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Trialities of W-algebras*

THOMAS CREUTZIGT AND ANDREW R. LINSHAWY

We prove the conjecture of Gaiotto and Rapéak that the Y-algebras
Y m,n[¢] with one of the parameters L, M, N zero, are simple
one-parameter quotients of the universal two-parameter Wi oo-
algebra, and satisfy a symmetry known as triality. These Y -algebras
are defined as the cosets of certain non-principal W-algebras and
W-superalgebras by their affine vertex subalgebras, and triality
is an isomorphism between three such algebras. Special cases of
our result provide new and unified proofs of many theorems and
open conjectures in the literature on W-algebras of type A. This
includes (1) Feigin-Frenkel duality, (2) the coset realization of prin-
cipal W-algebras due to Arakawa and us, (3) Feigin and Semikha-
tov’s conjectured triality between subregular W-algebras, principal
Wh-superalgebras, and affine vertex superalgebras, (4) the ratio-
nality of subregular W-algebras due to Arakawa and van Ekeren,
and (5) the identification of Heisenberg cosets of subregular W-
algebras with principal rational W-algebras that was conjectured
in the physics literature over 25 years ago. Finally, we prove the
conjectures of Prochizka and Rapc¢dk on the explicit truncation
curves realizing the simple Y-algebras as W | o-quotients, and on
their minimal strong generating types.

KEYWORDS AND PHRASES: Vertex algebra, W-algebra, Poisson vertex
algebra, Coset construction

1. Introduction

Let g be a simple Lie (super)algebra with a nondegenerate invariant bilin-
ear form, and let f be a nilpotent element in the even part of g. To this
data and any complex number k, one associates the universal affine vertex
superalgebra V¥(g) at level k, and a complex V*(g) ® C'y whose homology is
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the universal W-superalgebra WF¥(g, f). Historically, the best-studied cases
have f = 0 so that W¥(g,0) = V*(g), and f the principal nilpotent so that
WF (g, f) is the principal W-algebra WF¥(g). However, the recent connection
of vertex algebras to geometry, topology and higher dimensional physics in-
volves many different types of W-superalgebras. Before explaining this in
more detail we begin by stating our main results.

1.1. Main theorem

We first define the two families of algebras of interest. Let g = sl,4,, and
fn,m be the nilpotent element corresponding to the partition (n,1,...,1)
of n+m. Let v = k+n+m. For n4+m > 1 and n > 0, we define
WY (n,m) := W¥*(sly1m, fam)- For m > 2 and n = 0, we define W¥(0,m) =
VE(sl,,) ® S(m) where S(m) is the rank m Bv-system. In the cases n = 0
and m = 0,1 we define W¥(0,1) = S(1) and W¥(0,0) = C. The best known

cases are
the principal W-algebra W¥(sl,,) = W¥(n, 0),
the subregular W-algebra W¥(sl, 11, fsubreg) = W¥(n, 1),

the affine vertex algebra V¥ (sl,,11) = W¥(sl,,41,0) = W¥(1,m),
the minimal W-algebra W¥(sl,, 19, fmin) = WY (2, m).

For m > 1, W¥(n,m) has affine subalgebra V¥=™"1(gl,,). We set

L

c¥(n,m) := Com (VY=Y (gly), W¥ (1, m)) for m > 1,
) - Ww(n, 0) for m = 0.

Next, we consider g = s, and the nilpotent element f,,,, corresponding
to the super partition (n|1,...,1) of n|m. Let v = k4+n—m. For n+m > 2
and n # m, we define V¥(n,m) := Wk(5[n|m,fn|m). The case n = m and
n > 2 is special since s[,,|,, is not simple, and we use its simple quotient psl,,,
instead; that is, V¥ (n,n) := W¥(psl,,, fryn). We set V¥(1,1) = A(1), where
A(1) is the rank one symplectic fermion algebra. For m > 2 and n = 0, we
set V¥(0,m) = V~F(sl,,) ® €(m) where £(m) denotes the rank m be-system.
Finally, V¥(0,1) = £(1) and V¥(0,0) = V¥(1,0) = C. The best known cases
are

the principal W-algebra W¥(sl,,) = V¥ (n, 0),

the principal W-superalgebra Wk(s[n“, fup) = V¥ (n,1),

the affine vertex superalgebra Vk(ﬁ[l‘m) = WH(sly),0) = VY(1,m),
the minimal W-superalgebra Wk(5[2|m, fain) = VY(2,m) for m # 2.

= b=
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For n # m and m > 1, V¥(n, m) has affine subalgebra V=¥=m%1(gl,,).
For n = m > 2, V¥(n,n) has affine subalgebra V~¥="%1(s[,,). Note that for
all n > 1, V¥(n,n) also admits an action of GL; by outer automorphisms.
We set

Com (Vﬁd)ierl (glm), Vw(n,m)) for n 2 m and m > 1,
D¥(n,m) := Com (V=¥="+(sl,), V’Z’(n,n))GL1 for n = m and n > 2,
’ A(1)CH forn=m =1,
Vw(”» 0) for m = 0.

A one-parameter vertex algebra is a vertex algebra over some localization
of a polynomial ring in one variable, which in our case is the level k or
equivalently the critically shifted level . The main result of this paper is

Theorem 1.1. Let n > m be non-negative integers. As one-parameter ver-
tex algebras

D¥(n,m) = C¥ " (n—m,m) = DY (m,n)
; / 1 1 _
with v defined by v tw = 1.

This theorem was first conjectured by Gaiotto and Rapcak [79] in a
slightly different form (see below), and has the following special cases.

1. D¥(1,1) = A(1)S™ is known in the logarithmic conformal field theory
literature as the p = 2 singlet vertex algebra [2, 98]. It is isomorphic
to C¥ ' (0,1) which is the Heisenberg coset of S(1). This isomorphism
has been discussed in [54].

2. Feigin-Frenkel duality says that the principal W-algebra of a simple
Lie algebra g at level 1) — h" is isomorphic to the principal W-algebra
of the dual Lie algebra g at level ¢/ — “hY where £1p' = 1 and / is
the lacity of g [67]. The special case D¥(n,0) = C¥ ' (n,0) of our result
reproduces Feigin-Frenkel duality in type A.

3. Principal Wh-algebras of simply-laced Lie algebras can be realized as
cosets [18]. For type A this is the case D¥(n,0) = D¥'(0,n).

4. Feigin and Semikhatov conjectured relations between cosets of subreg-
ular W-algebras of sl,,, of principal W-superalgebras of sl,,;; and cosets
of affine vertex superalgebras of sl,,; [68]. These correspond to the case
m = 1 of our theorem, that is D¥(n,1) = C¥ ' (n —1,1) = DY (1,n).
The first isomorphism recovers a theorem of Genra, Nakatsuka and
one of us [42].
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1.2. Outline of proof

The proof of Theorem 1.1 has three parts.

1. We show that C¥(n,m) and D¥(n,m) are simple as one-parameter
vertex algebras; equivalently, they are simple for generic values of .

2. We find minimal strong generating sets for C¥(n, m) and D¥(n,m).

3. We show that aside from the extreme cases C¥(0,0), C¥(1,0), C¥(2,0),
and D¥(0,0), D¥(0,1), D¥(1,0), D¥(2,0), for all other values of n,m,
C¥(n,m) and D¥(n,m) are one-parameter quotients of a universal
two-parameter vertex algebra. Its simple one-parameter quotients are
in bijection with a family of curves in the parameter space C2, and
we finish the proof by explicitly describing these curves. The extreme
cases are easily verified separately.

1.3. Basic results on YW-superalgebras

In order to carry out steps (1) and (2) above, we shall establish some foun-
dational results on the structure of WW-superalgebras in Section 3. First, we
introduce a general notion of free field algebra. This is a vertex superalgebra
that is strongly generated by fields whose OPEs contain no other field than
the vacuum. Examples of free field algebras that have a conformal structure
are free fermions, symplectic fermions, the Heisenberg and [Svy-vertex alge-
bra. However there are many more examples that do not have a conformal
structure.

It is well known that W-superalgebras allow for a quasi-classical limit in
which they become commutative and can be endowed with a Poisson vertex
superalgebra structure; see e.g. [59]. We modify these constructions to ob-
tain the free field limits for vertex superalgebras that allow a quasi-classical
limit; see Proposition 3.2. A consequence is that the free field limit is simple
if and only if the corresponding quasi-classical limit has a nondegenerate
pairing on the strong generators; see Corollary 3.1. The main result here is
Theorem 3.5, which says that if g is a Lie superalgebra with a nondegenerate
invariant bilinear form, and f € g is a nilpotent element, the WW-superalgebra
W¥(g, f) has a simple free field limit. As a corollary, we obtain the simplic-
ity of W¥(g, f) for generic values of k in full generality. This was previously
known only for principal W-algebras [12], and for minimal WW-algebras and
W-superalgebras [84, 86]. Finally, recall that W*(g, f) has affine vertex sub-
algebra V*¢(a) where a C g is the centralizer of the sly-triple extending f.
The generic simplicity of W¥(g, f) implies the generic simplicity of its coset
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Com (V¥ (b), Wk(g, f)), where V¥ (b) C V¥(a) is the affine vertex algebra
corresponding to any reductive Lie subalgebra b C a.

Minimal strong generating sets for a large class of orbifolds of ver-
tex algebras, as well as cosets of affine vertex algebras in certain larger
structures, can be studied by passing to an orbifold problem of a suit-
able limit [51]. In Section 4, we adapt this picture to study orbifolds and
cosets of W-superalgebras by passing to their free field limits. Theorem
4.1 says that for any simple Lie superalgebra g and nilpotent f, any re-
ductive group G of automorphisms of W¥(g, f), and any affine subalgebra
V¥ (b) C V¥(a) € WF(g, f) where b is reductive, the orbifold W¥*(g, £)¢ and
the coset Com(V¥ (b), W*(g, f)) are strongly finitely generated for generic
values of k. This result is constructive modulo a classical invariant theory
problem, namely, the first and second fundamental theorems of invariant
theory for some reductive group G and finite-dimensional G-module V. For
the cosets C¥(n, m) and D¥(n, m) appearing in Theorem 1.1, G = GL,, and
V' is the standard module C™ plus its dual. Using Weyl’s first and second
fundamental theorems of invariant theory in this case [126], we give explicit
minimal strong generating sets for these cosets; see Lemmas 6.1 and 7.1.

In Section 3, we also prove some basic results on principal W-algebras of
type A, including the weight where the first singular vector appears in the
universal Wh-algebra for all nondegenerate admissible levels; see Corollary
3.7. This is surely known to experts but we could not find it in the literature,
and it is needed in our proof of Theorem 1.1.

1.4. The Wo.-algebra

The last step in the proof of Theorem 1.1 is to identify both C¥(n, m) and
DY (n, m) explicitly as one-parameter quotients of the universal Wa,-algebra
of type W(2,3,...); see Theorems 6.1 and 7.1. The existence and unique-
ness of a two-parameter vertex algebra Ws[p] which interpolates between
WP (sl,,) for all n was conjectured for many years in the physics literature
[128, 27, 31, 32, 77, 78, 114, 115, 116, 117], and was recently proven by one
of us in [110]. In particular, the structure constants are continuous functions
of the central charge ¢ and the parameter u, and if we set u = n, there is
a truncation at weight n + 1 such that the simple quotient is isomorphic to
WF(sl,) as a one-parameter vertex algebra. In the quasi-classical limit, the
existence of a Poisson vertex algebra of type W(2,3,...) which interpolates
between the classical W-algebras of sl,, for all n, has been known for many
years; see [100, 101, 60].
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We mention that W [p] acquires better properties if it is tensored with a
rank one Heisenberg algebra H to obtain the universal W .-algebra. This
vertex algebra is closely related to a number of other algebraic structures
that arise in very different contexts. For example, up to suitable completions
its associative algebra of modes is isomorphic to the Yangian of gly [26,
112, 124], as well as the algebra SH® defined in [123] as a certain limit of
degenerate double affine Hecke algebras of gl,,. This identification allowed
Schiffmann and Vasserot to define an action of the principal W-algebra of
gl on the equivariant cohomology of the moduli space of U,-instantons in
[123].

In [110] we used a different parameter A which is related to u by

B (n—D(p+1)
(1.1) A= (L—2)32 —p—2+c(p+2)

and we denoted the universal algebra by W(e, A). Instead of using either the
primary strong generating fields, or the quadratic basis of [114], our strong
generators are defined as follows. We begin with the primary weight 3 field
W3, normalized so that W(%)W?’ = 51, and we define the remaining fields
recursively by W' = VV(?’l)VVi_1 for ¢ > 4. With this choice, the rich connec-
tions between the representation theory of Wuo[u] and the combinatorics of
box partitions are not apparent. However, our choice has the advantage that
the recursive behavior of the OPE algebra is more transparent.

In addition to W¥(sl,), W(c, A) admits many other one-parameter quo-
tients as well. In fact, any one-parameter vertex algebra of type W(2,3, ...,
N) for some N satisfying mild hypotheses, arises as such a quotient, so
W(e, A) can be viewed as a classifying object for such vertex algebras. The
simple one-parameter quotients are in bijection with a family of plane curves
called truncation curves, but the explicit description of all such curves is still
an open problem.

The minimal strong generating sets for C¥(n, m) and D¥(n, m) given by
Lemmas 6.1 and 7.1 imply that they are at worst extensions of one-parameter
quotients C¥(n,m) and D¥(n,m) of W(e, \), respectively. We can therefore
regard WY (n, m) as an extension of V¥~™1(gl,,)®W where W is some one-
parameter quotient of W(c, \), and the extension contains 2m even primary
fields in weight ”TH which transform under gl,,, as C"™ @ (C™)*. By imposing
just seven Jacobi identities, we will prove that the truncation curve for W
is uniquely and explicitly determined by the existence of this extension.
Similarly, we regard V¥ (n,m) as an extension of V"¢="*1(g[,,) ® W in the
case n # m, and of V"¥""+1(s[,)®W in the case n = m, where the extension
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contains 2m odd primary fields of weight "T“ which transform under gl,,
(or sl,, in the case n = m) as C™ @ (C™)*. The same procedure shows that
the truncation curve for W is uniquely determined. These curves allow us
to find isomorphisms between the simple quotients C~¢ (n,m) and 75¢ (n,m)
and certain principal W-algebras of type A, at special values of . Using the
weights of singular vectors in these W-algebras given by Corollary 3.7, we
prove that C¥(n,m) = C¥(n,m) and D¥(n, m) = D¥(n,m). Our main result
then follows from our explicit truncation curves, together with the generic
simplicity of C¥(n,m) and D¥(n, m).

1.5. Y-algebras and triality

Motivated from physics, Gaiotto and Rapcdk introduced a family of ver-
tex algebras Y7,y n[1)] called Y-algebras [79]. They considered interfaces
of GL-twisted N' = 4 supersymmetric gauge theories with gauge groups
U(L),U(M),U(N). The shape of these interfaces is a Y and local opera-
tors at the corner of these interfaces are supposed to form a vertex algebra,
hence the name Y-algebra. Also note that GL stands for geometric Lang-
lands. These interfaces should satisfy a permutation symmetry which then
induces a corresponding symmetry on the associated vertex algebras. This
led [79] to conjecture a triality of isomorphisms of Y-algebras.

The Y-algebras were also conjectured in [79] to arise as one-parameter
quotients of the universal two-parameter W -algebra, which is just the
tensor product H@W(c, A). In fact, the distinct truncation curves of W(e, \)
are expected to be in bijection with the algebras Y s n[¢)] algebras, which
are the simple quotients of H ® W(¢, \) along these curves, and Y (r, M +
r, N+7)[¢] is expected to be a non-simple quotient of H®W(c, \) along the
same curve. In [116], Prochdzka and Rapcdk conjectured a precise formula
for these truncation curves, and in [117] they conjectured that Y7, as n[¢]
should have minimal strong generating type W(1,2,3,...,n) for n = (L +
DM +1)(N+1)—1.

The Y-algebras with one label being zero are up to a Heisenberg algebra
our coset vertex algebras. More precisely,

Youn[] =CY(N — M, M) H, M <N,
(1.2) Yomnp] =C V(M -~ N,N)®H, M>N,

Yion[¥] =DY(N,L) @ H,

YraolY] = DVTHM, L) @ H.
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By definition one has Yy n (Y] = Yo ar,n[1 — 9] for N # M. We also have
C¥(0,M) = C'=%(0, M) and hence this statement also holds for N = M.
Clearly also Y7, 0 n[¢] = Y7, n,0[1—1]. Combining this with the isomorphisms
in Theorem 1.1, we obtain

Youn[¥] = Yonu(l — ¢] = Yaro N[~ = Yarno[l — o]

1
(1.3) =~ Yyom[(L—¢) = Yyl -y 1)

Let ¥ be defined by
€2
P =——, €1+e+e3=0

and set
€1,€2,€: L
Nllyfifzj\fz T YN17N27N3 [w]

Then with this notation the triality symmetry is manifest
€5(1),€5(2),€0(3) ~ €1,€2,€3
YNa(l),No(z),Na('g.) - YNuNz,Na for o € S3.
In particular, as a corollary of Theorems 1.1, 6.1, and 7.1, we obtain

Corollary 1.1. The following conjectures are true.

1. The conjecture [79] that Y, apr,n (1)) is a simple quotient of H@W(c, A),
when one of the labels L, M, N is zero.

2. The triality conjecture of [79] for the algebras Y,y n[1)] when one of

the labels is zero.

The formula [116, Eq. 2.14] for the truncation curve of Yoy n[v].

4. The conjecture of [117] that Yo pron (2] is of type W(1,2,3,...,(M —
(N -1)-1).

o

The general case of Y7, a7, n[1] where the three labels can all be nonzero,
corresponds to cosets of W-superalgebras of type A by affine vertex superal-
gebras. These cosets are also expected to be one-parameter quotients of the
universal Wi o-algebra, however they are not the simple quotients. One
can study these cases by using the invariant theory of Lie superalgebras
developed by Sergeev [119, 120], to describe orbifolds of free field algebras
under the corresponding supergroups. These orbifolds will then be suitable
limits of Yas v, r[¢]. It also seems possible to relate Y7, a7 n[¢] for nonzero
L,M,N,to Yy N—rm—r[t] by a new variant of the Duflo-Serganova func-
tor [65, 85], called cohomological reduction of affine superalgebras in physics
[34], for W-superalgebras. This is work in progress.



Trialities of W-algebras 7

1.6. Uniqueness and reconstruction of W-algebras

For m > 1, W¥(n,m) can be viewed as an extension of V¥~""1(gl,,) ®
C%(n,m), where the extension is generated by primary fields {P**
1,...,m} of weight ”T“, which transform as C"™ @ (C™)* under gl,,. These
fields also satisfy the nondegeneracy condition (P*ﬁi)(n)P*’j = 9; ;1. Theo-

rem 9.1 says that WY (n,m) satisfies a strong uniqueness property: its full
OPE algebra is completely determined by the structure of C¥(n,m), the
normalization of the Heisenberg field, the action of gl,, on the fields { P*},
and the above nondegeneracy condition. A similar uniqueness theorem holds
for V¥(n, m); see Theorem 9.5.

There are certain special levels where the simple quotient Cy(n, m) of
C%(n,m) is isomorphic to a principal W-algebra W,(sls) for some s > 3,
and these are classified by Corollary 6.5. The reconstruction problem at these
levels is to consider the tensor product of W, (sls) with a homomorphic image
of V¥=m=1(gl,,), and try to realize Wy(n, m) explicitly as an extension of
this tensor product. This requires the above uniqueness theorem, and is
easiest in the case m = 1 since the extension is then expected to be of simple
current type. Theorem 9.2 shows that for ¢ = "*SH yifs+land s+n+1
are coprime, then the Heisenberg algebra H C W¢(n 1) can be extended to

a lattice vertex algebra Vi, C Wy (n, 1) for L = y/s(n+ 1) Z, and Wy(n, 1)
is a simple current extension of Vi ® W, (sls) for r = —s + s—ij’;—li-l This
proves an old conjecture of Blumenhagen et al. [31], which was previously
known only in the low rank cases of r = 2,3,4 in [24, 17, 52]. It gives a new
and independent proof of Arakawa and van Ekeren’s recent theorem that
Wi (841, fsubreg) is rational and lisse for these values of k =1 —n —1 [21].
Similarly, in Theorems 9.3 and 9.4, we reconstruct Wy (n,1) and Wy (2, m)
at certain levels where it is not rational or lisse. As a consequence, we obtain
a vertex tensor category structure on the category of ordinary modules for

certain affine vertex algebras at non-admissible levels.

1.7. Outlook

In this subsection, we list a few natural directions for future research.

Free field realization. Theorem 1.1 is a common generalization of Feigin-
Frenkel duality in type A, and the coset realization theorem of [18] in type A,
and provides new proofs of these results. Both of these results were proven
originally using the free field realization of W¥(sl,,) at generic level £ coming
from the Miura map

e We(sln) — T,
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where 7 is the Heisenberg vertex algebra of rank n — 1. This is obtained
by applying the Drinfeld-Sokolov reduction functor to the Wakimoto free
field realization V*(sl,,) < My, ® m, where My, is the Bv-system of rank
dim(n4 ), where ny denotes the upper nilpotent part of s, [66]. The difficult
step of [18] is to construct another vertex algebra homomorphism

Ty, : Com(VEHL(sL,), VE(sl,) ® Ly(sly)) = 7w,  L+n= T

and show that its image coincides with the image of ~,.

