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We prove the conjecture of Gaiotto and Rapčák that the Y -algebras
YL,M,N [ψ] with one of the parameters L,M,N zero, are simple
one-parameter quotients of the universal two-parameter W1+∞-
algebra, and satisfy a symmetry known as triality. These Y -algebras
are defined as the cosets of certain non-principal W-algebras and
W-superalgebras by their affine vertex subalgebras, and triality
is an isomorphism between three such algebras. Special cases of
our result provide new and unified proofs of many theorems and
open conjectures in the literature on W-algebras of type A. This
includes (1) Feigin-Frenkel duality, (2) the coset realization of prin-
cipal W-algebras due to Arakawa and us, (3) Feigin and Semikha-
tov’s conjectured triality between subregular W-algebras, principal
W-superalgebras, and affine vertex superalgebras, (4) the ratio-
nality of subregular W-algebras due to Arakawa and van Ekeren,
and (5) the identification of Heisenberg cosets of subregular W-
algebras with principal rational W-algebras that was conjectured
in the physics literature over 25 years ago. Finally, we prove the
conjectures of Procházka and Rapčák on the explicit truncation
curves realizing the simple Y -algebras as W1+∞-quotients, and on
their minimal strong generating types.

Keywords and phrases: Vertex algebra, W-algebra, Poisson vertex
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1. Introduction

Let g be a simple Lie (super)algebra with a nondegenerate invariant bilin-
ear form, and let f be a nilpotent element in the even part of g. To this
data and any complex number k, one associates the universal affine vertex
superalgebra V k(g) at level k, and a complex V k(g)⊗Cf whose homology is
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the universal W-superalgebra Wk(g, f). Historically, the best-studied cases
have f = 0 so that Wk(g, 0) = V k(g), and f the principal nilpotent so that
Wk(g, f) is the principal W-algebra Wk(g). However, the recent connection
of vertex algebras to geometry, topology and higher dimensional physics in-
volves many different types of W-superalgebras. Before explaining this in
more detail we begin by stating our main results.

1.1. Main theorem

We first define the two families of algebras of interest. Let g = sln+m and
fn,m be the nilpotent element corresponding to the partition (n, 1, . . . , 1)
of n + m. Let ψ = k + n + m. For n + m ≥ 1 and n > 0, we define
Wψ(n,m) := Wk(sln+m, fn,m). For m ≥ 2 and n = 0, we define Wψ(0,m) =
V k(slm) ⊗ S(m) where S(m) is the rank m βγ-system. In the cases n = 0
and m = 0, 1 we define Wψ(0, 1) = S(1) and Wψ(0, 0) = C. The best known
cases are

1. the principal W-algebra Wk(sln) ∼= Wψ(n, 0),
2. the subregular W-algebra Wk(sln+1, fsubreg) ∼= Wψ(n, 1),
3. the affine vertex algebra V k(slm+1) ∼= Wk(slm+1, 0) ∼= Wψ(1,m),
4. the minimal W-algebra Wk(slm+2, fmin) ∼= Wψ(2,m).

For m ≥ 1, Wψ(n,m) has affine subalgebra V ψ−m−1(glm). We set

Cψ(n,m) :=

{
Com

(
V ψ−m−1(glm),Wψ(n,m)

)
for m ≥ 1,

Wψ(n, 0) for m = 0.

Next, we consider g = sln|m and the nilpotent element fn|m corresponding
to the super partition (n|1, . . . , 1) of n|m. Let ψ = k+n−m. For n+m ≥ 2
and n �= m, we define Vψ(n,m) := Wk(sln|m, fn|m). The case n = m and
n ≥ 2 is special since sln|n is not simple, and we use its simple quotient psln|n
instead; that is, Vψ(n, n) := Wk(psln|n, fn|n). We set Vψ(1, 1) ∼= A(1), where
A(1) is the rank one symplectic fermion algebra. For m ≥ 2 and n = 0, we
set Vψ(0,m) ∼= V −k(slm)⊗E(m) where E(m) denotes the rank m bc-system.
Finally, Vψ(0, 1) ∼= E(1) and Vψ(0, 0) ∼= Vψ(1, 0) ∼= C. The best known cases
are

1. the principal W-algebra Wk(sln) ∼= Vψ(n, 0),
2. the principal W-superalgebra Wk(sln|1, fn|1) ∼= Vψ(n, 1),

3. the affine vertex superalgebra V k(sl1|m) ∼= Wk(sl1|m, 0) ∼= Vψ(1,m),

4. the minimal W-superalgebra Wk(sl2|m, fmin) ∼= Vψ(2,m) for m �= 2.
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For n �= m and m ≥ 1, Vψ(n,m) has affine subalgebra V −ψ−m+1(glm).

For n = m ≥ 2, Vψ(n, n) has affine subalgebra V −ψ−n+1(sln). Note that for

all n ≥ 1, Vψ(n, n) also admits an action of GL1 by outer automorphisms.

We set

Dψ(n,m) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Com

(
V −ψ−m+1(glm),Vψ(n,m)

)
for n �= m and m ≥ 1,

Com
(
V −ψ−n+1(sln),Vψ(n, n)

)GL1 for n = m and n ≥ 2,

A(1)GL1 for n = m = 1,

Vψ(n, 0) for m = 0.

A one-parameter vertex algebra is a vertex algebra over some localization

of a polynomial ring in one variable, which in our case is the level k or

equivalently the critically shifted level ψ. The main result of this paper is

Theorem 1.1. Let n ≥ m be non-negative integers. As one-parameter ver-

tex algebras

Dψ(n,m) ∼= Cψ−1

(n−m,m) ∼= Dψ′
(m,n)

with ψ′ defined by 1
ψ + 1

ψ′ = 1.

This theorem was first conjectured by Gaiotto and Rapčák [79] in a

slightly different form (see below), and has the following special cases.

1. Dψ(1, 1) = A(1)GL1 is known in the logarithmic conformal field theory

literature as the p = 2 singlet vertex algebra [2, 98]. It is isomorphic

to Cψ−1

(0, 1) which is the Heisenberg coset of S(1). This isomorphism

has been discussed in [54].

2. Feigin-Frenkel duality says that the principal W-algebra of a simple

Lie algebra g at level ψ− h∨ is isomorphic to the principal W-algebra

of the dual Lie algebra Lg at level ψ′ − Lh∨ where �ψψ′ = 1 and � is

the lacity of g [67]. The special case Dψ(n, 0) ∼= Cψ−1

(n, 0) of our result

reproduces Feigin-Frenkel duality in type A.

3. Principal W-algebras of simply-laced Lie algebras can be realized as

cosets [18]. For type A this is the case Dψ(n, 0) ∼= Dψ′
(0, n).

4. Feigin and Semikhatov conjectured relations between cosets of subreg-

ular W-algebras of sln, of principal W-superalgebras of sln|1 and cosets

of affine vertex superalgebras of sln|1 [68]. These correspond to the case

m = 1 of our theorem, that is Dψ(n, 1) ∼= Cψ−1

(n − 1, 1) ∼= Dψ′
(1, n).

The first isomorphism recovers a theorem of Genra, Nakatsuka and

one of us [42].
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1.2. Outline of proof

The proof of Theorem 1.1 has three parts.

1. We show that Cψ(n,m) and Dψ(n,m) are simple as one-parameter
vertex algebras; equivalently, they are simple for generic values of ψ.

2. We find minimal strong generating sets for Cψ(n,m) and Dψ(n,m).
3. We show that aside from the extreme cases Cψ(0, 0), Cψ(1, 0), Cψ(2, 0),

and Dψ(0, 0), Dψ(0, 1), Dψ(1, 0), Dψ(2, 0), for all other values of n,m,
Cψ(n,m) and Dψ(n,m) are one-parameter quotients of a universal
two-parameter vertex algebra. Its simple one-parameter quotients are
in bijection with a family of curves in the parameter space C2, and
we finish the proof by explicitly describing these curves. The extreme
cases are easily verified separately.

1.3. Basic results on W-superalgebras

In order to carry out steps (1) and (2) above, we shall establish some foun-
dational results on the structure of W-superalgebras in Section 3. First, we
introduce a general notion of free field algebra. This is a vertex superalgebra
that is strongly generated by fields whose OPEs contain no other field than
the vacuum. Examples of free field algebras that have a conformal structure
are free fermions, symplectic fermions, the Heisenberg and βγ-vertex alge-
bra. However there are many more examples that do not have a conformal
structure.

It is well known that W-superalgebras allow for a quasi-classical limit in
which they become commutative and can be endowed with a Poisson vertex
superalgebra structure; see e.g. [59]. We modify these constructions to ob-
tain the free field limits for vertex superalgebras that allow a quasi-classical
limit; see Proposition 3.2. A consequence is that the free field limit is simple
if and only if the corresponding quasi-classical limit has a nondegenerate
pairing on the strong generators; see Corollary 3.1. The main result here is
Theorem 3.5, which says that if g is a Lie superalgebra with a nondegenerate
invariant bilinear form, and f ∈ g is a nilpotent element, theW-superalgebra
Wk(g, f) has a simple free field limit. As a corollary, we obtain the simplic-
ity of Wk(g, f) for generic values of k in full generality. This was previously
known only for principal W-algebras [12], and for minimal W-algebras and
W-superalgebras [84, 86]. Finally, recall that Wk(g, f) has affine vertex sub-
algebra V �(a) where a ⊆ g is the centralizer of the sl2-triple extending f .
The generic simplicity of Wk(g, f) implies the generic simplicity of its coset
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Com(V �′(b),Wk(g, f)), where V �′(b) ⊆ V �(a) is the affine vertex algebra

corresponding to any reductive Lie subalgebra b ⊆ a.

Minimal strong generating sets for a large class of orbifolds of ver-

tex algebras, as well as cosets of affine vertex algebras in certain larger

structures, can be studied by passing to an orbifold problem of a suit-

able limit [51]. In Section 4, we adapt this picture to study orbifolds and

cosets of W-superalgebras by passing to their free field limits. Theorem

4.1 says that for any simple Lie superalgebra g and nilpotent f , any re-

ductive group G of automorphisms of Wk(g, f), and any affine subalgebra

V �′(b) ⊆ V �(a) ⊆ Wk(g, f) where b is reductive, the orbifold Wk(g, f)G and

the coset Com(V �′(b),Wk(g, f)) are strongly finitely generated for generic

values of k. This result is constructive modulo a classical invariant theory

problem, namely, the first and second fundamental theorems of invariant

theory for some reductive group G and finite-dimensional G-module V . For

the cosets Cψ(n,m) and Dψ(n,m) appearing in Theorem 1.1, G = GLm and

V is the standard module Cm plus its dual. Using Weyl’s first and second

fundamental theorems of invariant theory in this case [126], we give explicit

minimal strong generating sets for these cosets; see Lemmas 6.1 and 7.1.

In Section 3, we also prove some basic results on principal W-algebras of

type A, including the weight where the first singular vector appears in the

universal W-algebra for all nondegenerate admissible levels; see Corollary

3.7. This is surely known to experts but we could not find it in the literature,

and it is needed in our proof of Theorem 1.1.

1.4. The W∞-algebra

The last step in the proof of Theorem 1.1 is to identify both Cψ(n,m) and

Dψ(n,m) explicitly as one-parameter quotients of the universal W∞-algebra

of type W(2, 3, . . . ); see Theorems 6.1 and 7.1. The existence and unique-

ness of a two-parameter vertex algebra W∞[μ] which interpolates between

Wk(sln) for all n was conjectured for many years in the physics literature

[128, 27, 31, 32, 77, 78, 114, 115, 116, 117], and was recently proven by one

of us in [110]. In particular, the structure constants are continuous functions

of the central charge c and the parameter μ, and if we set μ = n, there is

a truncation at weight n+ 1 such that the simple quotient is isomorphic to

Wk(sln) as a one-parameter vertex algebra. In the quasi-classical limit, the

existence of a Poisson vertex algebra of type W(2, 3, . . . ) which interpolates

between the classical W-algebras of sln for all n, has been known for many

years; see [100, 101, 60].
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We mention thatW∞[μ] acquires better properties if it is tensored with a
rank one Heisenberg algebra H to obtain the universal W1+∞-algebra. This
vertex algebra is closely related to a number of other algebraic structures
that arise in very different contexts. For example, up to suitable completions
its associative algebra of modes is isomorphic to the Yangian of ĝl1 [26,
112, 124], as well as the algebra SHc defined in [123] as a certain limit of
degenerate double affine Hecke algebras of gln. This identification allowed
Schiffmann and Vasserot to define an action of the principal W-algebra of
glr on the equivariant cohomology of the moduli space of Ur-instantons in
[123].

In [110] we used a different parameter λ which is related to μ by

(1.1) λ =
(μ− 1)(μ+ 1)

(μ− 2)(3μ2 − μ− 2 + c(μ+ 2))
,

and we denoted the universal algebra by W(c, λ). Instead of using either the
primary strong generating fields, or the quadratic basis of [114], our strong
generators are defined as follows. We begin with the primary weight 3 field
W 3, normalized so that W 3

(5)W
3 = c

31, and we define the remaining fields

recursively by W i = W 3
(1)W

i−1 for i ≥ 4. With this choice, the rich connec-

tions between the representation theory of W∞[μ] and the combinatorics of
box partitions are not apparent. However, our choice has the advantage that
the recursive behavior of the OPE algebra is more transparent.

In addition to Wk(sln), W(c, λ) admits many other one-parameter quo-
tients as well. In fact, any one-parameter vertex algebra of type W(2, 3, . . . ,
N) for some N satisfying mild hypotheses, arises as such a quotient, so
W(c, λ) can be viewed as a classifying object for such vertex algebras. The
simple one-parameter quotients are in bijection with a family of plane curves
called truncation curves, but the explicit description of all such curves is still
an open problem.

The minimal strong generating sets for Cψ(n,m) and Dψ(n,m) given by
Lemmas 6.1 and 7.1 imply that they are at worst extensions of one-parameter
quotients C̃ψ(n,m) and D̃ψ(n,m) of W(c, λ), respectively. We can therefore
regardWψ(n,m) as an extension of V ψ−m−1(glm)⊗W whereW is some one-
parameter quotient of W(c, λ), and the extension contains 2m even primary
fields in weight n+1

2 which transform under glm as Cm⊕(Cm)∗. By imposing
just seven Jacobi identities, we will prove that the truncation curve for W
is uniquely and explicitly determined by the existence of this extension.
Similarly, we regard Vψ(n,m) as an extension of V −ψ−m+1(glm)⊗W in the
case n �= m, and of V −ψ−n+1(sln)⊗W in the case n = m, where the extension
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contains 2m odd primary fields of weight n+1
2 which transform under glm

(or sln in the case n = m) as Cm ⊕ (Cm)∗. The same procedure shows that

the truncation curve for W is uniquely determined. These curves allow us

to find isomorphisms between the simple quotients C̃ψ(n,m) and D̃ψ(n,m)

and certain principal W-algebras of type A, at special values of ψ. Using the

weights of singular vectors in these W-algebras given by Corollary 3.7, we

prove that Cψ(n,m) = C̃ψ(n,m) and Dψ(n,m) = D̃ψ(n,m). Our main result

then follows from our explicit truncation curves, together with the generic

simplicity of Cψ(n,m) and Dψ(n,m).

1.5. Y -algebras and triality

Motivated from physics, Gaiotto and Rapčák introduced a family of ver-

tex algebras YL,M,N [ψ] called Y -algebras [79]. They considered interfaces

of GL-twisted N = 4 supersymmetric gauge theories with gauge groups

U(L), U(M), U(N). The shape of these interfaces is a Y and local opera-

tors at the corner of these interfaces are supposed to form a vertex algebra,

hence the name Y -algebra. Also note that GL stands for geometric Lang-

lands. These interfaces should satisfy a permutation symmetry which then

induces a corresponding symmetry on the associated vertex algebras. This

led [79] to conjecture a triality of isomorphisms of Y -algebras.

The Y -algebras were also conjectured in [79] to arise as one-parameter

quotients of the universal two-parameter W1+∞-algebra, which is just the

tensor product H⊗W(c, λ). In fact, the distinct truncation curves of W(c, λ)

are expected to be in bijection with the algebras Y0,M,N [ψ] algebras, which

are the simple quotients of H ⊗ W(c, λ) along these curves, and Y (r,M +

r,N+r)[ψ] is expected to be a non-simple quotient of H⊗W(c, λ) along the

same curve. In [116], Procházka and Rapčák conjectured a precise formula

for these truncation curves, and in [117] they conjectured that YL,M,N [ψ]

should have minimal strong generating type W(1, 2, 3, . . . , n) for n = (L +

1)(M + 1)(N + 1)− 1.

The Y -algebras with one label being zero are up to a Heisenberg algebra

our coset vertex algebras. More precisely,

Y0,M,N [ψ] = Cψ(N −M,M)⊗H, M ≤ N,

Y0,M,N [ψ] = C−ψ+1(M −N,N)⊗H, M > N,

YL,0,N [ψ] = Dψ(N,L)⊗H,

YL,M,0[ψ] = D−ψ+1(M,L)⊗H.

(1.2)
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By definition one has Y0,N,M [ψ] ∼= Y0,M,N [1 − ψ] for N �= M . We also have
Cψ(0,M) ∼= C1−ψ(0,M) and hence this statement also holds for N = M .
Clearly also YL,0,N [ψ] ∼= YL,N,0[1−ψ]. Combining this with the isomorphisms
in Theorem 1.1, we obtain

Y0,M,N [ψ] ∼= Y0,N,M [1− ψ] ∼= YM,0,N [ψ−1] ∼= YM,N,0[1− ψ−1]

∼= YN,0,M [(1− ψ)−1] ∼= YN,M,0[(1− ψ−1)−1].
(1.3)

Let ψ be defined by

ψ = −ε2
ε1
, ε1 + ε2 + ε3 = 0

and set

Y ε1,ε2,ε3
N1,N2,N3

:= YN1,N2,N3
[ψ].

Then with this notation the triality symmetry is manifest

Y
εσ(1),εσ(2),εσ(3)

Nσ(1),Nσ(2),Nσ(3)

∼= Y ε1,ε2,ε3
N1,N2,N3

for σ ∈ S3.

In particular, as a corollary of Theorems 1.1, 6.1, and 7.1, we obtain

Corollary 1.1. The following conjectures are true.

1. The conjecture [79] that YL,M,N [ψ] is a simple quotient of H⊗W(c, λ),
when one of the labels L,M,N is zero.

2. The triality conjecture of [79] for the algebras YL,M,N [ψ] when one of
the labels is zero.

3. The formula [116, Eq. 2.14] for the truncation curve of Y0,M,N [ψ].
4. The conjecture of [117] that Y0,M,N [ψ] is of type W(1, 2, 3, . . . , (M −

1)(N − 1)− 1).

The general case of YL,M,N [ψ] where the three labels can all be nonzero,
corresponds to cosets of W-superalgebras of type A by affine vertex superal-
gebras. These cosets are also expected to be one-parameter quotients of the
universal W1+∞-algebra, however they are not the simple quotients. One
can study these cases by using the invariant theory of Lie superalgebras
developed by Sergeev [119, 120], to describe orbifolds of free field algebras
under the corresponding supergroups. These orbifolds will then be suitable
limits of YM,N,L[ψ]. It also seems possible to relate YL,M,N [ψ] for nonzero
L,M,N , to YL−r,N−r,M−r[ψ] by a new variant of the Duflo-Serganova func-
tor [65, 85], called cohomological reduction of affine superalgebras in physics
[34], for W-superalgebras. This is work in progress.
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1.6. Uniqueness and reconstruction of W-algebras

For m ≥ 1, Wψ(n,m) can be viewed as an extension of V ψ−m−1(glm) ⊗
Cψ(n,m), where the extension is generated by primary fields {P±,i| i =
1, . . . ,m} of weight n+1

2 , which transform as Cm ⊕ (Cm)∗ under glm. These
fields also satisfy the nondegeneracy condition (P+,i)(n)P

−,j = δi,j1. Theo-

rem 9.1 says that Wψ(n,m) satisfies a strong uniqueness property: its full
OPE algebra is completely determined by the structure of Cψ(n,m), the
normalization of the Heisenberg field, the action of glm on the fields {P±,i},
and the above nondegeneracy condition. A similar uniqueness theorem holds
for Vψ(n,m); see Theorem 9.5.

There are certain special levels where the simple quotient Cψ(n,m) of
Cψ(n,m) is isomorphic to a principal W-algebra Wr(sls) for some s ≥ 3,
and these are classified by Corollary 6.5. The reconstruction problem at these
levels is to consider the tensor product ofWr(sls) with a homomorphic image
of V ψ−m−1(glm), and try to realize Wψ(n,m) explicitly as an extension of
this tensor product. This requires the above uniqueness theorem, and is
easiest in the case m = 1 since the extension is then expected to be of simple
current type. Theorem 9.2 shows that for ψ = n+s+1

n , if s+ 1 and s+ n+ 1
are coprime, then the Heisenberg algebra H ⊆ Wψ(n, 1) can be extended to

a lattice vertex algebra VL ⊆ Wψ(n, 1) for L =
√

s(n+ 1) Z, and Wψ(n, 1)
is a simple current extension of VL ⊗ Wr(sls) for r = −s + s+1

s+n+1 . This
proves an old conjecture of Blumenhagen et al. [31], which was previously
known only in the low rank cases of r = 2, 3, 4 in [24, 17, 52]. It gives a new
and independent proof of Arakawa and van Ekeren’s recent theorem that
Wk(sln+1, fsubreg) is rational and lisse for these values of k = ψ−n− 1 [21].
Similarly, in Theorems 9.3 and 9.4, we reconstruct Wψ(n, 1) and Wψ(2,m)
at certain levels where it is not rational or lisse. As a consequence, we obtain
a vertex tensor category structure on the category of ordinary modules for
certain affine vertex algebras at non-admissible levels.

1.7. Outlook

In this subsection, we list a few natural directions for future research.

Free field realization. Theorem 1.1 is a common generalization of Feigin-
Frenkel duality in type A, and the coset realization theorem of [18] in type A,
and provides new proofs of these results. Both of these results were proven
originally using the free field realization of W�(sln) at generic level � coming
from the Miura map

γ� : W�(sln) ↪→ π,
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where π is the Heisenberg vertex algebra of rank n − 1. This is obtained

by applying the Drinfeld-Sokolov reduction functor to the Wakimoto free

field realization V �(sln) ↪→ Msln ⊗ π, where Msln is the βγ-system of rank

dim(n+), where n+ denotes the upper nilpotent part of sln [66]. The difficult

step of [18] is to construct another vertex algebra homomorphism

Ψk : Com(V k+1(sln), V
k(sln)⊗ L1(sln)) ↪→ π, �+ n =

k + n

k + n+ 1
,

and show that its image coincides with the image of γ�.

It is an important question whether this approach can be used to give

an alternative proof of Theorem 1.1. In the case m = 1, this was carried out

by one of us together with Genra and Nakatsuka [42]. We mention that a

family of vertex algebrasWr1,r2,r3 defined by free field realizations in [28], was

conjectured by Procházka and Rapčák to be isomorphic to the Yr1,r2,r3 [ψ]-

algebras of [79]. These algebras manifestly satisfy the triality symmetry, so

establishing their equivalence to the Y -algebras of [79] would provide another

proof of our main result. In recent work of Rapčák, Soibelman, Yang and

Zhao [118] which generalizes the results of [123, 112], an action of Wr1,r2,r3

on the equivariant cohomology of the moduli space of spiked instantons

was constructed. They also conjecture the action of some vertex algebra for

any toric Calabi-Yau threefold and there should be a gluing construction of

YL,M,N -algebras that realizes these vertex algebras.

Reconstruction of W-algebras: general case. It would be very interest-

ing to reconstruct all simple algebras Wψ(n,m) appearing in Corollary 6.5

as extensions of type A principal W-algebras times affine vertex algebras.

In the first case, Wr(sls) is lisse and rational as long as m+ s and m+n+ s

are coprime, and the reconstruction problem can be approached using the

theory of vertex algebra extensions [47, 48] once one understands fusion cat-

egories of type A well enough. Note that the level of the affine subalgebra

of Wψ(n,m) is admissible if n is coprime to m + s. It is not apparent that

the simple affine vertex algebra Lψ−m−1(glm) embeds in Wψ(n,m) at these

levels, but we expect this to be the case. Reconstructing Wψ(n,m) as an

extension of Lψ−m−1(glm)⊗Wr(sls), would prove this conjecture.

Recall next that a level k of sln is called boundary admissible if k =

−n + n
r for some positive integer r coprime with n. This case is special in

the sense that the simple vertex algebra is the only simple ordinary module

at this level [14]. In the second case of Corollary 6.5, note that the level

k = ψ − n −m of Wψ(n,m) is boundary admissible for sln+m when s and
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m are coprime. In the third case, the affine subalgebra of Wψ(n,m) has
boundary admissible level if n− s is coprime to m.

Vertex algebras can be associated to certain supersymmetric quantum
field theories called Argyres-Douglas theories. These are labelled by pairs of
Dynkin diagrams and the associated vertex algebra seems to usually be an
extension of a W-algebra at boundary admissible level associated to the Lie
algebras with corresponding Dynkin diagrams; see e.g. [35, 38, 127]. Not all
cases are understood yet in this context, but known ones of type A seem to
be covered by the second case of Corollary 6.5.

Another interesting series of cases are the conformal embeddings, which
is an area of active recent study [7, 3, 4, 5, 6]. We have an embedding
Ṽ ψ−m−1(glm) ↪→ Wψ(n,m) for some homomorphic image Ṽ ψ−m−1(glm) of
V ψ−m−1(glm). We call this a conformal embedding if Ṽ ψ−m−1(glm) and
Wψ(n,m) have the same Virasoro element; equivalently,

Com(Ṽ ψ−m−1(glm),Wψ(n,m)) = C.

Conformal embeddings occur for the following three values of ψ as long as
they are defined:

m+ n− 1

n− 1
,

m+ n

n+ 1
,

m+ n+ 1

n
.

Besides being interesting in their own right, conformal embeddings in the
case of minimal W-algebras are useful to prove semisimplicity of ordinary
modules of affine vertex algebras at special non-admissible levels [4], and
to establish vertex tensor category structure on this category of ordinary
modules [55].

Triality from kernel vertex algebras. Here we give a new perspective
on trialities. It is based on constructing a larger vertex algebra in which
both Wψ−1

(n − m,m) and Vψ′
(m,n) can be realized as cosets by certain

affine vertex subalgebras. Davide Gaiotto and one of us studied vertex al-
gebras in the context of S-duality in [40]. The set-up is again GL-twisted
N = 4 supersymmetric gauge theory, and vertex algebras are associated
to two-dimensional intersections of three-dimensional topological boundary
conditions. Categories of vertex algebra modules arise as categories of line
defects ending on these boundary conditions, and physics predicts that many
interesting vertex algebras can be realized by gluing affine vertex algebras
and W-algebras; see [41, Section 1.1] for a list of such predictions. The most
important vertex algebra is the one that arises between Dirichlet boundary
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conditions and its S-duality image. This is actually a vertex superalgebra
and it is called the quantum geometric Langlands kernel vertex algebra in
[40]. If the gauge group is SU(2), then this kernel algebra is L1(d(2, 1;−λ))
and the gauge coupling ψ is ψ = λ + 1. The generalization to gauge group
SU(N) is supposed to be

A[slN , ψ] :=
⊕
λ∈P+

V k(λ)⊗ V �(λ)⊗ V√
NZ+ s(λ)√

N

with ψ = k + N,ψ′ = � + N and 1
ψ + 1

ψ′ = 1. The map s : P+ → Z/NZ

is defined by s(λ) = t if λ = ωt mod Q, where ωt is the t-th fundamental
weight of slN and we identify ω0 with 0. The V k(λ) are generalized Verma
modules at level k whose top level is the integrable slN -module ρλ of highest-
weight λ. Conjecturally, A[slN , ψ] can be given the structure of a simple
vertex superalgebra for generic ψ. We also would like to include the case
N = 1 and so define A[sl1, ψ] := VZ to be just a pair of free fermions,
i.e. the integer lattice vertex algebra. Let f be a nilpotent element with
corresponding complex Cf , i.e. the homology Hf (V

k(g) ⊗ Cf ) is the W-
algebra Wk(g, f). We then denote the Wk(g, f)-module Hf (M⊗Cf ) simply
by Hf (M) for M a V k(g)-module. One then sets

A[slN , f, ψ] :=
⊕
λ∈P+

V k(λ)⊗Hf (V
�(λ))⊗ V√

NZ+ s(λ)√
N

and conjectures that this can be given the structure of a simple vertex super-
algebra. Note that for f the principal nilpotent, this is just A[slN , f, ψ] ∼=
V k−1(slN ) ⊗ F(2N) by the coset construction of principal W-algebras of
[18]. Here F(2N) is the vertex superalgebra of 2N free fermions.

Set N = n+m and consider the nilpotent element f = fn,m correspond-
ing to the partition N = n+ 1 + · · ·+ 1 so that W�(slN , f) = W�+N (n,m)
is a hook-type W-algebra with V �+n−1(glm) as subalgebra. The top level
corresponding to the standard representation of slN in A[slN , f, ψ] has con-
formal weight N

2 − n−1
2 = m+1

2 and it is expected to be odd. We want to
take a coset that contains these elements. For this let J be as in Lemma
3.6 and let γ be the generator of

√
NZ = γZ, i.e. γ2 = N . Denote the

corresponding Heisenberg field by γ as well and set H = J − γ and H the
Heisenberg vertex algebra generated by H. This ensures that the commu-
tant with V �+n−1(slm) ⊗ H contains the fields of conformal weight m+1

2 in
the standard representation of slN , and its conjugate. The conjecture moti-
vated from and generalizing [40, 79] is that these fields actually generate a
W-superalgebra of type slm|N .
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Conjecture 1.1. For generic k and any nilpotent element f , the object
A[slN , f, ψ] can be given the structure of a simple vertex superalgebra, such
that the top level of V k(λ)⊗Hf (V

�(λ))⊗V√
NZ+ s(λ)√

N

is odd for λ = ω1, ωN−1.

Theorem 1.2. (Theorem 10.1) For generic k, if Conjecture 1.1 is true for
f = fn,m, then

Com
(
V �+n−1(slm)⊗H, A[slN , fn,m, ψ]

)
∼= W−k−m+1(slm|N , fm|N ).

Note that W−k−m+1(slm|N , fm|N ) = V1−ψ(m,n + m). It is immediate
that

Com
(
V k(slN )⊗H, A[slN , fn,m, ψ]

)
∼= W�(slN , fn,m) = Wψ′

(n,m).

Therefore Theorem 1.2 gives a duality between the W-algebras V1−ψ(m,n+
m) and Wψ′

(n,m); both can be obtained as affine cosets of A[slN , fn,m, ψ].
Note that the coset realization of all W-algebras Wψ(n,m) and Vψ(n,m)
given by Theorem 1.2 vastly generalizes the coset realization of Wψ(n, 0) ∼=
Wψ−n(sln) from [18]. Theorem 1.2 follows from a character statement that
we prove in Appendix A, namely

Theorem 1.3. Graded characters agree,

ch
[
Com

(
V �+n−1(slm)⊗H, A[slN , fn,m, k]

)]
=ch

[
W−k−m+1(slm|N , fm|N )

]
.

The idea of proof is inspired from the proof of [39, Thm. 3.3]. While the
characters of Wψ(n,m) and Vψ(n,m) do not have any good automorphic
properties, it turns out that the character of A[slN , f, ψ] is the expansion of
a meromorphic Jacobi form in a certain domain. The decomposition prob-
lem of meromorphic Jacobi forms is an interesting problem in its own right,
and depending on the index either mock modular forms (positive index)
[56] or false theta functions (negative index) [30] appear in the decompo-
sition. The literature is mostly concerned with Jacobi forms in one vari-
able, while we are effectively interested in m-variable meromorphic Jacobi
forms. Our decomposition problem is a priori very difficult, but becomes
feasible using representation theory of Lie superalgebras. As in [30] we can
use denominator identities of affine Lie superalgebras [91] to approach this
problem. We are however not only interested in Fourier coefficients of mero-
morphic Jacobi forms, but actually into their decomposition into characters
of highest-weight modules of ŝlm. This turns out to be doable using denom-
inator identities of finite Lie superalgebras.
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Relative semi-infinite Lie algebra cohomology acts on modules M of an
affine vertex algebra at level −2h∨ [72, 13], and we use Section 2.5 of [39] as
background. Most importantly, it satisfies

Hrel,0
∞ (g, V k(λ)⊗ V −2h∨−k(μ)) =

{
C if μ = −ω0(λ)

0 otherwise.

Here ω0 is the unique Weyl group element that interchanges the fundamental
Weyl chamber with its negative. We consider Wψ(n−m,m)⊗A[slm, 1−ψ]⊗
πk−� where πk−� is a rank one Heisenberg vertex algebra. This ensures that
if we take the appropriate relative semi-infinite Lie algebra cohomology, we
obtain a vertex algebra that has odd generators of conformal weight n+1

2 ;
see Section 10 for details. We believe that the following is true:

Conjecture 1.2. Hrel,0
∞ (slm,Wψ(n−m,m)⊗A[slm, 1−ψ]⊗πk−�) is a simple

vertex superalgebra.

