Yamada, W-algebras related to parafermion algebras, J. Algebra 322 (7) (2009) 2366–2403.
- [21] C. Dong, H. Li, G. Mason, Compact automorphism groups of vertex operator algebras, Int. Math. Res. Not. (18) (1996) 913–921.
- [22] N. Genra, A. Linshaw, Ito's conjecture and the coset realization of $W^k(sl(3|2))$, RIMS Kôkyûroku Bessatsu (2021), in press, arXiv:1901.02397.
- [23] Y.Z. Huang, A. Kirillov, J. Lepowsky, Braided tensor categories and extensions of vertex operator algebras, Commun. Math. Phys. 337 (3) (2015) 1143–1159.
- [24] K. Ito, Quantum Hamiltonian reduction and N=2 coset models, Phys. Lett. B 259 (1991) 73–78.
- [25] V.G. Kac, M. Wakimoto, Branching functions for winding subalgebras and tensor products, Acta Appl. Math. 21 (1–2) (1990) 3–39.
- [26] S. Kanade, A. Linshaw, Universal two-parameter even spin W_{∞} -algebra, Adv. Math. 355 (2019) 106774.
- [27] H. Li, Extension of vertex operator algebras by a self-dual simple module, J. Algebra 187 (1997) 236–267.
- [28] A. Linshaw, Invariant theory and the Heisenberg vertex algebra, Int. Math. Res. Not. 17 (2012) 4014–4050.
- [29] A. Linshaw, Invariant subalgebras of affine vertex algebras, Adv. Math. 234 (2013) 61–84.
- [30] A. Linshaw, Universal two-parameter W_{∞} -algebra and vertex algebras of type W(2, 3, ..., N), Compos. Math. 157 (1) (2021) 12–82.
- [31] H. Weyl, The Classical Groups: Their Invariants and Representations, Princeton University Press, 1946.