It is an important question whether this approach can be used to give
an alternative proof of Theorem 1.1. In the case m = 1, this was carried out
by one of us together with Genra and Nakatsuka [42]. We mention that a
family of vertex algebras W;, ,, ,, defined by free field realizations in [28], was
conjectured by Prochézka and Rapcak to be isomorphic to the Y, ., » [¢]-
algebras of [79]. These algebras manifestly satisfy the triality symmetry, so
establishing their equivalence to the Y-algebras of [79] would provide another
proof of our main result. In recent work of Rapcdk, Soibelman, Yang and
Zhao [118] which generalizes the results of [123, 112], an action of Wy, r, r,
on the equivariant cohomology of the moduli space of spiked instantons
was constructed. They also conjecture the action of some vertex algebra for
any toric Calabi-Yau threefold and there should be a gluing construction of
Y1 v, n-algebras that realizes these vertex algebras.

Reconstruction of W-algebras: general case. It would be very interest-
ing to reconstruct all simple algebras W,,(n, m) appearing in Corollary 6.5
as extensions of type A principal W-algebras times affine vertex algebras.
In the first case, W, (sl) is lisse and rational as long as m+s and m+n+s
are coprime, and the reconstruction problem can be approached using the
theory of vertex algebra extensions [47, 48] once one understands fusion cat-
egories of type A well enough. Note that the level of the affine subalgebra
of Wy (n, m) is admissible if n is coprime to m + s. It is not apparent that
the simple affine vertex algebra Ly_,,—1(gly,) embeds in Wy, (n, m) at these
levels, but we expect this to be the case. Reconstructing Wy (n, m) as an
extension of Ly_,—1(gln) ® Wi (sls), would prove this conjecture.

Recall next that a level k of sl, is called boundary admissible if k =
—n + 7 for some positive integer r coprime with n. This case is special in
the sense that the simple vertex algebra is the only simple ordinary module
at this level [14]. In the second case of Corollary 6.5, note that the level
k =1 —n —m of Wy(n,m) is boundary admissible for sl,, 1., when s and
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m are coprime. In the third case, the affine subalgebra of Wy (n,m) has
boundary admissible level if n — s is coprime to m.

Vertex algebras can be associated to certain supersymmetric quantum
field theories called Argyres-Douglas theories. These are labelled by pairs of
Dynkin diagrams and the associated vertex algebra seems to usually be an
extension of a W-algebra at boundary admissible level associated to the Lie
algebras with corresponding Dynkin diagrams; see e.g. [35, 38, 127]. Not all
cases are understood yet in this context, but known ones of type A seem to
be covered by the second case of Corollary 6.5.

Another interesting series of cases are the conformal embeddings, which
is an area of active recent study [7, 3, 4, 5, 6]. We have an embedding
VY=m=1(gl,,) = Wy(n,m) for some homomorphic image V¥~"~1(gl,,) of
V¥=m=1(gl,,). We call this a conformal embedding if V¥~™1(gl,,) and
Wy (n,m) have the same Virasoro element; equivalently,

Com(V¥~™"1(gl,,), Wy(n,m)) = C.

Conformal embeddings occur for the following three values of ¢ as long as
they are defined:

m+n—1 m-4+n m+n+1
’ n+1’ n '

n—1

Besides being interesting in their own right, conformal embeddings in the
case of minimal W-algebras are useful to prove semisimplicity of ordinary
modules of affine vertex algebras at special non-admissible levels [4], and
to establish vertex tensor category structure on this category of ordinary
modules [55].

Triality from kernel vertex algebras. Here we give a new perspective
on trialities. It is based on constructing a larger vertex algebra in which
both W¥ ™' (n — m,m) and V¥ (m,n) can be realized as cosets by certain
affine vertex subalgebras. Davide Gaiotto and one of us studied vertex al-
gebras in the context of S-duality in [40]. The set-up is again GL-twisted
N = 4 supersymmetric gauge theory, and vertex algebras are associated
to two-dimensional intersections of three-dimensional topological boundary
conditions. Categories of vertex algebra modules arise as categories of line
defects ending on these boundary conditions, and physics predicts that many
interesting vertex algebras can be realized by gluing affine vertex algebras
and W-algebras; see [41, Section 1.1] for a list of such predictions. The most
important vertex algebra is the one that arises between Dirichlet boundary
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conditions and its S-duality image. This is actually a vertex superalgebra
and it is called the quantum geometric Langlands kernel vertex algebra in
[40]. If the gauge group is SU(2), then this kernel algebra is L1(9(2,1; —)\))
and the gauge coupling v is ©» = A + 1. The generalization to gauge group
SU(N) is supposed to be

E[N, @ Vk ®V€ )®V\/N2+L>\)
repP+ vy

with ¢ = k+ N,¢' = ¢+ N and i+% = 1. The map s : P — Z/NZ
is defined by s(A\) =t if A = w; mod @, where wy is the t-th fundamental
weight of sly and we identify wy with 0. The V*()\) are generalized Verma
modules at level & whose top level is the integrable sly-module py of highest-
weight A. Conjecturally, Alsly,] can be given the structure of a simple
vertex superalgebra for generic 1. We also would like to include the case
N = 1 and so define A[sly,9)] := Vz to be just a pair of free fermions,
i.e. the integer lattice vertex algebra. Let f be a nilpotent element with
corresponding complex CY, i.e. the homology Hf(Vk(g) ® Cy) is the W-
algebra W¥ (g, f). We then denote the W¥(g, f)-module H;(M ® Cy) simply
by H;(M) for M a V*(g)-module. One then sets

Aﬁ[N?fa @Vk ®Hf VK(A))@)V\/NZJF%
AeP+

and conjectures that this can be given the structure of a simple vertex super-
algebra. Note that for f the principal nilpotent, this is just Alsly, f, ] =
VE=l(sly) ® F(2N) by the coset construction of principal W-algebras of
[18]. Here F(2N) is the vertex superalgebra of 2N free fermions.

Set N = n+m and consider the nilpotent element f = f,, ,, correspond-
ing to the partition N =n + 1+ --- 4 1 so that W:(sly, f) = WV (n,m)
is a hook-type W-algebra with V*"~1(gl,,) as subalgebra. The top level
corresponding to the standard representation of sly in A[sly, f, 1] has con-
formal Welght 5 — "51 = mT‘H and it is expected to be odd. We want to
take a coset that contains these elements. For this let J be as in Lemma
3.6 and let v be the generator of VNZ = ~Z, i.e. v> = N. Denote the
corresponding Heisenberg field by + as well and set H = J — v and H the
Heisenberg vertex algebra generated by H. This ensures that the commu-
tant with V+7~1(sl,,) ® H contains the fields of conformal weight mTH in
the standard representation of sly, and its conjugate. The conjecture moti-
vated from and generalizing [40, 79] is that these fields actually generate a
W-superalgebra of type sl x.
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Conjecture 1.1. For generic k and any nilpotent element f, the object
Alsly, f,] can be given the structure of a simple vertex superalgebra, such
that the top level of VF(\)® H(VE(\)) ®V\/NZ+L¢*_> is odd for A\ = w1y, wn_1.

Theorem 1.2. (Theorem 10.1) For generic k, if Conjecture 1.1 is true for
f = fn,m; then

Com (V€+n_1(5[m) & Ha A[ﬁ[Na fn,ma d)]) = W_k_m+1(5[m|N’ fm|N)

Note that W*k*mﬂ(s[mw,fmw) = VI=¥(m,n + m). It is immediate
that

Com <Vk(5[N) @ H, Alsly, fn,m7¢]> = W sy, fam) = WY (n,m).

Therefore Theorem 1.2 gives a duality between the W-algebras V=¥ (m, n+
m) and WY (n,m); both can be obtained as affine cosets of A[sly, fn.m, ).
Note that the coset realization of all W-algebras WY (n, m) and V¥ (n,m)
given by Theorem 1.2 vastly generalizes the coset realization of WY (n,0) =
WY¥—"(sl,,) from [18]. Theorem 1.2 follows from a character statement that
we prove in Appendix A, namely

Theorem 1.3. Graded characters agree,
l+n—1 _ —k—m+1
ch |:00m <V (5[m) ®,H7A[5[N7fn,m7k])} =ch {W (5[m|N7fm|N)]'

The idea of proof is inspired from the proof of [39, Thm. 3.3]. While the
characters of W¥(n,m) and V¥ (n,m) do not have any good automorphic
properties, it turns out that the character of A[sly, f, ] is the expansion of
a meromorphic Jacobi form in a certain domain. The decomposition prob-
lem of meromorphic Jacobi forms is an interesting problem in its own right,
and depending on the index either mock modular forms (positive index)
[56] or false theta functions (negative index) [30] appear in the decompo-
sition. The literature is mostly concerned with Jacobi forms in one vari-
able, while we are effectively interested in m-variable meromorphic Jacobi
forms. Our decomposition problem is a priori very difficult, but becomes
feasible using representation theory of Lie superalgebras. As in [30] we can
use denominator identities of affine Lie superalgebras [91] to approach this
problem. We are however not only interested in Fourier coefficients of mero-
morphic Jacobi forms, but actually into their decomposition into characters
of highest-weight modules of sl,,,. This turns out to be doable using denom-
inator identities of finite Lie superalgebras.
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Relative semi-infinite Lie algebra cohomology acts on modules M of an
affine vertex algebra at level —2h" [72, 13], and we use Section 2.5 of [39] as
background. Most importantly, it satisfies

Hégl,()(g7vk()\) ®V72hvfk('u)) _ {(C lf:u: _WO(A)

0  otherwise.
Here wy is the unique Weyl group element that interchanges the fundamental
Weyl chamber with its negative. We consider WY (n—m, m)® A[sl,,, 1 —1]®
7#~¢ where 7%~¢ is a rank one Heisenberg vertex algebra. This ensures that
if we take the appropriate relative semi-infinite Lie algebra cohomology, we
obtain a vertex algebra that has odd generators of conformal weight 242:

2
see Section 10 for details. We believe that the following is true:

Conjecture 1.2. Hégl’o(slm, WY (n—m, m)®A[sl,,, 1 —p]@7"*) is a simple
vertex superalgebra.

We can show that

Theorem 1.4. (Theorem 10.2) Let k be generic and assume that Conjecture

1.2 is true. Then VY™ (n,m) = H (50, WY (n — m,m) @ Afsly,, 1 — 1] ®
k—¢

o).

Conjecture 1.2 was proven for m = 1 in [43], and was used to prove
block-wise equivalences of categories of modules between W¥(n — 1,1) and
wal(n, 1), as well as isomorphisms of superspaces of intertwining opera-
tors. It should also allow to investigate correspondences between correlation
function and spaces of conformal blocks at arbitrary genus. We therefore
consider Conjectures 1.1 and 1.2 to be an important problem. Our ideas
are: Conjecture 1.1 might be provable using the Kazhdan-Lusztig equiva-
lence of ordinary modules of an affine vertex algebra at generic level and
corresponding quantum group modules [94, 95, 96, 97] together with the
theory of gluing vertex algebras [48]. Conjecture 1.2 might follow from [13,
Thm. 3.1], but for this one first needs to be able to determine the associated
varieties of the kernel vertex algebras A[sl,,, ¥]. This is interesting in its own
right.

Gluing Y-algebras and equivalences of representation categories.
The first part of Conjecture 1.1 is the existence of a simple vertex super-
algebra that extends the tensor product of an affine vertex algebra and a
W-algebra. It is a general theorem that extensions of such a type are possible
if and only if there is a braid-reversed equivalence of vertex tensor categories
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along which one glues [48]. The crucial assumption of [48] is the existence of
vertex tensor category structure, which in general is very hard to prove. Let
us consider DY (n,m) = D?(m,n) where ¢ 1 +9~! = 1 and we take 1 to be
generic so that the categories K L (sl,,) and K Ly(sl,,) of ordinary modules
of sl,, and sl, at levels k = ¢ —m + 1 and £ = ¢ — n + 1 are semisimple.
By our isomorphisms, D¥(n,m) is a coset subalgebra of both V¥ (n, m) and
V?(m,n). This means we have decompositions

P v @Bl (nm)
AEP+(sl,,)

P v eciimn).

AeP*(sl,)

1

V¥(n,m)

(1.4)

1

V®(m,n)

Here P (g) denotes the set of dominant weights of g, and B;/J (n,m), Cf(m, n)
are certain modules for D¥(n,m) (times a Heisenberg vertex algebra if

n #m).

Conjecture 1.3. Let m,n > 2 and 1 be generic. Let k = ¢ —m + 1 and
¢ = ¢ —n+1. Then D¥(n,m) ® H for H a rank one Heisenberg algebra has
a vertex tensor category of modules that is braid reversed equivalent to the
Deligne product of K Ly(sl,,) and K Ly(sl,).

For n = 0, 1 one sets K Ly(sl,,) to be trivial. Note that conjectures of this
type for principal W-algebras have been made in the context of quantum
geometric Langlands [23, Conj. 6.4] and proven for n = 2 [45, Prop. 5.5.2].
The difficult part of this conjecture is to establish the existence of rigid
vertex tensor category structure which has been done for the Virasoro case
in [45]. As an example, consider the tensor product of D¥(n,m), D¥' (n’,m)
(and possibly a Heisenberg vertex algebra), assume that above conjecture
holds in such a way that there is a braid-reversed equivalence 7 between the
categories of type sl,;,,. They thus allow for an extension to a simple vertex
algebra of the form [48]

@ Bf\ﬂ(n,m) ®T (Bf\b(n,m))* .

AEP(s1,,)

Physics conjectures that these types of extensions exist and are isomorphic to
other W-algebras; see [116]. These gluing conjectures are tightly connected
to certain magical properties of the quantum Hamiltonian reduction functor,
e.g. if one of the factors is a prinicipal W-algebra (n’ = 0) and ¢’ =1 -1,
then such a gluing statement follows for n < m from [18] together with the
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reduction functor commuting with tensoring with integrable representations
[19].

As mentioned before, the Y7, 37 n-algebras are conjecturally isomorphic
to the Wy, ar n-algebras of [28], and the latter act on the moduli space of
spiked instantons of certain toric Calabi-Yau threefolds [118]. The toric dia-
gram of these examples has three two-dimensional faces and each face is la-
belled by non-negative integers L, M, N that indicate an action of the gauge
groups U(L),U(M),U(N). In our case one of these labels is zero and our
conjecture says that the corresponding Y 3/, n-algebra has categories of type
K Li(sly) and K Ly(sly) for some k,¢. The extension of a tensor product
of two Y-algebras along a common K L (slys) should geometrically corre-
spond to a toric Calabi-Yau threefold whose toric diagram has four faces,
and then iterating this procedure should correspond to diagrams with even
more faces. Moreover, the resulting vertex algebras should still be cosets
of W-superalgebras of type A. This picture is currently a conjecture from
physics considerations [116]. Our results allow one to prove similar results
as our Theorem 1.3, i.e. show that extensions of certain tensor products of
Y -algebras to simple vertex algebras exist and their characters coincide with
the characters of the expected cosets of W-superalgebras. We will report on
this elsewhere.

2. Vertex algebras

We briefly define vertex algebras, which have been discussed from several
points of view in the literature (see for example [29, 75, 74, 87, 70]). We will
follow the formalism developed in [104] and partly in [102]. Let V =V, @&V}
be a super vector space over C, z,w be formal variables, and QO(V') be the
space of linear maps

V= V((2) ={D)_v(n)z" " u(n) €V, v(n) = 0 for n >> 0}.
nez

Each element a € QO(V') can be represented as a power series

a=a(z)=> a(n)z""' €End(V)[[z,2""]].
nez

We assume that a = ag + a1 where a; : V; = Vi;((2)) for i,j € Z/27Z, and
we write |a;| = i.
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For each n € Z, we have a bilinear operation on QO(V'), defined on
homogeneous elements a and b by

a(w)n)b(w) = Res;a(2)b(w) ¢z w((z — w)"
— (=1)lPIRes, b(w)a(z) L[> 2| (2 — W)™
Here ¢[,5 1, f(2,w) € C[[z,271,w,w™"]] denotes the power series expansion
of a rational function f in the region |z| > |w|. For a,b € QO(V'), we have the

following identity of power series known as the operator product erpansion
(OPE) formula.

(2.1) a(z)b(w) = Z a(w)myb(w) (z — w) " a(2)b(w) ;.

n>0
Here : a(2)b(w) : = a(2)-bw) + (=1)lPtlp(w)a(z);, where a(z)- =
Sncoa(n)z7" ! and a(z)4 = n>0 a(n)z~"~1. Often, (2.1) is written as

a(2)b(w) ~ Y a(w)mb(w) (z —w)™"

where ~ means equal modulo the term : a(z)b(w) :, which is regular at
z = w.

Note that : a(w)b(w) : is a well-defined element of QO(V). It is called
the Wick product or normally ordered product of a and b, and it coincides
with a(_l)b. For n > 1 we have

n! a(z)(—n-1)b(z) = : (0"a(2))b(2) :, 0= o

For a1(z),...,ar(z) € QO(V), the k-fold iterated Wick product is defined
inductively by

(2.2) :a1(2)az(z) - ar(z) : = a1(2)b(2) :, b(z) =:az(z) - -ar(z) : .

We often omit the formal variable z when no confusion can arise.

A subspace A C QO(V) containing 1 which is closed under all the above
products is called a quantum operator algebra (QOA). We say that a,b €
QO(V) are local if

(2 = w)a(z), b(w)] = 0
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for some N > 0. A vertex algebra is a QOA whose elements are pairwise
local. This is well known to be equivalent to the notion of a vertex algebra
in the sense of [75].

A vertex algebra A is generated by a subset S = {a'| i € I} if A is
spanned by words in the letters o, and all products, for i € I and n € Z.
We say that S strongly generates A if A is spanned by words in the letters
o', and all products for n < 0. Equivalently, A is spanned by

{:okal . @Fmaim iy, i €1, Ky, ..k > 0.

Suppose that S is an ordered strong generating set {a!,a?,...} for A which
is at most countable. We say that S freely generates A, if .A has a Poincaré-
Birkhoff-Witt basis
(2.3)
R LI A L DN I LN I LAV SN LIGRp A
1<ip <o <,
ki 2hy 22k, K2k 22k, o, K2k 22k
ki >k, > > kL if o is odd.

We recall some important identities that hold in any vertex algebra A.
For fields a, b, c € A, we have

(2.4) (0a)mb = —nay—1, Vn € Z,
(2.5) Q(n) |a|\b\ Z p+1 (n—p—1)17 Vn € Z,
PEZ

2. c(tabi)e: — tabe: = Z (n—ll— 0 (: (8n+1a)(b(n)c) :
. n>0

+ (=) @) (agye) <),

agny(: be )=t (agyb)e: — (=DM bage) -

_Z<)a(nz ll)c, \V/TlZO,

(2.7)

(2.8)
aqy(bsyc) = (—1 )|a||b|b c)+ Z ( ) a(iyb) (r4s—i)Cs Vr,s > 0.
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The identities (2.8) are known as Jacobi identities of type (a,b,c), and
they play an important role in the proof of our main theorem.

2.1. Conformal structure

A conformal structure with central charge ¢ on a vertex algebra A is a
Virasoro vector L(z) = Y, . Lnz"""% € A satisfying

(2.9)  L(2)L(w) ~ g(z —w)" 2L (w)(z — w) % + OL(w)(z — w) L,

such that L_ja = Oda for all « € A, and Ly acts diagonalizably on A.
We say that o has conformal weight d if Lo(«a) = da, and we denote the
conformal weight d subspace by A[d]. In all our examples, this grading will
be by Z>o or %Zzo- We say A is of type W(d1,da, ...), if it has a minimal
strong generating set consisting of one even field in each conformal weight
di,da,. ...

2.2. Coset construction

Given a vertex algebra V and a subalgebra A C V, the coset or commutant
of A in V, denoted by Com(.A, V), is the subalgebra of elements v € V such
that

[a(z),v(w)] =0, Va € A.

This was introduced by Frenkel and Zhu in [76], generalizing earlier con-
structions in [83, 88]. Equivalently, v € Com(A, V) if and only if ag,yv = 0
for all a € A and n > 0. Note that if V and A have Virasoro elements LV
and LA, Com(A, V) has Virasoro element L = LY — L as long as LY # LA.

2.3. Affine vertex algebras

Let g be a simple, finite-dimensional, Lie (super)algebra with dual Coxeter
number h", equipped with the standard supersymmetric invariant bilinear
form (—|—). The corresponding affine Lie algebra § = g ®c C[t,t"!] ® CK
has bracket

(2.10) [E@t",n@t"] =[&n] @ " + népimo(€N)K,

and K is central. The universal affine vertex (super)algebra V*(g) is isomor-
phic to the vacuum g-module. It is freely generated by fields X¢ as ¢ runs
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over a basis of g, which satisfy
XE(2) X" (w) ~ k() (z = w) 7% + X (w)(z = w) ",

We may choose dual bases {¢} and {{'} of g, satisfying (¢'|n) = 0¢,y. If
k+ hY # 0, there is a Virasoro element

1 /
— E - xéxs .
of central charge ¢ = k'Zii_r;;v(g). This is known as the Sugawara conformal

vector, and each X¢ is primary of weight one. We denote by Ly(g) the
simple quotient of V*(g) by its maximal proper ideal graded by conformal
weight.