We can show that

Theorem 1.4. (Theorem 10.2) Let k be generic and assume that Conjecture

1.2 is true. Then Vψ−1

(n,m) ∼= Hrel,0
∞ (slm,Wψ(n−m,m)⊗A[slm, 1− ψ]⊗

πk−�).

Conjecture 1.2 was proven for m = 1 in [43], and was used to prove
block-wise equivalences of categories of modules between Wψ(n− 1, 1) and
Vψ−1

(n, 1), as well as isomorphisms of superspaces of intertwining opera-
tors. It should also allow to investigate correspondences between correlation
function and spaces of conformal blocks at arbitrary genus. We therefore
consider Conjectures 1.1 and 1.2 to be an important problem. Our ideas
are: Conjecture 1.1 might be provable using the Kazhdan-Lusztig equiva-
lence of ordinary modules of an affine vertex algebra at generic level and
corresponding quantum group modules [94, 95, 96, 97] together with the
theory of gluing vertex algebras [48]. Conjecture 1.2 might follow from [13,
Thm. 3.1], but for this one first needs to be able to determine the associated
varieties of the kernel vertex algebras A[slm, ψ]. This is interesting in its own
right.

Gluing Y -algebras and equivalences of representation categories.
The first part of Conjecture 1.1 is the existence of a simple vertex super-
algebra that extends the tensor product of an affine vertex algebra and a
W-algebra. It is a general theorem that extensions of such a type are possible
if and only if there is a braid-reversed equivalence of vertex tensor categories
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along which one glues [48]. The crucial assumption of [48] is the existence of
vertex tensor category structure, which in general is very hard to prove. Let
us consider Dψ(n,m) ∼= Dφ(m,n) where φ−1+ψ−1 = 1 and we take ψ to be
generic so that the categories KLk(slm) and KL�(sln) of ordinary modules
of slm and sln at levels k = ψ − m + 1 and � = φ − n + 1 are semisimple.
By our isomorphisms, Dψ(n,m) is a coset subalgebra of both Vψ(n,m) and
Vφ(m,n). This means we have decompositions

Vψ(n,m) ∼=
⊕

λ∈P+(slm)

V k(λ)⊗Bψ
λ (n,m)

Vφ(m,n) ∼=
⊕

λ∈P+(sln)

V �(λ)⊗ Cφ
λ (m,n).

(1.4)

Here P+(g) denotes the set of dominant weights of g, andBψ
λ (n,m), Cφ

λ (m,n)
are certain modules for Dψ(n,m) (times a Heisenberg vertex algebra if
n �= m).

Conjecture 1.3. Let m,n ≥ 2 and ψ be generic. Let k = ψ −m + 1 and
� = φ−n+1. Then Dψ(n,m)⊗H for H a rank one Heisenberg algebra has
a vertex tensor category of modules that is braid reversed equivalent to the
Deligne product of KLk(slm) and KL�(sln).

For n = 0, 1 one sets KL�(sln) to be trivial. Note that conjectures of this
type for principal W-algebras have been made in the context of quantum
geometric Langlands [23, Conj. 6.4] and proven for n = 2 [45, Prop. 5.5.2].
The difficult part of this conjecture is to establish the existence of rigid
vertex tensor category structure which has been done for the Virasoro case
in [45]. As an example, consider the tensor product of Dψ(n,m), Dψ′

(n′,m)
(and possibly a Heisenberg vertex algebra), assume that above conjecture
holds in such a way that there is a braid-reversed equivalence τ between the
categories of type slm. They thus allow for an extension to a simple vertex
algebra of the form [48]⊕

λ∈P+(slm)

Bψ
λ (n,m)⊗ τ

(
Bψ

λ (n,m)
)∗

.

Physics conjectures that these types of extensions exist and are isomorphic to
other W-algebras; see [116]. These gluing conjectures are tightly connected
to certain magical properties of the quantum Hamiltonian reduction functor,
e.g. if one of the factors is a prinicipal W-algebra (n′ = 0) and ψ′ = 1−ψ−1,
then such a gluing statement follows for n ≤ m from [18] together with the
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reduction functor commuting with tensoring with integrable representations

[19].

As mentioned before, the YL,M,N -algebras are conjecturally isomorphic

to the WL,M,N -algebras of [28], and the latter act on the moduli space of

spiked instantons of certain toric Calabi-Yau threefolds [118]. The toric dia-

gram of these examples has three two-dimensional faces and each face is la-

belled by non-negative integers L,M,N that indicate an action of the gauge

groups U(L), U(M), U(N). In our case one of these labels is zero and our

conjecture says that the corresponding Y0,M,N -algebra has categories of type

KLk(slM ) and KL�(slN ) for some k, �. The extension of a tensor product

of two Y -algebras along a common KLk(slM ) should geometrically corre-

spond to a toric Calabi-Yau threefold whose toric diagram has four faces,

and then iterating this procedure should correspond to diagrams with even

more faces. Moreover, the resulting vertex algebras should still be cosets

of W-superalgebras of type A. This picture is currently a conjecture from

physics considerations [116]. Our results allow one to prove similar results

as our Theorem 1.3, i.e. show that extensions of certain tensor products of

Y -algebras to simple vertex algebras exist and their characters coincide with

the characters of the expected cosets of W-superalgebras. We will report on

this elsewhere.

2. Vertex algebras

We briefly define vertex algebras, which have been discussed from several

points of view in the literature (see for example [29, 75, 74, 87, 70]). We will

follow the formalism developed in [104] and partly in [102]. Let V = V0⊕V1

be a super vector space over C, z, w be formal variables, and QO(V ) be the

space of linear maps

V → V ((z)) = {
∑
n∈Z

v(n)z−n−1|v(n) ∈ V, v(n) = 0 for n >> 0}.

Each element a ∈ QO(V ) can be represented as a power series

a = a(z) =
∑
n∈Z

a(n)z−n−1 ∈ End(V )[[z, z−1]].

We assume that a = a0 + a1 where ai : Vj → Vi+j((z)) for i, j ∈ Z/2Z, and

we write |ai| = i.
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For each n ∈ Z, we have a bilinear operation on QO(V ), defined on

homogeneous elements a and b by

a(w)(n)b(w) = Resza(z)b(w) ι|z|>|w|(z − w)n

− (−1)|a||b|Reszb(w)a(z) ι|w|>|z|(z − w)n.

Here ι|z|>|w|f(z, w) ∈ C[[z, z−1, w, w−1]] denotes the power series expansion

of a rational function f in the region |z| > |w|. For a, b ∈ QO(V ), we have the

following identity of power series known as the operator product expansion

(OPE) formula.

(2.1) a(z)b(w) =
∑
n≥0

a(w)(n)b(w) (z − w)−n−1+ : a(z)b(w) : .

Here : a(z)b(w) : = a(z)−b(w) + (−1)|a||b|b(w)a(z)+, where a(z)− =∑
n<0 a(n)z

−n−1 and a(z)+ =
∑

n≥0 a(n)z
−n−1. Often, (2.1) is written as

a(z)b(w) ∼
∑
n≥0

a(w)(n)b(w) (z − w)−n−1,

where ∼ means equal modulo the term : a(z)b(w) :, which is regular at

z = w.

Note that : a(w)b(w) : is a well-defined element of QO(V ). It is called

the Wick product or normally ordered product of a and b, and it coincides

with a(−1)b. For n ≥ 1 we have

n! a(z)(−n−1)b(z) = : (∂na(z))b(z) :, ∂ =
d

dz
.

For a1(z), . . . , ak(z) ∈ QO(V ), the k-fold iterated Wick product is defined

inductively by

(2.2) : a1(z)a2(z) · · · ak(z) : = : a1(z)b(z) :, b(z) = : a2(z) · · · ak(z) : .

We often omit the formal variable z when no confusion can arise.

A subspace A ⊆ QO(V ) containing 1 which is closed under all the above

products is called a quantum operator algebra (QOA). We say that a, b ∈
QO(V ) are local if

(z − w)N [a(z), b(w)] = 0
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for some N ≥ 0. A vertex algebra is a QOA whose elements are pairwise
local. This is well known to be equivalent to the notion of a vertex algebra
in the sense of [75].

A vertex algebra A is generated by a subset S = {αi| i ∈ I} if A is
spanned by words in the letters αi, and all products, for i ∈ I and n ∈ Z.
We say that S strongly generates A if A is spanned by words in the letters
αi, and all products for n < 0. Equivalently, A is spanned by

{: ∂k1αi1 · · · ∂kmαim : | i1, . . . , im ∈ I, k1, . . . , km ≥ 0}.

Suppose that S is an ordered strong generating set {α1, α2, . . . } for A which
is at most countable. We say that S freely generates A, if A has a Poincaré-
Birkhoff-Witt basis

: ∂k1
1αi1 · · · ∂k1

r1αi1∂k2
1αi2 · · · ∂k2

r2αi2 · · · ∂kn
1 αin · · · ∂kn

rnαin :,

1 ≤ i1 < · · · < in,

k11 ≥ k12 ≥ · · · ≥ k1r1 , k21 ≥ k22 ≥ · · · ≥ k2r2 , · · · , kn1 ≥ kn2 ≥ · · · ≥ knrn ,

kt1 > kt2 > · · · > ktrt if αit is odd.

(2.3)

We recall some important identities that hold in any vertex algebra A.
For fields a, b, c ∈ A, we have

(2.4) (∂a)(n)b = −nan−1, ∀n ∈ Z,

(2.5) a(n)b = (−1)|a||b|
∑
p∈Z

(−1)p+1(b(p)a)(n−p−1)1, ∀n ∈ Z,

: (: ab :)c : − : abc : =
∑
n≥0

1

(n+ 1)!

(
: (∂n+1a)(b(n)c) :

+ (−1)|a||b|(∂n+1b)(a(n)c) :
)
,

(2.6)

a(n)(: bc :)− : (a(n)b)c : −(−1)|a||b| : b(a(n)c) :

=

n∑
i=1

(
n

i

)
(a(n−i)b)(i−1)c, ∀n ≥ 0,

(2.7)

(2.8)

a(r)(b(s)c) = (−1)|a||b|b(s)(a(r)c) +
r∑

i=0

(
r

i

)
(a(i)b)(r+s−i)c, ∀r, s ≥ 0.
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The identities (2.8) are known as Jacobi identities of type (a, b, c), and
they play an important role in the proof of our main theorem.

2.1. Conformal structure

A conformal structure with central charge c on a vertex algebra A is a
Virasoro vector L(z) =

∑
n∈Z Lnz

−n−2 ∈ A satisfying

(2.9) L(z)L(w) ∼ c

2
(z − w)−4 + 2L(w)(z − w)−2 + ∂L(w)(z − w)−1,

such that L−1α = ∂α for all α ∈ A, and L0 acts diagonalizably on A.
We say that α has conformal weight d if L0(α) = dα, and we denote the
conformal weight d subspace by A[d]. In all our examples, this grading will
be by Z≥0 or 1

2Z≥0. We say A is of type W(d1, d2, . . . ), if it has a minimal
strong generating set consisting of one even field in each conformal weight
d1, d2, . . . .

2.2. Coset construction

Given a vertex algebra V and a subalgebra A ⊆ V, the coset or commutant
of A in V, denoted by Com(A,V), is the subalgebra of elements v ∈ V such
that

[a(z), v(w)] = 0, ∀a ∈ A.

This was introduced by Frenkel and Zhu in [76], generalizing earlier con-
structions in [83, 88]. Equivalently, v ∈ Com(A,V) if and only if a(n)v = 0

for all a ∈ A and n ≥ 0. Note that if V and A have Virasoro elements LV

and LA, Com(A,V) has Virasoro element L = LV −LA as long as LV �= LA.

2.3. Affine vertex algebras

Let g be a simple, finite-dimensional, Lie (super)algebra with dual Coxeter
number h∨, equipped with the standard supersymmetric invariant bilinear
form (−|−). The corresponding affine Lie algebra ĝ = g ⊗C C[t, t−1] ⊕ CK
has bracket

(2.10) [ξ ⊗ tn, η ⊗ tm] = [ξ, η]⊗ tn+m + nδn+m,0(ξ|η)K,

and K is central. The universal affine vertex (super)algebra V k(g) is isomor-
phic to the vacuum ĝ-module. It is freely generated by fields Xξ as ξ runs
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over a basis of g, which satisfy

Xξ(z)Xη(w) ∼ k(ξ|η)(z − w)−2 +X [ξ,η](w)(z − w)−1.

We may choose dual bases {ξ} and {ξ′} of g, satisfying (ξ′|η) = δξ,η. If
k + h∨ �= 0, there is a Virasoro element

(2.11) Lg =
1

2(k + h∨)

∑
ξ

: XξXξ′ :

of central charge c = k·sdim(g)
k+h∨ . This is known as the Sugawara conformal

vector, and each Xξ is primary of weight one. We denote by Lk(g) the
simple quotient of V k(g) by its maximal proper ideal graded by conformal
weight.

2.4. Free field algebras

Definition 2.1. A free field algebra is a vertex superalgebra V with weight
grading

V =
⊕

d∈ 1

2
Z≥0

V[d], V[0] ∼= C,

with strong generators {Xi| i ∈ I} satisfying OPE relations

X i(z)Xj(w) ∼ ai,j(z − w)−wt(Xi)−wt(Xj),

ai,j ∈ C, ai,j = 0 if wt(X i) + wt(Xj) /∈ Z.
(2.12)

Note that we do not assume that V has a conformal structure. We next
introduce four families of standard free field algebras. They are either of
symplectic or orthogonal type, and the generators are either even or odd.

Even algebras of orthogonal type. For each n ≥ 1 and even k ≥ 2, we define
Oev(n, k) to be the vertex algebra with even generating fields a1, . . . , an of
weight k

2 , which satisfy

ai(z)aj(w) ∼ δi,j(z − w)−k.

In the case k = 2,Oev(n, k) just the rank n Heisenberg algebraH(n). If we let
α1, . . . , αn denote the standard generators for H(n) satisfying αi(z)αj(w) ∼
δi,j(z − w)−2, then Oev(n, k) can be realized inside H(n) by setting

ai =
ε√

(k − 1)!
∂k/2−1αi, i = 1, . . . , n,
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where ε =
√
−1 if 4|k, and otherwise ε = 1. Note that H(n) has Virasoro

element LH = 1
2

∑n
i=1 : α

iαi : of central charge n, under which αi is primary

of weight one, but Oev(n, k) has no conformal vector for k > 2. However,

for all k it is a simple vertex algebra and has full automorphism group the

orthogonal group On.

Even algebras of symplectic type. For each n ≥ 1 and odd k ≥ 1, we define

Sev(n, k) to be the vertex algebra with even generators ai, bi for i = 1, . . . , n

of weight k
2 , which satisfy

ai(z)bj(w) ∼ δi,j(z − w)−k, bi(z)aj(w) ∼ −δi,j(z − w)−k,

ai(z)aj(w) ∼ 0, bi(z)bj(w) ∼ 0.
(2.13)

In the case k = 1, Sev(n, k) is just the rank n βγ-system. Let βi, γi, i =

1, . . . , n, be the standard generators of S(n), which satisfy

βi(z)γj(w) ∼ δi,j(z − w)−1, γi(z)βj(w) ∼ −δi,j(z − w)−1,

βi(z)βj(w) ∼ 0, γi(z)γj(w) ∼ 0.
(2.14)

Then Sev(n, k) can be realized as the subalgebra of S(n) with generators

ai =
ε√

(k − 1)!
∂(k−1)/2βi, bi =

ε√
(k − 1)!

∂(k−1)/2γi, i = 1, . . . , n,

with ε as above. We give S(n) the Virasoro element LS = 1
2

∑n
i=1

(
: βi∂γi :

− : ∂βiγi :
)
of central charge −n, under which βi, γi are primary of weight

1
2 . Note that Sev(n, k) has no conformal vector for k > 1, but for all k it is

simple and has full automorphism group the symplectic group Sp2n.

Remark 2.1. If we change the weight grading and pass to completions, there

can be additional automorphisms. For example, the algebra of chiral differ-

ential operators on the upper half plane Dch(H) is a completion of S(1).
There is an action of V −2(sl2) on S(1) given by

h �→ −2 : βγ :, x �→ −β, y �→ : βγγ : +2∂γ,

and there is a compatible action of SL2 on Dch(H) [57].

Odd algebras of symplectic type. For each n ≥ 1 and even k ≥ 2, we define

Sodd(n, k) to be the vertex superalgebra with odd generators ai, bi for i =
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1, . . . , n of weight k
2 , which satisfy

ai(z)bj(w) ∼ δi,j(z − w)−k, bj(z)ai(w) ∼ −δi,j(z − w)−k,

ai(z)aj(w) ∼ 0, bi(z)bj(w) ∼ 0.
(2.15)

In the case k = 2, Sodd(n, k) is just the rank n symplectic fermion algebra

A(n). Let ei, f i, i = 1, . . . , n be standard generators for A(n) satisfying

ei(z)f j(w) ∼ δi,j(z − w)−2, f j(z)ei(w) ∼ −δi,j(z − w)−2,

ei(z)ej(w) ∼ 0, f i(z)f j(w) ∼ 0.
(2.16)

Then Sodd(n, k) is realized as the subalgebra of A(n) with generators

ai =
ε√

(k − 1)!
∂k/2−1ei, bi =

ε√
(k − 1)!

∂k/2−1f i, i = 1, . . . , n.

As above, A(n) has Virasoro element LA = −
∑n

i=1 : e
if i : of central charge

−2n, under which ei, f i are primary of weight one, and Sodd(n, k) has no

conformal vector for k > 2. However, it is simple and has full automorphism

group Sp2n.

Odd algebras of orthogonal type. For each n ≥ 1 and odd k ≥ 1, we define

Oodd(n, k) to be the vertex superalgebra with odd generators ai for i =

1, . . . , n of weight k
2 , satisfying

(2.17) ai(z)aj(w) ∼ δi,j(z − w)−k.

For k = 1, Oodd(n, k) is just the free fermion algebra F(n). Let φi, i =

1, . . . , n be standard generators for F(n), satisfying

(2.18) φi(z)φj(w) ∼ δi,j(z − w)−1.

Then Oodd(n, k) is realized as the subalgebra of F(n) with generators

ai =
ε√

(k − 1)!
∂(k−1)/2φi, i = 1, . . . , n.

Then F(n) has Virasoro element LF = −1
2

∑n
i=1 : φi∂φi : of central charge

n
2 , under which φi is primary of weight 1

2 , but Oodd(n, k) has no conformal

vector for k > 1. However, it is simple and has full automorphism group On.
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For later use, we mention that the bc-system E(n) of rank n is isomorphic
to F(2n); it has odd generators bi, ci, i = 1, . . . , n and OPEs

bi(z)cj(w) ∼ δi,j(z − w)−1, ci(z)bj(w) ∼ δi,j(z − w)−1,

bi(z)bj(w) ∼ 0, ci(z)cj(w) ∼ 0.
(2.19)

A particularly important class of free field algebras is those which de-
compose as a finite tensor product of standard ones of the above four types.
As we shall see in the next section, affine W-algebras admit a suitable limit
which is a free field algebra of this form. This feature provides a power-
ful tool for analyzing the structure of orbifolds of W-algebras and cosets of
W-algebras by affine subalgebras.

2.5. Vertex algebras over commutative rings

Let R be a finitely generated commutative C-algebra. A vertex algebra over
R is an R-module A with a vertex algebra structure which is defined as
above. The theory of vertex algebras over general commutative rings was
developed by Mason [111], but the main difficulties are not present when R
is a C-algebra. We will use the notation and setup of Section 3 of [110].

Let V be a vertex algebra over R with conformal weight grading

V =
⊕

d∈ 1

2
Z≥0

V[d], V[0] ∼= R.

Here 1
2Z≥0 is regarded as a subsemigroup of R. A vertex algebra ideal I ⊆ V

is called graded if

I =
⊕

d∈ 1

2
Z≥0

I[d], I[d] = I ∩ V[d].

We say that V is simple if there are no proper graded ideals I such that
I[0] = {0}. If I ⊆ R is an ideal, we may regard I as a subset of V[0] ∼= R.
Let I · V denote the set of I-linear combinations of elements of V, which is
just the vertex algebra ideal generated by I. Then

VI = V/(I · V)

is a vertex algebra over the ring R/I. Even if V is simple as a vertex algebra
over R, VI need not be simple as a vertex algebra over R/I.
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If V =
⊕

d∈ 1

2
Z≥0

V[d], as above, each V[d] has a bilinear form

(2.20) 〈, 〉d : V[d]⊗R V[d] → R, 〈u, v〉d = u(2d−1)v.

We declare 〈V[d],V[e]〉 = 0 if d �= e, and we extend 〈, 〉 linearly to all of V.
A vector v in the radical of the Shapovalov form 〈, 〉 is called a singular

vector. Suppose now that each weight space V[d] is a free R-module of finite
rank. We then define the level d Shapovalov determinant detd ∈ R to be
the determinant of the matrix of 〈, 〉d. The following lemma is known in the
case of Z≥0-gradings [93, Prop. 2.2], and the proof for 1

2Z≥0-gradings is the
same.

Lemma 2.1. Let V be a 1
2Z≥0-graded vertex algebra over R where V[0] ∼=

R and each V[d] is a free R-module of finite rank. We also assume that
L1V[1] = 0. Then a homogeneous vector of weight d > 0 is in the radical of
the Shapovalov form if and only if it is contained in a proper ideal of V.

Under the above hypotheses, if R is in addition a unique factorization
ring, each irreducible factor a of detd give rise to a prime ideal (a) ⊆ R.
Clearly if a|detd, then a|dete for all e > d. The set of distinct prime ideals
of the form I = (a) ⊆ R such that a is a divisor of detd for some d, are
precisely the prime ideals for which VI is not simple as a vertex algebra over
R/I.

3. W-algebras

We use a mix of [90, 61] as reference. Let g be a simple Lie superalgebra
with nondegenerate invariant supersymmetric bilinear form

(3.1) ( | ) : g× g → C.

Let {qα}α∈S be a basis of g indexed by the set S and homogeneous with
respect to the grading by parity. We then define the corresponding structure
constants and parity by

[qα, qβ] =
∑
γ∈S

fαβ
γq

γ and |α| =
{
0 qα even

1 qα odd
.

The affine vertex algebra of g associated to the bilinear form ( | ) at level
k in C is strongly generated by {Xα}α∈S with operator products

Xα(z)Xβ(w) ∼ k(qα|qβ)
(z − w)2

+

∑
γ∈S fαβ

γX
γ(w)

(z − w)
.
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Also, we define Xα to be the field corresponding to qα where {qα}α∈S is the
basis of g dual with respect to ( | ).

Let f be a nilpotent element in the even part of g. By the Jacobson-
Morozov theorem, f can be completed to an sl2 triple {f, x, e} ⊆ g sat-
isfying the standard relations [x, e] = e, [x, f ] = −f, [e, f ] = 2x. The W-
superalgebra Wk(g, f) we are going to define depends only on the conjugacy
class of f and not on this choice of embedding of sl2.

Then g decomposes as an sl2-module as follows.

g =
⊕
k∈ 1

2
Z

gk, gk = {a ∈ g|[x, a] = ka}.

Let Sk be a basis of gk and extend to the corresponding basis of g, i.e. set
S =
⋃

k Sk. Let us also set

g+ =
⊕

k∈ 1

2
Z>0

gk, g− =
⊕

k∈ 1

2
Z<0

gk

with corresponding bases S+ of g+ and g− is naturally identified with the
dual of g+. On g 1

2
one defines the invariant bilinear form

〈a, b〉 := (f |[a, b]).

Let F (g+) be the vertex superalgebra associated to the vector superspace
g+ ⊕ g∗+. It is strongly generated by fields {ϕα, ϕ

α}α∈S+
, where ϕα and ϕα

are odd if α is even and even if α is odd. The operator products are

ϕα(z)ϕ
β(w) ∼ δα,β

(z − w)
, ϕα(z)ϕβ(w) ∼ 0 ∼ ϕα(z)ϕβ(w).

Let F (g 1

2
) be the neutral vertex superalgebra associated to g 1

2
with bilinear

form 〈 , 〉. This has strong generators {Φα}α∈S 1
2

with Φα even if α is even

and odd if α is odd. The operator products are

(3.2) Φα(z)Φβ(w) ∼
〈qα, qβ〉
(z − w)

∼ (f |[qα, qβ])
(z − w)

,

and fields corresponding to the dual basis with respect to 〈 , 〉 are denoted
by Φα. The complex is

C(g, f, k) := V k(g)⊗ F (g+)⊗ F (g 1

2
).
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One defines a Z-grading by giving the ϕα charge minus one, the ϕα charge

one and all others charge zero. One further defines the odd field d(z) of

charge minus one by

d(z) =
∑
α∈S+

(−1)|α| : Xαϕα : −1

2

∑
α,β,γ∈S+

(−1)|α||γ|fαβ
γ : ϕγϕ

αϕβ : +

∑
α∈S+

(f |qα)ϕα +
∑
α∈S 1

2

: ϕαΦα : .
(3.3)

The zero mode d0 is a differential since [d(z), d(w)] = 0 by [89, Thm. 2.1].

Set mα = j if α ∈ Sj . The W-algebra is defined to be its homology

Wk(g, f) := H (C(g, f, k), d0) .

The relevant Virasoro fields are

Lsug =
1

2(k + h∨)

∑
α∈S

(−1)|α| : XαX
α :,

Lch =
∑
α∈S+

(−mα : ϕα∂ϕα : +(1−mα) : (∂ϕ
α)ϕα :) ,

Lne =
1

2

∑
α∈S 1

2

: (∂Φα)Φα :,

L = Lsug + ∂x+ Lch + Lne.

(3.4)

L is an element of Wk(g, f) and has central charge

(3.5)

c(g, f, k) =
k sdim g

k + h∨
−12k(x|x)−

∑
α∈S+

(−1)|α|(12m2
α−12mα+2)− 1

2
sdim g 1

2
.

Set

(3.6) Jα = Xα +
∑

β,γ∈S+

(−1)|γ|fαβ
γ : ϕγϕ

β : .

Their λ-bracket is [90, Eq. 2.5]

[Jα
λJ

β ] = fαβ
γJ

γ + λ

(
k(qα|qβ) + 1

2

(
κg(q

α, qβ)− κg0
(qα, qβ)

))
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with κg, κg0
the Killing forms, that is the supertrace of the adjoint repre-

sentations, of g, g0, respectively. The action of d0 is [90, Eq. 2.6]

d0(J
α) =

∑
β∈S+

([f, qα], qβ)ϕβ +
∑
β∈S+

γ∈S 1
2

(−1)|α|(|β|+1)fαβ
γϕ

βΦγ−

∑
β∈S+

γ∈S\S+

(−1)|β|(|α|+1)fαβ
γϕ

βJγ

+
∑
β∈S+

(
k(qα|qβ) + strg+

(
p+(ad(q

α))ad(qβ)
))

∂ϕβ,

(3.7)

with p+ the projection onto g+ and strg+
the supertrace on g+. Set

(3.8) Iα := Jα +
(−1)|α|

2

∑
β∈S 1

2

fβα
γΦ

βΦγ

for α ∈ g0. Denote by gf the centralizer of f in g, and set a := gf ∩g0. It is a
Lie subsuperalgebra of g. The next theorem tells us that Wk(g, f) contains
an affine vertex superalgebra of type a.

Theorem 3.1. [90, Thm 2.1]

1. d0(I
α) = 0 for qα ∈ a and

[IαλI
β ] = fαβ

γI
γ

+ λ

(
k(qα|qβ) + 1

2

(
κg(q

α, qβ)− κg0
(qα, qβ)− κ 1

2
(qα, qβ)

))
,

with κ 1

2
the supertrace of g0 on g 1

2
.

2.

[LλJ
α] = (∂+(1−j)λ)Jα+δj,0λ

2

(
1

2
strg+

(ad qα)− (k + h∨)(qα|x)
)
,

for α ∈ Sj, and the same formula holds for Iα if qα ∈ a.

The main structural theorem is

Theorem 3.2. [90, Thm 4.1]
Let g be a simple finite-dimensional Lie superalgebra with an invariant

bilinear form ( | ), and let x, f be a pair of even elements of g such that
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ad x is diagonalizable with eigenvalues in 1
2Z and [x, f ] = −f . Suppose that

all eigenvalues of ad x on gf are non-positive:

gf =
⊕
j≤0

g
f
j .

Then

1. For each qα ∈ g
f
−j, (j ≥ 0) there exists a d0-closed field Kα of con-

formal weight 1 + j (with respect to L) such that Kα − Jα is a lin-

ear combination of normal ordered products of the fields Jβ, where

β ∈ S−s, 0 ≤ s < j, the fields Φα, where α ∈ S 1

2
, and the derivatives

of these fields.

2. The homology classes of the fields Kα, where {qα}α∈Sf is a basis of gf

indexed by the set Sf and compatible with its 1
2Z-gradation, strongly

and freely generate the vertex algebra Wk(g, f).

3. H0(C(g, f, k), d0) = Wk(g, f) and Hj(C(g, f, k), d0) = 0 if j �= 0.

This theorem is proven by first observing that the complex splits into

the tensor product of two complexes denoted by C+ and C−, which each

are d0-invariant and vertex subsuperalgebras of C(g, f, k). It turns out that

the homology on C+ is one-dimensional and so one needs to compute the

homology on C−. This is done by introducing an ascending filtration and

computing the homology of the associated graded algebra of the complex

(whose differential is denoted by d1). This homology turns out to be

H0(gr C
−, d1) ∼= V (gf ), Hj(gr C

−, d1) = 0, j �= 0.

Charge considerations imply that the spectral sequence converges to this

homology. The proof has two useful corollaries. First, L0 and also the a-

action given by the zero modes of the Iα for qα ∈ a, are preserved by d1
and d0, so that Wk(g, f) ∼= V (gf ) as CL0 ⊕ a-modules. Second, Wk(g, f)

is a subalgebra of C(g, f, k) consisting of d0-closed elements of charge zero

in C−, see [90, Rem. 4.2] and also [59, Rem. 5.11]. This property is called

formality. We record these two statements:

Proposition 3.1. (Corollary of proof of [90, Thm. 4.1])

1. Wk(g, f) ∼= V (gf ) as CL0 ⊕ a-modules.

2. Wk(g, f) is a subalgebra of C(g, f, k) consisting of d0-closed elements

of charge zero in C−.
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3.1. Quasi-classical limits and Poisson W-algebras

Definition 3.1. [59, Def. 6.7] Let Vε be a vertex superalgebra over C[ε]. Vε

is a family of Lie conformal superalgebras if

[XλY ] ∈ C[λ]⊗ ε C[ε] Vε

for all X,Y in Vε. Vε is said to be regular, if multiplication by ε has no kernel.

One can then take the limit ε → 0. This is called the classical limit
V cl of Vε, i.e. V

cl = Vε/εVε. V
cl is a commutative vertex superalgebra that

inherits a Poisson bracket and thus a Poisson vertex superalgebra structure
by setting

[aλb] = ε{aλb}
and taking the image of {aλb} in V cl. Denote by B(a, b) ∈ C[λ] the constant
term of {aλb}.
Definition 3.2. Let Vε be a regular family of vertex superalgebras. Choose
σ such that σ2 = ε and assume that Vε is strongly finitely generated by fields
{Xα}α∈S for some finite index set S. Set X̃α = σ−1Xα and denote by Vσ

the vertex superalgebra generated by the {X̃α}α∈S . We call V free := Vσ/σVσ

the free field limit of the regular family V ε.

We will justify the name in a moment and also prove independence of the
choice of root of ε. For nonzero ε, this definition is nothing but a rescaling
of strong generators, and so

Vε/(ε− k) ∼= Vσ/(σ −
√
k), for k �= 0,

but

[X̃λỸ ] ∈ C[λ]⊗ C[σ]Vσ

is not necessarily commutative in the limit σ → 0.

Proposition 3.2. V free = Vσ/σVσ is a free field algebra strongly generated
by {X̃α}α∈S with λ-bracket

[X̃λỸ ] = B(X,Y ) ∈ C[λ].

Proof. [XλY ] is a normally ordered polynomial in the strong generators and
their iterated derivatives, so we can decompose it into the constant term bX,Y

(the multiplicity of the vacuum) and remainder RX,Y ,

[XλY ] = εbX,Y (λ, ε) + εRX,Y (λ, ε).
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It follows that

[X̃λỸ ] = bX,Y (λ, ε) +RX,Y (λ, ε),

and since Xα = σX̃α and RX,Y is a polynomial without constant term in

the Xα, it has the form σR̃X,Y for some polynomial R̃X,Y in {X̃α}α∈S and
σ. It follows that this term vanishes in the limit σ → 0, so Vσ/σVσ is a free
field algebra with pairing

span(Xα|α ∈ S)× span(Xα|α ∈ S) → C[λ],

(Xα, Xβ) �→ bXα,Xβ(λ, 0) = B(Xα, Xβ).

Corollary 3.1. V free = Vσ/σVσ is simple if and only if the pairing B re-
stricts to a nondegenerate pairing on the strong generators of the Poisson
vertex superalgebra V cl = Vε/εVε.

Example 3.1. [59, End of Section 6]

Let g be a Lie superalgebra, ( | ) : g × g → C an invariant supersym-
metric bilinear form, {qα}α∈S a basis of g and V �(g) be the corresponding
vertex superalgebra at level � with strong generators {Xα}α∈S , so that

[Xα
λX

β] = λ�(qα|qβ) + fαβ
γX

γ .

Fix a nonzero k in C and define the regular family V k
ε (g) by scaling the λ-

bracket by ε, i.e. it is the vertex superalgebra strongly generated by {Xα
ε }α∈S

with

[Xα
ε λX

β
ε ] = ε

(
λk(qα|qβ) + fαβ

γX
γ
ε

)
.

Set � = ε−1k and consider V �(g). Set Y α := εXα, so that

[Y α
λY

β] = [εXα
λεX

β] = ε2
(
λ�(qα|qβ) + fαβ

γX
γ
)

= ε
(
λk(qα|qβ) + fαβ

γY
γ
)
.

Hence V k
ε (g)/(ε− a) ∼= V a−1k(g) for a �= 0. Thus V k

ε (g)/ε defines a classical
limit (i.e. a k → ∞ limit) of V k(g). A different limit is obtained by setting
σ2 = ε and setting Zα = σ−1Y α = σXα, so that

[Zα
λZ

β ] = [σXα
λσX

β] = σ2
(
λ�(qα|qβ) + fαβ

γX
γ
)
= λk(qα|qβ)+fαβ

γσZ
γ .
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We see that with this scaling, the large level limit just gives us the free field
vertex superalgebra associated to the vector superspace g and the invariant
bilinear form k( | ), that is λ-bracket

[Zα
λZ

β] = λk(qα|qβ).

Similarly, let F be a free field vertex superalgebra, strongly generated by
fields {ϕα}α∈S for some finite index set S. Then one defines a corresponding
regular family Fε via the λ-bracket [ λ ]ε as follows:

[ϕα
λϕ

β ]ε = ε[ϕα
λϕ

β ].

For nonzero ε, this just amounts to a rescaling of fields by
√
ε, i.e. Fε/(ε−a) ∼=

F for a �= 0.

The following theorems are a detailed explanation of the last paragraph
of Section 6 of [59]

Theorem 3.3. Let g be a Lie superalgebra with invariant bilinear form
( | ) and k a nonzero complex number. Let f, x, e be an sl2-triple in g. Let
K = C[ε, ε−1] and fε = ε−1f, xε = x, eε = εe be an sl2-triple in g ⊗C K,
so that (C(g, ε−1f, ε−1k), d0) is a complex of vertex superalgebras over K.
Then there exists a regular family of complexes (Cε(g, f, k), d

ε
0) and a vertex

superalgebra isomorphism

Υ : Cε(g, f, k)⊗C[ε] C[ε, ε
−1]

∼=−→ C(g, ε−1f, ε−1k)

with Υ(dε0) = d0.

Proof. Fix now an sl2-triple f, x, e in g and consider the regular family of
vertex superalgebras

Cε(g, f, k) := V k
ε (g)⊗ Fε(g+)⊗ Fε(g 1

2
)

and compare it to the complex (C(g, ε−1f, ε−1k), d0), of vertex superal-
gebras over the ring K = C[ε, ε−1], associated to the deformed sl2-triple
fε = ε−1f, xε = x, eε = εe. Denote the strong generators of C(g, ε−1f, ε−1k)
by Xα, ϕα, ϕα,Φα as before. Note that the operator product of the charged
(super)fermions is independent of f , however the one of the neutral ones
depends on f , see (3.2), namely

Φα(z)Φβ(w) ∼
〈qα, qβ〉
(z − w)

∼ (f ε|[qα, qβ])
(z − w)

∼ ε−1(f |[qα, qβ])
(z − w)

.
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Denote the strong generators of the regular family Cε(g, f, k) by Xα
ε , ϕ

α
ε ,

ϕε
α, Φ

ε
α and define the map

Υ(Xα
ε ) = εXα, Υ(ϕα

ε ) = ϕα, Υ(ϕε
α) = εϕα, Υ(Φε

α) = εΦα.

(3.9)

Υ preserves the operator products and thus induces a homomorphism Υ :
Cε(g, f, k) → C(g, ε−1f, ε−1k). Since it maps strong free generators to strong
free generators it lifts after base change to an isomorphism

Υ : Cε(g, f, k)⊗C[ε] C[ε, ε
−1]

∼=−→ C(g, ε−1f, ε−1k)

of vertex superalgebras. Define dε by

εdε(z) =
∑
α∈S+

(−1)|α|Xα
ε ϕ

α
ε − 1

2

∑
α,β,γ∈S+

(−1)|α||γ|fαβ
γϕ

ε
γϕ

α
ε ϕ

β
ε

+
∑
α∈S+

(f |qα)ϕα
ε +

∑
α∈S 1

2

ϕα
ε Φ

ε
α

so that

εΥ(dε) =
∑
α∈S+

(−1)|α|εXαϕ
α − 1

2

∑
α,β,γ∈S+

(−1)|α||γ|fαβ
γεϕγϕ

αϕβ

+
∑
α∈S+

(f |qα)ϕα +
∑
α∈S 1

2

ϕαεΦε
α

= ε
(∑
α∈S+

(−1)|α|Xαϕ
α − 1

2

∑
α,β,γ∈S+

(−1)|α||γ|fαβ
γϕγϕ

αϕβ

+
∑
α∈S+

ε−1(f |qα)ϕα +
∑
α∈S 1

2

ϕαΦε
α

)
= ε
(∑
α∈S+

(−1)|α|Xαϕ
α − 1

2

∑
α,β,γ∈S+

(−1)|α||γ|fαβ
γϕγϕ

αϕβ

+
∑
α∈S+

(fε|qα)ϕα +
∑
α∈S 1

2

ϕαΦε
α

)
= εd.

Note that dε is not in Cε(g, f, k) but only in Cε(g, f, k)⊗C[ε] C[ε, ε
−1].
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Define

Wk
ε (g, f) = H(Cε(g, f, k), d

ε
0).

Theorem 3.4.

1. Wk
ε (g, f) is a regular family of vertex superalgebras.

2. Wk
ε (g, f) ⊗C[ε] C[ε, ε

−1] ∼= Wε−1k(g, ε−1f) as vertex superalgebras over

C[ε, ε−1].

Proof. This theorem follows by repeating the discussion of Section 4 of [90],

but for the complex (Cε(g, f, k), d
ε
0). We set

Jα
ε = Xα

ε +
∑

β,γ∈S+

(−1)|γ|fαβ
γ : ϕε

γϕ
β
ε :, for qα ∈ g,

Iαε = Jα
ε +

(−1)|α|

2

∑
β∈S 1

2

fβα
γ : Φβ

εΦ
ε
γ :, for qα ∈ g0.

(3.10)

It follows that Υ(Jα
ε ) = εJα and Υ(Iαε ) = εIα. Recall that Υ(Xα

ε ) =

εXα,Υ(ϕα
ε ) = ϕα,Υ(ϕε

α) = εϕα and Υ(Φε
α) = εΦα. From [90, Section 4]

one has that

d0(εϕα) =

{
εJα + (−1)|α|εΦα α ∈ S 1

2
,

εJα + ε(ε−1f |qα) = εJα + (f |qα) α ∈ S \ S 1

2
,

and hence using the isomorphism Υ

dε0(ϕα) =

{
Jα
ε + (−1)|α|Φε

α α ∈ S 1

2
,

Jα
ε + (f |qα) α ∈ S \ S 1

2
.

From [90, (2.6), (4.3), (4.4)]

d0(εJ
α) =

∑
β∈S+

ε([ε−1f, qα], qβ)ϕβ +
∑
β∈S+

γ∈S 1
2

(−1)|α|(|β|+1)fαβ
γϕ

βεΦγ

−
∑
β∈S+

γ∈S\S+

(−1)|β|(|α|+1)fαβ
γϕ

βεJγ

+
∑
β∈S+

ε
(
ε−1k(qα|qβ) + strg+

(
p+(ad(q

α))ad(qβ)
))

∂ϕβ ,
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d0(ϕ
α) = −1

2

∑
β,γ∈S+

(−1)|α||γ|fβγ
α : ϕβϕγ :,

d0(εΦα) =
∑
β∈S 1

2

ε(ε−1f |[qβ, qα])ϕβ =
∑
β∈S 1

2

(f |[qβ, qα])ϕβ ,

and hence using the isomorphism Υ,

dε0(J
α
ε ) =

∑
β∈S+

([f, qα], qβ)ϕβ
ε +

∑
β∈S+

γ∈S 1
2

(−1)|α|(|β|+1)fαβ
γϕ

β
εΦ

ε
γ

−
∑
β∈S+

γ∈S\S+

(−1)|β|(|α|+1)fαβ
γϕ

β
ε J

γ
ε

+
∑
β∈S+

(
k(qα|qβ) + ε strg+

(
p+(ad(q

α))ad(qβ)
))

∂ϕβ
ε ,

dε0(ϕ
α
ε ) = −1

2

∑
β,γ∈S+

(−1)|α||γ|fβγ
α : ϕβ

ε ϕ
γ
ε :,

dε0(Φ
ε
α) =

∑
β∈S 1

2

(f |[qβ, qα])ϕβ
ε .

Let C+
ε be the subalgebra generated by ϕε

α, d0(ϕ
ε
α) for α in S+ and C−

ε be

the one generated by Jα
ε for α ∈ S \S+, ϕ

α
ε for α in S+ and Φε

α for α in S 1

2
.

From [89, Lemma 2.1] it follows that

[d0(εϕα)λεϕβ] = ε(−1)|α|
∑
γ∈S+

fαβ
γεϕγ ,

and hence

[dε0(ϕ
ε
α)λϕ

ε
β] = ε(−1)|α|

∑
γ∈S+

fαβ
γϕ

ε
γ .

One thus has that Cε(g, f, k) ∼= C+
ε ⊗ C−

ε as dε0-invariant families of regu-

lar subalgebras. The homology of C+ is clearly one-dimensional and hence

Wk
ε (g, f) = H(C−

ε , dε0). Theorem 4.1 of [90] holds for Wk
ε (g, f) as the set-up

and hence the proof is exactly the same as for Wk(g, f). In particular, the

conclusion, Proposition 3.1, holds:

1. Wk
ε (g, f)

∼= Vε(g
f ) as CL0 ⊕ a-modules.
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2. Wk
ε (g, f) is a subalgebra of Cε(g, f, k) consisting of dε0-closed elements

of charge zero in C−
ε .

A subalgebra of a regular family is of course a regular family as well and
hence our first claim follows. The second one is true, since specialization
commutes with restriction to a subalgebra.

Corollary 3.2. Wk
ε (g, f)/(ε− a) ∼= Wa−1k(g, f) for a �= 0.

Proof. Specializing the last theorem givesWk
ε (g, f)/(ε−a) ∼= Wa−1k(g, a−1f).

Moreover Wk(g, f) ∼= Wk(g, ω(f)) for any even automorphism ω of g that
preserves the bilinear form. The claim follows with ω = ad(eμx) for a =
eμ.

Let Jf be an index set so that {qj}j∈Jf is a basis of gf and {qj}j∈Jf

is a basis if ge such that (qi|qj) = δi,j . The basis is chosen to consist of ad
x eigenvectors and the eigenvalue of qj is denoted by δ(j), that is [x, qj ] =
δ(j)qj and hence [x, qj ] = −δ(j)qj . One then sets

Jf
−k = {j ∈ Jf |δ(j) = k},

J−k = {(j, n) ∈ Jf × Z+| δ(j)− |k| ∈ Z+, k = δ(j)− n},

so that the sets

Sk := {qjn | (j, n) ∈ Jf
−k, qjn = (ad f)nqj , n = 0, . . . , 2δ(j)}

form a basis of gk. The dual basis Sk is denoted by {qnj }. Finally, for a in g,

a
 is its projection on gf , that is

a
 =
∑
j∈Jf

(a|qj)qj .

Definition 3.3. Define

Bk : gf−k × g
f
−k → C, Bk(a, b) := (−1)2k((ad f)2kb|a)

for every k ∈ 1
2Z+, and extend it linearly to B : gf × gf → C.

Since ( | ) is invariant and supersymmetric and since gf is a Lie subsu-
peralgebra of g it follows easily that B is invariant and Bk is supersymmetric
for k ∈ Z and antisupersymmetric for k ∈ Z+ 1

2 . Moreover if ( | ) is a non-
degenerate bilinear form on g, then each Bk and hence B is nondegenerate
as well since the dual of a lowest weight vector a of the 2k + 1-dimensional
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irreducible representation ρ2k of sl2 is necessarily a highest-weight vector of
ρ2k and (ad f)2k precisely maps such lowest weight vectors to highest-weight
ones.

As before, fix σ so that σ2 = ε, and let Wk
σ(g, f) denote the vertex

algebra with the same strong generators as Wk
ε (g, f), but rescaled by σ−1.

Let W free(g, f) := Wk
σ(g, f)/σWk

σ(g, f). The reason for this notation is that
if k is any fixed nonzero constant, W free(g, f) is independent of k due to
Corollary 3.2.

Theorem 3.5. Let g be a Lie superalgebra with invariant bilinear form
( | ), and let f ∈ g be a nilpotent element. Then W free(g, f) is a free field
algebra with strong generators Xα, α ∈ Jf and λ-brackets

[Xα
λX

β] = δj,kλ
2k+1Bk(q

α, qβ)

for qα ∈ g
f
−k and qβ ∈ g

f
−j.

Proof. There are two notions of Poisson W-superalgebras: the homological
construction that we presented here, and the so-called classical Hamiltonian
reduction; see e.g. [59]. These two coincide by [121] for g a Lie algebra,
and the general Lie superalgebra case is [122, Thm. 3.11]. The classical
Hamiltonian reduction approach is suited for explicit computations which
are presented in [61]. We need to explain [61, Thm. 5.3]. Let W(g, f) be
the Poisson vertex algebra of g associated to f . Then there is a one-to-one
map ω : V (gf ) → W(g, f) and the Poisson bracket is given explicitly in [61,
Thm. 5.3]. using this map. De Sole and Kac introduce the notation h ≺ k if
and only if h ≤ k− 1 and �k := (k1, . . . , kt), J−�k

is the set of elements of the

form (�j, �n) = (j1, n1) × · · · × (jt, nt) with (ji, ni) ∈ J−ki
. For a ∈ g

f
−h and

b ∈ g
f
−k, the λ-bracket is

{ω(a)λω(b)}z,ρ = ω([a, b]) + (a|b)λ+ z(s|[a, b])

−
∞∑
t=1

∑
(�j,�n)∈J−�k

−h+1≤kt≺···≺k1≤k

(
ω([b, qj1n1

]
)− (b|qj1n1
)(λ+ ∂) + z(s|[b, qj1n1

])
)

t−1∏
i=1

(
ω([qni+1

ji
, qji+1

ni+1
]
)− (qni+1

ji
|qji+1
ni+1

)(λ+ ∂) + z(s|[qni+1
ji

, qji+1
ni+1

])
)

(
ω([qnt+1

jt
, a]
)− (qnt+1

jt
|a)λ+ z(s|[qnt+1

jt
, a])
)
.

(3.11)
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Here z ∈ C and s ∈ g can be chosen arbitrarily as they give rise to iso-
morphic Poisson vertex algebra structures. This sum is actually finite, since
contributions for t > k + h are zero. We are interested in the leading coeffi-
cient, i.e. the one of λk+h+1. Let b = qj . Then this coefficient vanishes unless
we take the summand with ji = j, ni = i− 1 and ki = k + 1− i. It follows
that

{ω(a)λω(b)}z,ρ = δk,h(−1)2k(q2kj |a)λ2k+1 + . . .(3.12)

The claim follows using Proposition 3.2.

Corollary 3.3. Let g be a Lie superalgebra with invariant supersymmetric
bilinear form ( | ), and let f ∈ g be a nilpotent element. Then W free(g, f)
is simple if and only if ( | ) is nondegenerate.

Also note that if a is of conformal weight one, then [61, Eq. 6.2]

{ω(a)λω(b)}z,ρ = ω([a, b]) + (a|b)λ+ z(s|[a, b]).(3.13)

Corollary 3.4. Let g be a Lie superalgebra with invariant nondegenerate
bilinear form ( | ), and let f be a nilpotent element in g. Then W free(g, f)
decomposes as a tensor product of the standard free field algebras Sev(n, k),
Oev(n, k), Sodd(n, k), and Oodd(n, k) introduced earlier.

Proof. For each r, we partition Jf
−r into subsets Jf

−r,ev and Jf
−r,odd consisting

of elements which are even and odd, respectively.
Suppose r ∈ 1

2Z. Then in the σ → 0 limit, the even fields {Xα| α ∈
Jf
−r,ev} of weight r + 1 must have nondegenerate symplectic pairing given

by Theorem 3.5. Therefore the cardinality of Jf
−r,ev is an even integer 2pev,r,

and these fields generate a copy of the free field algebra Sev(pev,r, 2r+ 2) of

even symplectic type. Next, if r ∈ Z, then the fields {Xα| α ∈ Jf
−r,ev} in the

σ → 0 limit must give an even algebra of orthogonal type, Oev(qev,r, 2r+2)

where qev,r is the cardinality of Jf
−r,ev.

Similarly, suppose r ∈ 1
2Z, and consider the fields {Xα| α ∈ Jf

−r,odd} in
the σ → 0 limit. These fields then generate a copy of Oodd(sodd,r, 2r + 2),

where qodd,r is the cardinality of Jf
−r,odd. Suppose next that r ∈ Z, and

consider the fields {Xα| α ∈ Jf
−r,odd}. Then in the σ → 0 limit, these fields

generate a copy of Sodd(podd,r, 2r + 2). Here 2podd,r is the cardinality of

Jf
−r,odd.

Finally, the fact that in the σ → 0 limit these free field algebras are
mutually commuting follows from Theorem 3.5.
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3.2. Simplicity

Recall that by Corollary 3.2, W free(g, f) = Wk
σ(g, f)/σWk

σ(g, f) is indepen-
dent of k for all nonzero k, and additionally all algebras Wr(g, f) can be
obtained by specializing Wk

σ(g, f) to a suitable choice of σ. For convenience,
we may take k = 1.

Theorem 3.6. Let g be a Lie superalgebra with nondegenerate invariant
bilinear form ( | ), and let f be a nilpotent element in g. Then

1. Wk(g, f) is simple for generic k.
2. Let V �′(b) be the subalgebra of the affine subalgebra V �(a) ⊆ Wk(g, f),

where b is a reductive Lie subalgebra of a. Then Com(V �′(b),Wk(g, f))
is simple for generic values of k.

3. If g is a semisimple Lie algebra and ( | ) is the Killing form normalized
in the usual way, then Wk(g, f) is simple for all non-rational k.

Proof.

1. If W1
σ(g, f) is not simple as a vertex algebra over C[σ] (equivalently,

Wk(g, f) is not simple for generic values of k), there is a nontrivial
vertex algebra ideal I ⊆ W1

σ(g, f) which has minimal weight compo-
nent in some weight d > 0. Fix a nontrivial singular vector in weight
d. After suitable rescaling, this vector must remain nontrivial in the
σ → 0 limit and also must be a singular vector in the limit algebra
W free(g, f), since OPEs are continuous in the parameter σ. This con-
tradicts the simplicity of W free(g, f).

2. This is immediate from the generic simplicity of Wk(g, f) together
with [16, Lemma 2.1].

3. As explained around [13, Eq. 51] the equivariantW-algebra of g associ-
ated to f and κ, denoted by Wκ

G,f , is a strict chiralization of a smooth

symplectic variety and hence simple by [25, Cor. 9.3]. Wk(g, f) ∼=
Com(V −k−2h∨

(g),Wκ
G,f ) for k + h∨ = κ [13, Prop. 6.5] and Wκ

G,f is
an object in KL−k−2h∨(g) [13, Prop. 6.6]. Since for non-rational levels
KLk(g) is semisimple the claim follows from [42, Prop. 5.4].

3.3. Properties of strong generators

Let g be a simple Lie superalgebra. We recall the definition of the Kazhdan-
Lusztig category KLk(g); see e.g. [10].



Trialities of W-algebras 107

Definition 3.4. The category KLk = KLk(g) is the full subcategory of
ĝ-modules that satisfy the following properties.

1. The central element K ∈ ĝ acts by multiplication by the scalar k.
2. Any object M of KLk is graded by conformal weight with finite-

dimensional weight spaces

M =
⊕
n∈C

Mn, dim Mn < ∞,

such that conformal weight of any object is lower bounded, that is
Mn = 0 unless Re(n) > N for some bound N .

3. There exists a finite set of numbers h1, . . . , hs, such that Mn = 0 unless
n ∈ Z≥0 + hi for some i ∈ {1, . . . , s}.

A module in KLk is called almost simple if every submodule intersects the
top level non-trivially, and KLk is called almost semisimple if every inde-
composable module is almost simple.

Definition 3.5. Let a be a Lie superalgebra which is the sum of a reductive
Lie algebra and finitely many simple Lie superalgebras, such that the bilinear
form on each simple summand is normalized in the standard way. Let M be
an indecomposable module for the corresponding affine vertex superalgebra
V k(a), such that

M =
⊕

n∈Z++h

Mn

for some complex h and Mh nonzero. A vector in Mh is called an a-primary
vector and a vector in

⊕
n∈Z++h

Mn+1 is called an a-descendent. Fields cor-

responding to primary/descendant vectors are called primary/descendant
fields.

By an a-module we always mean a weight module, that is, the Cartan
subalgebra of a acts semisimply and weight spaces are finite-dimensional. For
example, if a is a simple Lie algebra, then modules are integrable highest-
weight modules. By a projective module, we mean a projective module in
the category of weight modules.

Lemma 3.1. Let

V =
⊕

n∈ 1

2
Z+

Vn, dim V0 = 1, V 1

2
= 0 and dim Vn < ∞
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be a vertex superalgebra graded by conformal weight. Let I1, . . . , Id be finite
sets, such that

d⋃
i=1

Si, Si = {Xj | j ∈ Ii, Xj ∈ Vi},

is a minimal strong generating set of V with S1 a basis of V1 generating an
affine vertex superalgebra V k(a), where a is as above. Suppose that KLk(a)
is almost semisimple, and suppose that each Vn is a projective a-module for
n > 1. Then there exists a minimal strong generating set

d⋃
i=1

S̃i, S̃i = {X̃j | j ∈ Ii, X̃j ∈ Vi},

such that S̃1 = S1, the fields X̃j in S̃i for i ≥ 2 are all a-primary fields, and
their linear span is a projective a-module.

Proof. We prove the statement by induction. Let n ≥ 1 and let

S≤n :=

n⋃
i=1

Si, Si = {Xj | j ∈ Ii, Xj ∈ Vi}.

Assume that the Xj in Si for 1 < i ≤ n can be changed to primary fields

X̃j , such that their span is a projective a-module. Then there exists a set

S̃≤n :=

n⋃
i=1

S̃i, S̃i = {X̃j | j ∈ Ii, X̃j ∈ Vi},

such that the subspace spanned by normally ordered words in iterated
derivatives of the elements in S≤n and S̃≤n coincide. Denote this subspace

by W . Since the Vn for n > 1 and also the X̃j form projective a-modules,
W is also an infinite direct sum of projective a-modules. Let Wm be the
subspace of W of elements of conformal weight m. Note that Wm = Vm

for m ≤ n. Wn+1 is a projective a-submodule of Vn+1 and hence a direct
summand

Vn+1 = Wn+1 ⊕ Un+1

for some projective a-module Un+1. Every element in Wn+1 is by construc-
tion an a-descendant and especially a normally ordered word in the iterated
derivatives of the elements of S≤n. It follows that none of theXj for j ∈ Sn+1
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is in Wn+1 and hence the projection of Xj onto Un+1 is nontrivial. Denote

this projection by X̃j . Since Wn+1 together with the Xj for j ∈ Sn+1 must

span Vn+1, the X̃j for j ∈ Sn+1 must span Un+1. They also must be linearly

independent since a linear relation
∑

ajX̃j = 0 implies that the correspond-
ing linear combination

∑
ajXj lies in W , which contradicts the minimal

generating assumption.
If Un+1 contains a vector v that is not a-primary, then x(1)v �= 0 for some

x ∈ a, in particular x(1)v ∈ Wn ⊆ W . Let M be the V k(a)-module generated

by v. This means that x(1)v must generate a proper V k(a)-submodule of M .
This cannot happen if KLk(a) is almost semisimple.

Remark 3.1.

1. Suppose that a is the sum of a reductive Lie algebra and finitely many
factors of the form osp1|2n, and that k is irrational. Then KLk(a) is

semisimple and each Vn is completely reducible as a V k(a)-module, so
the hypotheses of Lemma 3.1 are satisfied.

2. If a is the sum of a reductive Lie algebra and finitely many simple
Lie superalgebras whose even subalgebras are semisimple (and not of
type d(2, 1;α) and α irrational), and k is irrational, then KLk(a) is
almost semisimple and again the hypotheses are satisfied. The reason
for this is as follows. First, it suffices to assume that a is a simple Lie
superalgebra with semisimple even subalgebra, and a �= d(2, 1;α) with
α irrational. Let M be an indecomposable object in KLk(a). Then the
top level of M is finite-dimensional and thus must contain a highest-
weight vector for a of say highest-weight λ. The conformal weight of

the top level is λ(λ+2ρ)
2(k+h∨) . If M has a proper submodule, say N , then the

top level of N also must contain a highest-weight vector μ, and μ needs
to be in the same coset of the root lattice Q as λ, say μ = λ + β for
some β ∈ Q. On the other hand, the difference between the conformal
weight of the top level of M and N must be a (negative) integer n.
We thus get the condition

n =
λ(λ+ 2ρ)

2(k + h∨)
− μ(μ+ 2ρ)

2(k + h∨)
= −β(2λ+ β + 2ρ)

2(k + h∨)

that can only hold for rational k + h∨. Here we use that λβ ∈ Q for a
highest-weight λ of a finite dimensional highest-weight representation
of a. This last statement does not in general hold for a a simple Lie
superalgebra with only reductive even subalgebra, and it only holds
for d(2, 1;α) if α is rational.
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3. The condition that KLk(a) be almost semisimple in Lemma 3.1 can be

weakened to V being an object in a completion of an almost semisimple

subcategory of KLk(a).

Suppose next that V =
⊕

n∈ 1

2
Z+

Vn is a vertex superalgebra graded by

conformal weight, satisfying the same conditions as Lemma 3.1, except that

k is now regarded as a formal parameter. Assume that all structure constants

appearing in the OPEs of the strong generators
⋃d

i=1 Si for V are rational

functions of k. Since there are only finitely many structure constants, the set

D of possible poles of the structure constants is finite, and we can regard V

as a vertex superalgebra over the ring of rational functions in k with poles

along D.

Corollary 3.5. Let V =
⊕

n∈ 1

2
Z+

Vn be a vertex superalgebra defined over

the ring of rational functions in k with poles along D, where V1 generates

V k(a), as above. Suppose that a satisfies either condition (1) or (2) of Re-

mark 3.1. Then there exists a finite set D′ containing D such that over

the ring of rational functions in k with poles along D′, we can replace the

minimal strong generating set
⋃d

i=1 Si with a minimal strong generating set⋃d
i=1 S̃i such that S̃1 = S1 and the fields X̃j in S̃i for i ≥ 2 are a-primary,

and their linear span is an a-module.

Proof. For an irrational value of k ∈ C \D, by Lemma 3.1 there exist such

corrections X̃j = Xj + · · · , where the remaining terms are normally ordered

monomials in the strong generators of lower weight. The coefficient of each

such monomial must depend continuously on k, and since all structure con-

stants among the OPEs of the generators are rational functions of k, these

coefficients must in fact be rational functions of k. Note that the poles are

no longer are required to lie in D, but since there are only finitely many

such structure constants the new pole set D′ is still finite. Finally, note that
the primary fields X̃j exist for all k ∈ C \D′ even though KLk(a) need not

be almost semisimple for nongeneric k.

Let g be a Lie superalgebra with invariant nondegenerate bilinear form

( | ), and let f ∈ g be a nilpotent such that Wk(g, f) has affine subalgebra

V �(a), and a satisfies either condition (1) or (2) of Remark 3.1. Recall that

the strong generators of Wk(g, f) are indexed by Jf , a basis of gf . Moreover

those strong generators that have conformal weight r+1 correspond to g
f
−r

which is ad (a)-invariant and hence an a-module that we denote by Mr.

Corollary 3.6. Let Wk(g, f) and a be as above.
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1. If we regard Wk(g, f) as a one-parameter vertex algebra, the strong

generators of conformal weight r + 1 for r > 0 can be chosen to be

primary for the affine subalgebra V �(a). In particular, this holds for

all but finitely values of k

2. If the trivial representation appears as a direct summand of Mr, then

the corresponding strong generator is a field of Com(V �(a),Wk(g, f)).

Proof. The first statement is immediate from Corollary 3.5. For the second

statement, a primary field of the trivial representation is a vacuum vector

for the affine subalgebra, and hence lies in Com(V �(a),Wk(g, f)).

Lemma 3.2. Let g be a Lie superalgebra with invariant nondegenerate bi-

linear form ( | ), and let f be a nilpotent element in g such that a satisfies

either condition (1) or (2) of Remark 3.1. Let {Xα| α ∈ Jf} denote the

strong generating set for W1
σ(g, f) which satisfies the λ-brackets of Theorem

3.5 in the σ → 0 limit. If we replace the fields Xα with corrected fields X̃α

which are a-primary as above, we again have λ-brackets

[X̃α
λX̃

β] = δj,kλ
2k+1Bk(q

α, qβ)

in the σ → 0 limit.

Proof. First, consider the fields {Xα| α ∈ Jf
−1} of weight 2. The corrected

fields X̃α must have the form

X̃α = Xα + P

where P ∈ V �(a). Note that the coefficients of the monomials appearing in

P need not be polynomials in σ, but can be rational functions of σ. We

claim that the coefficient of each such monomial must vanish in the σ → 0

limit. This is apparent because V �(a) commutes with Xα in the σ → 0 limit,

but if P has any term whose coefficient does not vanish, we can find some

j ∈ a such that j(1)P is an element of weight 1 that also does not vanish in

this limit. This would contradict the a-primality of X̃α, so we conclude that

X̃α = Xα in the σ → 0 limit, as desired.

Now we assume this statement for all fields Xα of weight r ≤ m, and

now we consider the corrected field X̃α for some α ∈ Jf
−m, so that this field

has weight m+ 1. Without loss of generality, we may write

X̃α = Xα + P
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where P is a linear combination of monomials in the generators of V �(a)

as well as the a-primary fields X̃β where β ∈ Jf
−r for r < m. Using the a-

primality of X̃α and the fields X̃β, as well as the fact that V �(a) commutes
with Xα in the σ → 0 limit, it follows by repeated applications of (2.7) that
the coefficients of all monomials appearing in P must vanish in the σ → 0
limit. The claim follows.

3.4. Modules and characters

Let g be a Lie superalgebra with nondegenerate bilinear form as before. Let

ĝ = g⊗C C[t, t−1]⊕ CK

be its affinization with K the central element. There is also a derivation
which is identified with −L0, the zero mode of the Sugawara vector, and
can thus be neglected in this discussion. Let g0 = g ⊕ CK and g+ = g ⊗C

C[t]⊕CK. A g-module M lifts to a ĝ-module M̂k at level k in the usual way.
First extend M to a g-module by letting K act by multiplication with the
scalar k and then extend to a g+-module by letting g⊗C tC[t] act trivially.
Then

M̂k := Indĝg+
M.

M̂k is called a generalized Verma module if a positive half of g0 with respect
to the weight grading acts locally nilpotently. Let ρλ be the irreducible
highest-weight representation of g at highest-weight λ. Then we write

V k(λ) := Indĝg+
ρλ,

and Lk(λ) for its unique irreducible quotient. Let |q| < 1 and h ∈ h the
Cartan subalgebra. The character of V k(λ) is

ch[V k(λ)](h, q) = trV k(λ)

(
qL0− c

24 e2πih
)
= q

(λ+ρ)2

2(k+h∨)
Nλ(h)

Π(h, q)
,

Nλ =
∑
ω∈W

ε(ω)eω(λ+ρ),

Π(h, q) = q
dim g

24 eρ(h)
∞∏
r=1

(1− qr)rank g
∏

α∈Δ+

(1− e−α(h)qr−1)(1− eα(h)qr).

(3.14)

The homology of the complex M̂k ⊗C(g, f, k) is a Wk(g, f)-module that we

will denote by Hf (M̂k).
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Theorem 3.7.

1. H i
f (M̂k) = 0 for i �= 0 and M̂k a generalized Verma module ([90, Thm.

6.2])
2. Let g be a Lie algebra. Then H i

f (M) = 0 for i �= 0 and any object M
in KLk ([10, Thm. 4.5.7]).