2.4. Free field algebras

Definition 2.1. A free field algebra is a vertex superalgebra V with weight
grading
V=P v, Vi=c

dE%Zzo

with strong generators {X?| i € I} satisfying OPE relations

X' (2) X (w) ~ a; ;(z — ) WX WX,

(2.12) . ,
aij € C, ;5 = 0 if Wt(XZ) +Wt(X]) ¢ 7.

Note that we do not assume that V has a conformal structure. We next
introduce four families of standard free field algebras. They are either of
symplectic or orthogonal type, and the generators are either even or odd.

Even algebras of orthogonal type. For each n > 1 and even k > 2, we define
Oecv(n, k) to be the vertex algebra with even generating fields a', ..., a" of
weight g, which satisfy

a'(z)a’ (w) ~ 9ij(z — w)_k.

In the case k = 2, Oy (n, k) just the rank n Heisenberg algebra H(n). If we let
al, ..., a" denote the standard generators for H(n) satisfying o’ (z)a’ (w) ~
8;.i(z —w)™2, then Oey(n, k) can be realized inside H(n) by setting

€

@' = ———0F 1, i=1,...,n,
(k—1)!
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where € = /—1 if 4]k, and otherwise ¢ = 1. Note that H(n) has Virasoro
element L* = % Yoy a’a’ : of central charge n, under which o is primary
of weight one, but Oey(n, k) has no conformal vector for k > 2. However,
for all k it is a simple vertex algebra and has full automorphism group the
orthogonal group O,,.

Even algebras of symplectic type. For each n > 1 and odd k > 1, we define
Sev(n, k) to be the vertex algebra with even generators a,b’ fori =1,...,n
of weight %, which satisfy

o1y TP G B~ bt w)
' a'(2)a? (w) ~ 0, b (2)b7 (w) ~ 0.

In the case k = 1, Sev(n, k) is just the rank n By-system. Let 3%, ~¢, i =

1,...,n, be the standard generators of S(n), which satisfy

B2 (w) ~ Gij(z —w) ™, A (2)B (w) ~ =0i5(z — w) 7,

(2.14) Ry S
B (2)8 (w) ~ 0, Yi(2)7 (w) ~ 0.

Then Sey(n, k) can be realized as the subalgebra of S(n) with generators

at = ¢ ok=1/231 L ;8(k_1)/27i, i=1,...,n,
(k— 1) (k—1)!

with € as above. We give S(n) the Virasoro element LS = 237" | (: 0" :
— 0B ) of central charge —n, under which 3%, 4 are primary of weight
3. Note that Sey(n, k) has no conformal vector for k > 1, but for all k it is
simple and has full automorphism group the symplectic group Sp,,,.

Remark 2.1. If we change the weight grading and pass to completions, there
can be additional automorphisms. For example, the algebra of chiral differ-
ential operators on the upper half plane D®*(H) is a completion of S(1).
There is an action of V"2(sly) on S(1) given by

h— —2:8v:, x— =0, Yy Byy s 420y,
and there is a compatible action of SLy on D(H) [57)].

0dd algebras of symplectic type. For each n > 1 and even k > 2, we define
Sodd(m, k) to be the vertex superalgebra with odd generators a', b’ for i =
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1,...,n of weight %, which satisfy

a' ()07 (w) ~ i,j(z — w)*k, V(2)a (w) ~ -0, (2 — w)*k,

(2.15) . 4 4 4
a'(z)a’ (w) ~ 0, b'(2)b (w) ~ 0.

In the case k = 2, Spqq(n, k) is just the rank n symplectic fermion algebra
A(n). Let €', f/, i = 1,...,n be standard generators for A(n) satisfying

o1 OO )~ —w) T P w) ~ =i —w)
el(z)ej (w) ~ 0, ]m(z)f](w) ~0.

Then Syq4(n, k) is realized as the subalgebra of A(n) with generators

ai = #ak/Z—lez} bZ = éak/Q_lfi, 7= 1, cea,n.
& 1) &1

As above, A(n) has Virasoro element LA = — 3% : ¢! f? : of central charge
—2n, under which e, f* are primary of weight one, and Syqq(n, k) has no
conformal vector for k > 2. However, it is simple and has full automorphism

group Spy,, -

0dd algebras of orthogonal type. For each n > 1 and odd k& > 1, we define
Ooad(n, k) to be the vertex superalgebra with odd generators a’ for i =
1,...,n of weight g, satisfying

(2.17) a'(2)a’ (w) ~ 6; j(z — w) ™",
For k = 1, Ooqa(n, k) is just the free fermion algebra F(n). Let ¢;, i =
1,...,n be standard generators for F(n), satisfying
(2.18) ¢'(2)¢ (w) ~ &,j(z —w) ™.

Then Oyqq(n, k) is realized as the subalgebra of F(n) with generators

at = ;3(]“_1)/2&, i=1,...,n.
(k—1)!

Then F(n) has Virasoro element L7 = —% n 1 ¢'0¢" : of central charge

5, under which @' is primary of weight %, but Ouqq(n, k) has no conformal

vector for k > 1. However, it is simple and has full automorphism group O,,.
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For later use, we mention that the be-system £(n) of rank n is isomorphic
to F(2n); it has odd generators b’,c, i = 1,...,n and OPEs

org  PEIE@ NG W) b w)
' b (2)b (w) ~ 0, ¢ (2)d (w) ~ 0.

A particularly important class of free field algebras is those which de-
compose as a finite tensor product of standard ones of the above four types.
As we shall see in the next section, affine W-algebras admit a suitable limit
which is a free field algebra of this form. This feature provides a power-
ful tool for analyzing the structure of orbifolds of W-algebras and cosets of
W-algebras by affine subalgebras.

2.5. Vertex algebras over commutative rings

Let R be a finitely generated commutative C-algebra. A vertex algebra over

R is an R-module A with a vertex algebra structure which is defined as

above. The theory of vertex algebras over general commutative rings was

developed by Mason [111], but the main difficulties are not present when R

is a C-algebra. We will use the notation and setup of Section 3 of [110].
Let V be a vertex algebra over R with conformal weight grading

V= Vid, V=R

de%ZZO

Here %Zzo is regarded as a subsemigroup of R. A vertex algebra ideal Z C V
is called graded if

I= & 7/, I{d=InVd]
deil>o

We say that V is simple if there are no proper graded ideals Z such that
Z[0] = {0}. If I C R is an ideal, we may regard I as a subset of V[0] & R.
Let I -V denote the set of I-linear combinations of elements of V, which is
just the vertex algebra ideal generated by I. Then

VI=V/(I-V)

is a vertex algebra over the ring R/I. Even if V is simple as a vertex algebra
over R, V! need not be simple as a vertex algebra over R/I.
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IfV =@ 4c15_, VId], as above, each V[d] has a bilinear form
(220) (7 >d : V[d] @R V[d] — R, <’LL, U>d = U(2d—1)V-

We declare (V[d],V[e]) = 0 if d # e, and we extend (,) linearly to all of V.

A vector v in the radical of the Shapovalov form () is called a singular
vector. Suppose now that each weight space V[d] is a free R-module of finite
rank. We then define the level d Shapovalov determinant dety € R to be
the determinant of the matrix of (,)4. The following lemma is known in the
case of Z>p-gradings [93, Prop. 2.2], and the proof for %Zzo—gradings is the
same.

Lemma 2.1. Let V be a %Zzo—gmded vertex algebra over R where V[0] =
R and each V[d] is a free R-module of finite rank. We also assume that
L1V[1] = 0. Then a homogeneous vector of weight d > 0 is in the radical of
the Shapovalov form if and only if it is contained in a proper ideal of V.

Under the above hypotheses, if R is in addition a unique factorization
ring, each irreducible factor a of dety give rise to a prime ideal (a) C R.
Clearly if a|dety, then a|det, for all e > d. The set of distinct prime ideals
of the form I = (a) C R such that a is a divisor of dety for some d, are
precisely the prime ideals for which V! is not simple as a vertex algebra over
R/I.

3. W-algebras

We use a mix of [90, 61] as reference. Let g be a simple Lie superalgebra
with nondegenerate invariant supersymmetric bilinear form

(3.1) (|):gxg—C.

Let {¢®}aes be a basis of g indexed by the set S and homogeneous with
respect to the grading by parity. We then define the corresponding structure
constants and parity by

0 ¢%even
o Pl = aB g and al = .
[¢°,4"] gesf 4 | L odd

The affine vertex algebra of g associated to the bilinear form ( | ) at level
k in C is strongly generated by {X“},es with operator products

k(@%le?) | Xnes [ X (w)
) .

X (2) X5 (w)

(z —w) (z —w)
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Also, we define X, to be the field corresponding to g, where {gq }acs is the
basis of g dual with respect to ( | ).

Let f be a nilpotent element in the even part of g. By the Jacobson-
Morozov theorem, f can be completed to an sly triple {f,z,e} C g sat-
isfying the standard relations [z,e] = e, [z, f] = —f,[e, f] = 2z. The W-
superalgebra WF¥ (g, f) we are going to define depends only on the conjugacy
class of f and not on this choice of embedding of sls.

Then g decomposes as an sla-module as follows.

9=EP o, o ={acgllr,a] = ka}.
ke

Let S be a basis of g and extend to the corresponding basis of g, i.e. set
S =, Sk- Let us also set

9+=@9k7 Q—Z@Qk

kelZsqo keiZ<o

with corresponding bases Sy of g, and g_ is naturally identified with the
dual of g4. On g1 one defines the invariant bilinear form

{a,b) = (fla,0]).

Let F(g4+) be the vertex superalgebra associated to the vector superspace
g+ @ g% It is strongly generated by fields {¢q, ¢®}acs, , where ¢, and p*
are odd if « is even and even if « is odd. The operator products are

. al2)ps(w) ~ 0~ 0% (2)¢" (w).

Let F(g1) be the neutral vertex superalgebra associated to g1 with bilinear

2

form ( , ). This has strong generators {®, }ocs, with ®, even if « is even
and odd if « is odd. The operator products are

(@*,q%) _ (flla®,d"])
(3:2) Do (2)0p(w) ~ ~ ,

(z —w) (z —w)

and fields corresponding to the dual basis with respect to ( , ) are denoted
by ®%. The complex is

Clg, f.k) = V*(g) ® F(g4) ® F(g1).

1
2
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One defines a Z-grading by giving the ¢, charge minus one, the ¢® charge
one and all others charge zero. One further defines the odd field d(z) of
charge minus one by

1

dz) =D (-1 X% o Y (D) ol s
(3 3) aESy o,B,7ES+
> (Flg)e™ + D 0 Py

The zero mode dy is a differential since [d(z),d(w)] = 0 by [89, Thm. 2.1].
Set mq = j if o € §j. The W-algebra is defined to be its homology

Wk(gv f) =H (C(ga fv k)v dO) :

The relevant Virasoro fields are

1
Loyg = —————— —1)le s x, x .
& 2(k+hnY) aze;g( ) '

Loy, = Z <_ma : 900‘8‘10& : +(1 - ma) : (a(pa)(pa :)7
(3.4) a€Sy

Lue =75 Y (092, 1,

aES1
2

L = Loug + 02 + Ley + Lne.

L is an element of W¥*(g, f) and has central charge

(3.5)
i deing |a| 2 1 .
clg, f, k) = P —12k(z[x)— > (-1) (12mg —12ma +2) — 5 sdim g3 .
(XGS+
Set
(3.6) J* =X Y (=Nt el
5)7€S+

Their A-bracket is [90, Eq. 2.5]

[J0\T%] = F*2,07 + A (k’(q"‘lqﬁ) + % (ﬁg(qa7qﬁ) - Hgo(qa&ﬁ)))
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with kg, kg, the Killing forms, that is the supertrace of the adjoint repre-
sentations, of g, go, respectively. The action of dy is [90, Eq. 2.6]

do(J) = 3" ([£,¢) )P + 3 (~1)lellBHD b g

BeSy BeS
WES%
Bl(|a]+1) paB

(3.7) Z (—1)lBIed+D) ¢ 74,06,]7
BES
yES\S+

+ 3 (ka1e?) + stra. (p+(ad(g))ad(g?)) ) 0,

BES

with p; the projection onto g and stry, the supertrace on g . Set

_1)lal
(3.8) %= Jo + % > e,

BES1
2

for o € go. Denote by g/ the centralizer of f in g, and set a := g/ Ngop. It is a
Lie subsuperalgebra of g. The next theorem tells us that W¥(g, f) contains
an affine vertex superalgebra of type a.

Theorem 3.1. [90, Thm 2.1]
1. do(I*) =0 for ¢“ € a and

1T = 201
+ A<7~ﬂ(q‘“lqﬂ) + %(ﬁg(q“, ¢") — kg, (¢, 0%) — K1 (g qﬁ)))

with k1 the supertrace of go on gu.
2 2
2.

(L™ = (04 (L— )N T ;00 ( str, (ad ¢°) — <k+hV><qa|x>),

for a € S, and the same formula holds for I* if ¢* € a.
The main structural theorem is

Theorem 3.2. [90, Thm 4.1]
Let g be a simple finite-dimensional Lie superalgebra with an invariant
bilinear form (| ), and let x, f be a pair of even elements of g such that
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ad x is diagonalizable with eigenvalues in %Z and [z, f] = —f. Suppose that
all eigenvalues of ad = on g/ are non-positive:

o =Pl

Jj<0
Then

1. For each ¢* € g]ij, (j > 0) there exists a dy-closed field K of con-
formal weight 1 + j (with respect to L) such that K* — J% is a lin-
ear combination of normal ordered products of the fields J?, where
BeS_ 5 0<s<j, the fields ®,, where o € S1, and the derivatives
of these fields. ’

2. The homology classes of the fields K*, where {q®}acss is a basis of g
indexed by the set ST and compatible with its %Z—gmdation, strongly
and freely generate the vertex algebra W¥(g, f).

3. HO(C<gvf7 k)7d0> = Wk(gaf) and H](C(gvfa k)adO) =0 Zf] 7é 0.

This theorem is proven by first observing that the complex splits into
the tensor product of two complexes denoted by Ct and C~, which each
are dp-invariant and vertex subsuperalgebras of C(g, f, k). It turns out that
the homology on C* is one-dimensional and so one needs to compute the
homology on C~. This is done by introducing an ascending filtration and
computing the homology of the associated graded algebra of the complex
(whose differential is denoted by dj). This homology turns out to be

HO(gr Civdl) = V(gf)> Hj(gr Ciadl) = 07 j 7é 0.

Charge considerations imply that the spectral sequence converges to this
homology. The proof has two useful corollaries. First, Ly and also the a-
action given by the zero modes of the I for ¢ € a, are preserved by d;
and dy, so that W¥(g, f) = V(gf) as CLy @ a-modules. Second, W¥(g, f)
is a subalgebra of C(g, f, k) consisting of dyp-closed elements of charge zero
in C7, see [90, Rem. 4.2] and also [59, Rem. 5.11]. This property is called
formality. We record these two statements:

Proposition 3.1. (Corollary of proof of [90, Thm. 4.1])

1. WE(g, f) 2 V(g/) as CLy @ a-modules.
2. WF(g, f) is a subalgebra of C(g, f, k) consisting of dy-closed elements
of charge zero in C~.
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3.1. Quasi-classical limits and Poisson W-algebras

Definition 3.1. [59, Def. 6.7] Let V. be a vertex superalgebra over Cle]. V,
is a family of Lie conformal superalgebras if

[(X,\Y] e CI\|®e Cle] Ve

for all X, Y in V.. V, is said to be regular, if multiplication by € has no kernel.

One can then take the limit € — 0. This is called the classical limit
Vel of Ve, ie. Vel = . /€Ve. Ve is a commutative vertex superalgebra that
inherits a Poisson bracket and thus a Poisson vertex superalgebra structure
by setting

[a)\b] = 6{&)\19}
and taking the image of {a\b} in V. Denote by B(a,b) € C[)\] the constant
term of {ab}.

Definition 3.2. Let V; be a regular family of vertex superalgebras. Choose
o such that 02 = € and assume that V, is strongly finitely generated by fields
{X*}aes for some finite index set S. Set X* = ¢~ 'X* and denote by V,
the vertex superalgebra generated by the {X®}4eg. We call Viree .=V, /oV,
the free field limit of the regular family V*.

We will justify the name in a moment and also prove independence of the
choice of root of e. For nonzero ¢, this definition is nothing but a rescaling
of strong generators, and so

Vo)(e—k)=V,/(c —VEk),  fork #0,
but
[X,\Y] € C[\] ® C[o]V,
is not necessarily commutative in the limit ¢ — 0.

Proposition 3.2. Viree =V, oV, is a free field algebra strongly generated
by {X“}aes with A-bracket

[X,\Y] = B(X,Y) € C[A.

Proof. [X,Y] is a normally ordered polynomial in the strong generators and
their iterated derivatives, so we can decompose it into the constant term bx y
(the multiplicity of the vacuum) and remainder Ry y,

[X)\Y] = EbX’y()\, 6) + 6RX7y()\, 6).
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It follows that

[X)\Y] =bxy(\e) + Rxy(\e),
and since X® = ¢ X® and Rxy is a polynomial without constant term in
the X, it has the form oRx y for some polynomial Rxy in {X“},cs and

o. It follows that this term vanishes in the limit o — 0, so V,/oV, is a free
field algebra with pairing

span(X*|a € S) x span(X“|a € S) — C[)],
(X% XP) = bxa xs (A, 0) = B(X%, XP).

O

Corollary 3.1. VI =V, /oV, is simple if and only if the pairing B re-
stricts to a nondegenerate pairing on the strong generators of the Poisson
vertexr superalgebra yel= Ve /€eVe.

Example 3.1. [59, End of Section 6]

Let g be a Lie superalgebra, ( | ): g x g — C an invariant supersym-
metric bilinear form, {¢®}acs a basis of g and V*(g) be the corresponding
vertex superalgebra at level ¢ with strong generators {X*},cg, so that

(XX = M(q®|¢") + 7, X0

Fix a nonzero k in C and define the regular family V.*(g) by scaling the \-
bracket by ¢, i.e. it is the vertex superalgebra strongly generated by { X% }nes
with

(XXE] = e (Mela®la”) + 17, X7)
Set £ = e 'k and consider V*(g). Set Y* := eX, so that
YoAv?) = [eXaeX”] = & (A(glg") + f28,X7)
= e (M(a®la”) + f7 ¥ 7).
Hence V¥(g)/(e — a) = Vo '#(g) for a # 0. Thus V*(g)/e defines a classical
limit (i.e. a k — oo limit) of V¥(g). A different limit is obtained by setting

0% = € and setting Z% = 071Y® = 0 X%, so that

232°) = o X0 X = o® (M(¢°1g") + 170 X7 ) = Me(qla*)+£7,0 2.



Trialities of W-algebras 99

We see that with this scaling, the large level limit just gives us the free field
vertex superalgebra associated to the vector superspace g and the invariant
bilinear form k( | ), that is A-bracket

(Z29\Z°] = Me(q”|q").

Similarly, let F' be a free field vertex superalgebra, strongly generated by
fields {p®}4ecs for some finite index set S. Then one defines a corresponding
regular family F, via the A-bracket [ ] as follows:

[0 2”)e = e[p®rp”].

For nonzero ¢, this just amounts to a rescaling of fields by /e, i.e. F,/(e—a) =
F for a # 0.

The following theorems are a detailed explanation of the last paragraph
of Section 6 of [59]

Theorem 3.3. Let g be a Lie superalgebra with invariant bilinear form
( | ) and k a nonzero complex number. Let f,z,e be an sla-triple in g. Let
K = Cle,e™Y and f. = e 'f,z. = z,ec = ee be an sly-triple in g @c K,
so that (C(g,e 1 f, e 1k),do) is a complex of vertex superalgebras over K.
Then there exists a reqular family of complexes (Cc(g, f,k),d) and a vertex
superalgebra isomorphism

Y : Cu(g, f, k) ®cpq Cle, e 1] = Clg, e e k)

with Y (d§) = do.

Proof. Fix now an sly-triple f,x,e in g and consider the regular family of
vertex superalgebras

Ce(g, f.k) = V' (g) @ Felgy) ® Fe(g2)

and compare it to the complex (C(g,e 'f,e 'k),dp), of vertex superal-
gebras over the ring K = Cle, e 1], associated to the deformed slp-triple
fe=¢1f 2. = x,e. = ee. Denote the strong generators of C(g,e 1 f, e k)
by X%, o%, va, P as before. Note that the operator product of the charged
(super)fermions is independent of f, however the one of the neutral ones
depends on f, see (3.2), namely

Do (2)Bp(w) ~ 1) Fllad) | Ml ")

(z —w) (z —w) (z —w)



100 Thomas Creutzig and Andrew R. Linshaw

&7

Denote the strong generators of the regular family Cc(g, f,k) by X&, ¢2,
¢, ¢, and define the map

(3.9)
T(XE) =eX®,  T(ed) =9  T(py) =€pa,  T(P) = ey

T preserves the operator products and thus induces a homomorphism Y :
Ce(g, f, k) — O(g,e ' f,e k). Since it maps strong free generators to strong
free generators it lifts after base change to an isomorphism

C(g,e ' f,e k)

L

T: Ce(ga s k) ®(C[e] (C[G, 671]

of vertex superalgebras. Define d¢ by

€ o o, & 1 (0% (07 € o
ed’(z) = D (-1)MX2p2 =5 Y (D) ot el

Ol€5+ a,ﬂ,’YGS+
+ ) (fla)el + ) 2,
aESy aES%
so that
1
Y(d) =Y (-DMeXap® — 5 > (~D)F ey
OCES+ a:ﬁv’YeSJr
+ ) (flg)e + D ped,
OAES+ CMES%
1
- 6( Z (_1)|Q‘Xa80a D) Z (_1)‘a||7|fa/37907@a806
aes+ a7677€S+
Y Mt + Y poat)
a€S+ OCES%
1
_ 6( S ()X 5 S (—nyllnlpes o gags
OtES+ a7ﬁ7765+
+ ) (fela®)er+ Y soa%)
aEeSt aES%
= ed.

Note that d° is not in Cc(g, f, k) but only in Cc(g, f, k) ®c[q Cle, el O
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Define
WE(g, f) = H(Ce(g, [, k), d5).
Theorem 3.4.

1. WE(g, f) is a regular family of vertex superalgebras.
2. WE(g, f) ®cfq Cle, et = W (g, e f) as vertex superalgebras over
Cle,e7!].

Proof. This theorem follows by repeating the discussion of Section 4 of [90],
but for the complex (Ce(g, f, k), df). We set

= X2+ Z Mfaﬁ :goggof :, for ¢ € g,
BYES+
(3.10) « « (__1)|a\ Ba B FeE «
Ie:‘]E—l_TZf SN L for ¢* € go.
BES:

It follows that Y(J&) = eJ* and Y(I[&) = el®. Recall that T(X&) =
eXY(p%) = %, T(¢f,) = €pq and T(P) = €P,. From [90, Section 4]
one has that

do(epa) = eJ + (—1)loled,, ae S,
P T e g = €T+ (flg) @€ S\ S,

and hence using the isomorphism T

05 (o) JE+ (-Dlleg  ae sy,
T e (e aes\sy

From [90, (2.6), (4.3), (4.4)]

do(eJ®) = el 0.7 + Y (~1)lellBiD) padBeq,
BESy BeSL
’YES%
_ Z (_1)|5\(|0¢\+1)fa/57¢5€f¥
BES
veS\S+

£ 3 e (@) +strg, (pi(ad(a®))ad(a”)) ) 967,

BeS
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do(@) = =5 3 (D, Py
BES+
do(e®a) = > el flld”,¢*Ne” = D (flld”,q*))¢”,
pesy pes,

and hence using the isomorphism T,

dS(Jg) = Z ([f: a SOE + Z |O“ |B‘+1)fo¢ﬁ B(I)’gy

BESH BES
’YES%
I S Ty
BES
YES\Sy
+30 (ala) + estry, (p(ad(g)ad(”) ) 96,
BESL
1
€0 — _lellvl By . By .
dO(@e)_ 9 Z ( 1) A/fwa-@e‘ﬁz )
577€S+
(@) = > (flld”,q°)¢?.
565%

Let C be the subalgebra generated by ¢5, do(¢5,) for a in Sy and C. be
the one generated by J for o € S\ S, ¢ for a in S; and P, for o in S:.
From [89, Lemma 2.1] it follows that

[do(epa)reps] = (=) Y7 127 ey,
YES+

and hence

[ (peagll = (=) Y Fo9 0

YES+

One thus has that Cc(g, f, k) = CF ® C as dj-invariant families of regu-
lar subalgebras. The homology of C'" is clearly one-dimensional and hence
WE(g, f) = H(CZ,d5). Theorem 4.1 of [90] holds for W¥(g, f) as the set-up
and hence the proof is exactly the same as for W¥(g, f). In particular, the
conclusion, Proposition 3.1, holds:

1. WE(g, f) 2 Vi(gf) as CLy @ a-modules.
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2. WF(g, f) is a subalgebra of C(g, f, k) consisting of d§-closed elements
of charge zero in C .

A subalgebra of a regular family is of course a regular family as well and
hence our first claim follows. The second one is true, since specialization
commutes with restriction to a subalgebra. O

Corollary 3.2. W¥(g, f)/(e — a) 2 W '¥(g, f) for a # 0.

Proof. Specializing the last theorem gives W¥(g, f)/(e—a) = W '*(g,a~' f).
Moreover W¥ (g, f) = W¥(g,w(f)) for any even automorphism w of g that
preserves the bilinear form. The claim follows with w = ad(e#*) for a =
et. O

Let J/ be an index set so that {g;};cs is a basis of g/ and {¢’};c;s
is a basis if g¢ such that (g;|¢) = ; ;. The basis is chosen to consist of ad
x eigenvectors and the eigenvalue of ¢/ is denoted by 4(j), that is [z, ¢’] =
§(j)¢’ and hence [z, q;] = —6(j)g;. One then sets

I =15 e () = kY,
Tk ={(.n) € J X Zy| 6(4) — |kl € Zy, k= 6(j) —n},

so that the sets
Sk=A{a), | (Gon) € Iy, @ = (ad )", n=0,...,25(j)}

form a basis of gj. The dual basis S* is denoted by {q?} Finally, for a in g,
a? is its projection on g/, that is

a* = (alg;)q’.
jeJs
Definition 3.3. Define
Br:g', xd¢/, = C, Bi(a,b) := (=1)*((ad f)*b|a)

for every k € %ZJ,_, and extend it linearly to B : g/ x g/ — C.

Since (| ) is invariant and supersymmetric and since g/ is a Lie subsu-
peralgebra of g it follows easily that B is invariant and By, is supersymmetric
for k € Z and antisupersymmetric for k € Z + 3. Moreover if ( | ) is a non-
degenerate bilinear form on g, then each By and hence B is nondegenerate
as well since the dual of a lowest weight vector a of the 2k + 1-dimensional
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irreducible representation poj, of sls is necessarily a highest-weight vector of
par and (ad f)2* precisely maps such lowest weight vectors to highest-weight
ones.

As before, fix o so that 02 = ¢, and let W¥(g, f) denote the vertex
algebra with the same strong generators as W¥(g, f), but rescaled by o~'.
Let Wiee(g, f) := W¥(g, f)/oW¥(g, f). The reason for this notation is that
if k is any fixed nonzero constant, W'¢(g, f) is independent of k due to
Corollary 3.2.

Theorem 3.5. Let g be a Lie superalgebra with invariant bilinear form
(| ), and let f € g be a nilpotent element. Then W (g, f) is a free field
algebra with strong generators X®, a € JI and \-brackets

(X XP) = 6 A By (¢*, ¢°)

for ¢% ngk and ¢° ngj.

Proof. There are two notions of Poisson W-superalgebras: the homological
construction that we presented here, and the so-called classical Hamiltonian
reduction; see e.g. [59]. These two coincide by [121] for g a Lie algebra,
and the general Lie superalgebra case is [122, Thm. 3.11]. The classical
Hamiltonian reduction approach is suited for explicit computations which
are presented in [61]. We need to explain [61, Thm. 5.3]. Let W(g, f) be
the Poisson vertex algebra of g associated to f. Then there is a one-to-one
map w : V(gf) — W(g, f) and the Poisson bracket is given explicitly in [61,
Thm. 5.3]. using this map. De Sole and Kac introduce the notation h < k if
and only if h < k—1 and k= (K1, .., k), J_j is the set of elements of the

form (7,7) = (j1,n1) X -+ X (ji, ) with (ji,ng) € J_p,. For a € g{h and

be g’:k, the A-bracket is

(3.11)
{w(a)aw(d)}z,p = w(la, b]) + (alb)A + z(s|[a, b))

Y (@) - Gl O+ 0) + Gslb )
t=1

(e g
—hH 1<k, <<k <k

t—1

i 1 Ai 1 i 1 Ai 1 i 1 ‘i 1
TT (ol aht ) = (@M ai )0+ 0) + =(sllg gl ]))
=1

(wlap ) = (@ A + =(sllg} s a]))
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Here z € C and s € g can be chosen arbitrarily as they give rise to iso-
morphic Poisson vertex algebra structures. This sum is actually finite, since
contributions for t > k + h are zero. We are interested in the leading coeffi-
cient, i.e. the one of N¥Th+1 Let b = ;- Then this coefficient vanishes unless
we take the summand with j; = j, n; =¢— 1 and k; = k + 1 — 4. It follows
that

(3.12) {w(a)xw()}zp = On(—1)* (ZF|la) NP+

The claim follows using Proposition 3.2. OJ

Corollary 3.3. Let g be a Lie superalgebra with invariant supersymmetric
bilinear form (| ), and let f € g be a nilpotent element. Then Wee(g, f)
is simple if and only if ( | ) is nondegenerate.

Also note that if a is of conformal weight one, then [61, Eq. 6.2]
(3.13) {w(a)rw(b)}z,p = w([a,b]) + (alb)A + z(s|[a, b]).

Corollary 3.4. Let g be a Lie superalgebra with invariant nondegenerate
bilinear form (| ), and let f be a nilpotent element in g. Then Wee(g, f)
decomposes as a tensor product of the standard free field algebras Sey(n, k),
Oev(n, k), Soaa(n, k), and Ouqq(n, k) introduced earlier.

and J/

o f . f
Proof. For each r, we partition J”, into subsets J rod

—7r,ev
of elements which are even and odd, respectively.
Suppose r € %Z. Then in the 0 — 0 limit, the even fields {X?| a €

q consisting

J! rev) Of weight 7 4 1 must have nondegenerate symplectic pairing given
by Theorem 3.5. Therefore the cardinality of J I rev 1S an even integer 2pey,r,
and these fields generate a copy of the free field algebra Sey(pev,r, 2r + 2) of
even symplectic type. Next, if r € Z, then the fields {X®| a € anev} in the
o — 0 limit must give an even algebra of orthogonal type, Oey(Gevy,r, 27 + 2)
where gey,, is the cardinality of J s rev:

Similarly, suppose r € %Z, and consider the fields {X| a € J! T,Odd} in
the ¢ — 0 limit. These fields then generate a copy of Oyqd(Sodd,r, 27 + 2),
where ¢oqq, is the cardinality of Jf rodd- Suppose next that » € Z, and
consider the fields {X*| a € Jf’r,odd}' Then in the o — 0 limit, these fields
generate a copy of Soqd(Podd,r,2r + 2). Here 2poqq, is the cardinality of
Jir,odd‘

Finally, the fact that in the ¢ — 0 limit these free field algebras are
mutually commuting follows from Theorem 3.5. O
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3.2. Simplicity

Recall that by Corollary 3.2, Wree(g, f) = WE(g, f)/oWE(g, f) is indepen-
dent of k for all nonzero k, and additionally all algebras W"(g, f) can be
obtained by specializing W% (g, f) to a suitable choice of o. For convenience,
we may take k = 1.

Theorem 3.6. Let g be a Lie superalgebra with nondegenerate invariant
bilinear form (| ), and let f be a nilpotent element in g. Then

1. WF(g, f) is simple for generic k.

2. Let V¥ (b) be the subalgebra of the affine subalgebra V*(a) € WF(g, f),
where b is a reductive Lie subalgebra of a. Then Com(V* (b), W¥(g, f))
1s simple for generic values of k.

3. If g is a semisimple Lie algebra and ( | ) is the Killing form normalized
in the usual way, then W¥(g, f) is simple for all non-rational k.

Proof.

1. If Wi(g, f) is not simple as a vertex algebra over C[o] (equivalently,
W¥(g, f) is not simple for generic values of k), there is a nontrivial
vertex algebra ideal Z C W.(g, f) which has minimal weight compo-
nent in some weight d > 0. Fix a nontrivial singular vector in weight
d. After suitable rescaling, this vector must remain nontrivial in the
o — 0 limit and also must be a singular vector in the limit algebra
wiree(g, f), since OPEs are continuous in the parameter o. This con-
tradicts the simplicity of Wee(g, f).

2. This is immediate from the generic simplicity of W¥(g, f) together
with [16, Lemma 2.1].

3. Asexplained around [13, Eq. 51| the equivariant W-algebra of g associ-
ated to f and x, denoted by WEe # is a strict chiralization of a smooth
symplectic variety and hence simple by [25, Cor. 9.3]. WF(g, f) =
Com(V k=207 (9),Wg ) for k+ Y = & [13, Prop. 6.5] and W, ; is
an object in K L_j_opv(g) [13, Prop. 6.6]. Since for non-rational levels
K L(g) is semisimple the claim follows from [42, Prop. 5.4].

O
3.3. Properties of strong generators

Let g be a simple Lie superalgebra. We recall the definition of the Kazhdan-
Lusztig category K Li(g); see e.g. [10].



Trialities of W-algebras 107

Definition 3.4. The category KL, = KL(g) is the full subcategory of
g-modules that satisfy the following properties.

1. The central element K € g acts by multiplication by the scalar k.
2. Any object M of KLj is graded by conformal weight with finite-
dimensional weight spaces

M= M,  dimM, <o,
neC

such that conformal weight of any object is lower bounded, that is
M,, = 0 unless Re(n) > N for some bound N.

3. There exists a finite set of numbers A1, ..., hg, such that M,, = 0 unless
n € Zx>o + h; for some ¢ € {1,...,s}.

A module in KLy is called almost simple if every submodule intersects the
top level non-trivially, and KL is called almost semisimple if every inde-
composable module is almost simple.

Definition 3.5. Let a be a Lie superalgebra which is the sum of a reductive
Lie algebra and finitely many simple Lie superalgebras, such that the bilinear
form on each simple summand is normalized in the standard way. Let M be
an indecomposable module for the corresponding affine vertex superalgebra

V¥(a), such that
M= B M,
n€Z++h

for some complex h and M}, nonzero. A vector in My, is called an a-primary

vector and a vector in @ M,y41 is called an a-descendent. Fields cor-
'I’LGZ++h
responding to primary/descendant vectors are called primary/descendant

fields.

By an a-module we always mean a weight module, that is, the Cartan
subalgebra of a acts semisimply and weight spaces are finite-dimensional. For
example, if a is a simple Lie algebra, then modules are integrable highest-
weight modules. By a projective module, we mean a projective module in
the category of weight modules.

Lemma 3.1. Let

V= EB 7 dim Vg = 1, Vi=0 and dim V; < oo

nE%Z+
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be a vertex superalgebra graded by conformal weight. Let I1,...,1; be finite
sets, such that

Usi  Si={Xjljel X;eV},

is a minimal strong generating set of V with S1 a basis of V1 generating an
affine vertex superalgebra V*(a), where a is as above. Suppose that K Li(a)
is almost semisimple, and suppose that each V,, is a projective a-module for
n > 1. Then there exists a minimal strong generating set

d
Ugi, §z:{)?]] jGIi, 5(:]‘ GVL'},
i=1

such that §1 = 51, the fields )Z'j n §Z fori > 2 are all a-primary fields, and
their linear span is a projective a-module.

Proof. We prove the statement by induction. Let n > 1 and let
n
Sgn = U Si, S; = {X]’ Jjel, Xj S Vz}
i=1

Assume that the X; in S; for 1 < 7 < n can be changed to primary fields

X, such that their span is a projective a-module. Then there exists a set
~ n ~ ~ ~ ~
Sgn = U S;, S; = {XJ| j e, Xj € VZ},
i=1

such that the subspace spanned by normally ordered words in iterated
derivatives of the elements in S<,, and S<,, coincide. Denote this subspace
by W. Since the V,, for n > 1 and also the )?j form projective a-modules,
W is also an infinite direct sum of projective a-modules. Let W, be the
subspace of W of elements of conformal weight m. Note that W,, = V,,
for m < n. Wy41 is a projective a-submodule of V11 and hence a direct
summand

Vn+1 = Wn+1 ¥ Un+1
for some projective a-module U, 1. Every element in W, is by construc-

tion an a-descendant and especially a normally ordered word in the iterated
derivatives of the elements of S<,,. It follows that none of the X for j € S, 41
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is in Wy41 and hence the projection of X; onto U,y is nontrivial. Denote
this projection by )Z'j. Since W41 together with the X; for j € S,41 must
span V11, the X j for j € S, 41 must span Uy, 11. They also must be linearly
independent since a linear relation ) aj)? j = 0 implies that the correspond-
ing linear combination ) a;X; lies in W, which contradicts the minimal
generating assumption.

If U1 contains a vector v that is not a-primary, then z(;)v # 0 for some
x € a, in particular z(;yv € W;, € W. Let M be the V¥ (a)-module generated
by v. This means that x(;)v must generate a proper V¥ (a)-submodule of M.
This cannot happen if K Li(a) is almost semisimple. O

Remark 3.1.

1. Suppose that a is the sum of a reductive Lie algebra and finitely many
factors of the form o0spys,, and that k is irrational. Then K Lg(a) is
semisimple and each V, is completely reducible as a V*(a)-module, so
the hypotheses of Lemma 3.1 are satisfied.

2. If a is the sum of a reductive Lie algebra and finitely many simple
Lie superalgebras whose even subalgebras are semisimple (and not of
type 9(2,1; ) and « irrational), and k is irrational, then K Ly(a) is
almost semisimple and again the hypotheses are satisfied. The reason
for this is as follows. First, it suffices to assume that a is a simple Lie
superalgebra with semisimple even subalgebra, and a # 0(2, 1; ) with
« irrational. Let M be an indecomposable object in K Ly (a). Then the
top level of M is finite-dimensional and thus must contain a highest-
weight vector for a of say highest-weight A\. The conformal weight of

5\((1?:!35% If M has a proper submodule, say N, then the

top level of IV also must contain a highest-weight vector p, and p needs

to be in the same coset of the root lattice Q as A, say u = A + 8 for
some 3 € @. On the other hand, the difference between the conformal

weight of the top level of M and N must be a (negative) integer n.

We thus get the condition

AA+2p)  p(p+2p)  B(2A+B+2p)

T+ Yy 2k+nY) - 2(k+hY)

the top level is

that can only hold for rational k + h". Here we use that A3 € Q for a
highest-weight A of a finite dimensional highest-weight representation
of a. This last statement does not in general hold for a a simple Lie
superalgebra with only reductive even subalgebra, and it only holds
for 9(2,1; @) if « is rational.
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3. The condition that K L(a) be almost semisimple in Lemma 3.1 can be
weakened to V' being an object in a completion of an almost semisimple
subcategory of K Ly(a).

Suppose next that V = @ne%ZJr V,, is a vertex superalgebra graded by
conformal weight, satisfying the same conditions as Lemma 3.1, except that
k is now regarded as a formal parameter. Assume that all structure constants
appearing in the OPEs of the strong generators U?Zl S; for V' are rational
functions of k. Since there are only finitely many structure constants, the set
D of possible poles of the structure constants is finite, and we can regard V
as a vertex superalgebra over the ring of rational functions in k& with poles
along D.

Corollary 3.5. Let V = @ne%h Vi be a vertex superalgebra defined over
the ring of rational functions in k with poles along D, where V, generates
V*(a), as above. Suppose that a satisfies either condition (1) or (2) of Re-
mark 3.1. Then there exists a finite set D' containing D such that over
the ring of rational functions in k with poles along D', we can replace the
minimal strong generating set ngl S; with a minimal strong generating set
U?Zl S; such that S; = Sy and the fields )ij in S; for i > 2 are a-primary,
and their linear span is an a-module.

Proof. For an irrational value of £ € C\ D, by Lemma 3.1 there exist such
corrections X j = Xj+---, where the remaining terms are normally ordered
monomials in the strong generators of lower weight. The coefficient of each
such monomial must depend continuously on k, and since all structure con-
stants among the OPEs of the generators are rational functions of k, these
coefficients must in fact be rational functions of k. Note that the poles are
no longer are required to lie in D, but since there are only finitely many
such structure constants the new pole set D’ is still finite. Finally, note that
the primary fields X ; exist for all k € C\ D’ even though K L(a) need not
be almost semisimple for nongeneric k. O

Let g be a Lie superalgebra with invariant nondegenerate bilinear form
(|), and let f € g be a nilpotent such that W¥(g, f) has affine subalgebra
V¥(a), and a satisfies either condition (1) or (2) of Remark 3.1. Recall that
the strong generators of W¥(g, f) are indexed by J7, a basis of g/. Moreover
those strong generators that have conformal weight r + 1 correspond to g]i -
which is ad (a)-invariant and hence an a-module that we denote by M,.

Corollary 3.6. Let W¥(g, f) and a be as above.
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1. If we regard W¥*(g, f) as a one-parameter vertex algebra, the strong
generators of conformal weight r + 1 for r > 0 can be chosen to be
primary for the affine subalgebra V*(a). In particular, this holds for
all but finitely values of k

2. If the trivial representation appears as a direct summand of M,, then
the corresponding strong generator is a field of Com(V*(a), W*(g, f)).