Then in either of the two cases the character of the homology coincides
with the Euler-Poincaré-character

ch[Hf (M̂k)] = sch[M̂k ⊗ C(g, f, k)].

This character can be written down explicitly [90, Section 6] and we refor-
mulate their formula. For this let h
 be a Cartan subalgebra of a where a is
the subalgebra of g that commutes with the sl2 corresponding to the triple
{f, x, e}. Choose a Cartan subalgebra h of g0 and hence of g that contains h


and x. Let Δj = Δeven
j ∪Δodd

j be the roots in gj and fix a set of positive roots

Δ+ = Δ0
+ ∪
⋃

j>0Δj with Δ0
+ a set of positive roots for g0. Set δ(α) = j for

α ∈ Δj . Let Δh.w denote those roots that correspond to a highest-weight
vector for the sl2-triple {f, x, e}. Then

ch[Wk(g, f)](h, q) = sch[V k(g)⊗ C(g, f, k)]

= q−
c

24
Ψodd

Ψeven
,

Ψodd =

∞∏
n=1

∏
α∈Δodd, h.w.

(1 + eα(h)qn+δ(α))(1 + e−α(h)qn+δ(α)),

Ψeven =

∞∏
n=1

∏
α∈Δeven, h.w.

(1− eα(h)qn+δ(α))(1− e−α(h)qn+δ(α)),

(3.15)

where the domain is |q| < 1 and |e±α(h)qδ(α)| < 1. Let Mλ be a generalized
Verma module of g that is generated by a highest-weight vector of highest-

weight λ. Then the conformal weight of the top level of M̂k is (λ|λ+2ρ)
2(k+h∨) . Since

the character of M̂k is the character of V
k(g) times q(λ|λ+2ρ)χMλ

(h) it follows
immediately that

ch[Hf (M̂k)](h, q) = sch[M̂k ⊗ C(g, f, k)] = q−
c

24 q(λ|λ+2ρ)χMλ
(h− xτ)

Ψodd

Ψeven
.

(3.16)
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Assume now that g is a Lie algebra and we take Mλ = ρλ the integrable ir-
reducible highest-weight representation of the highest-weight λ ∈ P+. Then
we can use the Weyl character formula to get

ch[Hf (V
k(λ)](h, q) = q−

c

24 q
(λ|λ+2ρ)

2(k+h∨) χλ(h− xτ)
1

Ψeven

= q−
c

24 q
(λ|λ+2ρ)

2(k+h∨)

∑
ω∈W

ε(ω)eω(λ+ρ)(h−τx)

eρ(h−xτ)
∏

α∈Δ+

(1− e−α)(h−xτ))

1

Ψeven

= q−
c

24 q
(λ|λ+2ρ)

2(k+h∨)

∑
ω∈W

ε(ω)eω(λ+ρ)(h−τx) 1

Ψ
,

Ψ =

∞∏
n=1

∏
α∈Δh.w.

(1− eα(h)qn)(1− e−α(h)qn−1),

(3.17)

where the domain is still |q| < 1 and |e±α(h)qδ(α)| < 1.

3.5. Principal W-algebras

The best studied example is the case where f is the principal nilpotent el-
ement, and we use the notation Wk(g). These W-algebras have appeared
in many problems in mathematics and physics including the AGT corre-
spondence [8, 33, 112, 123] and the quantum geometric Langlands program
[22, 40, 69, 71, 80, 81]. They are closely related to the classical W-algebras
which arose in the work of Adler, Gelfand, Dickey, Drinfeld, and Sokolov
[1, 82, 62, 64] in the context of integrable hierarchies of soliton equations. It
was conjectured by Frenkel, Kac and Wakimoto [73] and proven by Arakawa
[10, 11] that for a nondegenerate admissible level k, Wk(g) is lisse and ratio-
nal. These are called minimal models since they are a generalization of the
Virasoro minimal models of [83]. For later use, we shall compute the weight
where the first singular vector appears.

Lemma 3.3. Let g be a simple Lie algebra, ρ̄, ρ̄∨ its Weyl vector and Weyl
covector and set ᾱ = −θ if (v, r∨) = 1 and ᾱ = −θs if (v, r∨) = r∨. Here
r∨ is the lacity of g and θ, θs are the highest root and highest short root. Set
λ̄ = nu

v ᾱ
∨ − (ρ̄, ᾱ∨)ᾱ

Denote by Sing(V ) the weight of the singular vector of V of lowest confor-
mal weight. Then for k = −h∨+ u

v of (co)principal admissible level, singular
vectors of affine and principal W-algebras have weight



Trialities of W-algebras 115

1. Sing(V k(g)) = v
2u λ̄(λ̄+ 2ρ̄)

2. Sing(Wk(g)) = v
2u λ̄(λ̄ + 2ρ̄) − λ̄ρ̄∨ for k a non-degenerate admissible

level.

Proof. It is known, see [92, Cor. 1] or [15, Prop. 6.14], that the simple affine

vertex algebra of g at admissible level k = −h∨ + u
v is the quotient of the

universal affine vertex algebra V k(g) by the ideal Ik(g) that is generated

by the highest-weight vector vλ of highest-weight λ where λ is the shifted

affine Weyl reflection on kω0, that is λ = sα(kω0+ρ)−ρ with ω0 the zeroth

fundamental weight, ρ the Weyl vector and

α =

{
−θ + vδ (v, r∨) = 1

−θs +
v
r∨ δ (v, r∨) = r∨

.

Here r∨ is the lacity of g and θ, θs are the highest root and highest short

root. Note that for α = ᾱ−nδ, the affine Weyl reflection sα is sα = tnᾱ∨ ◦sᾱ
with ᾱ a root in g. Let λ̄ be the restriction of λ to the Cartan subalgebra of

g. Then

λ̄ = n
u

v
ᾱ∨ − (ρ̄, ᾱ∨)ᾱ with λ = sα(kω0 + ρ)− ρ.

Using the formula of the conformal weight hλ of the top level of a highest

weight module V k(λ) of highest weight λ,

hλ =
v

2u
λ(λ+ 2ρ)

one immediately gets the singular weight of the affine vertex algebra. For the

W-algebra we use the following two facts. First, the quantum Hamiltonian

reduction functor is exact on KLk(g) [10] (see also [11, Thm. 7.1]). Second,

for k a non-degenerate admissible level and f a principal nilpotent, one

has that H0
f (Lk(g)) = Wk(g), i.e. the reduction of the simple affine vertex

algebra is the simple W-algebra. These two results combined tell us that

Wk(g) is the quotient of Wk(g) by H0
f (Ik(g)), but the latter is generated by

a highest-weight vector of top level Δλ, with

Δλ = hλ − ρ∨λ.

This gives the conformal weight of the singular vectors of the W-algebras.
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We compute these for g = sln. For this consider the lattice Zn with
orthonormal basis ε1, . . . , εn. We embed root and coroots in rescalings of this
lattice in the usual way, i.e. the simple roots are α1 = ε−ε2, α2 = ε2−ε3, . . .
Then θ = θ∨ = ε1−εn and ρ = ρ∨ = 1

2((n−1)ε1+(n−3)ε2+ · · ·+(1−n)εn).
Thus ρθ∨ = θρ∨ = n− 1 and λ̄ = (u− n+ 1)θ. Hence

Corollary 3.7. Let g = sln and let k = −n+ u
v be an admissible level, that

is u, v ∈ Z>0 are coprime and u ≥ n. Then

1. V k(sln) has a singular vector at conformal weight v(u+n− 1) and no
singular vector at lower conformal weight.

2. For k nondegenerate admissible, that is also v ≥ n, Wk(sln) has a
singular vector at conformal weight (u−n+1)(v−n+1) and there is
no singular vector at lower conformal weight.

We continue to study the case of principal W-algebras, that is f = fprin.
For later use we need to know some structure of W-modules associated to
the standard representation and its conjugate. For this let ω1 be the first
fundamental weight of sln, so that ρω1

is the standard representation of sln.
The character is

χω1
(h) =

n−1∑
i=0

eβi(h), with β0 := ω1 and βi := βi−1 − αi, for i = 1, . . . , n− 1.

It follows that

χω1
(−hρτ) = q−(ω1|ρ)

n−1∑
i=1

qi = q−(ω1|ρ) 1− qn

1− q

and from (3.17) and (3.15) that

ch[Hfprin
(V k(ω1))](q) = q

(ω1|ω1+2ρ)

2(k+h∨) χλ(−hρτ)ch[Wk(g)](q)

= q
(ω1|ω1+2ρ)

2(k+h∨)
−(ω1|ρ) 1− qn

1− q
ch[Wk(g)](q)

= q−
c

24 q
(ω1|ω1+2ρ)

2(k+h∨)
−(ω1|ρ) (1 + q + 2q2 + · · · ).

(3.18)

Let hλ := (λ|λ+2ρ)
2(k+h∨) − (λ|ρ), let

Hfprin
(V k(λ)) =

⊕
n∈hλ+Z≥0

Hfprin
(V k(λ))n
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be the decomposition into conformal weight spaces, and let L(z) be the
Virasoro field. Then

Corollary 3.8. Let n > 2, λ ∈ {ω1, ωn−1} and v be a nonzero element of
Hfprin(V

k(λ))hλ
. If k+n /∈ {n−1

n , n+1
n , n+2

n }, {L−1v} and {L−2v, L−1L−1v}
are bases of Hfprin(V

k(λ))hλ+1 and Hfprin(V
k(λ))hλ+2, respectively.

Proof. Let ψ = k+ n and λ = ω1. The central charge and conformal weight
of top level are

c = (n− 1)− n(n2 − 1)(ψ + ψ−1 − 2), hω1
= hωn−1

=
n2 − 1

2nψ
− n− 1

2
.

Recall some Virasoro commutation relations

[L1, L−1] = 2L0, [L2, L−2] = 4L0+
c

2
, [L2, L−1] = 3L1, [L1, L−2] = 3L−1.

It follows that L−1v = 0 implies hλ = 0 and hence ψ = n+1
n . Similarly, a

linear relation between L−2v and L−1L−1v is only possible if

c = −2hω1
(8hω1

− 5)

2hω1
+ 1

.

Such a linear relation can only occur at ψ = n−1
n , n+1

n , n+2
n . The claim

thus follows for all values of k except possibly for these three. The argu-
ment for λ = ωn−1 is exactly the same, since ch[Hfprin

(V k(ωn−1))](q) =
ch[Hfprin

(V k(ω1))](q).

Remark 3.2. The three exceptional cases have the special property that their
simple quotients are either trivial, a rational Virasoro algebra or the p = 2
singlet algebra of [98].

1. For k = −n+ n+1
n one has Wk(sln) ∼= C [110, Thm. 10.1],

2. For k = −n+ n+2
n one has Wk(sln) ∼= W−2+n+2

2
(sl2) [110, Thm. 10.2],

3. For k = −n+ n−1
n one has Wk(sln) ∼= W−3+ 2

3
(sl3) [110, Thm. 10.1].

3.6. Hook-type W-algebras of sln+m

Let n ≥ 2 and m ≥ 0 be integers. Let fn,m ∈ sln+m denote the nilpotent
element corresponding to the hook-type partition n+m = n+1+· · ·+1. The
Young tableau for this partition has the form of a hook, hence the name.
Let ψ = k + n+m. The corresponding affine W-algebra

Wψ(n,m) := Wk(sln+m, fn,m)
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will be called a hook-type W-algebra. In the cases m = 0 and m = 1, fn,0 ∈
sln and fn,1 ∈ sln+1 are the principal and subregular nilpotents, respectively,
so Wψ(n, 0) ∼= Wk(sln) and Wψ(n, 1) ∼= Wk(sln+1, fsubreg). For m ≥ 1,
Wψ(n,m) has affine vertex subalgebra{

V ψ−m−1(glm) = H⊗ V ψ−m−1(slm) m ≥ 2,

H m = 1.

Here H denotes the rank one Heisenberg vertex algebra and the level is
obtained from Theorem 3.1 (1).

There are additional even strong generators T,X3, . . . , Xn in weights
2, 3, . . . , n which are invariant with respect to glm, together with 2m even
fields {P±,i| i = 1, . . . ,m} in conformal weight n+1

2 , such that {P+,i} trans-
forms as the glm-standard module Cm, and {P−,i} transforms as the dual
module (Cm)∗. The Virasoro element T has central charge computed from
(3.5)

c =
(ψ − n−m)((n+m)2 − 1)

ψ
− n(n2 − 1)(ψ − n−m)

− (n− 1)(n3 +mn2 − n2 − 2mn−m− n).

(3.19)

For all m ≥ 1 we denote the generator of H by J . For m ≥ 2, we shall work
in the usual basis for slm consisting of

{ei,j | i �= j, i, j = 1, . . . ,m},

together with Cartan elements

{hk = e1,1 − ek+1,k+1| k = 1, . . . ,m− 1}.

We use the same notation for the fields in V ψ−m−1(slm) when no confusion
can arise. Then {J, ei,j , hk} are primary of weight 1 with respect to T , and
{P±,i} are primary of weight n+1

2 .

Lemma 3.4. For all m ≥ 1, there is a unique choice of normalization of J
such that

J(z)P±,i(w) ∼ ±P±,i(w)(z − w)−1.

With this normalization, J satisfies

(3.20) J(z)J(w) ∼ −m(m+ n− nψ)

m+ n
(z − w)−2.
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Proof. Up to normalization J corresponds to the element

j := n(e1 + · · ·+ em)−m(em+1 + · · ·+ em+n).

Then P+,i corresponds to en,n+i and P−,i to en+i,1 so that j acts by ±(n+m)
on P±,i and hence J corresponds to the element (n +m)−1j. The norm is
computed from Theorem 3.1 (1).

Next, we give meaning to Wψ(n,m) in the cases n = 1 and n = 0 as
follows. The case n = 1 should correspond to the W-algebra of slm+1 with
trivial nilpotent element, hence

Wψ(1,m) ∼= V ψ−m−1(slm+1).

For n = 0, Wψ(0,m) should contain a Heisenberg field for all m ≥ 1, a copy
of V ψ−m−1(slm) for m ≥ 2, and 2m additional even strong generators in
weight 1

2 which transform as Cm ⊕ (Cm)∗ under glm. We define

Wψ(0,m) =

{
V ψ−m(slm)⊗ S(m) m ≥ 2

S(1) m = 1.

Here S(m) denotes the rank m βγ-system defined by (2.14). For all m ≥ 1,
S(m) admits a homomorphism

H → S(m), J → −
m∑
i=1

: βiγi :,

and for m ≥ 2 this extends to a map

H⊗ L−1(slm) → S(m)

such that {βi} and {γi} transform as Cm and (Cm)∗ under glm. We use
the same notation {J, ei,j , hk} to denote the images of the generators of
H⊗ L−1(slm) in S(m). We therefore have a homomorphism

V ψ−m−1(glm) → Wψ(0,m) ∼= V ψ−m(slm)⊗ S(m),

ei,j �→ ei,j ⊗ 1 + 1⊗ ei,j , kk �→ hk ⊗ 1 + 1⊗ hk, J �→ 1⊗ J.

(3.21)

Finally, in the cases n = 0, 1 and m = 0, we define Wψ(n,m) = C. Note
that for all n,m, Wψ(n,m) has a uniform description in terms of strong
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generators: in weight 1 we have generators of V ψ−m−1(glm), for n ≥ 2 we

have additional even fields X2, . . . , Xn that are glm-trivial, and for all n ≥ 0

and m ≥ 1 we have 2m additional fields of weight n+1
2 transforming under

glm as Cm ⊕ (Cm)∗. To summarize, we define

Wψ(n,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wψ−n−m(sln+m, fn+m) n ≥ 2, m ≥ 1,

Wψ−n(sln) n ≥ 2, m = 0,

V ψ−m−1(slm+1) n = 1, m ≥ 1,

V ψ−m(slm)⊗ S(m) n = 0, m ≥ 2,

S(1) n = 0, m = 1,

C n = 1, m = 0,

C n = 0, m = 0.

We now define Cψ(n,m) to be the affine coset of Wψ(n,m). More precisely,

Cψ(n,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Com(V ψ−m−1(glm),Wψ(n,m) n ≥ 2, m ≥ 1,

Wψ−n(sln) n ≥ 2, m = 0,

Com(V ψ−m−1(glm), V ψ−m−1(slm+1)) n = 1, m ≥ 1,

Com(V ψ−m−1(glm), V ψ−m(slm)⊗ S(m)) n = 0, m ≥ 2,

Com(H(1),S(1)) n = 0, m = 1,

C n = 1, m = 0,

C n = 0, m = 0.

Note that for n ≥ 2 and m ≥ 1, Cψ(n,m) has Virasoro element L = T −
Lslm − LH, where Lslm is the Sugawara vector for V ψ−m−1(slm) and LH is

the Virasoro vector for the Heisenberg algebra with generator J . Then L

has central charge

c = −(nψ −m− n− 1)(nψ − ψ −m− n+ 1)(nψ + ψ −m− n)

(ψ − 1)ψ
.

Lemma 3.5.

1. Cψ(n,m) is simple for generic values of ψ.



Trialities of W-algebras 121

2. For n ≥ 3, we may replace the fields X3, . . . , Xn in our strong gener-
ating set for Wψ(n,m) with fields ω3, . . . , ωn ∈ Cψ(n,m).

3. Let U ∼= Cm ⊕ (Cm)∗ be the space spanned by {P±,i}, which has sym-
metric bilinear form

〈, 〉 : U → C, 〈a, b〉 = a(n)b.

This form is nondegenerate and coincides with the standard pairing
on Cm ⊕ (Cm)∗. Hence without loss of generality, we may normalize
{P±,i} so that

P+,i(z)P−,j(w) ∼ δi,j(z − w)n+1 + · · · ,

where the remaining terms depend only on T, ω3, . . . , ωn and the gen-
erators of V ψ−m−1(glm).

Proof. The first statement follows in all cases from Theorem 3.6, parts (1)
and (2). The second statement follows from Corollary 3.6, and the third one
follows from Lemma 3.2.

3.7. A family of W-superalgebras associated to sln|m

Let n ≥ 2 and m ≥ 0 be integers with m �= n. We define a nilpotent element
fn|m in the even part of sln|m as follows. Ifm = 0, it is the principal nilpotent
in sln. If m ≥ 1, it is principal in sln and trivial in glm. In the case n ≥ 2 and
m = n, we let fn|n ∈ psln|n be the nilpotent which is principal in the first
copy of sln and trivial in the second copy. Let ψ = k + n−m, and consider
the W-superalgebra

Vψ(n,m) =

⎧⎪⎪⎨⎪⎪⎩
Wk(sln) n ≥ 2, m = 0,

Wk(sln|m, fn|m) n ≥ 2, m ≥ 1, m �= n,

Wk(psln|n, fn|n) n ≥ 2, m = n.

For m ≥ 1, Vψ(n,m) has affine vertex subalgebra{
V −ψ−m+1(glm) = H⊗ V −ψ−m+1(slm) m ≥ 2,

H m = 1.

For n ≥ 2, there are additional even strong generators T,X3, . . . , Xn in
weights 2, 3, . . . , n which are invariant with respect to glm, together with 2m
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odd fields {P±,i| i = 1, . . . ,m} in conformal weight n+1
2 , such that {P+,i}

transforms as the glm-standard module Cm, and {P−,i} transforms as the
dual module (Cm)∗. The Virasoro element T has central charge

c =
(ψ − n+m)((n−m)2 − 1)

ψ
− n(n2 − 1)(ψ − n+m)

− (n− 1)(n3 −mn2 − n2 + 2mn+m− n).

(3.22)

As usual, let J be a generator of H and {ei,j , hk| i �= j, i, j = 1, . . . ,m,
k = 1, . . . ,m − 1} be our basis of glm. We use the same notation for the
corresponding fields in V −ψ−m+1(glm), which are primary of weight 1 with
respect to T . The fields {P±,i} are primary of weight n+1

2 . The proof of the
next lemma is very similar to the one of Lemma 3.4.

Lemma 3.6. For all m ≥ 1, there is a unique choice of normalization of J
such that

J(z)P±,i(w) ∼ ±P±,i(w)(z − w)−1.

With this normalization, J satisfies

(3.23) J(z)J(w) ∼ m(nψ +m− n)

m− n
(z − w)−2.

If n ≥ 2 and n = m, Vψ(n, n) has affine vertex subalgebra V −ψ−n+1(sln),
additional even strong generators T = X2, X3, . . . , Xn in weights 2, 3, . . . , n
which are invariant with respect to sln, together with 2n odd fields {P±,i| i =
1, . . . , n} in conformal weight n+1

2 , such that {P+,i} transforms as the sln-
standard module Cn, and {P−,i} transforms as the dual module (Cn)∗. The
Virasoro element T has central charge

(3.24) c = −1 + n2 − n3 + nψ − n3ψ,

which is just the specialization of (3.22) to the case n = m. The generators
of V −ψ−n+1(sln) are primary of weight 1 with respect to T , and {P±,i} are
primary of weight n+1

2 . We also remark that Vψ(n, n) has an action of GL1

by outer automorphisms. The origin of this action is as follows. If we consider
Wk(sln|n, fn|n) rather than Wψ(psln|n, fn|n), there is an additional Heisen-

berg field J which satisfies J(z)J(w) ∼ 0, commutes with V −ψ−n+1(sln),
and lies in a proper ideal of Wψ(sln|n, fn|n). Without loss of generality, we
may normalize J such that J(z)P±,i(w) ∼ ±P±,i(w)(z − w)−1. The action
of the zero mode J(0) exponentiates to a nontrivial GL1-action on the fields
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{P±,i}, and this action survives in the simple quotient Wψ(psln|n, fn|n) of

Wψ(sln|n, fn|n), for generic ψ.
Next, if n = 1 and m ≥ 2, we take the W-algebra of sl1|m with trivial

nilpotent element, hence

Vψ(1,m) ∼= V ψ+m−1(sl1|m) ∼= V −ψ−m+1(slm|1).

Similarly, if n = 1 and m = 1 we have

Vψ(1, 1) ∼= A(1),

where A(1) is the rank one symplectic fermion algebra defined by (2.16). As
in the case n = m and n ≥ 2, there is a natural action of GL1 on A(1).

For n = 0, Vψ(0,m) should contain a Heisenberg field for all m ≥ 1, a
copy of V −ψ−m+1(slm) for m ≥ 2, and 2m additional odd strong generators
in weight 1

2 which transform as Cm ⊕ (Cm)∗ under glm. We define

Vψ(0,m) =

{
V −ψ−m(slm)⊗ E(m) m ≥ 2,

E(1) m = 1.

Here E(m) denotes the rank m bc-system defined by (2.19). For all m ≥ 1,
E(m) admits a homomorphism

H → E(m), J →
m∑
i=1

: bici :,

and for m ≥ 2 this extends to a map

H⊗ L1(slm) → E(m)

such that {bi} and {ci} transform as Cm and (Cm)∗ under glm. We use
the same notation {J, ei,j , hk} to denote the images of the generators of
H⊗ L1(slm) in E(m). We therefore have a homomorphism

V −ψ−m+1(glm) → Vψ(0,m) ∼= V −ψ−m(slm)⊗ E(m),

ei,j �→ ei,j ⊗ 1 + 1⊗ ei,j , hk �→ hk ⊗ 1 + 1⊗ hk, J �→ 1⊗ J.

(3.25)

Finally, in the cases n = 0, 1 and m = 0, we define Vψ(n,m) = C. Note
that the strong generating set for Vψ(n,m) has a uniform description. In
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weight 1 we have generators of V −ψ−m+1(glm) if n �= m and V −ψ−n+1(sln)
for n = m. For n ≥ 2, we have additional even fields X2, . . . , Xn that are
glm-trivial, and for n ≥ 0 and m ≥ 1 we have 2m additional odd fields in
weight n+1

2 transforming under glm as Cm⊕(Cm)∗. To summarize, we define

Vψ(n,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wψ−n(sln) n ≥ 2, m = 0,

Wψ−n+m(sln|m, fn|m) n ≥ 2, m ≥ 1, m �= n,

Wψ(psln|n, fn|n) n ≥ 2, m = n,

V −ψ−m+1(slm|1) n = 1, m ≥ 2,

A(1) n = 1, m = 1,

V −ψ−m(slm)⊗ E(m) n = 0, m ≥ 2,

E(1) n = 0, m = 1,

C n = 1, m = 0,

C n = 0, m = 0.

We now define Dψ(n,m) to be the affine coset of Vψ(n,m) in all cases except
for n = m, in which case it is the GL1-orbifold of the affine coset. Note that
for n = m = 1, there is no affine subalgebra so Dψ(n,m) is just the GL1

orbifold. More precisely,

Dψ(n,m) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wψ−n(sln) n ≥ 2, m = 0,

Com(V −ψ−m+1(glm),Vψ(n,m)) n ≥ 2, m ≥ 1, m �= n,

Com(V −ψ−n+1(sln),Vψ(n, n))GL1 n ≥ 2, m = n,

Com(V −ψ−m+1(glm), V −ψ−m+1(slm|1)) n = 1, m ≥ 2,

A(1)GL1 n = 1, m = 1,

Com(V −ψ−m+1(glm), V −ψ−m(slm)⊗ E(m)) n = 0, m ≥ 2,

C n = 0, m = 1,

C n = 1, m = 0,

C n = 0, m = 0.

In the case n ≥ 2, m ≥ 1, n �= m, Dψ(n,m) has Virasoro element
L = T − Lslm − LH, where Lslm is the Sugawara vector for V −ψ−m+1(slm)
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and LH is the Virasoro vector for the Heisenberg algebra with generator J .

Then L has central charge

c = −(nψ +m− n− 1)(nψ − ψ +m− n+ 1)(nψ + ψ +m− n)

(ψ − 1)ψ
.

Similarly, if n ≥ 2 and m = n, Dψ(n, n) has Virasoro element L = T −Lsln ,

which has central charge

c = −(1 + n)(ψn− 1)(ψn− ψ + 1)

ψ − 1
.

Lemma 3.7.

1. Dψ(n,m) is simple for generic values of ψ.

2. For n ≥ 3, we may replace the fields X3, . . . , Xn in our strong gener-

ating set for Vψ(n,m) with fields ω3, . . . , ωn ∈ Dψ(n,m).
3. Let U ∼= Cm ⊕ (Cm)∗ be the space spanned by {P±,i}, which has sym-

metric bilinear form

〈, 〉 : U → C, 〈a, b〉 = a(n)b.

This form is nondegenerate and coincides with the standard pairing

on Cm ⊕ (Cm)∗. Hence without loss of generality, we may normalize

{P±,i} so that

P+,i(z)P−,j(w) ∼ δi,j(z − w)n+1 + · · · ,

where the remaining terms depend only on L, ω3, . . . , ωn and the gen-

erators of V −ψ−m+1(glm).

Proof. For the first statement, Vψ(n,m) is simple in all cases by Theorem

3.6, part (1). For n �= m, the simplicity of Dψ(n,m) follows from Theorem

3.6, part (2). In the case n = m, the simplicity of the affine coset is preserved

by taking the GL1-orbifold [63], so Dψ(n,m) is simple in this case as well.
The second statement follows from Corollary 3.6, and the third one follows

from Lemma 3.2.

4. Orbifolds and cosets of W-algebras

The main result in this section is the following
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Theorem 4.1. Let Wk(g, f) be a W-(super)algebra associated to a simple

Lie (super)algebra g and a nilpotent element f .

1. If G is a reductive group of automorphisms of Wk(g, f), then Wk(g, f)G

is strongly finitely generated for generic values of k.

2. If Wk(g, f) has affine subalgebra V �(a), and V �′(b) ⊆ V �(a) is a

subalgebra corresponding to a reductive Lie subalgebra b ⊆ a, then

Com(V �′(b),Wk(g, f)) is strongly finitely generated for generic values

of k.

This result is constructive modulo a classical invariant theory problem,

namely, the first and second fundamental theorems of invariant theory for

some reductive group G and some finite-dimensional G-module V . In gen-

eral, this is a hard problem, but in special cases this classical problem has

been solved (see for example [126]). In Sections 6 and 7, we will use Theorem

4.1 to give an explicit minimal strong generating set for the affine cosets of

all hook-type W-algebras and W-superalgebras.

The proof of Theorem 4.1 is based on [51, Thm. 6.10] together with

the fact that Wk(g, f) admits a limit which is a tensor product of free field

algebras of standard type. First, we recall the notion of a deformable family

from [49, 51]. It is a vertex algebra V defined over a ring of rational functions

of degree at most zero in some formal variable κ, with poles lying in some

prescribed subset K ⊆ C which is at most countable. Then V∞ := limκ→∞ V
is well defined, and certain features of V∞, such as the weights of a strong

generating set, graded character, etc., will also hold for the specialization

Vk := V/(κ− k)V, for generic values of k ∈ C \K.

It follows from Theorem 3.5 that Wk(g, f) is a deformable family if the

usual generators given by Theorem 3.2 are rescaled by 1√
k
, and that

W∞(g, f) := lim
k→∞

Wk(g, f) ∼= W free(g, f).

By Corollary 3.4, this is a free field algebra of the form
⊗m

i=1 Vi, where each

Vi is one of the standard free field algebras Sev(n, k), Sodd(n, k), Oev(n, k),

or Oodd(n, k). In these cases Aut(Vi) is either Sp2n or On. Moreover, if two of

these factors are of the same type, say Oev(n, k) and Oev(m, k), they can be

combined into a single one of this type since Oev(n, k)⊗Oev(m, k) ∼= Oev(n+

m, k), and similarly for the other types. Therefore in this decomposition, we

may assume that the types are distinct; for a fixed k, there is at most one

integer n ≥ 1 such that Oev(n, k) appears, and similarly for the other types.
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Lemma 4.1. Let G be a reductive group of automorphisms of Wk(g, f) as

a one-parameter vertex algebra which acts trivially on the ring of rational
functions of k. Then W(g, f)G is a deformable family and

lim
k→∞

(
Wk(g, f)G

) ∼= ( lim
k→∞

Wk(g, f)
)G ∼=

( m⊗
i=1

Vi

)G

.

Moreover, G preserves the tensor factors in this decomposition, so that if Gi

is the full automorphism group of Vi, then G ⊆ G1 × · · · ×Gm.

Proof. The proof of the first statement is similar to proof of [51, Cor. 5.2].
We first need a good increasing filtration on Wk(g, f) in the sense of [103].

For each strong generating field X in weight d, assign degree d to X and all
its derivatives. We define a filtration on Wk(g, f)

Wk(g, f)(0) ⊆ Wk(g, f)(1) ⊆ · · · , Wk(g, f) =
⋃
d≥0

Wk(g, f)(d),

where Wk(g, f)(d) is the span of monomials

: ∂k1X i1 · · · ∂krX ir :,

where X it has weight dit and
∑

i di ≤ d. Setting Wk(g, f)(−1) = {0}, it is
easy to verify that this is a good increasing filtration, so that the associated

graded algebra gr(Wk(g, f)) =
⊕

i≥0Wk(g, f)(i)/Wk(g, f)(i−1) is commuta-
tive and associative. Using this filtration, the analogue of [51, Lemma 5.1]

is proved in the same way, and the first statement follows.

For the second statement, we just need to show that for any reductive
group G of automorphisms of Wk(g, f), G preserves the distinct tensor fac-

tors in the free field algebra limit. But this is clear from the fact that the type
of each factor is completely determined by conformal weight and parity of

its strong generators, and these are preserved by automorphism groups.

Suppose that Wk(g, f) has affine subalgebra V �(a) where the even part

of a has dimension d and the odd part has dimension 2e. Note that

lim
k→∞

V �(a) ∼= Oev(d, 2)⊗ Sodd(e, 2).

Then in the decomposition W∞(g, f) ∼=
⊗m

i=1 Vi, we may assume that V1
∼=

Oev(d, 2) and V2
∼= Sodd(e, 2) if e > 0.
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Lemma 4.2. Let b ⊆ a be a reductive Lie subalgebra of dimension r, and

let V �′(b) ⊆ V �(a) ⊆ Wk(g, f) be the corresponding affine subalgebra. Write

V1
∼= Oev(r, 2)⊗Oev(d− r, 2), so that

W∞(g, f) ∼= Oev(r, 2)⊗Oev(d− r, 2)⊗
( m⊗

i=2

Vi

)
.

Then the action of b coming from the zero modes of the generators of V �′(b)

lifts to an action of a connected Lie group G on Wk(g, f), and G preserves

each of the factors Oev(d − r, 2) and Vi for i = 2, . . . ,m. Moreover, Ck =

Com(V �′(b),Wk(g, f)) is a deformable family with limit

C∞ ∼=
(
Oev(d− r, 2)⊗

( m⊗
i=2

Vi

))G

.

Proof. This is just the specialization [51, Thm. 6.10] to our setting.

Lemmas 4.1 and 4.2 imply that the strong generating types of both

Wk(g, f)G and Ck are determined by the strong generating types of certain

orbifolds of free field algebras. The rest of this section is devoted to studying

these orbifolds. We begin by considering the minimal strong generating type

of VAut(V) in the case when V is one of the standard free field algebras

Sev(n, k), Sodd(n, k), Oev(n, k), or Oodd(n, k). In these cases Aut(V) is either
Sp2n or On.

Theorem 4.2. For all n ≥ 1 and odd k ≥ 1, Sev(n, k)
Sp2n has a minimal

strong generating set

ωj =
1

2

n∑
i=1

(
: ai∂jbi : − : (∂jai)bi :

)
, j = 1, 3, . . . , (2n+1)(n+1)+nk−2.

Since ωj has weight k + j, Sev(n, k)
Sp2n is of type

W
(
k + 1, k + 3, . . . , (2n+ k + 1)(n+ 1)− 2

)
.

Moreover, Sev(n, k) is completely reducible as an Sev(n, k)
Sp2n-module, and

all irreducible modules in this decomposition are highest-weight and C1-

cofinite according to Miyamoto’s definition [113].
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Proof. The first statement can be reduced to showing that, in the notation
of [109, Eq. 9.1], Rn(I) �= 0, where I is the following list of length 2n+ 2:

I = (t, t+ 1, t+ 2, . . . , t+ 2n+ 1), t =
k − 1

2
.

The explicit formula for Rn(I) is given by [109, Thm. 4], and it is clear that
it is nonzero. Next, the Zhu algebra [129] of Sev(n, k)

Sp2n is abelian; the
proof is similar to that of [109, Thm. 13]. This implies that the admissible
irreducible modules of Sev(n, k)

Sp2n are all highest weight modules, i.e., they
are induced from one-dimensional modules for the Zhu algebra. The proof
of C1-cofiniteness is the same as the proof of [106, Lemma 8].

Theorem 4.3. For all n ≥ 1 and even k ≥ 2, Sodd(n, k)
Sp2n has a minimal

strong generating set

ωj =
1

2

n∑
i=1

(
: ai∂jbi : + : (∂jai)bi :

)
, j = 0, 2, . . . , kn− 2.

Since ωj has weight k + j, Sodd(n, k)
Sp2n is of type

W(k, k + 2 . . . , k(n+ 1)− 2).

Moreover, Sodd(n, k) is completely reducible as an Sodd(n, k)
Sp2n-module, and

all irreducible modules in this decomposition are highest-weight and C1-
cofinite according to Miyamoto’s definition.

Proof. This can be reduced to showing that, in the notation of [109, Eq.
11.1], Rn(I) �= 0 for the following list I of length 2n+ 2:

I =

(
k

2
− 1,

k

2
− 1, . . . ,

k

2
− 1

)
.

This follows easily from the recursive formula given by [109, Eq. 11.5].

Theorem 4.4. For all n ≥ 1 and odd k ≥ 1, Oodd(n, k)
On has a minimal

strong generating set

ωj =
1

2

n∑
i=1

: φi∂jφi :, j = 1, 3, . . . , n(k + 1)− 1.

Since ωj has weight k + j, Oodd(n, k)
On is of type

W(k + 1, k + 3, . . . , (n+ 1)(k + 1)− 2).
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Moreover, Oodd(n, k) is completely reducible as an Oodd(n, k)
On-module, and

all irreducible modules in this decomposition are highest-weight and C1-
cofinite according to Miyamoto’s definition.

Proof. The fact that the above elements are a minimal strong generating set
can be reduced to showing that, in the notation of [109, Eq. 11.1], Rn(I, J) �=
0 where I and J are the following lists of length n+ 1:

I =

(
k − 1

2
,
k − 1

2
, . . . ,

k − 1

2

)
, J =

(
k + 1

2
,
k + 1

2
, . . . ,

k + 1

2

)
.

This follows easily from the recursive formula given by [109, Eq. 11.5]. The
proof of the remaining statements is the same as proof of Theorem 4.3.

Unfortunately, we are unable to give a minimal strong generating set
for Oev(n, k)

On at present, even in the case k = 2 which coincides with
H(n)On . However, based on Weyl’s first and second fundamental theorems
of invariant theory for the standard module of On, we make the following
conjecture.

Conjecture 4.1. For all n ≥ 1 and even k ≥ 2, Oev(n, k)
On has a minimal

strong generating set

ωj =

n∑
i=1

: ai∂jai :, j = 0, 2, . . . , n(n+ 1) + nk − 2.

Since ωj has weight k + j, Oev(n, k)
On is of type

W(k, k + 2, . . . , (n+ k)(n+ 1)− 2).

This generalizes the conjecture given in [107] that H(n)On is of type
W(2, 4, . . . , n2 + 3n). In [108], it was shown that this holds for n ≤ 6, and
also that H(n)On is strongly finitely generated for all n. Using the same
approach, we can prove

Theorem 4.5. For all n ≥ 1 and even k ≥ 2, Oev(n, k)
On is strongly

generated by

ωj =

n∑
i=1

: ai∂jai :, j = 0, 2, . . . , s.

for some even integer s ≥ n(n+ 1) + nk− 2. Also, Conjecture 4.1 holds for
all k when n = 1.
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Corollary 4.1. For all n ≥ 1 and even k ≥ 2, Oev(n, k) is completely
reducible as an Oev(n, k)

On-module, and all irreducible modules in this de-
composition are highest-weight and C1-cofinite according to Miyamoto’s def-
inition.

Corollary 4.2. Let V be any of the free field algebras Sev(n, k), Sodd(n, k),
Oev(n, k), or Oodd(n, k). For any reductive group G ⊆ Aut(V), VG is strongly
finitely generated.

Proof. This is the same as the proof of [109, Thm. 15]. First, VG is com-
pletely reducible as a VAut(V)-module. Here Aut(V) is either Sp2n or On. By
a classical theorem of Weyl [126, Thm. 2.5A], VG has an (infinite) strong gen-
erating set that lies in the sum of finitely many irreducible VAut(V)-modules.
The result then follows from the strong finite generation of VAut(V) and the
C1-cofiniteness of these modules.

4.1. Some special cases

For a general G, it is difficult to give an explicit minimal strong generating
set for VG. However, there are a few special case which we shall need later,
in which it can be done. First, we have a natural embedding

(4.1) GLn ↪→ Sp2n

such that the standard module C2n decomposes as Cn ⊕ (Cn)∗ as a GLn-
module.

Theorem 4.6. For all n ≥ 1 and odd k ≥ 1, Sev(n, k)
GLn has a minimal

strong generating set

ωj =

n∑
i=1

: ai∂jbi :, j = 0, 1, . . . , n(n+ 1) + nk − 1.

Since ωj has weight k + j, Sev(n, k)
Sp2n is of type

W
(
k, k + 1, k + 2, . . . , (n+ k)(n+ 1)− 1

)
.

Proof. The method of [105] for studying the W1+∞,−n-algebra via its re-
alization as the GLn-invariants in the rank n βγ-system can be applied in
this case. By Weyl’s first and second fundamental theorems for the standard
representation of GLn, the generators are given as above, and relations are
(n + 1) × (n + 1)-determinants. The relation of lowest weight has weight



132 Thomas Creutzig and Andrew R. Linshaw

(n + k)(n + 1) and corresponds to I = (0, 1, . . . , n) = J . The proof that
the coefficient of ωn(n+1)+nk in this relation is nonzero is similar to the
proof of [105, Thm. 4.15]. This relation allows ωn(n+1)+nk to be expressed
as a normally ordered polynomial in {ωj | 0 ≤ j ≤ n(n + 1) + nk − 1}
and their derivatives. Finally, higher decoupling relations expressing all ωj

for j > n(n + 1) + nk as normally ordered polynomials in {ωj | 0 ≤ j ≤
n(n + 1) + nk − 1} and their derivatives, can be constructed inductively
starting from this relation.

Next, we consider Sodd(n, k)
GLn where GLn embeds in Sp2n as above.

Theorem 4.7. For all n ≥ 1 and even k ≥ 2, Sodd(n, k)
GLn has a minimal

strong generating set

ωj =

n∑
i=1

: ai∂jbi :, j = 0, 1, . . . , nk − 1.

Since ωj has weight k + j, Sodd(n, k)
GLn is of type

W
(
k, k + 1, k + 2, . . . , k(n+ 1)− 1

)
.

Proof. The proof is the same as the proof of [50, Thm. 4.3], which is the
special case k = 2.

Next, recall that GLn ↪→ O2n such that the standard O2n-module C2n

decomposes under GLn as Cn ⊕ (Cn)∗.
We can choose a generating set {ei, f i| i = 1, . . . , n} for Oodd(2n, k) such

that {ei} and {f i} transform as Cn and (Cn)∗ under GLn, respectively, and
ei(z)f j(w) ∼ δi,j(z − w)−k.

Theorem 4.8. For all n ≥ 1 and odd k ≥ 1, Oodd(2n, k)
GLn has a minimal

strong generating set

ωj =

n∑
i=1

: ei∂jf i :, j = 0, 1, . . . , nk − 1,

and hence is of type W(k, k + 1, . . . , k(n+ 1)− 1).

Proof. The argument is similar to the proof of [50, Thm. 4.3]. The infinite
generating set {νj,k =

∑n
i=1 : (∂

jei)(∂kf i) : | j, k ≥ 0} coming from classical
invariant theory can be replaced with the set {∂kωj | j, k ≥ 0}. The relations
among these generators are (n+1)×(n+1) fermionic determinants (that is,
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determinants without the usual signs) Dn(I, J) for weakly increasing lists

of indices I = (i0, i1, . . . , in) and J = (j0, j1, . . . , jn), with suitable quantum

corrections. A recursive formula for the coefficient Rn(I, J) of ω
|I|+|J |+k(n+1)

appearing in Dn(I, J) can be given; here |I| =
∑n

t=0 it |J | =
∑n

t=0 jt. The

relation of minimal weight occurs at weight k(n+1) and has the form ωnk =

P (ω0, ω1, . . . , ωnk−1). As usual, higher decoupling relations expressing all ωj

for j > nk as normally ordered polynomials in ω0, ω1, . . . , ωnk−1 and their

derivatives can be constructed inductively starting from this relation.

Finally, we consider Oev(2n, k)
GLn where GLn embeds in O2n as above.

Fix a generating set {ei, f i| i = 1, . . . , n} for Oev(2n, k) such that {ei} and

{f i} transform as Cn and (Cn)∗ under GLn, respectively, and ei(z)f j(w) ∼
δi,j(z − w)−k.

Theorem 4.9. For all n ≥ 1 and even k ≥ 2, Oev(2n, k)
GLn has a minimal

strong generating set

ωj =

n∑
i=1

: ei∂jf i :, j = 0, 1, . . . , n(n+ 1) + nk − 1,

and hence is of type W(k, k + 1, . . . , (n+ k)(n+ 1)− 1).

Proof. The case k = 2 is given by [110, Thm. 8.1], and the general case is

similar.

Theorem 4.10. Let V =
⊗m

i=1 Vi where each factor Vi is one of the above

free field algebras Sev(n, k), Sodd(n, k), Oev(n, k), or Oodd(n, k). Let Gi =

Aut(Vi) which is either an orthogonal or a symplectic group, and let G be a

reductive group of automorphisms of V which preserves the tensor factors,

so that G ⊆ G1 × · · · ×Gm. Then VG is strongly finitely generated.

Proof. The argument is the same as the proof of [51, Thm. 4.2].

Proof of Theorem 4.1. This is now an immediate consequence of Lemmas 4.1

and 4.2, and Theorem 4.10. �

The next result is a generalization of Theorem 3.6, and will be useful in

future applications.

Theorem 4.11. Let g be a Lie superalgebra with nondegenerate invariant

bilinear form ( | ), and let f be a nilpotent element in g. Let V �′(b) be

the subalgebra of the full affine subalgebra V �(a) of Wk(g, f), where b is a
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reductive Lie subalgebra of a. Then for generic k, Wk(g, f) admits a decom-

position

(4.2) Wk(g, f) ∼=
⊕
λ∈P+

V �′(λ)⊗ Ck(λ),

where P+ denotes the set of dominant weights of b, V �′(λ) are the cor-

responding Weyl modules, and the multiplicity spaces Ck(λ) are irreducible

modules for the coset Ck = Com(V �′(b),Wk(g, f)).

Proof. For generic values of k, since the Kazhdan-Lusztig category KL�′(b)

is semisimple, the existence of a decomposition of the form (4.2) is clear,

where the Weyl modules V �′(λ) are irreducible. What remains to prove is

that the multiplicity spaces Ck(λ) are irreducible Ck-modules. Let r = dim g,

and as in Lemma 4.2, write

W∞(g, f) = lim
k→∞

Wk(g, f) ∼= Oev(r, 2)⊗Oev(d− r, 2)⊗
( m⊗

i=2

Vi

)
,

where Oev(r, 2) = H(r) is the rank r Heisenberg algebra coming from the

limit of V �′(b). For convenience, we write W̃ = Oev(d − r, 2) ⊗
(⊗m

i=2 Vi

)
,

so that C∞ = limk→∞ Ck ∼= W̃G.

The module V �′(λ) has limit

V ∞(λ) = lim
�′→∞

V �′(λ) ∼= H(r)⊗ Lλ,

where Lλ is the finite-dimensional irreducible b-module with highest weight

λ. Then we have a decomposition

W∞(g, f) ∼= H(r)⊗ W̃ ∼= H(r)⊗
( ⊕

λ∈P+

Lλ ⊗Dλ

)
,

Here Dλ = lim�′→∞ Ck(λ), which is a module over W̃G ∼= limk→∞ Ck. Since

W̃ is simple and G is reductive, by passing to a compact form of G, it follows

from [63] that each of the modules Dλ is an irreducible W̃G-module.

Finally, if some Ck(λ) were reducible, it would have a nontrivial singular

vector ω in some weight space higher than the lowest weight component. In

the k → ∞ limit, after suitable scaling ω must survive and would have to be

singular for the action of W̃G. This is impossible since Dλ is irreducible.
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A similar statement to Theorem 4.11 in fact holds in a much more general
setting. Let g be a reductive Lie algebra of dimension d, and let Ak be a
vertex algebra whose structure constants depend algebraically on k, which
admits a homomorphism V k(g) → Ak with the following properties:

1. There exists a deformable family A defined over ring FK of rational
functions of degree at most zero in κ, with poles in some at most
countable set K, such that

A/(κ−
√
k)A ∼= Ak, for all

√
k /∈ K.

2. The homomorphism V k(g) → Ak is induced by a map V → W , where
V is the deformable family such that V/(κ −

√
k)V ∼= V k(g) for all

k �= 0.
3. A∞ = limκ→∞A decomposes as

A∞ ∼= V∞ ⊗ Ã ∼= H(d)⊗ Ã,

where Ã is a tensor product of standard free field algebras Oev(n, k),
Sev(n, k), Oodd(n, k), and Sodd(n, k).

4. The action of g on Ak integrated to an action of a connected Lie group
G and Ak decomposes into finite-dimensional G-modules.

By the same argument as the proof of Theorem 4.11, we obtain

Theorem 4.12. Let V k(g) → Ak be as above, and let Ck = Com(V k(g),Ak).
Then for generic k, Ak admits a decomposition

(4.3) Ak ∼=
⊕
λ∈P+

V k(λ)⊗ Ck(λ),

where P+ denotes the set of dominant weights of g, V k(λ) are the corre-
sponding Weyl modules, and the multiplicity spaces Ck(λ) are irreducible
Ck-modules.

Remark 4.1. If G acts faithfully, then the Ck(λ) are all nonzero. In gen-
eral, the set of dominant weights for which the Ck(λ) are nonzero can be
determined by a classical invariant theory problem. We illustrate this in the
example of interest to us, that is G = U(m) and as a G-module our free
field algebra is either isomorphic to

S(m) := Sym

( ∞⊕
n=1

(Cm
n ⊕ (Cm

n )∗)

)
or E(m) :=

∧( ∞⊕
n=1

(Cm
n ⊕ (Cm

n )∗)

)
.
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Here Cm
n denote each a copy of the standard representation of U(m) =

SU(m)×U(1), which is given weight one corresponding to the U(1)-action.
Similarly, (Cm

n )∗ denotes the conjugate which then has U(1)-weight minus
one. It is clear that ∧mCm as well as the determinant of the product of m
distinct copies of Cm is trivial as an SU(m)-module and has U(1)-weight m.
Replacing Cm by (Cm)∗ gives modules that are trivial as SU(m)-modules
and have U(1)-weight −m. Call these one-dimensional modules A± and we
clearly have infinitely many copies of this type of module in both S(m) and
E(m). Let

S(m) ∼=
⊕

λ∈P+×Z

ρλ,n ⊗Mλ,n, E(m) ∼=
⊕

λ∈P+×Z

ρλ,n ⊗Nλ,n

be the decompositions as SU(m) × U(1)-modules. Here the Mλ,n, Nλ,n are
multiplicity spaces and the ρλ,n are the irreducibles of highest weight (λ, n).
Let i(n) be the integer in [0, n− 1] with i(n) = n mod m. Clearly the mul-
tiplicities can only be nonzero if λ ≡ ωi(n) mod Am−1. Here Am−1 denotes
the root lattice of slm, ωi are the fundamental weights, and we set ω0 = 0.
Since SU(m) acts faithfully, for each λ there exists at least one n, n′ ∈ Z
with Mλ,n, Nλ,n′ nonzero. But then Mλ,n±mr, Nλ,n′±mr are also nonzero for
any r ∈ Z>0 by multiplying with |r| modules of type A±.

5. Universal two-parameter W∞-algebra

In this section, we briefly recall some features of the universal two-parameter
vertex algebra W(c, λ) constructed in [110]. The algebra is defined over the
ring C[c, λ], and is generated by a Virasoro field L of central charge c and
a primary weight 3 field W 3 which is normalized so that (W 3)(5)W

3 = c
31.

The remaining strong generators W i of weight i ≥ 4 are defined inductively
by

W i = (W 3)(1)W
i−1, i ≥ 4.

Then W(c, λ) is defined over the ring C[c, λ], and is freely generated by
{L,W i| i ≥ 3}. It has a conformal weight grading

W(c, λ) =
⊕
n≥0

W(c, λ)[n],

where eachW(c, λ)[n] is a free C[c, λ]-module andW(c, λ)[0] ∼= C[c, λ]. There
is a symmetric bilinear form on W(c, λ)[n] given by

〈, 〉n : W(c, λ)[n]⊗C[c,λ] W(c, λ)[n] → C[c, λ], 〈ω, ν〉n = ω(2n−1)ν.



Trialities of W-algebras 137

The determinant detn of this form is nonzero for all n; equivalently, W(c, λ)
is a simple vertex algebra over C[c, λ].

Let p be an irreducible factor of detN+1 and let I = (p) ⊆ C[c, λ] ∼=
W(c, λ)[0] be the corresponding ideal. Consider the quotient

WI(c, λ) = W(c, λ)/I · W(c, λ),

where I is regarded as a subset of the weight zero space W(c, λ)[0] ∼= C[c, λ],
and I · W(c, λ) denotes the vertex algebra ideal generated by I. This is a
vertex algebra over the ring C[c, λ]/I, which is no longer simple. It contains
a singular vector ω in weight N + 1, which lies in the maximal proper ideal
I ⊆ WI(c, λ) graded by conformal weight. If p does not divide detm for any
m < N + 1, ω will have minimal weight among elements of I. Often, ω has
the form

(5.1) WN+1 − P (L,W 3, . . . ,WN−1),

possibly after localizing, where P is a normally ordered polynomial in the
fields L,W 3, . . . , WN−1, and their derivatives. If this is the case, there will
exist relations in the simple graded quotient WI(c, λ) := WI(c, λ)/I of the
form

Wm = Pm(L,W 3, . . . ,WN ),

for all m ≥ N + 1 expressing Wm in terms of L,W 3, . . . ,WN and their
derivatives. Then WI(c, λ) will be of type W(2, 3, . . . , N). Conversely, any
one-parameter vertex algebra W of type W(2, 3, . . . , N) for some N satisfy-
ing mild hypotheses, is isomorphic to WI(c, λ) for some I = (p) as above,
possibly after localizing. The corresponding variety V (I) ⊆ C2 is called the
truncation curve for W .

Note that if I = (p) for some irreducible p, then WI(c, λ) and WI(c, λ)
are one-parameter vertex algebras since C[c, λ]/(p) has Krull dimension 1.
We also consider WI(c, λ) when I ⊆ C[c, λ] is a maximal ideal, which has
the form I = (c − c0, λ − λ0) for some c0, λ0 ∈ C. Then WI(c, λ) and
its quotients are ordinary vertex algebras over C. Given maximal ideals
I0 = (c − c0, λ − λ0) and I1 = (c − c1, λ − λ1), let W0 and W1 be the
simple quotients of WI0(c, λ) and WI1(c, λ), respectively. There is an easy
criterion for W0 and W1 to be isomorphic. We must have c0 = c1, and if
c0 �= 0 or −2, there is no restriction on λ0 and λ1. For all other values of
the central charge, we must have λ0 = λ1. This criterion implies that aside
from the coincidences at c = 0 and −2, all other coincidences among simple
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one-parameter quotients of W(c, λ) must correspond to intersection points

on their truncation curves; see [110, Cor. 10.1].

Often, a vertex algebra Ck arising as a coset of the form Com(V k(g),Ak)

for some vertex algebra Ak, can be identified with a one-parameter quotient

WI(c, λ) for some I. Here k is regarded as a formal variable, and we have a

homomorphism

(5.2) L �→ L̃, W 3 �→ W̃ 3, c �→ c(k), λ �→ λ(k).

Here {L̃, W̃ 3} are the standard generators of Ck, where (W̃ 3)(5)W̃
3 = c(k)

3 1,

and k �→ (c(k), λ(k)) is a rational parametrization of the curve V (I).

There are two subtleties that need to be mentioned. First, for a complex

number k0, the specialization Ck0 := Ck/(k−k0)Ck typically makes sense for

all k0 ∈ C, even if k0 is a pole of c(k) or λ(k). At these points, Ck0 need not be

obtained as a quotient of WI(c, λ). Second, even if k0 is not a pole of c(k) or

λ(k), the specialization Ck0 can be a proper subalgebra of the “honest” coset

Com(V k0(g),Ak0), even though generically these coincide. By [50, Cor. 6.7],

under mild hypotheses that are satisfied in all our examples, if g is simple

this can only occur for rational numbers k0 ≤ −h∨, where h∨ is the dual

Coxeter number of g. Additionally, if g contains an abelian subalgebra h,

the coset becomes larger at the levels where the corresponding Heisenberg

fields become degenerate, since it now contains these fields.

For later use, we recall some OPEs in the algebra W(c, λ) from [110].

W 3(z)W 3(w) ∼ c

3
(z − w)−6 + 2L(w)(z − w)−4 + ∂L(w)(z − w)−3

+W 4(w)(z − w)−2 +

(
1

2
∂W 4 − 1

12
∂3L

)
(w)(z − w)−1.

(5.3)

L(z)W 4(w) ∼ 3c(z − w)−6 + 10L(w)(z − w)−4 + 3∂L(w)(z − w)−3

+ 4W 4(w)(z − w)−2 + ∂W 4(w)(z − w)−1.
(5.4)

L(z)W 5(w) ∼
(
185− 80λ(2 + c)

)
W 3(z)(z − w)−4

+
(
55− 16λ(2 + c)

)
∂W 3(z)(z − w)−3

+ 5W 5(w)(z − w)−2 + ∂W 5(w)(z − w)−1.

(5.5)
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W 3(z)W 4(w) ∼
(
31− 16λ(2 + c)

)
W 3(w)(z − w)−4

+
8

3

(
5− 2λ(2 + c)

)
∂W 3(w)(z − w)−3

+W 5(w)(z − w)−2

+

(
2

5
∂W 5 +

32

5
λ : L∂W 3 : −48

5
λ : (∂L)W 3 :

+
2

15

(
− 5 + 2λ(−1 + c)

)
∂3W 3

)
(w)(z − w)−1.

(5.6)

6. The structure of Cψ(n,m)

The main result in this section is the explicit realization of the affine coset
Cψ(n,m) of Wψ(n,m) as a simple, one-parameter quotient of W(c, λ) of the
form WIn,m

(c, λ) for an ideal In,m ⊆ C[c, λ].

Theorem 6.1. For m ≥ 1 and n ≥ 0, and for m = 0 and n ≥ 3, Cψ(n,m) ∼=
WIn,m

(c, λ), where In,m is described explicitly via the parametrization

c(ψ) = −(nψ −m− n− 1)(nψ − ψ −m− n+ 1)(nψ + ψ −m− n)

(ψ − 1)ψ
,

λ(ψ) = − (ψ − 1)ψ

(nψ − n−m− 2)(nψ − 2ψ −m− n+ 2)(nψ + 2ψ −m− n)
.

(6.1)

Moreover, after a suitable localization, WIn,m(c, λ) has a singular vector of
the form

W (m+1)(m+n+1) − P (L,W 3, . . . ,W (m+1)(m+n+1)−1)

and no singular vector of lower weight, where P is a normally ordered polyno-
mial in the fields L,W 3, . . . ,W (m+1)(m+n+1)−1, and their derivatives. There-
fore WIn,m

(c, λ) has minimal strong generating type W(2, 3, . . . , (m+1)(m+
n+ 1)− 1).

Remark 6.1. By changing variables, one verifies easily that this truncation
curve is precisely the one for Y0,m,m+n[ψ] given by [116, Eq. 2.14].

In the case m = 0 and n ≥ 3, there is nothing to prove since the
truncation curve for Cψ(n, 0) ∼= Wψ−n(sln) is given by [110, Thm. 7.4], and



140 Thomas Creutzig and Andrew R. Linshaw

agrees with (6.1). It is worth mentioning that in [110], we actually computed
the truncation curve for the coset Com(V k+1(sln), V

k(sln) ⊗ L1(sln)), and
concluded that this was the truncation curve for the W-algebra using [18,
Thm. 8.7]. It is not difficult to compute λ(ψ) for Wψ−n(sln) directly using
the Miura realization, and hence get an independent proof of [18, Thm. 8.7]
for type A.

For the rest of this section, we assume m ≥ 1. Before proceeding with
the proof of Theorem 6.1, we shall outline our strategy. We first show that
Cψ(n,m) is of type W(2, 3, . . . , (m + 1)(m + n + 1) − 1) using its free field
limit. Next, we show that Cψ(n,m) is at worst an extension of a vertex
subalgebra C̃ψ(n,m) which is of type W(2, 3, . . . , N) for some N ≤ (m +
1)(m + n + 1) − 1, and is a one-parameter quotient of W(c, λ). Therefore
Wψ(n,m) is an extension of H⊗ V ψ−m−1(slm)⊗ C̃ψ(n,m).

The key step, which we call the reconstruction argument, is to prove that
if W is any one-parameter quotient of WI(c, λ) for some ideal I with the
property that H⊗ V ψ−m−1(slm)⊗W admits an extension containing fields
{P±,i} transforming as Cm ⊕ (Cm)∗, as well as some mild properties pos-
sessed by Wψ(n,m), then W must be a quotient of WIn,m(c, λ), where In,m
is the ideal given in Theorem 6.1. In particular, this proves that C̃ψ(n,m)
must be a quotient of WIn,m(c, λ).

The final step, which we call the exhaustiveness argument, is to prove
that C̃ψ(n,m) = Cψ(n,m). By finding coincidences between the simple quo-
tient C̃ψ(n,m) and certain principal W-algebras of type A, and making use
of Corollary 3.7, we show that C̃ψ(n,m) has type W(2, 3, . . . , N) for some
N ≥ (m+1)(m+n+1)− 1. It follows that N = (m+1)(m+n+1)− 1 and
that C̃ψ(n,m) = Cψ(n,m). Since Cψ(n,m) is generically simple by Lemma
3.5, we must have Cψ(n,m) ∼= WIn,m

(c, λ).

Lemma 6.1. For m ≥ 1 and n ≥ 0, Cψ(n,m) is of type W(2, 3, . . . , (m +
1)(m+n+1)−1) as a one-parameter vertex algebra. Equivalently, this holds
for generic values of ψ.

Proof. Consider the free field limit W free(n,m) := W free(sln+m, fn,m). Then

W free(n,m) ∼=
{

Oev(m
2, 2)⊗

(⊗n
i=2Oev(1, 2i)

)
⊗ Sev(m,n+ 1), n even,

Oev(m
2, 2)⊗

(⊗n
i=2Oev(1, 2i)

)
⊗Oev(2m,n+ 1), n odd.

In this notation, Oev(m
2, 2) = H(m2) is just the rank m2 Heisenberg

algebra coming from the affine subalgebra, Oev(1, 2i) is the algebra gener-
ated by ωi for i = 2, . . . , n, and the fields {P±,i} generate Sev(m,n + 1) or
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Oev(2m,n+ 1) when n is even or odd, respectively. By Lemma 4.2,

lim
k→∞

Ck(n,m) ∼=
(( n⊗

i=2

Oev(1, 2i)
)
⊗ Sev(m,n+ 1)

)GLm

∼=
( n⊗

i=2

Oev(1, 2i)
)
⊗
(
Sev(m,n+ 1)

)GLm , n even,

(6.2)

lim
k→∞

Ck(n,m) ∼=
(( n⊗

i=2

Oev(1, 2i)
)
⊗Oev(2m,n+ 1)

)GLm

∼=
( n⊗

i=2

Oev(1, 2i)
)
⊗
(
Oev(2m,n+ 1)

)GLm , n odd.

(6.3)

It follows from Theorems 4.6 and 4.9 that
(
Sev(m,n + 1)

)GLm and(
Oev(2m,n+1)

)GLm are both of type W(n+1, n+2, . . . , (m+1)(m+n+1)−
1). Since Oev(1, 4)⊗Oev(1, 6)⊗ · · · ⊗Oev(1, 2n) is of type W(2, 3, . . . , n), it
follows that limψ→∞ Cψ(n,m) is of type W(2, 3, . . . , (m+1)(m+n+1)−1).
Therefore Cψ(n,m) has the same type as a one-parameter vertex algebra.

In addition to the fields L, ω3, . . . , ωn ∈ Cψ(n,m), it is apparent from
the proof of Theorems 4.6 and 4.9 that the additional strong generators ωr

for n+ 1 ≤ r ≤ (m+ 1)(m+ n+ 1)− 1, have the form

ωr =

m∑
i=1

: P+,i(∂r−n−1P−,i) : + · · · ,

where the remaining terms are normally ordered monomials in the fields
{J, ei,j , hk, L, ω3, . . . , ωn} and their derivatives. It is not yet apparent that
Cψ(n,m) is a one-parameter quotient of W(c, λ) because we don’t know
that it is generated by the weight 3 field ω3. Without loss of generality, we
can modify ω3 by subtracting an appropriate multiple of ∂L to make it L-
primary. We then rescale it so that its 6th order pole with itself is c

31, and
we denote this modified field by W 3. We now consider the vertex subalgebra
C̃ψ(n,m) ⊆ Cψ(n,m) generated by W 3.

Lemma 6.2. For m ≥ 1 and n ≥ 0, C̃ψ(n,m) is a quotient of W(c, λ)
for some ideal I, and is therefore of type W(2, 3, . . . , N) for some N ≤
(m+ 1)(m+ n+ 1)− 1.
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Proof. In the case m = 1 and n = 0, Cψ(1, 0) is just the Heisenberg coset of
the rank one βγ-system, which is known to be isomorphic to the Zamolod-
chikov W3-algebra with c = −2 [125]. For m = 1 and n = 1, 2, and 3,
the claim is known by [110, Theorems 7.1, 7.2, and 7.3], respectively. So we
assume that m ≥ 1 and n ≥ 4.

Set W r = W 3
(1)W

r−1, for r ≥ 4. First, for 3 ≤ r ≤ (m+1)(m+n+1)−1,
we can write

W r = λrω
r + · · · , λr ∈ C,

where the remaining terms are normally ordered monomials in {L, ωs| 3 ≤
s < r}. If λr �= 0 for all r, then C̃ψ(n,m) = Cψ(n,m). Otherwise, let N ≥ 3
be the first integer such that λN+1 = 0. Then {L,W 3, . . . ,WN} close under
OPE, so that C̃ψ(n,m) is of type W(2, 3, . . . , N).

Even though Cψ(n,m) is generically simple by Lemma 3.5, it is not
yet apparent that C̃ψ(n,m) is generically simple. However, by [110, Thm.
5.2 and Rem. 5.1], it suffices to prove that the generators {L,W r| 3 ≤
r ≤ 7} satisfy the OPE relations (5.3)-(5.6), as well as (A1)-(A6) of [110];
equivalently, all Jacobi identities (2.8) of type (W i,W j ,W k) for i+j+k ≤ 11
hold as a consequence of (2.4)-(2.7) alone. In this notation, W 2 = L, as in
[110].

By [110, Thm. 6.2], the above condition is automatic if the graded
character of C̃ψ(n,m) coincides with that of W(c, λ) up to weight 8. It
follows from Theorems 4.6 and 4.9 in the cases n even and n odd, re-
spectively, that there are no normally ordered relations in Cψ(n,m) among
{L, ωr| 3 ≤ r ≤ (m + 1)(m + n + 1) − 1} and their derivatives, in weight
below (m + 1)(m + n + 1). Therefore the character of Cψ(n,m) coincides
with that of W(c, λ) in weight up to 8. If N ≥ 8, C̃ψ(n,m) and Cψ(n,m)
have the same graded character up to weight 8, so the conclusion holds.