Proof. The first statement is immediate from Corollary 3.5. For the second
statement, a primary field of the trivial representation is a vacuum vector
for the affine subalgebra, and hence lies in Com(V*(a), W¥(g, f)). O

Lemma 3.2. Let g be a Lie superalgebra with invariant nondegenerate bi-
linear form (| ), and let f be a nilpotent element in g such that a satisfies
either condition (1) or (2) of Remark 3.1. Let {X®| a € J/} denote the
strong generating set for W(g, f) which satisfies the A\-brackets of Theorem
3.5 in the o — 0 limit. If we replace the fields X® with corrected fields X
which are a-primary as above, we again have A-brackets

(XX = 6,6 ' Br(g®, ¢°)
in the o — 0 limit.

Proof. First, consider the fields {X*| a € J I 1} of weight 2. The corrected
fields X® must have the form

X*=X*+P

where P € V¥(a). Note that the coefficients of the monomials appearing in
P need not be polynomials in o, but can be rational functions of o. We
claim that the coefficient of each such monomial must vanish in the o — 0
limit. This is apparent because V*¢(a) commutes with X in the o — 0 limit,
but if P has any term whose coefficient does not vanish, we can find some
J € a such that j1)P is an element of weight 1 that also does not vanish in
this limit. This would contradict the a-primality of X 50 we conclude that
X% = X%in the ¢ — 0 limit, as desired.

Now we assume this statement for all fields X¢ of weight » < m, and
now we consider the corrected field X for some a € J/ m» S0 that this field
has weight m + 1. Without loss of generality, we may write

Xe=X"+P
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where P is a linear combination of monomials in the generators of V*(a)
as well as the a-primary fields X? where 8 € J! , for r < m. Using the a-
primality of X® and the fields X?, as well as the fact that V¢(a) commutes
with X¢ in the 0 — 0 limit, it follows by repeated applications of (2.7) that
the coefficients of all monomials appearing in P must vanish in the ¢ — 0
limit. The claim follows. O

3.4. Modules and characters
Let g be a Lie superalgebra with nondegenerate bilinear form as before. Let
=9g®cClt,t o CK

be its affinization with K the central element. There is also a derivation
which is identified with —Lg, the zero mode of the Sugawara vector, and
can thus be neglected in this discussion. Let go = g ® CK and g4 = g ®c
C[t]®CK. A g-module M lifts to a g-module My, at level k in the usual way.
First extend M to a g-module by letting K act by multiplication with the
scalar k£ and then extend to a g;-module by letting g ®¢ tCl[t] act trivially.
Then

]\/Zk = Indg+M.

M, i is called a generalized Verma module if a positive half of gg with respect
to the weight grading acts locally nilpotently. Let py be the irreducible
highest-weight representation of g at highest-weight A\. Then we write

VEA) = Inngrp)\,

and L (\) for its unique irreducible quotient. Let |¢|] < 1 and h € b the
Cartan subalgebra. The character of V*()) is

(3.14)
k - Lo—= omin) _ o Ny(h)
ch[VEN)](hyq) = trysyy (g5 5 e2™) = g o
N)\ = Z E(UJ)GUJ(A—FP)’
weW
L | R | N (R}
r=1 a€A+

The homology of the complex M), ® C(g, f, k) is a W¥(g, f)-module that we
will denote by H¢(My).
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Theorem 3.7.

1. H}(]\/Zk) =0 fori#0 and Mj, a generalized Verma module ([90, Thm.
6.2])

2. Let g be a Lie algebra. Then H}(M) =0 fori # 0 and any object M
in KLy ([10, Thm. 4.5.7)).

Then in either of the two cases the character of the homology coincides
with the Euler-Poincaré-character

ch[H (My)] = sch[My @ C(g, f,k)]-

This character can be written down explicitly [90, Section 6] and we refor-
mulate their formula. For this let h¥ be a Cartan subalgebra of a where a is
the subalgebra of g that commutes with the sly corresponding to the triple
{f,z,e}. Choose a Cartan subalgebra b of go and hence of g that contains b?
and z. Let A; = A‘;VGHUA?dd be the roots in g; and fix a set of positive roots
A =A% U Ujs04; with AY aset of positive roots for go. Set §(cr) = j for
a € Aj. Let A" denote those roots that correspond to a highest-weight
vector for the sly-triple {f, z,e}. Then

(3.15)
chW¥(g, £)](h,q) = sch[V*(g) ® C(g, f. k)]
_ = Wodd
\I’even7

Uoqd = H H (1 + et gn+o(@)y(q y g=alh) gn+dla)),

n=1 q€Aodd, h.w.

Veven = H H (1 — ea(h)anré(a))(l _ efa(h)anrzS(a))’

n=1 aeAeven, h.w.

where the domain is |g| < 1 and |e**("¢%(@)| < 1. Let M) be a generalized
Verma module of g that is generated by a highest-weight vector of highest-

weight A. Then the conformal weight of the top level of ]\/Zk is (2)&/\:1«?5)) . Since

the character of My, is the character of V* (g) times ¢ 2°)x 1 (h) it follows
immediately that

(3.16)
_— — . v,
ch[H ;(Mj)](h, q) = sch[My @ C(g, f,k)] = ¢~ 351 2y yp, (h — wr) 292

\Ijeven
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Assume now that g is a Lie algebra and we take My = p) the integrable ir-
reducible highest-weight representation of the highest-weight A € PT. Then
we can use the Weyl character formula to get

(3.17)
k _e Qlrt2p) 1
ch[Hp(VE(N)](h, q) = g~ 23 q20+2) x\(h — 27)

even

3 6((,J)ew(Mp)(th:r:)

_ < (A(LAJ;Q"; weWw 1

= 24 (p 2(k+hY

q q ep(h—;m’) H (1 _ e—a)(h—acT)) ‘I’even

acAy
— g g 3 e(w)ewuw)(h—m)é
weW
)
v=1] JI @-e™gna-e®Mg,
n=1aeAh-w-

where the domain is still |g| < 1 and [e**("g5(@)]| < 1,
3.5. Principal W-algebras

The best studied example is the case where f is the principal nilpotent el-
ement, and we use the notation W¥(g). These W-algebras have appeared
in many problems in mathematics and physics including the AGT corre-
spondence [8, 33, 112, 123] and the quantum geometric Langlands program
[22, 40, 69, 71, 80, 81]. They are closely related to the classical W-algebras
which arose in the work of Adler, Gelfand, Dickey, Drinfeld, and Sokolov
[1, 82, 62, 64] in the context of integrable hierarchies of soliton equations. It
was conjectured by Frenkel, Kac and Wakimoto [73] and proven by Arakawa
[10, 11] that for a nondegenerate admissible level k, Wy(g) is lisse and ratio-
nal. These are called minimal models since they are a generalization of the
Virasoro minimal models of [83]. For later use, we shall compute the weight
where the first singular vector appears.

Lemma 3.3. Let g be a simple Lie algebra, p,p" its Weyl vector and Weyl
covector and set & = —0 if (v,7V) =1 and a@ = —05 if (v,rV) = rV. Here
rV is the lacity of g and 0,04 are the highest root and highest short root. Set
A=nta" - (p,a")a

Denote by Sing(V') the weight of the singular vector of V' of lowest confor-
mal weight. Then for k = —hY +% of (co)principal admissible level, singular
vectors of affine and principal W-algebras have weight
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1. Sing(V*(g)) = 5 A(A+2p)
2. SingW*(g)) = A\ +2p) — Ap" for k a non-degenerate admissible
level.

Proof. Tt is known, see [92, Cor. 1] or [15, Prop. 6.14], that the simple affine
vertex algebra of g at admissible level k = —h" + + is the quotient of the
universal affine vertex algebra V*(g) by the ideal I,(g) that is generated
by the highest-weight vector vy of highest-weight A where X is the shifted
affine Weyl reflection on kwy, that is A = s, (kwo + p) — p with wp the zeroth

fundamental weight, p the Weyl vector and

—0 4+ 0o (v,7¥) =1
a= )
—0s + ;50 (v,7V)=r"

Here rV is the lacity of g and 0,6, are the highest root and highest short
root. Note that for « = & —nd, the affine Weyl reflection s, is so = trav © 84
with & a root in g. Let A be the restriction of A to the Cartan subalgebra of
g. Then

A= n%@v — (p,a")a with A = so(kwo + p) — p.

Using the formula of the conformal weight h) of the top level of a highest
weight module V¥()) of highest weight X,

(%

h
A 2u

AA+2p)

one immediately gets the singular weight of the affine vertex algebra. For the
W-algebra we use the following two facts. First, the quantum Hamiltonian
reduction functor is exact on K Lg(g) [10] (see also [11, Thm. 7.1]). Second,
for £ a non-degenerate admissible level and f a principal nilpotent, one
has that H}’(Lk(g)) = Wi(g), i.e. the reduction of the simple affine vertex
algebra is the simple W-algebra. These two results combined tell us that
Wi (g) is the quotient of W¥(g) by H})(Ik(g)), but the latter is generated by
a highest-weight vector of top level Ay, with

Ay =hy—p'A

This gives the conformal weight of the singular vectors of the W-algebras.
O
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We compute these for g = sl,. For this consider the lattice Z™ with
orthonormal basis €1, . .., €,. We embed root and coroots in rescalings of this
lattice in the usual way, i.e. the simple roots are a; = € — €3, a9 = €3 —e€3, . ..
Then § = 0 = e; —€, and p = p¥ = ((n—1)er + (n—3)ea+- -+ (1 —n)ey).
Thus pfY = 0pY =n —1 and A = (u —n + 1)6. Hence

Corollary 3.7. Let g = sl,, and let k = —n + ¢ be an admissible level, that
is u,v € Z~q are coprime and u > n. Then

1. V¥(sl,) has a singular vector at conformal weight v(u-+mn —1) and no
singular vector at lower conformal weight.

2. For k nondegenerate admissible, that is also v > n, W¥(sl,) has a
singular vector at conformal weight (u —n+1)(v —n+ 1) and there is
no singular vector at lower conformal weight.

We continue to study the case of principal W-algebras, that is f = forin.
For later use we need to know some structure of ¥W-modules associated to
the standard representation and its conjugate. For this let w; be the first
fundamental weight of sl,,, so that p,, is the standard representation of sl,.
The character is

n—1
Xen (h) = Ze’gi(h), with Bp ;= w1 and G; := Fi—1 —qy, fori=1,...,n— 1.
=0

It follows that

n—1
A 1— "
—hyr) =g @) N i = gl 2
Xan (=hoT) = ¢ ;q q T,
and from (3.17) and (3.15) that
(wi|wy+2p)
chlHy, ., (V*(w1)](g) = ¢ 2057 xa(=hy)ch[W*(g)](9)
(wilw142p) g, 1—q"
(3.18) =g SV (g))(9)
(wylwi +2p)

= q_iq sty —(@ilp) (1 +q+ 2(]2 I )

Let hy := S22 — (Alp), let

He (V)= @ Hp (V)N

n€hx+Z>o
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be the decomposition into conformal weight spaces, and let L(z) be the
Virasoro field. Then

Corollary 3.8. Let n > 2, A\ € {wi,wp—1} and v be a nonzero element of
Hy (VE)n,. Ifk+n ¢ {22, nbl o823 07 10} and {L_ov, L_1L_qv}
are bases of Hy, . (VF(A\))n,41 and Hy,, (VF(X))n 42, respectively.

Proof. Let ¢ = k+mn and A = w;. The central charge and conformal weight
of top level are

2
c= (n 1) n(n ]‘)(w + w 2)7 hwl - hwn—l - 277/1/) 2

Recall some Virasoro commutation relations

C
[L1,L_1] =2Lo, [L2,L 9] =4Lo+ 3 (Lo, L_1] =3Ly, [L1,L ] =3L_;.

It follows that L_jv = 0 implies hy = 0 and hence ¢ = "TH Similarly, a
linear relation between L_sv and L_1L_qv is only possible if

 2hy, (8hy, = 5)
N 2h,, + 1

Such a linear relation can only occur at ¢p = 2=L ntl nt2

—, =, . The claim
thus follows for all values of k except possibly for these three. The argu-
ment for A = w,_1 is exactly the same, since ch[Hy , (V*(w,-1))](q) =

chlHy,,,, (VF(w1))](a)- R

Remark 3.2. The three exceptional cases have the special property that their
simple quotients are either trivial, a rational Virasoro algebra or the p = 2
singlet algebra of [98].

1. For k = —n + ™t one has Wy(sl,,) = C [110, Thm. 10.1],
2. For k = —n+ ™2 one has Wy(sl,) £ W_,, us2(sly) [110, Thm. 10.2],
3. For k = —n + "= one has Wj(sl,) = W_3,2(sl3) [110, Thm. 10.1].

3.6. Hook-type W-algebras of sl,, |,

Let n > 2 and m > 0 be integers. Let f,,,, € sl,4,, denote the nilpotent
element corresponding to the hook-type partition n+m = n+1+---+1. The
Young tableau for this partition has the form of a hook, hence the name.
Let v = k + n + m. The corresponding affine WW-algebra

WT/J (na m) = Wk (5[n+m7 fn,m)
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will be called a hook-type W-algebra. In the cases m =0 and m =1, fr,o €
sl, and f,, 1 € sl, 41 are the principal and subregular nilpotents, respectively,
so W¥(n,0) = Wk(sl,,) and W¥(n,1) =& WF(sl,41, fsubreg). For m > 1,
WY (n,m) has affine vertex subalgebra

Vel gly,) = H@ VY Hsl,) m > 2,
H m=1.

Here H denotes the rank one Heisenberg vertex algebra and the level is
obtained from Theorem 3.1 (1).

There are additional even strong generators T, X3, ..., X™ in weights
2,3,...,n which are invariant with respect to gl,,, together with 2m even
fields {P®?| i =1,...,m} in conformal weight 21, such that {P*} trans-
forms as the gl,,-standard module C™, and {P~‘} transforms as the dual
module (C™)*. The Virasoro element T" has central charge computed from

(3.5)

n

_@—n—m)((n+m)*—1)
(3.19) c= > —nn? =1 —n—m)

—(n—=1)(n®*+mn

2 _n?—2mn—m—n).

For all m > 1 we denote the generator of H by J. For m > 2, we shall work
in the usual basis for sl,, consisting of
{eijli#7, i,7=1,...,m},
together with Cartan elements
{hp =e11 —ery1 61l k=1,...,m—1}.

We use the same notation for the fields in V¥~™~1(sl,,,) when no confusion
can arise. Then {J,e; j, hy} are primary of weight 1 with respect to T', and
{P*%} are primary of weight ”TH

Lemma 3.4. For all m > 1, there is a unique choice of normalization of J
such that

J(2) P (w) ~ £PF(w)(z — w) L.
With this normalization, J satisfies

m(m +n — ny)
m+n

(3.20) J(z)J(w) ~ — (z —w)~2



Trialities of W-algebras 119

Proof. Up to normalization J corresponds to the element
ji=nler+---+epn) —mlems1 + -+ €min)-

Then PT+ corresponds to €n,n+i and P~ to en+i,1 S0 that j acts by £(n+m)
on P® and hence J corresponds to the element (n +m)~!j. The norm is
computed from Theorem 3.1 (1). O

Next, we give meaning to WY (n,m) in the cases n = 1 and n = 0 as
follows. The case n = 1 should correspond to the W-algebra of sl,,+1 with
trivial nilpotent element, hence

WY1, m) = V¥ sl 0.

For n = 0, W¥(0,m) should contain a Heisenberg field for all m > 1, a copy
of V¥=m=1(sl,,) for m > 2, and 2m additional even strong generators in
weight 3 which transform as C™ & (C™)* under gl,,. We define

V¥=m(sl,) @ S(m) m > 2
wrem) = { s(1) 5 m=1

Here S(m) denotes the rank m [~-system defined by (2.14). For all m > 1,
S(m) admits a homomorphism

H — S(m), J—)—Z:ﬁi’yi :,

and for m > 2 this extends to a map
H®L_1(sly,) = S(m)

such that {$°} and {'} transform as C™ and (C™)* under gl,,. We use
the same notation {J,e;;, hi} to denote the images of the generators of
H ® L_1(sly,) in S(m). We therefore have a homomorphism

(3.21)
VO (gl,) = WY(0,m) 2 VYV (sl,) @ S(m),
€ijrr e @1+1®e; ky—h®l+1Q0hk, J—1®J

Finally, in the cases n = 0,1 and m = 0, we define W¥(n,m) = C. Note
that for all n,m, W¥(n,m) has a uniform description in terms of strong
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generators: in weight 1 we have generators of V¥~"71(gl,,), for n > 2 we
have additional even fields X2, ..., X™ that are gl,,-trivial, and for all n > 0
and m > 1 we have 2m additional fields of weight ”TH transforming under
gl as C™ @ (C™)*. To summarize, we define

WY (sl i) 1> 2, m > 1,
WY="(sl,,) n>2 m=0,
Ve=m=l(sl, 1) n=1 m>1,
WY¥(n,m) =< V¥ (sl,) @ S(m) n=0, m>2,
S(1) n=0, m=1,
C n=1, m=20,
C n=0, m=0.

We now define C¥(n,m) to be the affine coset of W¥(n, m). More precisely,

( Com(V¥—m=1(gl,,), W¥(n,m) n>2 m>1,

WY (s, n>2 m=0,
Com(V¥="=1(gl,,), VY"1 (sl,,11)) n=1 m>1,

C%(n,m) =< Com(V¥=""gl,), V¥ " (sl,,) @ S(m)) n=0, m>2,
Com(H(1),S8(1)) n=0, m=1,

C n=1, m=0,

. C n=0, m=0.

Note that for n > 2 and m > 1, C¥(n,m) has Virasoro element L = T —
L' — LM where L' is the Sugawara vector for V¥=™~1(sl,,) and L* is
the Virasoro vector for the Heisenberg algebra with generator J. Then L
has central charge

C:_(n¢—m—n—1)(m/)—¢1—m—n—{-1)(m/}+2/)—m—n)

(Y= 1)y

Lemma 3.5.

1. C¥(n,m) is simple for generic values of 1.
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2. Forn > 3, we may replace the fields X3,..., X" in our strong gener-
ating set for W¥(n, m) with fields w?,...,w" € C¥(n,m).

3. Let U= C™ @ (C™)* be the space spanned by { P}, which has sym-
metric bilinear form

(,):U—C, (a,b) = agb.

This form is nondegenerate and coincides with the standard pairing
on C™ @ (C™)*. Hence without loss of generality, we may normalize
{P*} 50 that

PP (w) ~ b (2 — w)™

where the remaining terms depend only on T,w3, ... ,w" and the gen-
erators of V¥~ 1(gl,,).

Proof. The first statement follows in all cases from Theorem 3.6, parts (1)
and (2). The second statement follows from Corollary 3.6, and the third one
follows from Lemma 3.2. O

3.7. A family of W-superalgebras associated to sl .,

Let n > 2 and m > 0 be integers with m # n. We define a nilpotent element
Jnjm in the even part of sl,,,,, as follows. If m = 0, it is the principal nilpotent
in sl,. If m > 1, it is principal in s[,, and trivial in gl,,. In the case n > 2 and
m = n, we let f,,, € psl,,, be the nilpotent which is principal in the first
copy of sl, and trivial in the second copy. Let ¥ = k +n — m, and consider
the W-superalgebra

WE(sl,,) n>2 m=0,

VY(n,m) = Wk(s[n‘m,fn‘m) n>2 m>1, m#n,

Wk(pg[n\na fn\n) n>2  m=n.

For m > 1, V¥(n,m) has affine vertex subalgebra

Vvl ) = H@ VY (sl,) m > 2,
H m = 1.

For n > 2, there are additional even strong generators T, X?3,..., X" in

weights 2,3, ..., n which are invariant with respect to gl,,,, together with 2m
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odd fields {P*? i = 1,...,m} in conformal weight %L1, such that {P*7}
transforms as the gl,,-standard module C™, and {P~'} transforms as the
dual module (C™)*. The Virasoro element T" has central charge

_@—n+m)((n—m)*—1)
(3.22) c= m —nn?—=1)(¢ —n+m)

—(n—=1)(n® —mn

2 _n?4+2mn+m—n).

As usual, let J be a generator of H and {e;j, hy| i # j, i,j =1,...,m,
k=1,...,m — 1} be our basis of gl,,. We use the same notation for the
corresponding fields in V=¥=™*1(gl,,), which are primary of weight 1 with
respect to T. The fields { P*} are primary of weight "TH The proof of the
next lemma is very similar to the one of Lemma 3.4.

Lemma 3.6. For all m > 1, there is a unique choice of normalization of J
such that

J(2) P (w) ~ 2P (w) (2 — w) L.

With this normalization, J satisfies

m(nyp +m —n)
m—n

(3.23) J(2)J(w) ~ -2,

(z —w)

If n > 2 and n = m, V¥(n, n) has affine vertex subalgebra V=*="+1(sl,,),
additional even strong generators T = X2, X3,..., X" in weights 2,3,...,n
which are invariant with respect to sl,,, together with 2n odd fields { P*| i =
1,...,n} in conformal weight 2, such that {P*?} transforms as the sl,,-
standard module C", and {P~*} transforms as the dual module (C™)*. The

Virasoro element 7" has central charge

(3.24) c=—14+n%—n4+nyp —nyY,

which is just the specialization of (3.22) to the case n = m. The generators
of V=¥=n*1(sl,) are primary of weight 1 with respect to T', and {P*} are
primary of weight ”T‘H We also remark that V¥ (n,n) has an action of GL;
by outer automorphisms. The origin of this action is as follows. If we consider
Wk (5lpjns fnn) Tather than Wd’(pﬁ[nm, fnjn), there is an additional Heisen-
berg field J which satisfies J(z)J(w) ~ 0, commutes with V=¢="*1(sl,),
and lies in a proper ideal of WY (5[,1}”, fnin). Without loss of generality, we
may normalize J such that J(z) P (w) ~ £P%#(w)(z — w)~!. The action
of the zero mode J(g) exponentiates to a nontrivial GL;-action on the fields
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{P*%}, and this action survives in the simple quotient Ww(pslnm, fnpn) of
Ww(s[nm, fnpn), for generic .