Finally, suppose that N < 8. Since λN+1 = 0 and λr �= 0 for 3 ≤ r ≤ N ,
there are no nontrivial normally ordered relations among {L,W 3, . . . ,WN}
in weight up to N , since this property holds for the corresponding fields
{L, ω3, . . . , ωN}. Therefore all Jacobi relations among {L,W 3, . . . ,WN} of
type (W i,W j ,W k) for i + j + k ≤ N + 2, must hold as a consequence of
(2.4)-(2.7) alone. It follows that the OPEs W i(z)W j(w) for i + j ≤ N are
the same as those of WI(c, λ) for some ideal I ⊆ C[c, λ].

If we use the same procedure as the construction W(c, λ) given by
[110, Thm. 5.1], beginning with the fields L,W 3, . . . ,WN and the OPEs
W i(z)W j(w) for i + j ≤ N , we can formally define new fields WN+r =
(W 3

(1))
rWN for all r ≥ 1, and then define the OPE algebra of all fields

{L,W 3, . . . ,WN ,WN+r| r ≥ 1} recursively so that they are the same as the
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OPEs in WI(c, λ). In particular, this realizes C̃ψ(n,m) as a one-parameter

quotient of WI(c, λ) by some vertex algebra ideal I containing a field in

weight N + 1 of the form WN+1 − P (L,W 3, . . . ,WN ), where P is a nor-

mally ordered polynomial in L,W 3, . . . ,WN and their derivatives.

Since Cψ(n,m) is at worst an extension of C̃k(n,m), we obtain

Corollary 6.1. For m ≥ 2 and n ≥ 0, Wψ(n,m) is an extension of H ⊗
V ψ−m−1(slm) ⊗ C̃ψ(n,m). Similarly, for m = 1 and n ≥ 0, Wψ(n, 1) is an

extension of H⊗ C̃ψ(n, 1).

6.1. The reconstruction argument

Let W be any vertex algebra arising as a quotient of the algebra W(c, λ)

constructed in [110], with the usual strong generating set {L,W i| i ≥ 3}.
First, we assume that m ≥ 2 and n ≥ 0, and we deal with the case m = 1

and n ≥ 0 later. We are interested in the problem of classifying certain

extensions of H⊗ V ψ−m−1(slm)⊗W . We set the central charge of L to be

c = −(nψ −m− n− 1)(nψ − ψ −m− n+ 1)(nψ + ψ −m− n)

(ψ − 1)ψ
,

and as in Lemma 3.4 we normalize the generator J of H so that

J(z)J(w) ∼ −m(m+ n− nψ)

m+ n
(z − w)−2.

In H⊗ V ψ−m−1(slm)⊗W , the total Virasoro field is T = L+ Lslm + LH.

We now postulate that H ⊗ V ψ−m−1(slm) ⊗ W admits an extension

which has 2m additional even strong generators {P±,i| i = 1, . . . ,m} which

are primary of conformal weight n+1
2 with respect to T , and satisfy

J(z)P±,i(w) ∼ ±P±,i(w)(z − w)−1,

ei,j(z)P
+,k(w) ∼ δj,kP

+,i(w)(z − w)−1,

hi(z)P
+,j(w) ∼ (δ1,j − δi,j)P

+,j(w)(z − w)−1,

ei,j(z)P
−,k(w) ∼ −δi,kP

−,j(w)(z − w)−1,

hi(z)P
−,j(w) ∼ (−δ1,j + δi,j)P

−,j(w)(z − w)−1.

(6.4)
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This forces

L(z)P+,1(w)∼
(
n+ 1

2
− m2 − 1

2m(ψ − 1)
− m+ n

2m(nψ −m− n)

)
P+,1(w)(z − w)−2

+

(
∂P+,1 − m+ n

m(nψ −m− n)
: JP+,1 : − 1

m(ψ − 1)

m−1∑
i=1

: hiP
+,1 :

− 1

ψ − 1

m∑
j=2

: e1,jP
+,j :

)
(w)(z − w)−1.

(6.5)

There are similar expressions for L(z)P+,i(w) for i > 1 and for L(z)P−,j(w),
which we omit because we don’t need them explicitly.

Since the fields {ei,j , hk, L,W i, P±,i} close under OPE, and W 3 com-
mutes with ei,j , hk, the most general OPEs of W 3 with P+,1 is

W 3(z)P+,1(w) ∼ a0P
+,1(w)(z − w)−3 +

(
a1∂P

+,1 + . . .

)
(w)(z − w)−2

+

(
a2 : LP

+,1 : +a3∂
2P+,1 + . . .

)
(w)(z − w)−1,

(6.6)

Here the omitted expressions are not needed. We are going to impose just
three Jacobi identities of type (L,W 3, P+,1), and this will determine the
constants a0, a1, a2 in terms of a3. First, we impose

L(2)(W
3
(1)P

+,1)−W 3
(1)(L(2)P

+,1)− (L(0)W
3)(3)P

+,1 − 2(L(1)W
3)(2)P

+,1

− (L(2)W
3)(1)P

+,1 = 0.

(6.7)

Using the above OPEs (6.4), (6.5), and (6.6), we get

(6.8) − 3a0 + a1 + a1n− (m2 − 1)a1
m(ψ − 1)

− a1(m+ n)

m(nψ −m− n)
= 0.

Next, we impose

L(3)(W
3
(0)P

+,1)−W 3
(0)(L(3)P

+,1)− (L(0)W
3)(3)P

+,1 − 3(L(1)W
3)(2)P

+,1

− 3(L(2)W
3)(1)P

+,1 − (L(3)W
3)(0)P

+,1 = 0.

(6.9)
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We get

− 6a0 + 2a2 + 3a3 +
a2c

2
+ n(2a2 + 3a3)−

(m2 − 1)(2a2 + 3a3)

m(ψ − 1)

− (2a2 + 3a3)(m+ n)

m(nψ −m− n)
= 0.

(6.10)

Finally, we impose

L(2)(W
3
(0)P

+,1)−W 3
(0)(L(2)P

+,1)− (L(0)W
3)(2)P

+,1 − 2(L(1)W
3)(1)P

+,1

− (L(2)W
3)(0)P

+,1 = 0.

(6.11)

Extracting the coefficient of ∂P+,1 yields

(6.12) − 4a1 + 3a2 + 4a3 + 2a3n− 2(m2 − 1)a3
m(ψ − 1)

− 2a3(m+ n)

m(nψ −m− n)
.

Solving (6.8), (6.10), and (6.12), we obtain

a0 =

(nψ −m− n− 2)(nψ −m− n− 1)(nψ + ψ −m− n)(nψ + 2ψ −m− n)

6(ψ − 1)2(nψ −m− n)2
a3,

a1 =
(nψ −m− n− 2)(nψ + 2ψ −m− n)

2(ψ − 1)(nψ −m− n)
a3,

a2 = − 2ψ

(ψ − 1)(nψ −m− n)
a3.

(6.13)

Next, we have

W 4(z)P+,1(w) ∼ b0P
+,1(w)(z − w)−4 + · · · ,

W 5(z)P+,1(w) ∼ b1P
+,1(w)(z − w)−5 + · · · ,

(6.14)

for some constants b0, b1. We will see that by imposing just four Jacobi iden-
tities, the constants a3, b0, b1 are determined up to a sign, and the parameter
λ in W(c, λ) is uniquely determined. First, we impose

W 3
(3)(W

3
(1)P

+,1)−W 3
(1)(W

3
(3)P

+,1)− (W 3
(0)W

3)(4)P
+,1 − 3(W 3

(1)W
3)(3)P

+,1

− 3(W 3
(2)W

3)(2)P
+,1 − (W 3

(3)W
3)(1)P

+,1 = 0.

(6.15)
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This has weight n+1
2 , and is therefore a scalar multiple of P+,1. Using the

OPE relations (5.3)-(5.6) together with (6.4), (6.5), (6.6), and (6.14), we
compute this scalar to obtain

(6.16) 1 + 3a0a1 − b0 + n− m2 − 1

m(ψ − 1)
− m+ n

m(nψ −m− n)
= 0.

Next, we impose

W 3
(4)(W

3
(0)P

+,1)−W 3
(0)(W

3
(4)P

+,1)− (W 3
(0)W

3)(4)P
+,1 − 4(W 3

(1)W
3)(3)P

+,1

− 6(W 3
(2)W

3)(2)P
+,1 − 4(W 3

(3)W
3)(1)P

+,1 − (W 3
(4)W

3)(0)P
+,1 = 0.

(6.17)

Again, this has weight n+1
2 , and is therefore a scalar multiple of P+,1, and

we obtain

(6.18) 1 + 6a0(a2 + 2a3)− 2b0 + n− m2 − 1

m(ψ − 1)
− m+ n

m(nψ −m− n)
= 0.

Next we impose

(6.19) W 3
(0)(W

4
(5)P

+,1)−W 4
(5)(W

3
(0)P

+,1)− (W 3
(0)W

4)(5)P
+,1 = 0,

which yields

1

2

(
− 40a3b0 + 5a0

(
(2 + c)λ− 16

)
+ 4b1

)
− 8a2(mnψ +mψ −m2 −mn−m+ 1)

m(ψ − 1)

− a2(3c+ 8b0) +
8a2(m+ n)

m(nψ −m− n)
= 0.

(6.20)

Finally, we impose
(6.21)
W 3

(1)(W
4
(4)P

+,1)−W 4
(4)(W

3
(1)P

+,1)− (W 3
(0)W

4)(5)P
+,1 − (W 3

(1)W
4)(4)P

+,1,

which yields

(6.22) − 8a1b0 + 5a0
(
(2 + c)λ− 16

)
+ 2b1 = 0.

Substituting the values of a0, a1, a2 in terms of a3 given by (6.13) into the
equations (6.16)-(6.22), and solving for a3, b0, b1, λ yields a unique solution
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for b0 and λ, and a unique solution up to sign for a3 and b1. In particular,

we obtain

λ = − (ψ − 1)ψ

(nψ − n−m− 2)(nψ − 2ψ −m− n+ 2)(nψ + 2ψ −m− n)
,

a3 = ±
√
−2 (ψ − 1)

√
nψ −m− n

r1
,

b0 =
(nψ −m− n− 1)(nψ + ψ −m− n)r2

2(ψ − 1)(nψ −m− n)2(nψ − 2ψ −m− n+ 2)
,

b1 = ±
√
−2 (nψ −m− n− 1)(nψ + ψ −m− n)r3

(ψ − 1)(nψ − 2ψ −m− n+ 2)(nψ −m− n)5/2
√
r1
.

(6.23)

In this notation,

r1 = (nψ − n−m− 2)(nψ − 2ψ −m− n+ 2)(nψ + 2ψ −m− n),

r2 = −6m+m2 − 6n+ 2mn+ n2 + 4ψ + 6mψ + 12nψ − 2mnψ − 2n2ψ

− 6nψ2 + n2ψ2,

r3 = −36m2 − 4m3 + 5m4 − 72mn− 12m2n+ 20m3n− 36n2 − 12mn2

+ 30m2n2 − 4n3 + 20mn3 + 5n4 + 88mψ + 48m2ψ + 4m3ψ + 88nψ

+ 168mnψ + 24m2nψ − 20m3nψ + 120n2ψ + 36mn2ψ − 60m2n2ψ

+ 16n3ψ − 60mn3ψ − 20n4ψ − 16ψ2 − 88mψ2 − 36m2ψ2 − 176nψ2

− 168mnψ2 − 12m2nψ2 − 168n2ψ2 − 36mn2ψ2 + 30m2n2ψ2 − 24n3ψ2

+ 60mn3ψ2 + 30n4ψ2 + 88nψ3 + 72mnψ3 + 120n2ψ3 + 12mn2ψ3

+ 16n3ψ3 − 20mn3ψ3 − 20n4ψ3 − 36n2ψ4 − 4n3ψ4 + 5n4ψ4.

(6.24)

This proves the following

Lemma 6.3. Let m ≥ 2 and n ≥ 0. Suppose that W is some quotient of

W(c, λ) and that H ⊗ V ψ−m−1(slm) ⊗ W admits an extension containing

2m primary fields {P±,i| i = 1, . . . ,m} of conformal weight n+1
2 , satisfying

(6.4), (6.5), (6.6), and (6.14). Then W is in fact a quotient of WIn,m(c, λ) =

W(c, λ)/In,m · W(c, λ) where In,m ⊆ C[c, λ] is the ideal given in Theorem

6.1.
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Remark 6.2. Note that the formula for a3 and b1 involves square root func-

tions, but this is just because we are using the convention of [110] and scaling

W 3 so that its leading pole is c
31. With a different scaling, we can make all

structure constants rational functions of ψ, but we keep this convention for

convenience.

Remark 6.3. The sign ambiguity in formula for a3 and b1 is not essential,

and reflects the Z2-symmetry of W(c, λ) and its quotients.

Next, we show that Lemma 6.3 also holds in the case m = 1 and n ≥ 0.

First, let m = 1 and n ≥ 2, and consider extensions of H ⊗W . Here W is

a one-parameter quotient of W(c, λ) where the Virasoro field L has central

charge

c = −(1 + n)(nψ − n− 2)(nψ − ψ − n)

ψ
,

and the generator J of H satisfies

J(z)J(w) ∼ nψ − n− 1

n+ 1
(z − w)−2.

In H⊗W , the total Virasoro field is T = L+LH. We postulate that H⊗W
admits an extension which has two additional odd strong generators P±

which are primary of conformal weight n+1
2 with respect to T , and satisfy

(6.25) J(z)P±(w) ∼ ±P±(w)(z − w)−1.

This forces

L(z)P+(w) ∼
(
n+ 1

2
− n+ 1

2(nψ − n− 1)

)
P+(w)(z − w)−2

+

(
∂P+ − n+ 1

nψ − n− 1
: JP+ :

)
(w)(z − w)−1.

(6.26)

Next, we have the OPEs (6.6) and (6.14) with undetermined coefficients

a0, a1, a2, a3 and b0, b1, where the terms we don’t need are omitted. By im-

posing the same set of Jacobi relations (6.7), (6.9), (6.11), (6.15), (6.17),

(6.19), (6.21) as above, we find a unique solution b0 and λ, and a unique

solution up to sign for a0, a1, a2, a3 and b1. In particular, Lemma 6.3 holds

in the case m = 1 and n ≥ 2. It is also easy to verify it directly in the cases

m = 1 and n = 0, 1.
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6.2. The exhaustiveness argument

In this subsection, we prove that C̃ψ(n,m) = Cψ(n,m) as one-parameter ver-
tex algebras. Recall that the specialization Cψ0(n,m) of the one-parameter
vertex algebra Cψ(n,m) at ψ = ψ0, can be a proper subalgebra of the coset
Com(V ψ0−m−1(glm),Wψ0(n,m)), but this can only occur at ψ0 =

m+n
n when

J lies in the coset, or for rational numbers ψ0 ≤ 1. By abuse of notation,
we shall use the same notation Cψ(n,m) if ψ is regarded as a complex num-
ber rather than a formal parameter, so that Cψ(n,m) always denotes the
specialization of the one-parameter algebra at ψ ∈ C even if it is a proper
subalgebra of the coset. For all ψ ∈ C, we denote by Cψ(n,m) the simple
quotient of Cψ(n,m). Similarly, for all ψ ∈ C, we denote by C̃ψ(n,m) the
simple quotient of C̃ψ(n,m).

Lemma 6.4. For s ≥ 3, m ≥ 1, and n ≥ 0, we have isomorphisms of simple
vertex algebras

(6.27) C̃ψ(n,m) ∼= Wr(sls), ψ =
m+ n+ s

n
, r = −s+

m+ s

m+ n+ s
.

Proof. This is immediate from the fact that the truncation curves V (In,m)
and V (Is,0) intersect at the corresponding point (c, λ) given by

c = −(s− 1)(ns−m− s)(m+ n+ s+ ns)

(m+ s)(m+ n+ s)
,

λ =
(m+ s)(m+ n+ s)

(s− 2)(2m+ 2s− ns)(2m+ 2n+ 2s+ ns)
.

(6.28)

Corollary 6.2. For m ≥ 1 and n ≥ 0, as a one-parameter vertex algebra
C̃ψ(n,m) is of type W(2, 3, . . . , N), for some N ≥ (m+ 1)(m+ n+ 1)− 1.

Proof. By Corollary 3.7, for ψ sufficiently large,Wr(sls) has a singular vector
in weight (m+1)(m+n+1) and no singular vector in lower weight. Therefore
Wr(sls) is of type W(2, 3, . . . , N) for some N between (m+1)(m+n+1)−
1 and s, so the same holds for C̃ψ(n,m). The universal algebra C̃ψ(n,m)
specialized at this value of ψ cannot truncate below weight N , and therefore
the same holds for the one-parameter algebra C̃ψ(n,m).

Corollary 6.3. For m ≥ 1 and n ≥ 0, C̃ψ(n,m) = Cψ(n,m) as one-
parameter vertex algebras.
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Proof. We have seen that Cψ(n,m) is of type W(2, 3, . . . , (m + 1)(m+ n +
1)−1), and that C̃ψ(n,m) is a subalgebra of Cψ(n,m) of type W(2, 3, . . . , N)
for some N ≥ (m + 1)(m + n + 1) − 1. The only possibility is that N =
(m+ 1)(m+ n+ 1)− 1 and C̃ψ(n,m) = Cψ(n,m).

Proof of Theorem 6.1. This now follows from Lemma 6.1, Lemma 6.3, and
Corollary 6.3, together with the generic simplicity of Cψ(n,m). �

An immediate corollary is that the rational W-algebras of type A at
nondegenerate admissible levels are organized into families of uniform trun-
cation, and these families are labeled by the curves V (In,m). More precisely,
we have

Corollary 6.4. Fix m ≥ 1 and n ≥ 0. Then for all but finitely many values
of s ≥ (m + 1)(m + n + 1) − 1, Wr(sls) for r = −s + m+s

m+n+s , is of type
W(2, 3, . . . , (m+ 1)(m+ n+ 1)− 1).

Proof. Since Cψ(n,m) is of type W(2, 3, . . . , (m + 1)(m + n + 1) − 1) as a
one-parameter vertex algebra, there exists a decoupling relation in weight
(m+ 1)(m+ n+ 1) of the form

(6.29) W (m+1)(m+n+1) = P (L,W 3, . . . ,W (m+1)(m+n+1)−1),

for some normally ordered polynomial P in L,W 3, . . . ,W (m+1)(m+n+1)−1

and their derivatives, possibly after localization. Starting from this relation
and applying the operator (W 3)(1) repeatedly, one can construct similar
decoupling relations

WN = PN (L,W 3, . . . ,W (m+1)(m+n+1)−1), N > (m+ 1)(m+ n+ 1),

without introducing any additional poles. Therefore these decoupling rela-
tions exists for all but finitely many values of ψ. In particular, for all but
finitely many of the values of ψ appearing in (6.27), both sides are of the
desired type.

We conjecture that Corollary 6.4 in fact holds for all s ≥ (m + 1)(m +
n + 1) − 1, but we cannot prove this without explicitly determining the
denominators that appear in (6.29). For m = 1 and n = 3, 4, this relation
was determined explicitly in [17, 52], and our conjecture holds in these cases.

Finally, we can use Theorem 6.1 to classify all coincidences between the
simple quotient Cψ(n,m) and principal W-algebras Wr(sls) for s ≥ 3. When

ψ =
m+ n− 1

n
,

m+ n

n− 1
,

m+ n+ 1

n+ 1
,
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we have c = −2, so by [110, Thm. 10.1], Cψ(n,m) is isomorphic to the

Zamolodchikov W3-algebra. Similarly, for

ψ =
m+ n− 1

n− 1
,

m+ n

n+ 1
,

m+ n+ 1

n
,

we have c = 0 so Cψ(n,m) ∼= C. For all other values of ψ where the

parametrization (6.1) is defined, the isomorphisms Cψ(n,m) ∼= Wr(sls) cor-

respond to intersection points on the curves V (In,m) and V (Is,0) by [110,

Cor. 10.1]. At the points where the parametrization is not defined, Cψ(n,m)

still exists but is not a quotient of W(c, λ), and we need a different method

to determine if Cψ(n,m) ∼= Wr(sls) for some r and s.

Corollary 6.5. For all m ≥ 1 and n ≥ 0, we have the following isomor-

phisms Cψ(n,m) ∼= Wr(sls) for s ≥ 3:

1. ψ =
m+ n+ s

n
, r = −s+

m+ s

m+ n+ s
,

2. ψ =
m+ n

n+ s
, r = −s+

s−m

s+ n
,

3. ψ =
m+ n− s

n− s
, r = −s+

m+ n− s

n− s
.

Moreover, aside from the cases c = 0 and c = −2 and the critical levels

ψ = 1 for slm, and ψ = 0 for Wψ(n,m), these account for all coincidences

Cψ(n,m) ∼= Wr(sls) for s ≥ 3, with the following possible exceptions:

1. ψ =
m+ n+ 2

n
, s =

2n

2 +m
∈ N≥3,

2. ψ =
m+ n− 2

n− 2
, s =

2m

n− 2
∈ N≥3.

Proof. We first exclude the values

(6.30) ψ =
m+ n+ 2

n
,

m+ n− 2

n− 2
,

m+ n

n+ 2
,

since it follows from the parametrization (6.1) that at these points, Cψ(n,m)

is not obtained as a quotient of WIn,m(c, λ).

By [110, Cor. 10.1], aside from the cases c = 0,−2, all remaining isomor-

phisms Cψ(n,m) ∼= Wr(sls) correspond to intersection points on the curves
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V (In,m) and V (Is,0). There are three intersection points (c, λ), namely,(
− (s− 1)(ns−m− s)(m+ n+ s+ ns)

(m+ s)(m+ n+ s)
,

− (m+ s)(m+ n+ s)

(s− 2)(ns− 2m− 2s)(2m+ 2n+ 2s+ ns)

)
,

(
(s− 1)(m− s+ms+ ns)(n+ s+ms+ ns)

(m− s)(n+ s)
,

(m− s)(n+ s)

(s− 2)(2m− 2s+ms+ ns)(2n+ 2s+ms+ ns)

)
,

(
(s− 1)(n− s−ms)(m+ n− s+ms)

(n− s)(m+ n− s)
,

(n− s)(m+ n− s)

(s− 2)(2n− 2s−ms)(2m+ 2n− 2s+ms)

)
,

(6.31)

as long as n,m, s are such that these points are defined. It is immediate that
the above isomorphisms all hold, and that our list is complete except for
possible coincidences at the excluded points (6.30).

For ψ = m+n+2
n , Cψ(n,m) has central charge c = − (2n−2−m)(2+m+3n)

(2+m)(2+m+n) .

Recall that Wr(sls) has a singular vector in weight 3 only for c = 0 and

c = − (s−1)(3s+2)
s+2 . Therefore as long as 2n

2+m is not an integer s ≥ 3, there
are no integers for which Wr(sls) has a singular vector in weight 3 at the
above central charge, and we have no coincidence at this point. However, if
s = 2n

2+m ∈ N≥3, it is possible that we have a coincidence at this point.

For ψ = m+n−2
n−2 , Cψ(n,m) has central charge c = (n−2−2m)(n−2+3m)

(n−2)(m+n−2) . By

the same argument, there is no coincidence at this point unless s = 2m
n−2 ∈

N≥3, but in these cases it is possible to have a coincidence.

For ψ = m+n
n+2 , Cψ(n,m) has central charge c = (3m+2n−2)(2m+3n+2)

(m−2)(2+n) . By

the same argument, there is no coincidence at this point unless m = 1 and
s = 2(n + 1). A priori, it is possible that C(n+1)/(n+2)(n, 1) is isomorphic

to Wr(sl2(n+1)) for r = −2(n + 1) + n+1
n+2 , which has central charge c =

− (2n+1)(3n+4)
n+2 . However, C(n+1)/(n+2)(n, 1) is known to be isomorphic to the

singlet algebra of type W(2, 2n+ 3) [7], whereas Wr(sl2(n+1)) is isomorphic
to the Virasoro algebra. This follows from the fact that Wr(sl2(n+1)) is
generated by its weight 2 and 3 subspaces [24, Prop. 5.2], but the weight 3
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field is singular. Hence there are no additional coincidences for m = 1 and

ψ = n+1
n+2 .

Remark 6.4. For the first family above, if we specialize to ψ = m and

s = mn−m− n, we obtain

Cm(n,m) ∼= Wr(slmn−m−n), r = −(mn−m− n) +
m− 1

m
.

The case n = 2, i.e., Cm(2,m) ∼= W−m−2+m−1

m
(slm−2) is closely related to

the conjecture that Com(Lψ−m−1(glm),Wψ(n,m)) ∼= W−m−2+m−1

m
(slm−2)

[55, Conj. 4.3.2]. This conjecture implies that ordinary modules of slm+2 at

level −2 have vertex tensor category structure.

We now consider the case m = 1, so that

Cψ(n, 1) ∼= Com(H,Wψ−n−1(sln+1, fsubreg)).

Specializing Theorem 6.1 to the case m = 1 proves [110, Conj. 9.5], which

gave a conjectural description of the truncation curve. Therefore [110, Conj.

10.2], which classifies coincidences between Cψ(n, 1) and principalW-algebras

of type A, is now a theorem as well. In particular, since Cψ(n, 1) is isomor-

phic to Com(H,Wψ−n−1(sln+1, fsubreg), we obtain the following result which

was conjectured originally in [31].

Corollary 6.6. For all n ≥ 1, Com(H,Wψ−n−1(sln+1, fsubreg)) ∼= Wr(sls),

where ψ = n+s+1
n and r = −s+ s+1

s+n+1 .

Finally, we consider the case n = 2 and m ≥ 2, so that Cψ(2,m) is just

the affine coset of the minimal W-algebra of slm+2. Specializing Theorem

6.1 to this case proves the conjectural description of the truncation curve

given by [110, Conj. 9.2]. This proves [110, Conj. 9.1], which is originally

due to Kawasetsu [99], as well as the classification of coincidences between

Cψ(2,m) and principal W-algebras of type A given by [110, Conj. 10.1].

7. The structure of Dψ(n,m)

The main goal in this section is to realize the coset Dψ(n,m) of Vψ(n,m)

as a simple, one-parameter quotient of W(c, λ) of the form WJn,m
(c, λ) for

some ideal Jn,m.
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Theorem 7.1. For m ≥ 1 and n ≥ 1, and for m = 0 and n ≥ 3, Dψ(n,m) ∼=
WJn,m

(c, λ) where Jn,m is described explicitly via the parametrization

c(ψ) = −(nψ +m− n− 1)(nψ − ψ +m− n+ 1)(nψ + ψ +m− n)

(ψ − 1)ψ
,

λ(ψ) = − (ψ − 1)ψ

(nψ +m− n− 2)(nψ − 2ψ +m− n+ 2)(nψ + 2ψ +m− n)
.

(7.1)

Moreover, after a suitable localization, WJn,m(c, λ) has a singular vector of

the form

W (m+1)(n+1) − P (L,W 3, . . . ,W (m+1)(n+1)−1)

and no singular vector of lower weight, where P is a normally ordered polyno-

mial in the fields L,W 3, . . . ,W (m+1)(n+1)−1, and their derivatives. Therefore

WJn,m
(c, λ) has minimal strong generating type W(2, 3, . . . , (m+1)(n+1)−

1).

As in the previous section, there is nothing to prove in the casem = 0 and

n ≥ 3 since Dψ(n, 0) = Vψ(n,m) ∼= Wψ−n(sln), so for the rest of this section

we assume m ≥ 1. The strategy is the same as the proof of Theorem 6.1. We

first show thatDψ(n,m) is of typeW(2, 3, . . . , (m+1)(n+1)−1) using its free

field limit. Next, we show that Dψ(n,m) is at worst an extension of a vertex

subalgebra D̃ψ(n,m) which is of type W(2, 3, . . . , N) for some N ≤ (m +

1)(n+1)−1, and is a one-parameter quotient of W(c, λ). Therefore Vψ(n,m)

is an extension of H ⊗ V −ψ−m+1(slm) ⊗ D̃k(c, λ). A similar reconstruction

argument then shows that if W is any one-parameter quotient of WI(c, λ)

for some ideal I with the property that H⊗ V −ψ−m+1(slm)⊗W admits an

extension containing odd fields {P±,i} transforming as Cm⊕ (Cm)∗, then W
must be a quotient of WJn,m(c, λ), where Jn,m is the ideal given in Theorem

7.1. In particular, D̃ψ(n,m) must be a quotient of WJn,m(c, λ). Finally, we

use a similar exhaustiveness argument to prove that D̃ψ(n,m) = Dψ(n,m).

Lemma 7.1. For m ≥ 1 and n ≥ 1, Dψ(n,m) is of type W(2, 3, . . . , (m +

1)(n+1)−1) as a one-parameter vertex algebra. Equivalently, this holds for

generic values of ψ.

Proof. First, suppose thatm �= n, and recall the free field limit V free(n,m) :=
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W free(sln|m, fn|m). Then V free(n,m) ∼=

{
Oev(m

2, 2)⊗
(⊗n

i=2Oev(1, 2i)
)
⊗ Sodd(m,n+ 1), n odd,

Oev(m
2, 2)⊗

(⊗n
i=2Oev(1, 2i)

)
⊗Oodd(2m,n+ 1), n even.

Here Oev(m
2, 2) = H(m2) is just the rank m2 Heisenberg algebra coming

from the affine subalgebra, Oev(1, 2i) is the algebra generated by ωi for

i = 2, . . . , n, and the fields {P±,i} generate Sodd(m,n+1) or Oodd(2m,n+1)

when n is odd or even, respectively. By Lemma 4.2,

lim
ψ→∞

Dψ(n,m) ∼=
(( n⊗

i=2

Oev(1, 2i)
)
⊗ Sodd(m,n+ 1)

)GLm

∼=
( n⊗

i=2

Oev(1, 2i)
)
⊗
(
Sodd(m,n+ 1)

)GLm , n odd,

(7.2)

lim
ψ→∞

Dψ(n,m) ∼=
(( n⊗

i=2

Oev(1, 2i)
)
⊗Oodd(2m,n+ 1)

)GLm

∼=
( n⊗

i=2

Oev(1, 2i)
)
⊗
(
Oodd(2m,n+ 1)

)GLm , n even.

(7.3)

It follows from Theorems 4.7 and 4.8 that
(
Sodd(m,n + 1)

)GLm and(
Oodd(2m,n+1)

)GLm are both of type W(n+1, n+2, . . . , (m+1)(n+1)−1).

SinceOev(1, 4)⊗Oev(1, 6)⊗· · ·⊗Oev(1, 2n) is of typeW(2, 3, . . . , n), it follows

that limk→∞Dψ(n,m) is of type W(2, 3, . . . , (m+ 1)(n+ 1)− 1). Therefore

Dψ(n,m) has the same type as a one-parameter vertex algebra.

Finally, we consider the casem = n. Then the free field limit V free(n, n) :=

W free(psln|n, fn|n) requires only a slight modification: V free(n, n) ∼=

{
Oev(m

2 − 1, 2)⊗
(⊗n

i=2Oev(1, 2i)
)
⊗ Sodd(n, n+ 1), n odd,

Oev(m
2 − 1, 2)⊗

(⊗n
i=2Oev(1, 2i)

)
⊗Oodd(2n, n+ 1), n even.
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Then we have

lim
ψ→∞

Dψ(n, n) ∼=
(( n⊗

i=2

Oev(1, 2i)
)
⊗ Sodd(n, n+ 1)

)SLn×GL1

∼=
( n⊗

i=2

Oev(1, 2i)
)
⊗
(
Sodd(n, n+ 1)

)GLn , n odd,

(7.4)

lim
ψ→∞

Dψ(n, n) ∼=
(( n⊗

i=2

Oev(1, 2i)
)
⊗Oodd(2n, n+ 1)

)SLn×GL1

∼=
( n⊗

i=2

Oev(1, 2i)
)
⊗
(
Oodd(2n, n+ 1)

)GLn , n even.

(7.5)

The rest of the argument is the same as the case m �= n.

As in the previous section, we modify the weight 3 field ω3 ∈ Dψ(n,m)
by subtracting an appropriate a multiple of ∂L to make it L-primary. We
then rescale it so that its 6th order pole with itself is c

31, and we denote this

modified field by W 3. We now consider the vertex subalgebra D̃ψ(n,m) ⊆
Dψ(n,m) generated by W 3.

The proof of the next lemma is the same as the proof of Lemma 6.2.

Lemma 7.2. For m ≥ 1 and n ≥ 1, D̃ψ(n,m) is a quotient of W(c, λ)
for some ideal J , and is therefore of type W(2, 3, . . . , N) for some N ≤
(m+ 1)(n+ 1)− 1.

Since Dψ(n,m) is at worst an extension of D̃ψ(n,m), we obtain

Corollary 7.1. For m ≥ 2 and n ≥ 1, and m �= n, Vψ(n,m) is an extension
of H⊗V −ψ−m+1(slm)⊗D̃ψ(n,m). Similarly, for m = 1 and n ≥ 2, Vψ(n, 1)
is an extension of H ⊗ D̃ψ(n, 1). Finally, for m = n ≥ 1, Vψ(n, n) is an
extension of V −ψ−n+1(sln)⊗ D̃ψ(n, n).

7.1. The reconstruction argument

Let W be any vertex algebra arising as a one-parameter quotient of W(c, λ),
with the usual strong generating set {L,W i| i ≥ 3}. First, we assume that
m ≥ 2, n ≥ 1, and m �= n. We shall deal with the cases m = 1 and n ≥ 2,
and m = n ≥ 1 separately. We set the central charge of L to be

c = −(nψ +m− n− 1)(nψ − ψ +m− n+ 1)(nψ + ψ +m− n)

(ψ − 1)ψ
,
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and we normalize the generator J of H so that

J(z)J(w) ∼ m(nψ +m− n)

m− n
(z − w)−2.

In H⊗ V −ψ−m+1(slm)⊗W , the total Virasoro field is T = L+ Lslm + LH.
We postulate that H ⊗ V −ψ−m+1(slm) ⊗W admits an extension which

has additionally 2m odd strong generators {P±,i| i = 1, . . . ,m} which are
primary of conformal weight n+1

2 with respect to T , and satisfy

J(z)P±,i(w) ∼ ±P±,i(w)(z − w)−1,

ei,j(z)P
+,k(w) ∼ δj,kP

+,i(w)(z − w)−1,

hi(z)P
+,j(w) ∼ (δ1,j − δi,j)P

+,j(w)(z − w)−1,

ei,j(z)P
−,k(w) ∼ −δi,kP

−,j(w)(z − w)−1,

hi(z)P
−,j(w) ∼ (−δ1,j + δi,j)P

−,j(w)(z − w)−1.

(7.6)

This forces

L(z)P+,1(w)∼
(
n+ 1

2
+

m2 − 1

2m(ψ − 1)
+

n−m

2m(nψ +m− n)

)
P+,1(w)(z − w)−2

+

(
∂P+,1 +

n−m

m(nψ +m− n)
: JP+,1 : +

1

m(ψ − 1)

m−1∑
i=1

: hiP
+,1 :

+
1

ψ − 1

m∑
j=2

: e1,jP
+,j :

)
(w)(z − w)−1.

(7.7)

There are similar expressions for L(z)P+,i(w) for i > 1, and L(z)P−,j(w),
which we omit. Since {ei,j , hk, L,W i, P±,i} close under OPE, and W 3 com-
mutes with ei,j , hk, the most general OPEs of W 3 with P+,1 is

W 3(z)P+,1(w) ∼ a0P
+,1(w)(z − w)−3 +

(
a1∂P

+,1 + . . .

)
(w)(z − w)−2

+

(
a2 : LP

+,1 : +a3∂
2P+,1 + . . .

)
(w)(z − w)−1,

(7.8)

Here the omitted expressions are not needed. As in the previous section, we
impose three Jacobi identities of type (L,W 3, P+,1) in order to express the
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constants a0, a1, a2 in terms of a3. First, we impose (6.7), and using (7.6),
(7.7), and (7.8), we get

(7.9) − 3a0 + a1 + a1n+
(m2 − 1)a1
m(ψ − 1)

+
a1(n−m)

m(nψ +m− n)
= 0.

Next, we impose (6.9), and we get

− 6a0 + 2a2 + 3a3 +
a2c

2
+ n(2a2 + 3a3) +

(m2 − 1)(2a2 + 3a3)

m(ψ − 1)

+
(2a2 + 3a3)(n−m)

m(nψ +m− n)
= 0.

(7.10)

Finally, we impose (6.11) and we extract the coefficient of ∂P+,1, obtaining

(7.11) − 4a1 + 3a2 + 4a3 + 2a3n+
2(m2 − 1)a3
m(ψ − 1)

+
2a3(n−m)

m(nψ +m− n)
.

Solving (7.9), (7.10), and (7.11), we obtain

a0 =

(nψ +m− n− 2)(nψ +m− n− 1)(nψ + ψ +m− n)(nψ + 2ψ +m− n)

6(ψ − 1)2(nψ +m− n)2
a3,

a1 =
(nψ +m− n− 2)(nψ + 2ψ +m− n)

2(ψ − 1)(nψ +m− n)
a3,

a2 = − 2ψ

(ψ − 1)(nψ +m− n)
a3.

(7.12)

Next, we have

W 4(z)P+,1(w) ∼ b0P
+,1(w)(z − w)−4 + · · · ,

W 5(z)P+,1(w) ∼ b1P
+,1(w)(z − w)−5 + · · · ,

(7.13)

for some constants b0, b1. By imposing four Jacobi identities, the constants
a3, b0, b1 are determined up to a sign, and the parameter λ in W(c, λ) is
uniquely determined. First, we impose (6.15). This has weight n+1

2 , and
is therefore a scalar multiple of P+,1. Using the OPE relations (5.3)-(5.6)
together with (7.6), (7.7), (7.8), and (7.13), we compute this scalar to obtain

(7.14) 1 + 3a0a1 − b0 + n+
m2 − 1

m(ψ − 1)
+

n−m

m(nψ +m− n)
= 0.
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Next, we impose (6.17). Again, this has weight n+1
2 , and is therefore a scalar

multiple of P+,1. We obtain

(7.15) 1 + 6a0(a2 + 2a3)− 2b0 + n+
m2 − 1

m(ψ − 1)
+

n−m

m(nψ +m− n)
= 0.

Next we impose (6.19), which yields

1

2

(
− 40a3b0 + 5a0

(
(2 + c)λ− 16

)
+ 4b1

)
+

8a2(1 +m−m2 +mn−mψ −mnψ)

m(ψ − 1)

− a2(3c+ 8b0) +
8a2(n−m)

m(nψ +m− n)
= 0.

(7.16)

Finally, we impose (6.21), which yields

(7.17) − 8a1b0 + 5a0
(
(2 + c)λ− 16

)
+ 2b1 = 0.

Substituting the values of a0, a1, a2 in terms of a3 given by (7.12) into the

equations (7.14)-(7.17), and solving for for a3, b0, b1, λ yields a unique solu-

tion for b0 and λ, and a unique solution up to sign for a3 and b1. In particular,

we obtain

λ = − (ψ − 1)ψ

(nψ +m− n− 2)(nψ − 2ψ +m− n+ 2)(nψ + 2ψ +m− n)
,

a3 = ±
√
−2 (ψ − 1)

√
nψ +m− n

r1
,

b0 =
(nψ +m− n− 1)(nψ + ψ +m− n)r2

2(ψ − 1)(nψ +m− n)2(nψ − 2ψ +m− n+ 2)
,

b1 = −±
√
−2 (nψ +m− n− 1)(nψ + ψ +m− n)r3

(ψ − 1)(nψ +m− n)5/2(nψ − 2ψ +m− n+ 2)
√
r1
.

(7.18)
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In this notation,

r1 = (nψ +m− n− 2)(nψ − 2ψ +m− n+ 2)(nψ + 2ψ +m− n),

r2 = 6m+m2 − 6n− 2mn+ n2 + 4ψ − 6mψ + 12nψ + 2mnψ − 2n2ψ

− 6nψ2 + n2ψ2,

r3 = −36m2 + 4m3 + 5m4 + 72mn− 12m2n− 20m3n− 36n2 + 12mn2

+ 30m2n2 − 4n3 − 20mn3 + 5n4 − 88mψ + 48m2ψ − 4m3ψ + 88nψ

− 168mnψ + 24m2nψ + 20m3nψ + 120n2ψ − 36mn2ψ − 60m2n2ψ

+ 16n3ψ + 60mn3ψ − 20n4ψ − 16ψ2 + 88mψ2 − 36m2ψ2 − 176nψ2

+ 168mnψ2 − 12m2nψ2 − 168n2ψ2 + 36mn2ψ2 + 30m2n2ψ2 − 24n3ψ2

− 60mn3ψ2 + 30n4ψ2 + 88nψ3 − 72mnψ3 + 120n2ψ3 − 12mn2ψ3

+ 16n3ψ3 + 20mn3ψ3 − 20n4ψ3 − 36n2ψ4 − 4n3ψ4 + 5n4ψ4.

(7.19)

This proves the following

Lemma 7.3. Let m,n ≥ 2 and m �= n. Suppose that W is some quotient of

W(c, λ) and that H⊗V −ψ−m+1(slm)⊗W admits an extension containing 2m

odd primary fields {P±,i| i = 1, . . . ,m} of conformal weight n+1
2 , satisfying

(7.6), (7.7), (7.8), and (7.13). Then W is in fact a quotient of WJn,m(c, λ) =

W(c, λ)/Jn,m · W(c, λ) where Jn,m ⊆ C[c, λ] is the ideal given in Theorem

7.1.

As in the previous section, the formula for a3 involves square root func-

tions, but this is just because we scaling W 3 so that its leading pole is c
31, as

in [110]. As before, the sign ambiguity in the formula for a3 and b1 reflects

the Z2-symmetry of W(c, λ) and its quotients.

Next, we show that Lemma 7.3 also holds in the case m = 1 and n ≥ 1.

First we let m = 1 and n ≥ 2, and consider extensions of H ⊗W . Here W
is a one-parameter quotient of W(c, λ) where Virasoro field L has central

charge

c = −n(nψ − ψ − n+ 2)(nψ + ψ − n+ 1)

ψ
,

and the generator J of H satisfies

J(z)J(w) ∼ −nψ − n+ 1

n− 1
(z − w)−2.
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In H⊗W , the total Virasoro field is T = L+LH. We postulate that H⊗W
admits an extension which has additional odd strong generators P± which

are primary of conformal weight n+1
2 with respect to T , and satisfy

(7.20) J(z)P±(w) ∼ ±P±(w)(z − w)−1.

This forces

L(z)P+(w) ∼
(
n+ 1

2
+

n− 1

2(nψ − n+ 1)

)
P+(w)(z − w)−2

+

(
∂P+ +

n− 1

(nψ + 1− n)
: JP+ :

)
(w)(z − w)−1.

(7.21)

Next, we have the OPEs (7.8) and (7.13) with undetermined coefficients

a0, a1, a2, a3 and b0, b1. By imposing the same set of Jacobi relations (6.7),

(6.9), (6.11), (6.15), (6.17), (6.19), (6.21) as above, we find a unique solu-

tion b0 and λ, and a unique solution up to sign for a0, a1, a2, a3 and b1. In

particular, Lemma 7.3 holds in the case m = 1 and n ≥ 2.

Finally, we consider the case m,n ≥ 2 and m = n. We now consider

extensions of V −ψ−n+1(sln) ⊗ W , where W is a one-parameter quotient of

W(c, λ) with central charge

c = −(n+ 1)(nψ − 1)(nψ − ψ + 1)

ψ − 1
.

In V −ψ−n+1(sln)⊗W , the total Virasoro field is T = L+Lsln . We postulate

that V −ψ−n+1(sln) ⊗ W admits an extension which has 2n additional odd

strong generators P±,i which are primary of conformal weight n+1
2 with

respect to T , and satisfy

ei,j(z)P
+,k(w) ∼ δj,kP

+,i(w)(z − w)−1,

hi(z)P
+,j(w) ∼ (δ1,j − δi,j)P

+,j(w)(z − w)−1,

ei,j(z)P
−,k(w) ∼ −δi,kP

−,j(w)(z − w)−1,

hi(z)P
−,j(w) ∼ (−δ1,j + δi,j)P

−,j(w)(z − w)−1.

(7.22)
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This forces

L(z)P+,1(w) ∼
(
n+ 1

2
+

n2 − 1

2n(ψ − 1)

)
P+,1(w)(z − w)−2

+

(
∂P+,1 +

1

n(ψ − 1)

m−1∑
i=1

: hiP
+,1 : +

1

ψ − 1

m∑
j=2

: e1,jP
+,j :

)
(w)(z − w)−1.

(7.23)

There are similar expressions for L(z)P±,i(w) which we omit. As usual, we

have the OPEs (7.8) and (7.13) with undetermined coefficients a0, a1, a2, a3
and b0, b1. By imposing the same set of Jacobi relations as above, we find a

unique solution b0 and λ, and a unique solution up to sign for a0, a1, a2, a3
and b1. In particular, Lemma 7.3 holds in the case m = n and n ≥ 2. It is

also easy to verify it directly in the case m = n = 1.

7.2. The exhaustiveness argument

In this subsection, we prove that D̃ψ(n,m) = Dψ(n,m) as one-parameter

vertex algebras. Recall that the specialization Dψ0(n,m) of Dψ(n,m) at ψ =

ψ0, can be a proper subalgebra of the coset Com(V −ψ0−m+1(glm),Vψ0(n,m))

in the case n �= m, or of the orbifold Com(V −ψ0−n+1(sln),Vψ0(n, n))GL1 in

the case n = m, but this can only occur for rational numbers ψ0 ≤ 1, or

when ψ0 = n−m
n in the case n �= m, since J then lies in the coset. As

before, we use the same notation Dψ(n,m) if ψ is regarded as a complex

number rather than a formal parameter, so that Dψ(n,m) always denotes

the specialization of the one-parameter algebra at ψ ∈ C even if it is proper

subalgebra of the coset. For all ψ ∈ C, we denote by Dψ(n,m) the simple

quotient of Dψ(n,m). Similarly, for all ψ ∈ C, we denote by D̃ψ(n,m) the

simple quotient of D̃ψ(n,m).

Lemma 7.4. For s ≥ 3, m ≥ 1, and n ≥ 1, we have isomorphisms of simple

vertex algebras

D̃ψ(n,m) ∼= Wr(sls), ψ =
n−m

n+ s
, r = −s+

m+ s

n+ s
.

Proof. This is immediate from the fact that the truncation curves V (Jn,m)
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and V (Is,0) intersect at the corresponding point (c, λ) given by

c = −(s− 1)(ms− ns− n− s)(m+ s+ms− ns)

(m+ s)(n+ s)
,

λ = − (m+ s)(n+ s)

(s− 2)(ms− ns− 2n− 2s)(2m+ 2s+ms− ns)
.

(7.24)

By the same argument as the proof of Corollary 6.2, we obtain

Corollary 7.2. For m ≥ 1 and n ≥ 1, as a one-parameter vertex algebra,

D̃ψ(n,m) is of type W(2, 3, . . . , N), for some N ≥ (m+ 1)(n+ 1)− 1.

Since Dψ(n,m) is of type W(2, 3, . . . , (m+1)(n+1)− 1), and D̃ψ(n,m)

is a subalgebra of Dk(n,m) of type W(2, 3, . . . , N) for some N ≥ (m+1)(n+

1)− 1, we must have N = (m+ 1)(n+ 1)− 1, and we immediately obtain

Corollary 7.3. For m ≥ 1 and n ≥ 1, D̃ψ(n,m) = Dψ(n,m) as one-

parameter vertex algebras.

Proof of Theorem 7.1. This now follows from Lemma 7.1, Lemma 7.3, and

Corollary 7.3, together with the generic simplicity of Dψ(n,m). �

8. Proof of main theorem

Finally, we are ready to prove the main result of this paper, Theorem 1.1.

Proof of Theorem 1.1. In all cases where Cψ(n,m) and Dψ(n,m) arise as quo-

tients of W(c, λ), the statement follows immediately from the parametriza-

tions of In,m and Jn,m given by Theorems 6.1 and 7.1, together with [110,

Cor. 10.2] which says that the simple one-parameter quotients of W(c, λ)

are in bijection with the set of truncation curves.

In the case Dψ(2, 0) ∼= Cψ−1

(2, 0) ∼= Dψ′
(0, 2), the first isomorphism is

just Feigin-Frenkel duality for the Virasoro algebra, and the second follows

from [18, Thm. 8.7] for g = sl2.

Finally, the cases Dψ(1, 0) ∼= Cψ−1

(1, 0) ∼= Dψ′
(0, 1) and Dψ(0, 0) ∼=

Cψ−1

(0, 0) ∼= Dψ′
(0, 0) hold trivially because all these vertex algebras are

just C. �
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9. Uniqueness and reconstruction

In this section, we prove a strong uniqueness theorem for the W-algebras
Wψ(n,m) and W-superalgebras Vψ(n,m). As a corollary, in the case m = 1,
we exhibit Wψ(sln+1, fsubreg) as a simple current extension of VL ⊗Wr(sls),
in the case ψ = n+s+1

n and r = −s+ s+1
s+n+1 , where s ≥ 3 and s+1, s+n+1

coprime. Here VL is the lattice vertex algebra for L =
√

s(n+ 1) Z. This
gives a new and independent proof of Arakawa and van Ekeren’s recent result
that Wk(sln+1, fsubreg) is rational for these values of k = ψ − n − 1 [21]. In
the case m > 1, we conjecture that for ψ = m+n+s

n , H ⊗ Lψ−m−1(slm)
embeds in Wψ(n,m), which by Corollary 6.5 and [16, Lemma 2.1] would
imply that Com(H ⊗ Lψ−m−1(slm),Wψ(n,m)) ∼= Wr(sls) for ψ = m+n+s

n
and r = −s+ m+s

m+n+s . We indicate how our uniqueness theorem will be used
to prove this conjecture in future work.

Theorem 9.1. For m ≥ 1 and n ≥ 0, the full OPE algebra of Wψ(n,m) is
determined completely from the structure of WIn,m

(c, λ), the normalization
of J , the action of glm on the generators {P±,i}, and the nondegeneracy
condition

P+,i
(n) P

−,j = δi,j1.

In particular, for m ≥ 2, if the generator J of H is normalized as in
Lemma 3.4, and Aψ(n,m) is a one-parameter vertex algebra which extends
H⊗V ψ−m−1(slm)⊗WIn,m

(c, λ) by even fields {P±,i| i = 1, . . . ,m} of confor-
mal weight n+1

2 which are primary with respect to H⊗V ψ−m−1(slm) as well
as the total Virasoro field T = L+ Lslm + LH, then Aψ(n,m) ∼= Wψ(n,m).

Similarly, if m = 1 and J is normalized as in Lemma 3.4, and Aψ(n, 1)
is a one-parameter vertex algebra which extends H ⊗ WIn,1

(c, λ) by even
fields {P±} of conformal weight n+1

2 which are primary with respect to the
action of H as well as the total Virasoro field T = L+LH, then Aψ(n, 1) ∼=
Wψ(n, 1).

Proof. Suppose first that m > 1. Let Aψ(n,m) be a vertex algebra extension
of H⊗ V ψ−m−1(slm) ⊗WIn,m

(c, λ) by fields {P±,i| i = 1, . . . ,m} satisfying
the above properties. Recall that the generator W 3 ∈ WIn,m

(c, λ) is nor-
malized so that W 3

(5)W
3 = c

31, and W i = W 3
(1)W

i−1 for i = 4, . . . , n. Our

assumptions imply that (6.4), (6.5), (6.6), and (6.14) must hold, as well as
the formulas (6.13) and (6.23).

First, we claim that the OPE W 3(z)P+,1(w) is completely determined
by known OPEs up to the sign of a3; in particular, all terms appearing
in this OPE are linear in a3, and are given by a3f(ψ) for some algebraic
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function f(ψ). By weight considerations, we only need to compute W 3
(0)P

+,1

and W 3
(1)P

+,1, since W 3
(2)P

+,1 = a0P
+,1 and a0 has been computed above.

We must have

W 3
(1)P

+,1 = a1∂P
+,1 +

m∑
j=2

λj : e1,jP
+,j : +

m−1∑
i=1

μi : hiP
+,1 :,

for constants λj , μi. Using the fact that

J(1)(W
3
(1)P

+,1) = 0, (ej,1)(1)(W
3
(1)P

+,1) = 0, (hi)(1)(W
3
(1)P

+,1) = 0,

J(1)∂P
+,1 = P+,1, (ej,1)(1)∂P

+,1 = P+,j , (hi)(1)∂P
+,1 = P+,1,

(9.1)

the constants λj , μi are uniquely determined. Finally, W 3
(0)P

+,1 is uniquely
determined from the identity

L(2)(W
3
(1)P

+,1)−W 3
(1)(L(2)P

+,1)−
2∑

i=0

(L(i)W
3)(3−i)P

+,1 = 0.

Since {P+,i| i = 1, . . . ,m} is irreducible as an slm-module, by act-
ing by elements of V ψ−m−1(slm) on W 3

(r)P
+,1 for r = 0, 1, 2, the OPEs

W 3(z)P+,i(w) are also determined uniquely up to the sign of a3. Next, we
claim that for j = 4, . . . , n, the OPEs W j(z)P±,j(w) are uniquely deter-
mined up to the sign of a3. This follows by induction on j from the identity,

(9.2) W 3
(r)(W

j
(s)P

±,i)−W j
(s)(W

3
(r)P

±,i)−
r∑

i=0

(
r

i

)
(W 3

(i)W
j)(r+s−i)P

±,i,

together with the fact that (W 3)(1)W
r−1 = W r for r ≥ 4.

Next, we need to consider the OPEs W j(z)P−,i(w). We can carry out
same procedure as in Section 6 using P−,1 instead of P+,1. Starting with
the OPEs

W 3(z)P−,1(w) ∼ ã0P
−,1(w)(z − w)−3 +

(
ã1∂P

−,1 + . . .

)
(w)(z − w)−2

(9.3)

+

(
ã2 : LP

−,1 : +ã3∂
2P−,1 + . . .

)
(w)(z − w)−1,
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W 4(z)P−,1(w) ∼ b̃0P
−,1(w)(z − w)−4 + · · · ,

W 5(z)P−,1(w) ∼ b̃1P
−,1(w)(z − w)−5 + · · · ,

solving the same set of Jacobi identities (6.7), (6.9), (6.11), (6.15), (6.17),
(6.19), (6.21) as before, we obtain the same value for λ as well as ãi and
b̃i, with the same sign ambiguity in ã3 and b̃1. The choice of sign for a3
and ã3 are not independent; it turns out that we must have ã3 = −a3. This
is a consequence of the nondegeneracy given by Lemma 3.5. We have the
identity

(9.4) W 3
(0)((P

+,1)(n)P
−,1)− (P+,1)(n)(W

3
(0)P

−,1)− (W 3
(0)P

+,1)(n)P
−,1 = 0.

The first term vanishes because (P+,1)(n)P
−,1 is a constant. As for the re-

maining terms, recall that all terms appearing in W 3
(0)P

+,1 are linear in the

scalar a3, which is the coefficient of : LP+,1 :. Similarly, all terms appear-
ing in W 3

(0)P
−,1 are linear in ã3, which is the coefficient of : LP−,1 :. From

second term above, we obtain a multiple of L coming from −(P+,1)(n)(ã3 :
LP−,1 :), and the only such term is −ã3 : L((P

+,1)(n)P
−,1) : = −ã3L, since

(P+,1)(n)P
−,1 = 1. Similarly, from the third term, the only contribution

comes from −(a3 : LP
+,1 :)(n)P

−,1, and yields −a3L. This forces ã3 = −a3.
By the above argument, all OPEs W j(z)P−,i(w) are then determined

uniquely up to the choice of sign of a3. Next, we claim that all OPEs
P±,i(z)P∓,j(w) are completely determined up to the sign of a3. This fol-
lows inductively from the identity

W 3
(1)((P

+,i)(r+1)P
−,j)− (W 3

(1)P
+,i)(r+1)P

−,j)− (P+,i)(r+1)(W
3
(1)P

−,j)

− (W 3
(0)P

+,i)(r+2)P
−,j = 0,

(9.5)

together with the fact that all OPEs W j(z)P±,i(w) are determined up to
the sign of a3. However, changing the sign of a3 corresponds to rescaling the
field W 3 by −1 and does not change the isomorphism type of Aψ(n,m).

This argument shows that Aψ(n,m) andWψ(n,m) have the same strong
generators and OPE algebras. Finally, since Wψ(n,m) is freely generated
and simple as a one-parameter vertex algebra (equivalently, this holds for
generic values of ψ), its universal enveloping vertex algebra in the sense of
[58] is already simple, and hence is the unique object in the category of vertex
algebras with this OPE algebra. It follows that Aψ(n,m) ∼= Wψ(n,m) as
one-parameter vertex algebras.
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In the casem = 1, the proof is similar but easier since there is no action of
slm. First, the OPE W 3(z)P+(w) is completely determined up to the sign of
a3. Using (9.2), the OPEs W j(z)P+(w) for j = 4, . . . , n, are also determined
up to this sign. Next, the OPE W 3(z)P−(w) is uniquely determined up to
the sign of ã3, and (9.4) implies that ã3 = −a3. The OPE P+(z)P−(w) is
then determined from (9.5), up to this sign. Finally, the choice of sign for
a3 does not affect the isomorphism type of Aψ(n, 1).

Remark 9.1. In the above theorem, suppose that the formal parameter ψ is
specialized to some complex number ψ0. Since the OPE algebra of Aψ0(n,m)
is the same as the OPE algebra ofWψ0(n,m), the simple quotientsAψ0

(n,m)
and Wψ0

(n,m) must also coincide.

Under some mild arithmetic conditions on n and k, we shall now use
this result to exhibit Wk(sln+1, fsubreg) as a simple current extension of VL⊗
Wr(sls) for L =

√
s(n+ 1) Z, in the case k = −(n + 1) + n+s+1

n and r =
−s+ s+1

s+n+1 .

Let n, r be in Z>1 such that n+ 1 and n+ r are coprime (in particular,
nr is even). Following the notation in [52], we define

Y(n, r) := W�(sln), � = −n+
n+ r

n+ 1
.

Let L =
√
nr Z and VL the lattice vertex algebra of L. Recall that the mod-

ules for Y(n, r) are parameterized by modules of Lr (sln), i.e. by integrable

positive weights of ŝln at level r. Then [37, Main Theorem 4] gives the fu-
sion rules; see also [73, 20] for these fusion rules assuming a certain coprime
condition. In particular,

Lrωs
� Lrωt

= Lrωr+s
, r + s =

{
r + s r + s < n,
r + s− n r + s ≥ n,

and we identify ω0 with zero. In [52], it was shown that

(9.6) A(n, r) ∼=
n−1⊕
s=0

VL+ rs√
rn

⊗ Lrωs

is a simple vertex algebra extending VL ⊗ Y(n, r). If r is even, this is a Z-
graded vertex algebra, while for odd r it is only 1

2Z-graded. The subspace
of lowest conformal weight in each of the VL+ rs√

rn
⊗Lrωs

is one-dimensional,

and we denote the corresponding vertex operators by Xs. The top level of
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X1 and Xn−1 has conformal weight r
2 and in general the one of Xs is the

minimum of { rs
2 ,

(n−s)r
2 }. It follows that

(9.7) X1(z)X1(w) ∼ 0, Xn−1(z)Xn−1(w) ∼ 0.

By [46, Prop. 4.1] the OPE of Xs and Xn−s has a nonzero multiple of the
identity as leading term. Without loss of generality, we may rescale X1 and
Xn−1 so that

(9.8) X1(z)Xn−1(w) ∼
n−1∏
i=1

(i(k + n− 1)− 1)(z − w)−r + . . . .

Let J be the Heisenberg field of VL and we normalize it such that

(9.9) J(z)J(w) ∼
(
(n− 1)k

n
+ n− 2

)
(z − w)−2.

Then we have
(9.10)
J(z)X1(w) ∼ X1(w)(z − w)−1, J(z)Xn−1(w) ∼ −Xn−1(w)(z − w)−1.

Proposition 9.1. A(n, r) is generated by J,X1, Xn−1 together with gener-
ators of Y(n, r).

Proof. As a simple current extension A(n, r) is generated by the fields in
VL+ rs√

rn
⊗ Lrωs

for s = 0, 1, n − 1 (this is for example a special case of [48,

Main Theorem 1]. Due to Corollary 3.8 it is enough to take the top level of
VL+ r√

rn
⊗Lrω1

and VL+ r(n−1)√
rn

⊗Lrωn−1
. Thus A(n, r) is generated by X1, Xn−1

together with generators of VL⊗Y(n, r). Denote the Fock module of weight
μ of the Heisenberg vertex algebra by Fμ. This can then be further improved,
since A(n, r) is also an infinite order simple current extension

A(n, r) ∼=
⊕
t∈Z

n−1⊕
s=0

F√
nrt+ rs√

rn
⊗ Lrωs

and so again by [48, Main Theorem 1] this vertex algebra is generated by
J,X1, Xn−1 together with generators of Y(n, r).

Theorem 9.2. Let n, r be as above and let k = −r + n+r
r−1 . Then

A(n, r) ∼= Wk(slr, fsubreg).
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In particular, we recover the theorem of Arakawa and van Ekeren [21] that

Wk(slr, fsubreg) is lisse and rational.

Proof. It follows from (9.7), (9.8) and (9.9), together with Theorem 9.1

and the previous Proposition that A(n, r) has the same strong generating

type and OPE algebra as Wk(slr, fsubreg), and since Wk(slr, fsubreg) is the

unique simple graded object of this kind, we get a homomorphism A(n, r) →
Wk(slr, fsubreg). This must be an isomorphism since A(n, r) is simple.

Remark 9.2. Similar results are expected to hold for m > 1. In that case one

however has to deal with vertex algebra extensions that are not of simple

current type. Thanks to [48] this situation can be handled provided one can

show that subcategories of principal W-algebras of type A are braid-reversed

equivalent to corresponding categories of affine vertex algebras at admissible

level, but this is exactly [37, Thm. 7.1]. The latter have been understood in

[44, 37]. Study of fusion categories of type A is work in progress and those

results will allow us to reconstruct Wψ(n,m) and Vψ(n,m) at those levels

where the simple quotient of the coset is a rational principal W-algebra of

type A.

Let m ≥ 4. Set λ :=
√

(m+2)
2m(m−2) and consider the extension of Y(m −

2, 2) = W2−m+m−1

m
(slm−2) times L−1(slm) times a Heisenberg vertex algebra

given by

B(m, 2) :=
⊕
s∈Z

Lωs̄
⊗W−1(λs)⊗ Fsλ.

Here s̄ = s mod m − 2 and the notation of L−1(slm)-modules is taken

from [55, Section 5.2] where it was shown that these modules form a vertex

tensor category of simple currents, see also [9], that is W−1(λs)�W−1(λt) ∼=
W−1(λs+t). Moreover the top level of W−1(λs) is ρsω1

of s is non-negative

and ρ−sωm−1
otherwise. Let J be the Heisenberg field and we normalize it

to have norm λ−2. Let Ys be the field corresponding to the top level of

Lωs̄
⊗W−1(λs)⊗ Fsλ. It follows that

J(z)X1(w) ∼
X1(w)

(z − w)
, J(z)X−1(w) ∼ −X−1(w)

(z − w)
.

Moreover the top level of X±1 is computed to be 3
2 and conformal weight

of the top level of X±2 ensures that the operator product of X1 with X−1

is regular. Thus the same proof as the one of Theorem 9.2 applies, and we

obtain
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Theorem 9.3. For m ≥ 4, B(m, 2) ∼= Wm(m, 2). In particular [55, Conj.
4. 3. 2] for r = 0 is true, and hence the category of ordinary modules of
slm+2 at level minus two is a vertex tensor category by [55, Cor. 4.3.3].

Let ψ = n+1
n and consider Cψ(n − 1, 1) which has c = −2 and so it

is just the W−3+ 3

2
(sl3) algebra. Consider S(1)Z/nZ which is easily checked

to be strongly generated by : βn :, : γn :, :βγ:n together with the two strong

generators of W−3+ 3

2
(sl3). It follows that S(1)Z/nZ has the same strong gen-

erating type and OPE algebra as Wψ−n(sln, fsubreg) and hence we can again
conclude that

Theorem 9.4. For ψ = n+1
n , Wψ−n(sln, fsubreg) ∼= S(1)Z/nZ.

Finally, we have a uniqueness theorem for hook-type W-superalgebras.

Theorem 9.5. For m ≥ 1 and n ≥ 1, the full OPE algebra of Vψ(n,m) is
determined completely from the structure of WJn,m

(c, λ), the normalization
of J , the action of glm on the generators {P±,i}, and the nondegeneracy
condition

P+,i
(n) P

−,j = δi,j1.

In particular, for m ≥ 2 and m �= n, if the generator J of H is normalized
as in Lemma 3.6, and Aψ(n,m) is a one-parameter vertex algebra which
extends H⊗V −ψ−m+1(slm)⊗WJn,m

(c, λ) by odd fields {P±,i| i = 1, . . . ,m} of
conformal weight n+1

2 which are primary with respect to H⊗V −ψ−m+1(slm)
as well as the total Virasoro field T = L + Lslm + LH, then Aψ(n,m) ∼=
Wψ(n,m).

Similarly, if m = 1 and n > 1, J is normalized as in Lemma 3.6, and
Aψ(n, 1) is a one-parameter vertex algebra which extends H⊗WJn,1

(c, λ) by
odd fields {P±} of conformal weight n+1

2 which are primary with respect to
H as well as the total Virasoro field T = L+LH, then Aψ(n, 1) ∼= Wψ(n, 1).