Next, if n = 1 and m > 2, we take the W-algebra of sly,, with trivial
nilpotent element, hence

VY (1,m) = VI (sl ) 2 VYT (sl).
Similarly, if n =1 and m = 1 we have
VP(1,1) 2 A(D),

where A(1) is the rank one symplectic fermion algebra defined by (2.16). As
in the case n = m and n > 2, there is a natural action of GL; on A(1).

For n = 0, V¥(0,m) should contain a Heisenberg field for all m > 1, a
copy of V=¥~ +1(s[,) for m > 2, and 2m additional odd strong generators
in weight 1 which transform as C™ @ (C™)* under gl,,. We define

VY(0,m) = { VYT (sln) @ E(m) m > 2,

(1) m = 1.
Here £(m) denotes the rank m bc-system defined by (2.19). For all m > 1,
&(m) admits a homomorphism

H—Em), T b
=1

and for m > 2 this extends to a map
H @ Li(sly,) — E(m)

such that {b'} and {c'} transform as C™ and (C™)* under gl,,. We use
the same notation {J,e;;,hi} to denote the images of the generators of
H ® Li(sly,) in £(m). We therefore have a homomorphism

(3.25)
VUL gl) — VY0, m) = VM (sl,) @ E(m),
eijrrei@1l+1®e, hg—h®1+10h;, J—1®J

Finally, in the cases n = 0,1 and m = 0, we define V¥(n,m) = C. Note
that the strong generating set for V¥(n,m) has a uniform description. In
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weight 1 we have generators of V=¥="%1(gl,,.) if n # m and V~¥""+1(sl,)

for n = m. For n > 2, we have additional even fields X?2,..., X" that are
gly,-trivial, and for n > 0 and m > 1 we have 2m additional odd fields in
weight "‘ZH transforming under gl,,, as C" @ (C™)*. To summarize, we define
( WY (sl,,) n>2 m=0,
WY (L fam) M= 2, m>1, m#n,
Ww(psln‘n, Tnin) n>2 m=n,
VTl n=1 m>2,
VY(n,m)=1<{ A1) n=1 m=1,
VYT (sl,)@E(m) n=0, m>2,
E(1) n=0 m=1,
C n=1, m=20,
C n=0, m=0.

We now define D¥(n, m) to be the affine coset of V¥ (n, m) in all cases except
for n = m, in which case it is the G Li-orbifold of the affine coset. Note that
for n = m = 1, there is no affine subalgebra so D¥(n,m) is just the GL;
orbifold. More precisely,

D¥(n,m) =

WY (sl,) n>2 m=0,
Com(V~=¥=m+1(gl,,,), V¥ (n,m)) n>2 m>1, m#n,
Com(V—¥="+1(sl,), V¥ (n,n)) n>2 m=n,
Com(V ¥4 (gl ), V5" sl ) =1, m 2,
A(1)G n=1, m=1,
Com(V=¢=m+1(gl,,), V=¥ ""(sl,,) @ E(m)) n=0, m>2,
C n=0 m=1,
C n=1 m=20,

L C n=0, m=0.

In the case n > 2, m > 1, n # m, D¥(n,m) has Virasoro element
L=T— L% — L" where L*' is the Sugawara vector for V~*~"+1(s[ )
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and L™ is the Virasoro vector for the Heisenberg algebra with generator .J.

Then L has central charge

(n+m—n = 1) — ¢ +m—n+ 1)(ng) + v +m —n)
(=10

Similarly, if n > 2 and m = n, D¥(n, n) has Virasoro element L = T — L'
which has central charge

(L+n)(¥n-(n -y +1)
v —1

Lemma 3.7.

1. D¥(n,m) is simple for generic values of .

2. Forn >3, we may replace the fields X3,..., X™ in our strong gener-
ating set for V¥ (n,m) with fields w3, ... ,w"™ € D¥(n,m).

3. Let U= C™@ (C™)* be the space spanned by { P}, which has sym-
metric bilinear form

<,> U — (C, <a,b> = a(n)b.

This form is nondegenerate and coincides with the standard pairing

on C™ @ (C™)*. Hence without loss of generality, we may normalize
{P*} 50 that

P ()P (w) ~ 8 j(z —w)" T 4+

where the remaining terms depend only on L,w3, ... ,w™ and the gen-
erators of V=¥Y=m+1(gl,,).

Proof. For the first statement, V’/’(n,m) is simple in all cases by Theorem
3.6, part (1). For n # m, the simplicity of D¥(n,m) follows from Theorem
3.6, part (2). In the case n = m, the simplicity of the affine coset is preserved
by taking the GLj-orbifold [63], so D¥(n,m) is simple in this case as well.
The second statement follows from Corollary 3.6, and the third one follows
from Lemma 3.2. O

4. Orbifolds and cosets of W-algebras

The main result in this section is the following
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Theorem 4.1. Let W¥(g, f) be a W-(super)algebra associated to a simple
Lie (super)algebra g and a nilpotent element f.

1. If G is a reductive group of automorphisms of W¥(g, f), then W¥*(g, )¢
1s strongly finitely generated for generic values of k.

2. If W¥(g, f) has affine subalgebra V*(a), and V¥ (b) C V¥(a) is a
subalgebra corresponding to a reductive Lie subalgebra b C a, then
Com(V*¥ (b), W¥ (g, f)) is strongly finitely generated for generic values
of k.

This result is constructive modulo a classical invariant theory problem,
namely, the first and second fundamental theorems of invariant theory for
some reductive group G and some finite-dimensional G-module V. In gen-
eral, this is a hard problem, but in special cases this classical problem has
been solved (see for example [126]). In Sections 6 and 7, we will use Theorem
4.1 to give an explicit minimal strong generating set for the affine cosets of
all hook-type W-algebras and VW-superalgebras.

The proof of Theorem 4.1 is based on [51, Thm. 6.10] together with
the fact that W¥(g, f) admits a limit which is a tensor product of free field
algebras of standard type. First, we recall the notion of a deformable family
from [49, 51]. It is a vertex algebra V defined over a ring of rational functions
of degree at most zero in some formal variable x, with poles lying in some
prescribed subset K C C which is at most countable. Then V*° := lim,_ .o V
is well defined, and certain features of V°°, such as the weights of a strong
generating set, graded character, etc., will also hold for the specialization
VE = V/(k — k)V, for generic values of k € C\ K.

It follows from Theorem 3.5 that W*(g, f) is a deformable family if the
usual generators given by Theorem 3.2 are rescaled by %, and that

W(g, f) = lim W¥(g, f) = W™(g, f).

By Corollary 3.4, this is a free field algebra of the form @);, V;, where each
V; is one of the standard free field algebras Sey(n, k), Soqad(n, k), Oecv(n, k),
or Opgd(n, k). In these cases Aut(V;) is either Spy,, or O,,. Moreover, if two of
these factors are of the same type, say Oey(n, k) and Oey(m, k), they can be
combined into a single one of this type since Oy (1, k) @ Ooy(m, k) = Oey(n+
m, k), and similarly for the other types. Therefore in this decomposition, we
may assume that the types are distinct; for a fixed k, there is at most one
integer n > 1 such that Oey(n, k) appears, and similarly for the other types.
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Lemma 4.1. Let G be a reductive group of automorphisms of W*(g, f) as
a one-parameter vertex algebra which acts trivially on the ring of rational
functions of k. Then W(g, f)¢ is a deformable family and

Jim (Wk(g, /)°) = ( lim WE(g, f)) <®v>

Moreover, G preserves the tensor factors in this decomposition, so that if G;
is the full automorphism group of V;, then G C G1 X - -- X Gy,

Proof. The proof of the first statement is similar to proof of [51, Cor. 5.2].
We first need a good increasing filtration on W¥(g, f) in the sense of [103].
For each strong generating field X in weight d, assign degree d to X and all
its derivatives. We define a filtration on W¥(g, f)

WE(g, £y SWHe, Ay S, Wre, /) = [ WHe, P

d>0
where WF (g, f )(a) is the span of monomials
AL R, L ¢

where X has weight d;, and >, d; < d. Setting W¥(g, f)_1) = {0}, it is
easy to verify that this is a good increasing filtration, so that the associated
graded algebra gr(W* (g, f)) = @iz WH(a. /i) /W"(g. [)i—1) is commuta-
tive and associative. Using this filtration, the analogue of [51, Lemma 5.1]
is proved in the same way, and the first statement follows.

For the second statement, we just need to show that for any reductive
group G of automorphisms of W¥(g, f), G preserves the distinct tensor fac-
tors in the free field algebra limit. But this is clear from the fact that the type
of each factor is completely determined by conformal weight and parity of
its strong generators, and these are preserved by automorphism groups. [

Suppose that W¥(g, f) has affine subalgebra V*(a) where the even part
of a has dimension d and the odd part has dimension 2e. Note that

lim V¥(a) 22 Ouy(d, 2) @ Soqale, 2).

k—o0

Then in the decomposition W (g, f) = @, Vi, we may assume that V; =
Oev(d, 2) and Vy = Sodd(e, 2) if e > 0.
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Lemma 4.2. Let b C a be a reductive Lie subalgebra of dimension r, and
let V¥ (b) C V¥(a) C WFE(g, f) be the corresponding affine subalgebra. Write
V12 Oe(r,2) @ Ocp(d —1,2), so that

m

Woo(g) f) = Oev(ra 2) & Oev(d -, 2) (29 (® Vz)

=2

Then the action of b coming from the zero modes of the generators of V¥ (b)
lifts to an action of a connected Lie group G on W¥(g, f), and G preserves
each of the factors Ogy(d — 1,2) and V; for i = 2,...,m. Moreover, C¥ =
Com(V¥ (b), W¥(g, f)) is a deformable family with limit

C>° = (Oev(d —7r,2)® (ém))(;.

i=2
Proof. This is just the specialization [51, Thm. 6.10] to our setting. O

Lemmas 4.1 and 4.2 imply that the strong generating types of both
WF(g, £)& and C* are determined by the strong generating types of certain
orbifolds of free field algebras. The rest of this section is devoted to studying
these orbifolds. We begin by considering the minimal strong generating type
of VA"(YV) in the case when V is one of the standard free field algebras
Sev(n, k), Soad(n, k), Oey(n, k), or Opqq(n, k). In these cases Aut()) is either
Spa,, or Oy,

Theorem 4.2. For all n > 1 and odd k > 1, Sey(n, k)P2n has a minimal
strong generating set

n

w! = %Z (:a'db' s — (Fa )b ), j=1,3,...,2n+1)(n+1)+nk—2.

i=1
Since Wi has weight k + j, Sep(n, k) P2n is of type
W(k+1Lk+3,...,2n+k+1)(n+1) —2).

Moreover, Sey(n, k) is completely reducible as an Sey(n, k)*P2n-module, and
all irreducible modules in this decomposition are highest-weight and C1-
cofinite according to Miyamoto’s definition [113].
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Proof. The first statement can be reduced to showing that, in the notation
of [109, Eq. 9.1], R, (I) # 0, where I is the following list of length 2n + 2:

kE—1
I=(tt+1,t+2,....t+2n+1), t:T.

The explicit formula for R, (I) is given by [109, Thm. 4], and it is clear that
it is nonzero. Next, the Zhu algebra [129] of Sey(n,k)5P2» is abelian; the
proof is similar to that of [109, Thm. 13]. This implies that the admissible
irreducible modules of Sey(n, k)Sp% are all highest weight modules, i.e., they
are induced from one-dimensional modules for the Zhu algebra. The proof
of C1-cofiniteness is the same as the proof of [106, Lemma 8]. O

Theorem 4.3. For alln > 1 and even k > 2, Syq4(n, k;)szn has a minimal
strong generating set
W =SS (a4 (Pab ), =0,2, . kn =2

2 4
=1

Since w? has weight k + 5, Soga(n, k)P=n is of type
Wk,k+2...,k(n+1)—2).

Moreover, S,q44(n, k) is completely reducible as an Syqq(n, k)*P2n-module, and
all irreducible modules in this decomposition are highest-weight and C1-
cofinite according to Miyamoto’s definition.

Proof. This can be reduced to showing that, in the notation of [109, Eq.
11.1], R, (I) # 0 for the following list I of length 2n + 2:

= (B B,
2 2 2

This follows easily from the recursive formula given by [109, Eq. 11.5]. O

Theorem 4.4. For alln > 1 and odd k > 1, O,q4(n, k)% has a minimal
strong generating set

n

1 P97 i -
wﬂ:§2;¢aﬂ¢ : j=1,3,...,n(k+1)—1.

Since wl has weight k + j, Ooqa(n, k) is of type

Whk+1,k+3,....,(n+1)(k+1)—2).
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Moreover, Ooqq(n, k) is completely reducible as an O yqq(n, k)" -module, and
all irreducible modules in this decomposition are highest-weight and C1-
cofinite according to Miyamoto’s definition.

Proof. The fact that the above elements are a minimal strong generating set
can be reduced to showing that, in the notation of [109, Eq. 11.1], R,,(I, J) #
0 where I and J are the following lists of length n + 1:

Skl k-1 k-l S_(Efl k41l k4l
- 9 ' 9 g ) - 9 9 T :

This follows easily from the recursive formula given by [109, Eq. 11.5]. The
proof of the remaining statements is the same as proof of Theorem 4.3. [

Unfortunately, we are unable to give a minimal strong generating set
for Oev(n,k)on at present, even in the case £k = 2 which coincides with
H(n)O». However, based on Weyl’s first and second fundamental theorems
of invariant theory for the standard module of O,,, we make the following
conjecture.

Conjecture 4.1. For all n > 1 and even k > 2, O (n, k)" has a minimal
strong generating set

n
wj:Z:aiﬁjai:, i=0,2,....n(n+1)+nk—2.

i=1
Since w’ has weight k 4 5, Ocy(n, k) is of type
W(k,k+2,...,(n+k)(n+1)—2).

This generalizes the conjecture given in [107] that H(n)°" is of type
W(2,4,...,n% + 3n). In [108], it was shown that this holds for n < 6, and
also that H(n)O is strongly finitely generated for all n. Using the same
approach, we can prove

Theorem 4.5. For all n > 1 and even k > 2, Ou(n, k)9 is strongly
generated by

n
wJ:E catda’ e, j=0,2,...,s.
i=1

for some even integer s > n(n+ 1) +nk — 2. Also, Conjecture 4.1 holds for
all k when n = 1.
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Corollary 4.1. For all n > 1 and even k > 2, O¢y(n, k) is completely
reducible as an Ogy(n, k) -module, and all irreducible modules in this de-
composition are highest-weight and C1-cofinite according to Miyamoto’s def-
mation.

Corollary 4.2. Let V be any of the free field algebras Sey(n, k), Soda(n, k),
Ouo(n, k), 0or Ougq(n, k). For any reductive group G C Aut(V), V< is strongly
finitely generated.

Proof. This is the same as the proof of [109, Thm. 15]. First, V% is com-
pletely reducible as a VA" (V)_module. Here Aut(V) is either Spy,, or O,,. By
a classical theorem of Weyl [126, Thm. 2.5A], V¢ has an (infinite) strong gen-
erating set that lies in the sum of finitely many irreducible VA"(Y)_modules.
The result then follows from the strong finite generation of VA"(Y) and the
(C'1-cofiniteness of these modules. O

4.1. Some special cases

For a general G, it is difficult to give an explicit minimal strong generating
set for V¢. However, there are a few special case which we shall need later,
in which it can be done. First, we have a natural embedding

such that the standard module C?* decomposes as C" @ (C")* as a GL,-
module.

Theorem 4.6. For alln > 1 and odd k > 1, Sey(n, k)L has a minimal
strong generating set

n
wj:Z:aiajbi:, j=0,1,....,n(n+1) +nk—1.
i=1

Since wi has weight k + j, Sey(n, k) P20 is of type
Wk, k+1,k+2,...,(n+k)(n+1)—1).

Proof. The method of [105] for studying the W oo —n-algebra via its re-
alization as the GLj-invariants in the rank n gv-system can be applied in
this case. By Weyl’s first and second fundamental theorems for the standard
representation of GL,,, the generators are given as above, and relations are
(n + 1) x (n + 1)-determinants. The relation of lowest weight has weight
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(n 4+ k)(n + 1) and corresponds to I = (0,1,...,n) = J. The proof that
the coefficient of w1+ in this relation is nonzero is similar to the
proof of [105, Thm. 4.15]. This relation allows w™™ D47k to be expressed
as a normally ordered polynomial in {w/| 0 < j < n(n + 1) + nk — 1}
and their derivatives. Finally, higher decoupling relations expressing all w’
for j > n(n + 1) + nk as normally ordered polynomials in {w’/| 0 < j <
n(n + 1) +nk — 1} and their derivatives, can be constructed inductively
starting from this relation. O

Next, we consider Soqq(n, k)M where GL,, embeds in Sp,,, as above.

Theorem 4.7. For all n > 1 and even k > 2, Soqa(n, k)™ has a minimal
strong generating set

n
wa':Z;aiajbi:, j=0,1,...,nk— 1.
=1

Since wi has weight k 4 j, Soqa(n, k) is of type
W(k,k+1,k+2,...,k(n+1) —1).

Proof. The proof is the same as the proof of [50, Thm. 4.3], which is the
special case k = 2. O

Next, recall that GL,, < O, such that the standard Og,-module C>"
decomposes under GL,, as C" @ (C")*.

We can choose a generating set {e’, f¢| i = 1,...,n} for Oyqq(2n, k) such
that {e’} and {f?} transform as C" and (C")* under GL,, respectively, and
el(2) 1 (w) ~ 0ij(z — w) 7k,

Theorem 4.8. For alln > 1 and odd k > 1, Ogqq(2n, k)L has a minimal
strong generating set

n
wj:Z;eiajfi;, j=0,1,...,nk -1,
=1

and hence is of type W(k,k+1,... . k(n+1) —1).

Proof. The argument is similar to the proof of [50, Thm. 4.3]. The infinite
generating set {vj, = > 1, : (07e))(0Ff) : | 4,k > 0} coming from classical
invariant theory can be replaced with the set {9%w7| 7,k > 0}. The relations
among these generators are (n+1) x (n+ 1) fermionic determinants (that is,



Trialities of W-algebras 133

determinants without the usual signs) D, (I, J) for weakly increasing lists
of indices I = (ig,i1,...,iy) and J = (jo, j1,---,Jn), with suitable quantum
corrections. A recursive formula for the coefficient R,,(I,.J) of w!!I*17/I+k(n+1)
appearing in D,,(I,J) can be given; here |I| = Y "}" g4t [J| = Y1~ ji. The
relation of minimal weight occurs at weight k(n+ 1) and has the form w™* =
P(w°,wh, ..., w™~1). As usual, higher decoupling relations expressing all w’
for j > nk as normally ordered polynomials in w®, w?', ..., w™ 1 and their
derivatives can be constructed inductively starting from this relation. O

Finally, we consider Oy (2n, k)% where GL,, embeds in Oy, as above.
Fix a generating set {e’, f!| i = 1,...,n} for Ocy(2n, k) such that {e’} and
{f} transform as C" and (C")* under GL,, respectively, and e’(z) f7 (w) ~
(52-,]-(2' — w)_k.

Theorem 4.9. For alln > 1 and even k > 2, Og(2n, k)" has a minimal
strong generating set

n
wj:Z:ei(?jfi:, j=0,1,....n(n+1)+nk—1,
i=1

and hence is of type W(k,k+1,...,(n+k)(n+1) —1).

Proof. The case k = 2 is given by [110, Thm. 8.1], and the general case is
similar. O

Theorem 4.10. Let V = Q);", V; where each factor V; is one of the above
free field algebras Sey(n, k), Soaa(n, k), Oc(n, k), or Opqq(n, k). Let G; =
Aut(V;) which is either an orthogonal or a symplectic group, and let G be a
reductive group of automorphisms of V which preserves the tensor factors,
so that G C G1 x - X Gp. Then VC is strongly finitely generated.

Proof. The argument is the same as the proof of [51, Thm. 4.2]. O

Proof of Theorem 4.1. This is now an immediate consequence of Lemmas 4.1
and 4.2, and Theorem 4.10. O

The next result is a generalization of Theorem 3.6, and will be useful in
future applications.

Theorem 4.11. Let g be a Lie superalgebra with nondegenerate invariant
bilinear form (| ), and let f be a nilpotent element in g. Let V¥ (b) be
the subalgebra of the full affine subalgebra V*(a) of WE(g, f), where b is a
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reductive Lie subalgebra of a. Then for generic k, W¥(g, f) admits a decom-
position

(4.2) =~ P Vi) ek,

AepP+

where PT denotes the set of dominant weights of b, V¥(\) are the cor-
responding Weyl modules, and the multiplicity spaces CK()\) are irreducible
modules for the coset C* = Com(V* (b), W¥(g, f)).