Finally, if m = n and n ≥ 1, and Aψ(n, n) is a one-parameter vertex
algebra which extends V −ψ−n+1(sln) ⊗ WJn,n

(c, λ) by odd fields {P±,i| i =
1, . . . , n} of conformal weight n+1

2 which are primary with respect to both
V −ψ−n+1(sln) and the total Virasoro field T = L + Lslm, then Aψ(n, n) ∼=
Wψ(n, n).

The proof is omitted since it is the same as the proof of Theorem 9.1. It
is now easy to prove the analogues of Theorems 9.2, 9.3 and 9.4 for principal
W-superalgebras of sln|1, since this W-superalgebra coincides with Vψ(n, 1)
and can be realized as the Heisenberg coset of a subregular W-algebra times
a pair of free fermions [42].
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10. Another perspective on triality

Let

A[slN , ψ] :=
⊕
λ∈P+

V k(λ)⊗ V �(λ)⊗ V√
NZ+ s(λ)√

N

with ψ = k + N,ψ′ = � + N and 1
ψ + 1

ψ′ = 1. The map s : P+ → Z/NZ

is defined by s(λ) = t if λ = ωt mod Q, where ωt is the t-th fundamental
weight of slN and we identify ω0 with 0. The V k(λ) are generalized Verma
modules at level k whose top level is the integrable slN -module ρλ of highest-
weight λ. Let f be a nilpotent element with corresponding complex Cf , i.e.
the homology Hf (V

k(g) ⊗ Cf ) is the W-algebra Wk(g, f). We then denote
the Wk(g, f)-module Hf (M⊗Cf ) simply by Hf (M) for M a V k(g)-module.
One then sets

A[slN , f, ψ] :=
⊕
λ∈P+

V k(λ)⊗Hf (V
�(λ))⊗ V√

NZ+ s(λ)√
N

and conjectures that

Conjecture 10.1. [40] With the above notation and for generic k and any
nilpotent element f , the object A[slN , f, ψ] can be given the structure of a
simple vertex superalgebra, such that the top level of V k(λ)⊗Hf (V

�(λ))⊗
V√

NZ+ s(λ)√
N

is odd for λ = ω1, ωN−1.

For f the principal nilpotent, this is just A[slN , f, ψ] ∼= V k−1(slN ) ⊗
F(2N) by the coset construction of principalW-algebras of [18]. Here F(2N)
is the vertex superalgebra of 2N free fermions.

Set N = n+m and consider the nilpotent element f = fn,m correspond-
ing to the partition N = n+ 1 + · · ·+ 1 so that W�(slN , f) = W�+N (n,m)
is a hook-type W-algebra with V �+n−1(glm) as subalgebra. The top level
corresponding to the standard representation of slN in A[slN , f, ψ] has con-
formal weight N

2 − n−1
2 = m+1

2 , and it is expected to be odd. We want to
take a coset that contains these elements. For this let J be as in Lemma
3.6 and let γ be the generator of

√
NZ = γZ, i.e. γ2 = N . Denote the

corresponding Heisenberg field by γ as well and set H = J − γ, and H the
Heisenberg vertex algebra generated by H. This ensures that the commutant
with V �+n−1(slm) ⊗ H contains the fields of conformal weight m+1

2 in the
standard representation of slN , and its conjugate. Moreover, if the generator
H of H is normalized as in Lemma 3.4, then these fields have Heisenberg
weight ±1.



172 Thomas Creutzig and Andrew R. Linshaw

Theorem 10.1. With the above notation and for generic k, if Conjecture

10.1 is true for f = fn,m, then Com
(
V �+n−1(slm)⊗H, A[slN , fn,m, ψ]

) ∼=
W−k−m+1(slm|N , fm|N ).

Proof. Set Bψ(n,m) := Com
(
V �+n−1(slm)⊗H, A[slN , fn,m, ψ]

)
. At generic

level the category KLk(slN ) is semisimple and so

Bψ(n,m) =
⊕
λ∈S

V k(λ)⊗Dλ

for certain modules Dλ of Cψ′
(n,m). Here the sum is over a set S of weights

of glN . By Theorem 1.1, we also have

W−k−m+1(slm|N , fm|N ) =
⊕
λ∈S′

V k(λ)⊗ Cλ

for certain modules Cλ of Cψ′
(n,m) and S′ is also a set of weights of

glN . In fact the Cλ are simple for generic level by Theorem 4.11. The

main step is to prove that the theorem holds on the level of graded char-

acters ch
[
Bψ(n,m)

]
= ch

[
W−k−m+1(slm|N , fm|N )

]
. This is a meromor-

phic Jacobi form argument that is deferred to the appendix, see Theo-

rem A.1. The coset Bψ(n,m) is simple since at generic level the category

KL�+n−1(slm) is semisimple and so [42, Prop. 5.4] applies if Conjecture

10.1 is true for f = fn,m. We thus have two simple vertex superalge-

bras that have the same graded character. Especially (and as noted before)

Bψ(n,m) has odd fields of conformal weight m+1
2 in the standard repre-

sentation of slN , and its conjugate. Recall that if the generator H of H is

normalized as in Lemma 3.4, then these fields have Heisenberg weight ±1.

Theorem 9.5 applies to the vertex superalgebra generated by these fields

together with the subalgebra V k(glN ) ⊗ Cψ′
(n,m), and hence it must be

isomorphic to W−k−m+1(slm|N , fm|N ). Finally, since graded characters of

W−k−m+1(slm|N , fm|N ) and Bψ(n,m) coincide, this subalgebra must already

be the complete coset Bψ(n,m).

We recall relative semi-infinite Lie algebra cohomology [72], and for this

we use Section 2.5 of [39]. Let g be a simple Lie algebra with basis B and dual

basis B′. Consider free fermions F(g) in two copies of the adjoint represen-

tation of g with generators {bx, cx′ |x ∈ B, x′ ∈ B′} and operator products

bx(z)cy
′
(w) ∼ δx,y(z − w)−1. Consider V −2h∨

(g) and let x(z) be the field
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corresponding to x ∈ g. The zero mode d := d0 of the field

d(z) :=
∑
x∈B

: x(z)cx
′
(z) : −1

2

∑
x,y∈B

: (: b[x,y](z)cx
′
(z) :)cy

′
(z) :

squares to zero. Let F̃(g) be the subalgebra of F(g) generated by the bx and

∂cx
′
. Let M be a module for V −2h∨

(g). The relative complex is

Crel(g, d) =
(
M ⊗ F̃(g)

)g
and it is preserved by d [72, Prop. 1.4.]. The corresponding cohomology is

denoted by Hrel,•
∞ (g,M). We need the following property that follows from

[72], as explained in Section 2.5 of [39]:

(10.1) Hrel,0
∞ (g, V k(λ)⊗ V −2h∨−k(μ)) =

{
C if μ = −ω0(λ)

0 otherwise.

Here ω0 is the unique Weyl group element that interchanges the fundamental

Weyl chamber with its negative.

Let ψ ∈ C be generic, and fix n ≥ m ∈ Z≥0. Set � = −m
n (n− (n−m)ψ)

and k = m
m−n(nψ

−1 +m − n). Consider Wψ(n −m,m) and Vψ−1

(n,m) so

that by our main theorem their cosets are isomorphic. We aim to relate these

two algebras using the relative semi-infinite Lie algebra cohomology. Note

that we normalize the Heisenberg fields of Wψ(n − m,m) and Vψ−1

(n,m)

in such a way that they have norm � and k. Consider A[slm, 1 − ψ] ⊗ πk−�

with πk−� a rank one Heisenberg vertex algebra generated by X(z) and

normalized such that it has level k − �. Let Y be the Heisenberg field of

the V√
mZ subalgebra of A[slm, 1 − ψ] and we normalize it to have level m.

Define J−�, Jk by J−� − Jk = X and Jk

k − J−	

� = Y , so that Jk has level

k and J−� has level −�. Wψ(n−m,m) has an action of V ψ−m−1(slm)⊗ π�

and A[slm, 1− ψ]⊗ πk−� has an action of V −ψ−m+1(slm)⊗ π−�, so that the

diagonal action has level −2h∨ and we can take relative semi-infinite Lie

algebra cohomology. We conjecture

Conjecture 10.2. With the above set-up, Hrel,0
∞ (slm,Wψ(n − m,m) ⊗

A[slm, 1− ψ]⊗ πk−�) is a simple vertex superalgebra.

Theorem 10.2. Let k be generic and assume that Conjecture 10.2 is true.

Then Vψ−1

(n,m) ∼= Hrel,0
∞ (slm,Wψ(n−m,m)⊗A[slm, 1− ψ]⊗ πk−�).
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Proof. Recall that

Wψ(n−m,m) ∼=
⊕
λ∈R+

V ψ−m−1(λ)⊗ Cψ(λ)

and

Vψ−1

(n,m) ∼=
⊕
λ∈R+

V −ψ−1−m+1(λ)⊗Dψ−1

(λ)

for certain nonzero simple Cψ(n −m,n)-modules Cψ(λ) and Dψ−1

(λ). The
set R+ is determined in Remark 4.1 and is R+ = {(λ, n)|λ ∈ P+, r ∈ Z, λ =
ωi(r) mod Am−1, i(r) ∈ [0,m − 1], i(r) = r mod m}. Here P+ denotes the
set of dominant weights of slm as usual. On the other hand by (10.1) we
immediately get that

Hrel,0
∞ (slm,Wψ(n−m,m)⊗A[slm, 1− ψ]⊗ πk−�)

=
⊕
λ∈R+

V −ψ−1−m+1(λ)⊗ Cψ(−ω0(λ)).

One computes that the top level of V −ψ−1−m+1(λ)⊗Cψ(−ω0(λ)) is
n+1
2 for

λ = ω1, ωm−1 and further conformal weight computations ensure that Theo-
rem 9.5 applies to the vertex superalgebra generated by these fields together
with the subalgebra V −ψ−1−m+1 ⊗ Cψ(n −m,n) and is thus isomorphic to

Vψ−1

(n,m). This already must be the complete algebra Hrel,0
∞ (slm,Wψ(n−

m,m)⊗A[slm, 1−ψ]⊗πk−�) since both are direct sums over the same set R+

with summands being V ψ−m−1(λ) times a simple Cψ(n−m,n)-module.

Appendix A. Decomposing characters

Consider the objects

A[slN , f, k] :=
⊕
λ∈P+

V k(λ)⊗Hf (V
�(λ))⊗ V√

NZ+ s(λ)√
N

with � and s : P+ → Z/NZ defined by

1

k +N
+

1

�+N
= 1, s(λ) = t if λ = ωt mod Q

where ωt is the t-th fundamental weight of slN and we identify ω0 with 0.
Let J be as in Lemma 3.6 and let γ be the generator of

√
NZ = γZ, i.e.

γ2 = N . Denote the corresponding Heisenberg field by γ as well, and set
H = J − γ and H the Heisenberg vertex algebra generated by H.
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Theorem A.1. Conjecture 1.1 (2) holds on the level of characters, that is

ch
[
Com

(
V �+n−1(slm)⊗H, A[slN , fn,m, k]

)]
= ch

[
W−k−m+1(slm|N , fm|N )

]
.

Proof. Set f = fn,m and C = ch
(
Com

(
V �+n−1(slm)⊗H, A[slN , f, k]

))
.

The proof has several steps.

1. Introduce convenient notations.

2. Give an explicit expression for the character of Hf (V
k(λ)).

3. Show that the characters of A[slN , 0, k] and hence A[slN , f, k] are quo-

tients of certain Jacobi forms.

4. Use the denominator identity of ŝl2|1 to decompose these meromorphic

Jacobi forms. C is a certain coefficient of this decomposition.

5. Use the denominator identity of slN |m to write C as an infinite product

and identify it with ch
[
W−k−m+1(slm|N , fm|N )

]
.

Step 1: Notations

The combinatorics of the proof are slightly different depending onN,n,m

being even or odd and can be combined into a uniform proof by setting

aM :=

{
0 M odd,
1
2 M even,

for any integer M . We denote the root lattice of slN by Q and embed it in

ZN in the standard way

Q = Z(δ1 − δ2)⊕ · · · ⊕ Z(δN−1 − δN ) ⊆ ZN = Zδ1 ⊕ · · · ⊕ ZδN ,

where the δi form an orthonormal basis of ZN . We choose as a set of positive

roots the set

Δ+ = {δi − δj |1 ≤ i < j ≤ m} ∪ {δa − δb|m+ 1 ≤ a < b ≤ N} ∪{
δi − δa|1 ≤ i ≤ m,m+ 1 +

⌈n
2

⌉
≤ a ≤ N

}
∪{

δa − δi|1 ≤ i ≤ m,m+ 1 ≤ a ≤ m+
⌈n
2

⌉}
,

(A.1)

with the first two sets the positive roots Δm
+ and Δn

+ of the slm and sln
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subalgebras. Note that the Weyl vector ρN of slN then decomposes as

ρN = ρm + ρn + σ,

σ =
m

2

(
δm+1 + · · ·+ δm+�n

2
� − δm+�n

2
�+1 − · · · − δN

)
+

(
an − 1

2

)
(δ1 + · · ·+ δm) ,

with ρm and ρn the Weyl vectors of the slm and sln subalgebras. Set

Δ̃+ =
{
δm+�n

2 � − δi|1 ≤ i ≤ m
}
.

These are the positive roots that are needed for the contribution of the

dimension n
2 fields in the character formula.

Let
√
NZ = γZ with γ2 = N . Let h
 be the subalgebra of the Cartan

subalgebra corresponding to the Δm
+ ∪{δ}, i.e. it is orthogonal to the Cartan

subalgebra of the sln-subalgebra.

We choose the basis B of h to be

B = {ei,i+1|1 ≤ i ≤ m− 1} ∪ {e} ∪ {ei,i+1|m+ 1 ≤ i ≤ N − 1} ,

ei,j := ei − ej , δi(ej) =

{
1 i = j

0 i �= j
,

e :=
n(e1 + · · ·+ em)−m(em+1 + · · ·+ eN )

N
.

(A.2)

Step 2: the Euler-Poincaré character

Set h =
∑N

i=1 uiei and define xi = eui = eδi(h) and x = eδ(h) with δ

dual to e, i.e. δ(e) = 1 and δ(ei,i+1) = 0 for i �= m. Then ρN (e) = σ(e) =

m
(
an − 1

2

)
. The element x of the sl2-triple for the reduction is

x =

n−1∑
s=1

(n+ 1− 2s)em+s.

We now specialize to ui = 0 if m + 1 ≤ i ≤ N . Note that for 1 ≤ i ≤
m, (δm+�n

2 � − δi)(ej) = −δi,j , (δm+�n

2 � − δi)(e) = −1. The Euler-Poincaré
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character (3.17) is then

ch[Hf (V
k(λ))](q, h) = qΔq

(λ+ρ)2

2(k+h∨)

∑
ω∈W

ε(ω)eω(λ+ρ)(h−τx) 1

Ψ(q, h)

Ψ(q, h) = q
dimg

24 eρ(h)
∞∏
r=1

(1− qr)N−1
∏

α∈Δm
+

(1− e−α(h)qr−1)(1− eα(h)qr)

∏
β∈˜Δ+

(1− e−β(h)qr+an−1)(1− eβ(h)qr−an).

(A.3)

Here Δ is some fixed constant whose precise value is not important. The

domain is |q| < 1 and |e±β(h)q(n+1)/2| < 1, |e±α(h)q| < 1 for β ∈ Δ̃+, α ∈ Δm
+ .

Note that eρ(h) = eρm(h) if n is even and eρ(h) = eρm(h)e−um/2 if n is odd.

Note that x1 . . . xm = 1. Then

Ψ(q, h) =

q
dimg

24 eρm(h)x−
m

2
+ma

∞∏
r=1

(1− qr)N−1
∏

1≤i<j≤m

(1− x−1
i xjq

r−1)(1− xix
−1
j qr)

(−x)md′
qΔd

∏
1≤i≤m

(1− xxiq
r+an+d′−1)(1− x−1x−1

i qr−an−d′
)

= q
dimg

24 eρm(h)
∞∏
r=1

(1− qr)N−1
∏

1≤i<j≤m

(1− x−1
i xjq

r−1)(1− xix
−1
j qr)

(−1)md′
xm(d′− 1

2
+an)qΔd′

∏
1≤i≤m

(1− xxiq
r+an+d′−1)(1− x−1x−1

i qr−an−d′
)

= q
dimg

24 eρm(h)
∞∏
r=1

(1− qr)N−1
∏

1≤i<j≤m

(1− x−1
i xjq

r−1)(1− xix
−1
j qr)

(−1)md′
xmdqΔd′

∏
1≤i≤m

(1− xxiq
r+d−1/2)(1− x−1x−1

i qr−d−1/2).

(A.4)

Here we did a shift of the form xxi �→ xxiq
d′

which gave the prefactor and

Δd′ is some number depending on d′ and an, whose precise value is not

important. We will fix the integer d′ later and we set d = d′ − 1
2 + an for

convenience.
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Step 3: The character of A[slN , 0, k]

We are interested in the character of A[slN , 0, k] which we abbreviate by

A, i.e.

A :=
∑
λ∈P+

ch[V k(λ)](q, h1)ch[V
�(λ)](q, h2)

θ√NZ+ s(λ)√
N

(q;x)

η(q)
.

Recall the character of V k(λ) given in (3.14). Recall that � satisfies 1
k+h∨ +

1
�+h∨ = 1, so that

ch[V k(λ)](q, h1)ch[V
�(λ)](q, h2) = q

(λ+ρ)2

2(k+h∨) q
(λ+ρ)2

2(	+h∨)
Nλ(h1)Nλ(h2)

Π(q, h1)Π(q, h2)

= q
(λ+ρ)2

2
Nλ(h1)Nλ(h2)

Π(q, h1)Π(q, h2)
.

Set P+
t := P+ ∩ (Q+ ωt). Then∑
λ∈P+

t

q
(λ+ρ)2

2 Nλ(h1)Nλ(h2)

=
∑
λ∈P+

t

∑
ω1,ω2∈W

q
(λ+ρ)2

2 ε(ω1)ε(ω2)e
ω1(λ+ρ)(h1)eω2(λ+ρ)(h2)

=
∑
λ∈P+

t

∑
ω1,ω2∈W

q
(λ+ρ)2

2 ε(ω1)ε(ω2 ◦ ω1)e
ω1(λ+ρ)(h1)eω2(ω1(λ+ρ))(h2)

=
∑

ω2∈W
ε(ω2)

∑
λ∈P+

t

∑
ω1∈W

q
(λ+ρ)2

2 eω1(λ+ρ)(h1)eω2(ω1(λ+ρ))(h2)

=
∑
ω∈W

ε(ω)
∑

λ∈Q+ωt+ρ

q
λ2

2 eλ(h1)eω(λ)(h2).

In the third equality we used that ε(ω1)ε(ω2 ◦ ω1) = ε(ω2), and in the last

one that the Weyl group acts transitively on Weyl chambers, together with

the fact that
∑

ω∈W ε(ω)eω(λ) = 0 for any λ that is orthogonal to at least

one simple root.

For h1, h2 in h, we set si = ω1 − δ1 + δi and yi = esi(h1), zi = esi(h2), so

that the character of the standard representation of slN is just

χω1
(h1) = y1 + · · ·+ yN .
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The relation to our previous Jacobi variables is

yi =

{
xix

n/N 1 ≤ i ≤ m,

xix
−m/N m+ 1 ≤ i ≤ N,

and we write (yzω)ν for the set {y1zω(1)qνε1 , . . . , qνεNyNzω(N)} for any ν ∈ P .
Note that ρ ∈ Q for N odd and ρ ∈ Q+ωN/2 for N even. We thus set νN = 0
if N is odd and νN = ωN/2 for N even. Let ν ∈ νN +Q. It follows that we
get theta functions∑

λ∈Q+ωt+ρ

q
λ2

2 eλ(h1)eω(λ)(h2) = θQ+ωt+ρ(q, (yzω)0)

= q
ν2

2 eν(h1)eω(ν)(h2)θQ+ωt
(q, (yzω)ν),

(A.5)

where we used the usual translation property of Jacobi theta functions.
Recall that aN = 0 if N is odd and aN = 1

2 if N is even. Let g′ be a half

integer to be fixed later and set g = g′+aN . Let u in (γZ)∗ and w = eγ(u)/N .
Since

ZN =

N−1⋃
t=0

(Q+ωt)⊕
(
γZ+

tγ

N

)
=

N−1⋃
t=0

(Q+ωt + ρ)⊕
(
γZ+ gaNγ +

tγ

N

)
,

and using that

θγZ+ tγ

N
(q, w) = qa

2
N

N

2 wNaN θγZ+gaNγ+ tγ

N
(q, wqaN ),

the numerator of A, that is Num := AΠ(q, h1)Π(q, h2)η(q) is of the form

Num =

N−1∑
t=0

θQ+ωt+ρ(q, (yzω))θγZ+ tγ

N
(q, w)

(A.6)

= qa
2
N

N

2 wNaN

N−1∑
t=0

θQ+ωt+ρ(q, (yzω))θγZ+aNgγ+ tγ

N
(q, wqaN )

= qa
2
N

N

2 wNaN θZN (q, (yzω)ν , wq
g)

= qa
2
N

N

2 wNaN

N∏
i=1

∞∏
r=1

(1 + wyizω(i)q
r−1/2+g)(1 + w−1y−1

i z−1
ω(i)q

r−1/2−g)(1− qr)
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= qa
2
N

N

2 wNaN

N∏
i=1

ϑ3(wyizω(i)q
g; q)

∼ wNg−nan

n∏
a=1

(ym+azω(m+a))
−aneρn(h1)eω(ρn)(h2)

N∏
i=1

ϑ3(wyiq
δiρnzω(i)q

g−anδi>m ; q),

with the standard theta function

ϑ3(z; q) =

∞∏
r=1

(1 + zqr−1/2)(1− qr)(1 + z−1qr−1/2).(A.7)

In the last line we used the usual transformation behavior of theta functions

under translation of the Jacobi variable. Here we defined δi>m to be equal to

one if i > m and zero otherwise. We also defined the symbol ∼ for q-series,

meaning that

f(q) ∼ g(q) ↔ ∃ Δ ∈ C : f(q) = qΔg(q).

We specialize h1 = −xτ+h as before, that is δi(h) = 0 form+1 ≤ 1 ≤ N .

The specialized numerator is then

Num ∼ wNg−nan

n∏
a=1

z−an

ω(m+a)y
−an

i eω(ρn)(h2)
N∏

i=m+1

ϑ3(wzω(i)q
g−an ; q)

m∏
i=1

ϑ3(wyizω(i)q
g; q).

(A.8)

We introduce

A =
m

N

γ

N
+ δ, B = n

γ

N
− δ

N
.

These are orthogonal on each other, and we are interested in the constant

coefficient with respect to A. Write a = eαA(h+u), b = eβB(h+u) and c :=

bn+m/N2

. We fix α = N2

m2+mnN2 and β = N2

mn+n2N2 , so that

wxn/N = abn−n/N2

= acb−1/N , wx−m/N = bn+m/N2

= c, x = ab−1/N .
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Then

wyi =

{
wxix

n/N = xiacb
−1/N 1 ≤ i ≤ m,

wxix
−m/N = xic = c m+ 1 ≤ i ≤ N.

Step 4: Meromorphic Jacobi form decomposition

Let 1 ≤ i ≤ m. We are interested in the decomposition of

Mi :=

∞∏
r=1

(1 + wyizω(i)q
r−1/2+g)(1 + w−1y−1

i z−1
ω(i)q

r−1/2−g)(1− qr)

(1− xxiqr+d−1/2)(1− x−1x−1
i qr−d−1/2)

.

We need the identity (A.2) of [53]

∞∏
r=1

(1− uvqr−1)(1− qr)2(1− u−1v−1qr)

(1 + uqr−1))(1 + vqr−1))(1 + u−1qr))(1 + v−1qr)
=
∑
s∈Z

(−1)sus

1 + vqs

which holds for |q| < |u| < 1. Set u = −xxiq
d+ 1

2 = −ab−1/Nxiq
d+ 1

2 , v =

czω(i)q
g−d. We will fix d = n

2 − 2 in a moment. Recall that the domain of

the character is |(xxi)±1q
n+1

2 | < 1. In order for the decomposition now to be

valid we restrict this domain to the subdomain |q| < |xxiq
n+1

2
−2| < 1. The

decomposition of the meromorphic Jacobi form follows:

Mi =

∞∏
r=1

(1 + czω(i)q
r+g−d−1)(1− qr)−1(1 + c−1z−1

ω(i)q
r+d−g)

∑
s∈Z

asxsi b
−s/Nq(d+1/2)s

1 + czω(i)qs+g−d

∼ η−2ϑ3(czω(i)q
g−d−1/2; q)

∑
s∈Z

asxsi b
−s/Nq(d+1/2)s

1 + czω(i)qs+g−d

∼ (czω(i))
d+ 1

2
−anη−2ϑ3(czω(i)q

g−an ; q)
∑
s∈Z

asxsi b
−s/Nq(d+1/2)s

1 + czω(i)qs+g−d
.

(A.9)

Let Ñum := Π(h2, q)Πm(x, q)η(q)n+1ch[H(A)] be the numerator of the Euler-
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Poincaré character.

Ñum = (−1)md′
x−mdwNgc−nanΣ

Σ ∼
∑
ω∈W

ε(ω)eω(ρn)(h2)
n∏

a=1

z−an

ω(m+a)

N∏
i=m+1

ϑ3(wzω(i)q
g−an ; q)

m∏
i=1

Mi

∼ cm(d+ 1

2
−an)

η2m

∑
ω∈W

ε(ω)eω(ρn)(h2)
m∏
i=1

(zω(i))
d+ 1

2

N∏
a=1

z−an

ω(a)

N∏
i=1

ϑ3(czω(i)q
g−an ; q)

m∏
i=1

∑
si∈Z

asixsii b
−si/Nq(d+1/2)si

1 + czω(i)qsi+g−d

∼ cm(d+ 1

2
−an)

η2m

∑
ω∈W

ε(ω)eω(ρn)(h2)
m∏
i=1

(zω(i))
d+ 1

2

N∏
i=1

ϑ3(czω(i)q
g−an ; q)

m∏
i=1

∑
si∈Z

asixsii b
−si/Nq(d+1/2)si

1 + czω(i)qsi+g−d

∼ cm(d+ 1

2
−an)

η2m

N∏
i=1

ϑ3(cziq
g−an ; q)

∑
ω∈W

ε(ω)eω(ρn)(h2)
m∏
i=1

(zω(i))
d+ 1

2

m∏
i=1

∑
si∈Z

asixsii b
−si/Nq(d+1/2)si

1 + czω(i)qsi+g−d
,

where we used

N∏
a=1

z−an

ω(a) = 1, and

N∏
i=1

ϑ3(czω(i)q
g−an ; q) =

N∏
i=1

ϑ3(cziq
g−an ; q).

Set g = d + am. Then the prefactor becomes x−mdwNg = cdNamambnNam .

The multiplicity of the affine glm is the coefficient corresponding to a0eρm(h) =

a0
∏m

i=1 x
m+1−2i

2

i . Recall that x1 . . . xm = 1 and so we need to consider the

summand with si =
m+1−2i

2 − am, that is

η(m)Π(q, h2)C

∼ (−1)md′
bmam/NcdNbnNamcm(d+ 1

2
−an)c−nan

N∏
i=1

ϑ3(cziq
d+am−an ; q)

η(q)

∑
ω∈W

ε(ω)eω(ρn)(h2)
m∏
i=1

(zω(i))
2d+1

2

1 + czω(i)qsi+am



Trialities of W-algebras 183

∼ (−1)md′
cN(d+am−an)cm(2d+ 1

2
)

N∏
i=1

ϑ3(cziq
d+am−an ; q)

η(q)

∑
ω∈W

ε(ω)eω(ρn)(h2)
m∏
i=1

(zω(i))
2d+1

2

1 + czω(i)qsi+am

∼ (−1)md′
cN(am−1/2)

N∏
i=1

ϑ3(cziq
am− 1

2 ; q)

η(q)

∑
ω∈W

ε(ω)eω(ρn)(h2)
m∏
i=1

(czω(i))
2d+1

2

1 + czω(i)qsi+am

∼ (−1)md′
cN(am−1/2)

N∏
i=1

ϑ3(cziq
am− 1

2 ; q)

η(q)

∑
ω∈W

ε(ω)eω(ρn)(h2)
m∏
i=1

(czω(i))
2d+1

2

1 + czω(i)qsi+am
.

We now set 2d = n− 4.

Step 5: Denominator identity of sl(N |m)

Recall the denominator identity of the finite dimensional Lie superalge-

bra sl(N |m), [91, Thm. 2.1]. Consider the lattice Zε1 ⊕ · · · ⊕ ZεN ⊕ Zμ1 ⊕
· · · ⊕ Zμm with εiεj = δi,j , μiεj = 0 and μiμj = −δi,j . Then we choose the

sets

Δ+
0 = {εi − εj |1 ≤ i < j ≤ N} ∪ {μi − μj |1 ≤ i < j ≤ m}

Δ+
1 = {εi − μj |1 ≤ i ≤ j ≤ m} ∪ {μi − εj |1 ≤ i ≤ m, i < j ≤ N}.

(A.10)

These can be identified with the set of even and odd positive roots of sl(N |1).
Let ρ0 = 1

2

∑
α∈Δ0

+
α and ρ1 = 1

2

∑
α∈Δ1

+
α be the even and odd part of the

Weyl vector ρ = ρ0 − ρ1. Then

ρ0 =
1

2

N∑
i=1

(N + 1− 2i)εi +
1

2

m∑
i=1

(m+ 1− 2i)μi

ρ1 =
1

2

m∑
i=1

(m+ 2− 2i)ε1 −
m

2

n∑
i=m+1

εi +
1

2

m∑
i=1

(N − 2i)μi

ρ =
n− 1

2

m∑
i=1

(εi − μi) +
1

2

n∑
i=1

(n+ 1− 2i)εm+i.

(A.11)



184 Thomas Creutzig and Andrew R. Linshaw

Then the denominator identity reads

(A.12)

eρ0
∏

α∈Δ+
0

(1− e−α)

eρ1
∏

α∈Δ+
1

(1 + e−α)
=
∑
σ∈SN

sgn(σ)
eσ(ρ)

m∏
i=1

1 + eμi−σ(εi)

.

We set eεi = zi and eμi = c−1q(m+1−2i)/2 so that the identity becomes

∑
ω∈W

ε(ω)eω(ρn)(h2)
m∏
i=1

(czω(i))
n−1

2

1 + c−1zω(i)q−si−am

=
πN (z)πm(q)

cmN/2
N∏
i=1

m∏
j=1

(1 + zicq
m+1−2j

2 )

= c−N(am−1/2) πN (z)πm(q)
N∏
i=1

∏
1≤j≤�m

2 �
(1 + zicqam+j−1)

∏
1≤j′≤�m

2 �
(1 + zicqam+j′)

,

πN (z) =
∏

1≤i<j≤N

((zjz
−1
i )

1

2 − (ziz
−1
j )

1

2 ) = (−1)m�n

2 �eρN (h2)
∏

α∈Δ+

(1− e−α),

πm(q) =
∏

1≤i<j≤m

(e(μj−μi)/2 − e(μi−μj)/2) ∼
∏

1≤i<j≤m

(1− qi−j).

(A.13)

Recall that d′ = d + 1
2 − an = n+1

2 − an, so that d′ = 0 mod 2 if n = 0, 3

mod 4 and d′ = 1 mod 2 if n = 1, 2 mod 4, i.e. (−1)md′
= (−1)m�n

2 �.
Putting all together we get the desired answer

C ∼ (−1)md′

η(q)mΠ(q, h2)
cN(am−1/2)

N∏
i=1

ϑ3(cziq
am− 1

2 ; q)

η(q)

∑
ω∈W

ε(ω)eω(ρn)(h2)
m∏
i=1

(czω(i))
2d+1

2

1 + czω(i)qsi+am
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∼ (−1)md′

η(q)mΠ(q, h2)
cN(am−1/2)

N∏
i=1

ϑ3(cziq
am− 1

2 ; q)

η(q)

c−N(am−1/2)

(−1)m�n

2 �eρN (h2)
∏

α∈Δ+

(1− e−α)

N∏
i=1

∏
1≤j≤�m

2 �
(1 + zicqam+j−1)

∏
1≤j′≤�m

2 �
(1 + zicqam+j′)

∼
eρN (h2)

∏
α∈Δ+

(1− e−α)

Π(q, h2)

∏
1≤i<j≤m

(1− qi−j)

η(q)m

N∏
i=1

ϑ3(cziq
am− 1

2 ; q)η(q)−1

N∏
i=1

∏
1≤j≤�m

2 �
(1 + zicqam+j−1)

∏
1≤j′≤�m

2 �
(1 + zicqam+j′)

∼ ch
[
W−k−m+1(slm|N , fm|N )

]
.
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[3] D. Adamović, V. G. Kac, P. Moseneder Frajria, P. Papi, O. Perše, An
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