Proof. For generic values of k, since the Kazhdan-Lusztig category K Ly (b)
is semisimple, the existence of a decomposition of the form (4.2) is clear,
where the Weyl modules V¥ ()\) are irreducible. What remains to prove is
that the multiplicity spaces C¥()) are irreducible C*-modules. Let r = dim g,
and as in Lemma 4.2, write

(g, f) = lim WH(g, [) = Oey(r,2) © Oer(d — 1,2) @ (Q) V1),
=2

where Oey(r,2) = H(r) is the rank r Heisenberg algebra coming from the
limit of V¥ (b). For convenience, we write W = Oey(d — 1,2) ® ( Q1 Vi),
so that C°° = limy_,. C¥ = WG,

The module V¥ () has limit

V) = lim VY(\) = H(r) ® Ly,
' —00
where L) is the finite-dimensional irreducible b-module with highest weight
A. Then we have a decomposition

W(g, ) 2 H(r) @ W = H(r (@LA@@DA)

AEPT

Here D* = limgy_, C*(\), which is a module over WE = limy_, oo C*. Since
W is simple and G is reductive, by passing to a compact form of G, it follows
from [63] that each of the modules D* is an irreducible W&-module.
Finally, if some C*(\) were reducible, it would have a nontrivial singular
vector w in some weight space higher than the lowest weight component. In
the k£ — oo limit, after suitable scaling w must survive and would have to be
singular for the action of W€, This is impossible since D* is irreducible. [J
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A similar statement to Theorem 4.11 in fact holds in a much more general
setting. Let g be a reductive Lie algebra of dimension d, and let A* be a
vertex algebra whose structure constants depend algebraically on k, which
admits a homomorphism V*(g) — A* with the following properties:

1. There exists a deformable family A defined over ring Fg of rational
functions of degree at most zero in x, with poles in some at most
countable set K, such that

Al(k —VE)A= AF for all VE ¢ K.

2. The homomorphism V*(g) — A* is induced by a map V — W, where
V is the deformable family such that V/(k — Vk)V = V¥(g) for all
k # 0.

3. A*® = lim,_ o A decomposes as

A® =2 V® @ A= H(d) @ A,

where A is a tensor product of standard free field algebras Oey(n, k),
Sev(n, k), Oodd(n, k), and Soaa(n, k).

4. The action of g on A* integrated to an action of a connected Lie group
G and A* decomposes into finite-dimensional G-modules.

By the same argument as the proof of Theorem 4.11, we obtain

Theorem 4.12. Let V¥(g) — AF be as above, and let C¥ = Com(V*(g), A¥).
Then for generic k, A* admits a decomposition

(4.3) AP = @B VE) @),

AeP+

where P denotes the set of dominant weights of g, V¥(\) are the corre-
sponding Weyl modules, and the multiplicity spaces CK()\) are irreducible
C*-modules.

Remark 4.1. If G acts faithfully, then the C¥()\) are all nonzero. In gen-
eral, the set of dominant weights for which the C¥(\) are nonzero can be
determined by a classical invariant theory problem. We illustrate this in the
example of interest to us, that is G = U(m) and as a G-module our free
field algebra is either isomorphic to

o0

S5(m) := Sym (@(Cﬁ & (CZ”)*)) or E(m) := [\ (@(C? & (Q@”)")) :

n=1 n=1
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Here C]' denote each a copy of the standard representation of U(m) =
SU(m) x U(1), which is given weight one corresponding to the U(1)-action.
Similarly, (C")* denotes the conjugate which then has U(1)-weight minus
one. It is clear that A™C™ as well as the determinant of the product of m
distinct copies of C™ is trivial as an SU(m)-module and has U(1)-weight m.
Replacing C™ by (C™)* gives modules that are trivial as SU(m)-modules
and have U(1)-weight —m. Call these one-dimensional modules A* and we
clearly have infinitely many copies of this type of module in both S(m) and
E(m). Let

Sm) 2 @B mn®@Myn,  Em= @ pan®Nan
AP+ XZ ANEPT XZ

be the decompositions as SU(m) x U(1)-modules. Here the M) ,,, Ny, are
multiplicity spaces and the p) ,, are the irreducibles of highest weight (X, n).
Let i(n) be the integer in [0,n — 1] with i(n) =n mod m. Clearly the mul-
tiplicities can only be nonzero if A = Wi(n) mod A,,_1. Here A,,_1 denotes
the root lattice of sl,,, w; are the fundamental weights, and we set wg = 0.
Since SU(m) acts faithfully, for each A\ there exists at least one n,n’ € Z
with M) ,,, Ny - nonzero. But then M) .y, Nx p/4mr are also nonzero for
any r € Zsq by multiplying with |r| modules of type A*.

5. Universal two-parameter W.,,-algebra

In this section, we briefly recall some features of the universal two-parameter
vertex algebra W(c, \) constructed in [110]. The algebra is defined over the
ring C[e, A], and is generated by a Virasoro field L of central charge ¢ and
a primary weight 3 field W?2 which is normalized so that (Wg)(5)W3 =zl
The remaining strong generators W* of weight ¢ > 4 are defined inductively
by
W= W3Wt, i>4

Then W(c, \) is defined over the ring Cle, A], and is freely generated by
{L,W| i > 3}. It has a conformal weight grading

Wi(c,A) = @ W(e, Nnl,

n>0

where each W(c, A)[n] is a free C|c, A]-module and W(e, A)[0] = C[e, A]. There
is a symmetric bilinear form on W(e, A)[n] given by

(s )n : W(e, )] AC[e,\] W(e, A)[n] = Cle, Al (W, V)n = Win-1)v-
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The determinant det,, of this form is nonzero for all n; equivalently, W(c, \)
is a simple vertex algebra over Cle, A].

Let p be an irreducible factor of detyy; and let I = (p) C Cle, \] &
W(e, A)[0] be the corresponding ideal. Consider the quotient

We(e,\) = W(e, \)/T-W(e, N,

where [ is regarded as a subset of the weight zero space W(e, A)[0] = Cle, A,
and I - W(c,\) denotes the vertex algebra ideal generated by I. This is a
vertex algebra over the ring C[e, A]/I, which is no longer simple. It contains
a singular vector w in weight N 4 1, which lies in the maximal proper ideal
T C Wi(c, \) graded by conformal weight. If p does not divide det,,, for any
m < N + 1, w will have minimal weight among elements of Z. Often, w has
the form

(5.1) WhNH _pL, w3, .. Wi,

possibly after localizing, where P is a normally ordered polynomial in the
fields L, W3, ..., WN=1 and their derivatives. If this is the case, there will
exist relations in the simple graded quotient Wy(c, A) := W (c, \)/T of the
form

W™ = P (L,W3, ..., W),

for all m > N 4 1 expressing W™ in terms of L, W3, ..., W/ and their
derivatives. Then Wy (e, ) will be of type W(2,3,...,N). Conversely, any
one-parameter vertex algebra W of type W(2,3,..., N) for some N satisfy-
ing mild hypotheses, is isomorphic to Wy(c, A) for some I = (p) as above,
possibly after localizing. The corresponding variety V(1) C C? is called the
truncation curve for W.

Note that if I = (p) for some irreducible p, then W (c, \) and Wi (e, )
are one-parameter vertex algebras since C[ec, A]/(p) has Krull dimension 1.
We also consider W (c, \) when I C Clc, \] is a maximal ideal, which has
the form I = (¢ — co, A — Ag) for some co,A\g € C. Then W/ (c,\) and
its quotients are ordinary vertex algebras over C. Given maximal ideals
Iy = (¢ —co, A — X)) and I} = (¢ — c1, A — A1), let Wy and W, be the
simple quotients of W/ (c, \) and Wi (c, \), respectively. There is an easy
criterion for Wy and W; to be isomorphic. We must have ¢y = ¢, and if
co # 0 or —2, there is no restriction on Ay and A;. For all other values of
the central charge, we must have Ay = A1. This criterion implies that aside
from the coincidences at ¢ = 0 and —2, all other coincidences among simple
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one-parameter quotients of W(e, A) must correspond to intersection points
on their truncation curves; see [110, Cor. 10.1].

Often, a vertex algebra C* arising as a coset of the form Com(V*(g), A*)
for some vertex algebra A¥, can be identified with a one-parameter quotient
Wi(c, A) for some I. Here k is regarded as a formal variable, and we have a
homomorphism

(5.2) L—L — W3=W?3  cmcek), A= AE).

Here {L, W3} are the standard generators of C¥, where (W3)(5) W3 = (:?)—k)l,
and k — (c(k), \(k)) is a rational parametrization of the curve V(I).

There are two subtleties that need to be mentioned. First, for a complex
number ko, the specialization C* := C* /(k — ky)C* typically makes sense for
all ko € C, even if kg is a pole of c(k) or A(k). At these points, C¥ need not be
obtained as a quotient of W/(c, \). Second, even if kg is not a pole of c¢(k) or
A(k), the specialization C*o can be a proper subalgebra of the “honest” coset
Com(V*0(g), A*), even though generically these coincide. By [50, Cor. 6.7],
under mild hypotheses that are satisfied in all our examples, if g is simple
this can only occur for rational numbers kg < —h", where h" is the dual
Coxeter number of g. Additionally, if g contains an abelian subalgebra b,
the coset becomes larger at the levels where the corresponding Heisenberg
fields become degenerate, since it now contains these fields.

For later use, we recall some OPEs in the algebra W(c, A) from [110].

(5.3)
W3(2)W3(w) ~ g(z —w) 8+ 2L(w)(z — w) "t + AL(w)(z — w)

+ Whw)(z —w) 2 + (%3W4 - %83L> (w)(z —w)™ L.

L(z)W*(w) ~ 3¢c(z — w) ™% + 10L(w) (2 — w)~* + 30L(w)(z — w) >
(5.4) 4 2 4 -1

+ AWH(w)(z —w) ™ 4+ OWH(w)(z —w) ™.
L(z)W5(w) ~ (185 — 80A(2 + ¢))W?(2)(z — w)™*
(5.5) + (55 — 16A(2 + ¢)) OW?(2) (2 — w) °
+ 5WP(w) (2 — w) 2 4+ oW (w)(z — w) L.
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W3 (2)WH(w) ~ (31 — 16X (2 + C)> W3 (w)(z — w)™*

+ g (5 — 22+ c)>6W3(w)(z —w)”?
(5.6) + WP (w)(z —w)?

2 32 48
+ <53W5 + E)\ cLOW? - —E)\  (OL)W?3

+ (-5 2-140)0W W)l - w)

6. The structure of C¥(n,m)

The main result in this section is the explicit realization of the affine coset
C%(n, m) of W¥(n, m) as a simple, one-parameter quotient of W(c, \) of the
form Wy, . (e, M) for an ideal I, ,,, € Cle, A.

Theorem 6.1. Form > 1 andn > 0, and form =0 andn > 3, C¥(n, m) =
Wi, .. (¢, N), where I, ,, is described explicitly via the parametrization

77777

(6.1)

C(w):_(mb—m—n—1)(mp—¢_m_n+1)<m/}+w_m_n)

(¥ =1 ’

o (- v
AW) = (np—n—m—2)(np —2¢p —m —n+2)(np+2¢p —m —n)’

Moreover, after a suitable localization, W (c,\) has a singular vector of
the form

W(m+1)(m+n+1) _ P(L, W?;’ o 7I/V(m—i-l)(m—s—n—l—l)—l)

and no singular vector of lower weight, where P is a normally ordered polyno-
mial in the fields L, W3, ... WmtDmtntD)=1 " op q their derivatives. There-
fore Wr, .. (¢, X) has minimal strong generating type W(2,3,...,(m+1)(m+
n+1)—1).

Remark 6.1. By changing variables, one verifies easily that this truncation
curve is precisely the one for Yj  m+n[t] given by [116, Eq. 2.14].

In the case m = 0 and n > 3, there is nothing to prove since the
truncation curve for C¥(n,0) = W¥~"(sl,,) is given by [110, Thm. 7.4], and
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agrees with (6.1). It is worth mentioning that in [110], we actually computed
the truncation curve for the coset Com(V**+1(sl,,), V¥(sl,) ® Ly(sl,)), and
concluded that this was the truncation curve for the W-algebra using [18,
Thm. 8.7]. It is not difficult to compute A(z) for W¥~"(sl,,) directly using
the Miura realization, and hence get an independent proof of [18, Thm. 8.7]
for type A.

For the rest of this section, we assume m > 1. Before proceeding with
the proof of Theorem 6.1, we shall outline our strategy. We first show that
C¥(n,m) is of type W(2,3,...,(m + 1)(m +n + 1) — 1) using its free field
limit. Next, we show that C¥(n,m) is at worst an extension of a vertex
subalgebra C¥(n,m) which is of type W(2,3,...,N) for some N < (m +
1)(m+n+ 1) — 1, and is a one-parameter quotient of W(c, \). Therefore
WY (n,m) is an extension of H ® V¥~""1(sl,,) ® C¥(n,m).

The key step, which we call the reconstruction argument, is to prove that
if W is any one-parameter quotient of W/ (c, \) for some ideal I with the
property that H ® V¥~ 1(sl,,,) ® W admits an extension containing fields
{P*} transforming as C™ @ (C™)*, as well as some mild properties pos-
sessed by W¥(n, m), then W must be a quotient of W!»m(c, \), where I,, ,
is the ideal given in Theorem 6.1. In particular, this proves that Cw’(n, m)
must be a quotient of W!»m(c, ).

The final step, which we call the ezhaustiveness argument, is to prove
that C¥(n,m) = C¥(n,m). By finding coincidences between the simple quo-
tient C~¢(n, m) and certain principal W-algebras of type A, and making use
of Corollary 3.7, we show that C¥(n,m) has type W(2,3,...,N) for some
N > (m+1)(m+n+1)—1.It follows that N = (m+1)(m+n+1)—1 and
that C¥(n,m) = C¥(n,m). Since C¥(n,m) is generically simple by Lemma
3.5, we must have C¥(n,m) = Wy, (c,\).

Lemma 6.1. For m > 1 and n > 0, C¥(n,m) is of type W(2,3,...,(m +
1)(m+n+1)—1) as a one-parameter vertex algebra. Equivalently, this holds
for generic values of 1.

Proof. Consider the free field limit W€ (n, m) := W (5[, 1, fr.m). Then

Oev(m?,2) ® ( Q1 Ocv(1,2i)) @ Sev(m,n+1), n even,

Wfree (n’ m) ~
Ocv(m?,2) ® (@1 Oev(1,2i)) ® Ocy(2m,n+ 1), n odd.
In this notation, Oy (m?,2) = H(m?) is just the rank m? Heisenberg
algebra coming from the affine subalgebra, O (1,27) is the algebra gener-
ated by w' for i = 2,...,n, and the fields { P*} generate Se,(m,n + 1) or
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Oev(2m,n + 1) when n is even or odd, respectively. By Lemma 4.2,

lim C*(n,m) = (( é Oev(1,21)) ® Sev(m,n + 1))GL""

k—o0

(6.2) =2
o (®Oev(1, 2i)) ® (Sev(m,n + 1))GL””, n even,
=2
(6.3)

n

((X) Ocv(1,20)) @ Ocy(2m,n + 1))GLm

I

lim C*(n,m)
k—o0

=
(e}

I

Our(1,20)) @ (Ouy(2m,n + 1)) 5 odd.
( (1,2i)) @ (Oex( )
=2

It follows from Theorems 4.6 and 4.9 that (Sev(m,n + 1))GL’" and

(Oev(2m,n+ 1))GLm are both of type W(n+1,n+2,...,(m+1)(m+n+1)—
1). Since Ocy(1,4) ® Oey(1,6) ® - - - @ Ocy(1,2n) is of type W(2,3,...,n), it
follows that limy oo C¥(n,m) is of type W(2,3, ..., (m+1)(m+n+1)—1).
Therefore C¥ (n, m) has the same type as a one-parameter vertex algebra. [

In addition to the fields L,w?,...,w™ € C¥(n,m), it is apparent from
the proof of Theorems 4.6 and 4.9 that the additional strong generators w”
forn+1<r <(m+1)(m+n+1)—1, have the form

m
W' = Z . P-l-,i(ar—n—lp—,i) I
=1

where the remaining terms are normally ordered monomials in the fields
{J,eij, hi, Lyw?,...,w"} and their derivatives. It is not yet apparent that
C%(n,m) is a one-parameter quotient of W(c, \) because we don’t know
that it is generated by the weight 3 field w?. Without loss of generality, we
can modify w? by subtracting an appropriate multiple of 9L to make it L-
primary. We then rescale it so that its 6th order pole with itself is §1, and
we denote this modified field by 3. We now consider the vertex subalgebra,

C%(n,m) C C¥(n,m) generated by W3,

Lemma 6.2. For m > 1 and n > 0, C¥(n,m) is a quotient of W(c, \)
for some ideal I, and is therefore of type W(2,3,...,N) for some N <
(m+1)(m+n+1)—1.
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Proof. In the case m = 1 and n = 0, C¥(1,0) is just the Heisenberg coset of
the rank one fv-system, which is known to be isomorphic to the Zamolod-
chikov Ws-algebra with ¢ = —2 [125]. For m = 1 and n = 1, 2, and 3,
the claim is known by [110, Theorems 7.1, 7.2, and 7.3], respectively. So we
assume that m > 1 and n > 4.

Set W' = W(31)W’"_1, for r > 4. First, for 3 <r < (m+1)(m+n+1)—1,
we can write

Wr=x w"+---, Ar € C,

where the remaining terms are normally ordered monomials in {L,w®| 3 <
s < r}. If A, # 0 for all r, then C¥(n,m) = C¥(n, m). Otherwise, let N > 3
be the first integer such that Ay 1 = 0. Then {L,W?3,..., W} close under
OPE, so that C¥(n,m) is of type W(2,3,...,N).

Even though C¥(n,m) is generically simple by Lemma 3.5, it is not
yet apparent that C¥(n,m) is generically simple. However, by [110, Thm.
5.2 and Rem. 5.1], it suffices to prove that the generators {L,W"| 3 <
r < T} satisfy the OPE relations (5.3)-(5.6), as well as (A1)-(A6) of [110];
equivalently, all Jacobi identities (2.8) of type (W, W7, W) for i+j+k < 11
hold as a consequence of (2.4)-(2.7) alone. In this notation, W2 = L, as in
[110).

By [110, Thm. 6.2], the above condition is automatic if the graded
character of C¥(n,m) coincides with that of W(c, ) up to weight 8. It
follows from Theorems 4.6 and 4.9 in the cases n even and n odd, re-
spectively, that there are no normally ordered relations in C¥(n, m) among
{L,w"|3<r < (m+1)(m+n+1)—1} and their derivatives, in weight
below (m + 1)(m + n + 1). Therefore the character of C¥(n,m) coincides
with that of W(e, \) in weight up to 8. If N > 8, C¥(n,m) and C¥(n,m)
have the same graded character up to weight 8, so the conclusion holds.

Finally, suppose that N < 8. Since Ay+1 =0 and A, #0 for 3 <r < N,
there are no nontrivial normally ordered relations among {L, W3, ..., whN }
in weight up to NV, since this property holds for the corresponding fields
{L,w3,...,wN}. Therefore all Jacobi relations among {L, W3,... W} of
type (W, W3, W¥) for i + j + k < N + 2, must hold as a consequence of
(2.4)-(2.7) alone. It follows that the OPEs W'(2)W/(w) for i +j < N are
the same as those of W(c, \) for some ideal I C Cle, A

If we use the same procedure as the construction W(c, ) given by
[110, Thm. 5.1], beginning with the fields L, W?3,..., W and the OPEs
Wi(z)W(w) for i + j < N, we can formally define new fields WH*" =
(W(?’l))TWN for all » > 1, and then define the OPE algebra of all fields
{L,W3,...,WN WN+"| r > 1} recursively so that they are the same as the
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OPEs in W (¢, \). In particular, this realizes C¥(n,m) as a one-parameter
quotient of W!(c, ) by some vertex algebra ideal Z containing a field in
weight N + 1 of the form WN*! — P(L, W3, ..., W), where P is a nor-
mally ordered polynomial in L, W3,..., W and their derivatives. O

Since C¥(n,m) is at worst an extension of C¥(n,m), we obtain

Corollary 6.1. For m > 2 and n > 0, W¥(n,m) is an estension of H ®
VY=m=l(sl, ) ® C¥(n,m). Similarly, for m =1 and n > 0, W¥(n, 1) is an
extension of H ® C¥(n,1).

6.1. The reconstruction argument

Let VW be any vertex algebra arising as a quotient of the algebra W(c, \)
constructed in [110], with the usual strong generating set {L, W?| i > 3}.
First, we assume that m > 2 and n > 0, and we deal with the case m =1
and n > 0 later. We are interested in the problem of classifying certain
extensions of H ® V¥~ 1(sl,,,) ® W. We set the central charge of L to be

(n —m—n— 1) = —m—n+1)(ng)+ ¢ —m —n)

C = — s

(¥ =1y

and as in Lemma 3.4 we normalize the generator J of ‘H so that

m(m +n — ny)
m-+n

J(z2)J(w) ~ — -2,

(2 — w)

In H ®@ V¥ ~=™m=1(sl,,) ® W, the total Virasoro field is T = L + L*' + L*.
We now postulate that H @ V¥~™"1(sl,,) ® W admits an extension

which has 2m additional even strong generators { P¥| i = 1,...,m} which

are primary of conformal weight "TH with respect to 7', and satisfy

J(2)PH(w) ~ £P (w)(z —w) 7Y,
¢ij(2)PTH(w) ~ 85, P (w) (2 —w) ™,

(6.4) hi(2) P (w) ~ (015 — 5i,j)P+’j(w)(z —w)7 L,
ei,j(z)P_’k(w) ~ =0k P (w)(z — w) 7,
hi(2) P79 (w) ~ (=01 + 8i,3) P~ (w)(z — w) ",
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This forces

(6.5)
M ("5 gy g ) P e
+ <8P+’1 - (n$_+£_ SRELAE —ﬁ mz_l P
T et Y-
&

There are similar expressions for L(z) P (w) for i > 1 and for L(z)P~(w),
which we omit because we don’t need them explicitly.

Since the fields {e; ;, hy, L, Wi, P¥} close under OPE, and W3 com-
mutes with e; ;, by, the most general OPEs of W3 with P! is

(6.6)
W3 (2)PH(w) ~ ag P (w)(z — w) ™3 + <a18P+’1 +.. >(w)(z —w) 2

+ <a2 cLPTY: agd* Pt >(w)(z —w)7 1,

Here the omitted expressions are not needed. We are going to impose just
three Jacobi identities of type (L, W3, P™1), and this will determine the
constants ag, a1, as in terms of az. First, we impose

(6.7)
L(Q) (W(3 )PJr,l) o

(L PTY) = (LioyW?) @y PP = 2(LyW?) o) P!
~ (LW Pt =0.

Using the above OPEs (6.4), (6.5), and (6.6), we get

(m? —1)ay ai(m+n)
(6.8) —3ap+ a1 +ain — o pr— _m(m/l—m—n)io'

Next, we impose

(6.9)
Ly (Wipy PH) = Wiy (Ligy PTY) = (LgyW?) (5 P! = 3(Liy W) P
— 3(L(2)W3)(1)P+’1 — (L(g)W3)(O)P+’1 =0.
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We get

(m? —1)(2az + 3a3)
m(y —1)

asc
— 6ag + 2a9 + 3as + % + n(2az + 3ag) —

(6.10) ~ (2a2 +3a3)(m +n) _o
m(nyp —m —n) ’

Finally, we impose

(6.11)
Liyy(Wiey PTY) = Wiy (Ly PTY) = (LigW?) @ P! = 2(LyW?) gy PH
— (L(Q)WS)(O)P+’1 =0.

Extracting the coefficient of P! yields

2(m? — 1)as 2a3(m +n)
m—1)  mny—m—n)
Solving (6.8), (6.10), and (6.12), we obtain

(6.12) — 4ay + 3az + 4az + 2a3n —

(6.13)
ag =
(np—m-—-n—-2)np—m-—n-—1)(np+—m-—n)(nyp+2¢ —m—n)
6(¢) — 1)*(n —m —n)?
(np —m—n—2)(nY+2¢ —m —n)

asg,

T S D)
_ 24

az = (w_l)(m[}_m_n)a:z.
Next, we have

(6.14) W) P (w) ~ b P (w)(z —w) ™+

W5 ()P (w) ~ b PP (w) (2 —w) 5 4+,

for some constants by, b;. We will see that by imposing just four Jacobi iden-
tities, the constants as, bg, b1 are determined up to a sign, and the parameter
A in W(c, A) is uniquely determined. First, we impose

(6.15)
W(%)(Wg)P“) — W3y Wiy PH1) — (W(i’;))W3)(4)P+’1 — 3(W(31)W3)(3)P+’1
— 3(WiyW?) g PTl — (WEyW?)y P! =0.
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This has weight "TH, and is therefore a scalar multiple of P*!. Using the
OPE relations (5.3)-(5.6) together with (6.4), (6.5), (6.6), and (6.14), we
compute this scalar to obtain

m?—1 m-+n
6.16 1+3 — b — — =0.
(6.16) + Jaga — Bp + n m(yp —1)  m(np —m —n)

Next, we impose

(6.17)
Wiy (Wi P — Wiy (Wi P — (Wi W2) gy PH — (WG W) g P!
— 6(WiyW?) ) Pl — 4(WEW?) ) PH1 — (Wi W) PH = 0.

Again, this has weight ”T‘H, and is therefore a scalar multiple of P!, and
we obtain
2
—1
(6.18) 1+ 6ag(az + 2az) — 2by +n — — __oomAn

m(yp—1) m(nyp —m —n)
Next we impose
(6.19) Wy (Wi PO — W (Wi P — (Wi W5 P =0,

which yields

1
5 < — 40a3b0 + 5&0((2 + C))\ — 16) =+ 4b1)

B 8az(mnyy +map —m? —mn —m + 1)
m(y —1)

8ag(m + n)

(ny) —m —n)

(6.20)

=0.

— az(3c+ 8bg) +
m

Finally, we impose
(6.21)
Wiy (Wi P = Wiy (WG P = (Wi W) P = (Wi W ) P,

which yields
(6.22) — 8aiby + 5ag((2 + )\ — 16) + 2by = 0.

Substituting the values of ag, a1, a2 in terms of a3 given by (6.13) into the
equations (6.16)-(6.22), and solving for ag, by, b1, A yields a unique solution
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for by and A, and a unique solution up to sign for ag and b;. In particular,
we obtain

(6.23)
N (V-1

(np—n—m—2)(np —2¢p —m —n+2)(np+2¢ —m—n)’

g = /72 (5~ 1y

by — (np—m-—n—1)(nY+¢Y—m—n)ry
2(p = 1)(np —m —n)2(np —2¢p —m —n+2)’
V=3 (= m—n = (g + Y —m — n)r
@ — D) — 20— m—n+ 2)(np — m — M2 yr

by =

In this notation,

(6.24)

r1=mY—n—m-—2)(np—2¢Y—m—n-+2)(np+ 2 —m—n),

r9 = —6m + m? —6n+ 2mn +n? + 41 4+ 6map + 12ny — 2mnay) — 2n21/}
— 6mb2 + nzwz,

ry = —36m? — 4m?3 + 5m* — 72mn — 12m?n + 20m>n — 36n> — 12mn?
+ 30m?n? — 4n3 + 20mn® + 5n* + 88mp + 48m>1h 4+ 4m3 + 88ny
+ 168mnp + 24m>*ni — 20m3ny + 120029 + 36mn?yp — 60m>ny
+ 16131 — 60mn3y — 20n*yY — 169? — 88map? — 36m2y? — 176n1)>
— 168mnap? — 12m>nip? — 168n%9% — 36mn21h? 4+ 30m?*n2y? — 24n3y)?
+ 60mn3y? + 30n*p? + 88nyp3 + 72mnap® + 12002y + 12mn?y?
+ 16139 — 20mn3y3 — 20n Y3 — 36n%yY* — andy* + sntyt.

This proves the following

Lemma 6.3. Let m > 2 and n > 0. Suppose that W is some quotient of
W(e,A) and that H @ V¥~ 1(sl,,) @ W admits an extension containing
2m primary fields {P%!| i = 1,...,m} of conformal weight ”T'H, satisfying
(6.4), (6.5), (6.6), and (6.14). Then W is in fact a quotient of Winm(c,\) =
W(e,N)/Inm - W(c,X) where I, C Clc, ] is the ideal given in Theorem

0.1.
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Remark 6.2. Note that the formula for az and b; involves square root func-
tions, but this is just because we are using the convention of [110] and scaling
W3 so that its leading pole is 51. With a different scaling, we can make all
structure constants rational functions of 1, but we keep this convention for
convenience.

Remark 6.3. The sign ambiguity in formula for as and b; is not essential,
and reflects the Zo-symmetry of W(c, \) and its quotients.

Next, we show that Lemma 6.3 also holds in the case m =1 and n > 0.
First, let m = 1 and n > 2, and consider extensions of H ® W. Here W is
a one-parameter quotient of W(c¢, \) where the Virasoro field L has central
charge

(A+n)(ny —n—-2)(ny —¢ —n)
w J

and the generator J of H satisfies

nY—n-—1
n+1

-2

J(2)J (w) (z —w)

In H ® W, the total Virasoro field is T' = L + L™. We postulate that H @ W
admits an extension which has two additional odd strong generators P*
which are primary of conformal weight ”T‘H with respect to T', and satisfy

(6.25) J(2)PE(w) ~ £PF(w)(z — w) ™t

This forces

L)~ (" - g

n+1 ) o Y () (5 — )
7n1/)—n—1'JP )( )( )

)P - )
(6.26) . (ap+ )

Next, we have the OPEs (6.6) and (6.14) with undetermined coefficients
ao, a1, a2, a3 and by, by, where the terms we don’t need are omitted. By im-
posing the same set of Jacobi relations (6.7), (6.9), (6.11), (6.15), (6.17),
(6.19), (6.21) as above, we find a unique solution by and A, and a unique
solution up to sign for ag, a1, a9, a3 and by. In particular, Lemma 6.3 holds
in the case m = 1 and n > 2. It is also easy to verify it directly in the cases
m=1and n=0,1.
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6.2. The exhaustiveness argument

In this subsection, we prove that C¥ (n, m) = C%(n, m) as one-parameter ver-
tex algebras. Recall that the specialization C¥°(n,m) of the one-parameter
vertex algebra C¥(n,m) at 1) = v, can be a proper subalgebra of the coset
Com(V¥=™=1(gl,,), W¥(n,m)), but this can only occur at 1y = “F when
J lies in the coset, or for rational numbers ¥y < 1. By abuse of notation,
we shall use the same notation C¥(n,m) if ¢ is regarded as a complex num-
ber rather than a formal parameter, so that C¥(n,m) always denotes the
specialization of the one-parameter algebra at 1) € C even if it is a proper
subalgebra of the coset. For all ¢ € C, we denote by Cy(n,m) the simple

quotient of C¥(n,m). Similarly, for all ¢» € C, we denote by Cy(n,m) the

simple quotient of C¥(n,m).
Lemma 6.4. Fors >3, m > 1, andn > 0, we have isomorphisms of simple
vertex algebras

5 m+n+s m+s
6.27) Cy(n,m) = W, (sls), =—) =—s+——.
( ) ¢(nm) r( s) (0 n r S+m+n+s
Proof. This is immediate from the fact that the truncation curves V (I, )
and V(I ) intersect at the corresponding point (¢, A) given by

(s—1)(ns —m —s)(m+n+s+mns)
(m+s)(m+n+s)
(m+s)(m+n+s)

(s —2)(2m + 25 — ns)(2m + 2n + 25 + ns)

C = — 5

(6.28)
A=

O

Corollary 6.2. For m > 1 and n > 0, as a one-parameter vertex algebra
C¥(n,m) is of type W(2,3,...,N), for some N > (m+1)(m+n+1) — 1.

Proof. By Corollary 3.7, for ¢ sufficiently large, W (sl,) has a singular vector
in weight (m+1)(m+n+1) and no singular vector in lower weight. Therefore
Wi (sls) is of type W(2,3,..., N) for some N between (m+1)(m+n+1)—
1 and s, so the same holds for Cy(n,m). The universal algebra C¥(n,m)
specialized at this value of ¥ cannot truncate below weight N, and therefore
the same holds for the one-parameter algebra C¥(n,m). O

Corollary 6.3. For m > 1 and n > 0, C¥(n,m) = C¥(n,m) as one-
parameter vertex algebras.
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Proof. We have seen that C¥(n,m) is of type W(2,3,...,(m + 1)(m +n +
1)—1), and that C¥(n, m) is a subalgebra of C¥(n, m) of type W(2,3,...,N)
for some N > (m + 1)(m + n + 1) — 1. The only possibility is that N =
(m+1)(m+n+1)—1 and C¥(n,m) = C¥(n,m). O

Proof of Theorem 6.1. This now follows from Lemma 6.1, Lemma 6.3, and
Corollary 6.3, together with the generic simplicity of C¥(n,m). O

An immediate corollary is that the rational W-algebras of type A at
nondegenerate admissible levels are organized into families of uniform trun-
cation, and these families are labeled by the curves V' (I, ). More precisely,
we have

Corollary 6.4. Fixm > 1 and n > 0. Then for all but finitely many values
of s > (m+1)(m+n+1)—1, Wy(sly) forr = —s+ mri:is, is of type
W(2,3,....(m+1)(m+n+1)—1).

Proof. Since C¥(n,m) is of type W(2,3,...,(m +1)(m +n+1) —1) as a
one-parameter vertex algebra, there exists a decoupling relation in weight
(m+1)(m+n + 1) of the form

(620)  WlmHbemiml) = p(r, W, wlmEimin ),

for some normally ordered polynomial P in L, W3,... Wmth(mtnti)—1
and their derivatives, possibly after localization. Starting from this relation
and applying the operator (W3)(1) repeatedly, one can construct similar
decoupling relations

WV = Py(L, W3, ..., wmtDmtnt)=1 = N S (4 1) (m 4 n+ 1),

without introducing any additional poles. Therefore these decoupling rela-
tions exists for all but finitely many values of . In particular, for all but
finitely many of the values of 1 appearing in (6.27), both sides are of the
desired type. O

We conjecture that Corollary 6.4 in fact holds for all s > (m + 1)(m +
n 4+ 1) — 1, but we cannot prove this without explicitly determining the
denominators that appear in (6.29). For m = 1 and n = 3,4, this relation
was determined explicitly in [17, 52], and our conjecture holds in these cases.
Finally, we can use Theorem 6.1 to classify all coincidences between the
simple quotient Cy(n, m) and principal W-algebras W, (sl) for s > 3. When

_m+n—1 m-+n m+n+1

v n ’ n—1’ n+1

I
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we have ¢ = —2, so by [110, Thm. 10.1], Cy(n,m) is isomorphic to the
Zamolodchikov Ws-algebra. Similarly, for

w_m+n—1 m+n m+n+1
- on—1 " n+1’ n ’
we have ¢ = 0 so Cy(n,m) = C. For all other values of ¢ where the

parametrization (6.1) is defined, the isomorphisms Cy(n, m) = W, (sls) cor-
respond to intersection points on the curves V(I ,,) and V(Iso) by [110,
Cor. 10.1]. At the points where the parametrization is not defined, Cy(n,m)
still exists but is not a quotient of W(e, A), and we need a different method
to determine if Cy(n, m) = W, (sls) for some r and s.

Corollary 6.5. For all m > 1 and n > 0, we have the following isomor-
phisms Cy(n,m) =W, (sls) for s > 3:

LpomEnts o m4s
n m+mn-+s
m+n s—m
¢: ) r=-—s+ ’
n—l_i—_s s+n+
g p="11"""3% r— g4 2T T5
n—s n—s
Moreover, aside from the cases ¢ =0 and ¢ = —2 and the critical levels

Y =1 for sl,,, and ¢ = 0 for WY (n,m), these account for all coincidences
Cy(n,m) = W,y (sls) for s > 3, with the following possible exceptions:

m+n-+2 2n

1. Y =———— = N
v n 2’ § 22-|- € N23;
2. 1) = %7 5 = m € N>jg
n—2 n—2 =
Proof. We first exclude the values
m-+n+2 m-+n—2 m+n
6.30 = ) ) )
( ) v n n—2 n+2

since it follows from the parametrization (6.1) that at these points, C¥(n,m)
is not obtained as a quotient of W!»m(c, \).

By [110, Cor. 10.1], aside from the cases ¢ = 0, —2, all remaining isomor-
phisms Cy(n, m) = W, (sls) correspond to intersection points on the curves
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V(In,m) and V (Is ). There are three intersection points (¢, A), namely,

)

<_ (s —1)(ns —m —s)(m+n+ s+ ns)
(m+s)(m+n+s)
(m+s)(m+n+s) )

(s —2)(ns —2m — 2s)(2m + 2n + 2s + ns) )’

)

<(s— 1)(m — s +ms+ns)(n+ s+ ms+ns)
(m—s)(n+s)

(m—s)(n+s) )

(s —2)(2m — 25 + ms + ns)(2n + 2s + ms +ns) )’

(6.31)

)

<(s—1)(n—s—m3)(m+n—s—l—ms)
(n—s)(m+n—s)

(n—s)(m+n—s) )

(s —2)(2n — 25 —ms)(2m + 2n — 25 +ms) )’

as long as n, m, s are such that these points are defined. It is immediate that
the above isomorphisms all hold, and that our list is complete except for

possible coincidences at the excluded points (6.30).

_ (2n—2-m)(2+m+3n)
(24+m)(2+m+n)
Recall that W, (sls) has a singular vector in weight 3 only for ¢ = 0 and
c= —(S_ls)fr—ggm. Therefore as long as Qi—”m is not an integer s > 3, there
are no integers for which W, (sls) has a singular vector in weight 3 at the

above central charge, and we have no coincidence at this point. However, if

2n_ ¢ N3, it is possible that we have a coincidence at this point.

2+m
For ¢ = ™22 'C,(n,m) has central charge ¢ = (”_(i:%%’if_z;”m) By

the same argument, there is no coincidence at this point unless s = % €

For ¢ = ™42 C,(n,m) has central charge ¢ =

S =

N>3, but in these cases it is possible to have a coincidence.

For ¢ = %, Cy(n,m) has central charge ¢ = (3m+?7?1:22))((222253n+2). By

the same argument, there is no coincidence at this point unless m = 1 and
s = 2(n +1). A priori, it is possible that C,41)/(nt2)(n, 1) is isomorphic
to Wi (slypmyr)) for r = =2(n + 1) + ntl which has central charge ¢ =

n427
—%. However, C(;,41)/(n+2)(n, 1) is known to be isomorphic to the

singlet algebra of type W(2,2n + 3) [7], whereas W\.(sly(,41)) is isomorphic
to the Virasoro algebra. This follows from the fact that W' (sly(,41)) is
generated by its weight 2 and 3 subspaces [24, Prop. 5.2], but the weight 3
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field is singular. Hence there are no additional coincidences for m = 1 and

_ ntl
Y =10 O
Remark 6.4. For the first family above, if we specialize to ¥ = m and

s =mn —m — n, we obtain

~

Con(nym) W, (shnn—m—n), r=—(mn—m-—n)+——.

The case n = 2, ie.,, Cpn(2,m) 2= W_,, o, m-1(sly,_2) is closely related to
the conjecture that Com(sz_m_l(g[m),WwEnh, m)) =W_,, o ma(sh, 2)
[55, Conj. 4.3.2]. This conjecture implies that ordinary modules onn5[m+2 at
level —2 have vertex tensor category structure.

We now consider the case m = 1, so that
C¥(n,1) = Com(H, WY " (sl,t1, foubreg))-

Specializing Theorem 6.1 to the case m = 1 proves [110, Conj. 9.5], which
gave a conjectural description of the truncation curve. Therefore [110, Conj.
10.2], which classifies coincidences between Cy(n, 1) and principal W-algebras
of type A, is now a theorem as well. In particular, since Cy(n, 1) is isomor-
phic to Com(H, Wy—n—1(8lh+1, fsubreg), We obtain the following result which
was conjectured originally in [31].

Corollary 6.6. For alln > 1, Com(H, Wy—n—1(8lat1, fsubreg)) = Wi (sls),

where 1 = %SH and r = —s + ngil.

Finally, we consider the case n = 2 and m > 2, so that C¥(2,m) is just
the affine coset of the minimal W-algebra of sl,, 2. Specializing Theorem
6.1 to this case proves the conjectural description of the truncation curve
given by [110, Conj. 9.2]. This proves [110, Conj. 9.1], which is originally
due to Kawasetsu [99], as well as the classification of coincidences between
Cy(2,m) and principal W-algebras of type A given by [110, Conj. 10.1].

7. The structure of D¥(n, m)

The main goal in this section is to realize the coset DY (n,m) of V¥ (n,m)
as a simple, one-parameter quotient of W(c, A) of the form W;, (¢, A) for
some ideal J;, p, .
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Theorem 7.1. Form > 1 andn > 1, and form = 0 andn > 3, D¥(n, m) =
Wi, .. (¢, X) where Jy, , is described explicitly via the parametrization

(7.1)
C(w):_(n¢+m—n—1)(n¢*¢+m—n+1)(n¢+¢+mfn)
(¢ — 1) ’

() = — (¥ —-1)¢

(np+m—n—2)(np —2¢p+m—n+2)(n+2¢p+m-—n)

Moreover, after a suitable localization, W= (c,\) has a singular vector of
the form

W(m+1)(n+1) o P(L, W3, e W(m+1)(n+1)—1)

and no singular vector of lower weight, where P is a normally ordered polyno-
mial in the fields L, W3, ... WmtD+D=1"qnd their derivatives. Therefore
Wi, ..(c; A) has minimal strong generating type W(2,3,...,(m+1)(n+1) —

1).

Asin the previous section, there is nothing to prove in the case m = 0 and
n > 3 since D¥(n,0) = V¥(n,m) = W¥"(sl,), so for the rest of this section
we assume m > 1. The strategy is the same as the proof of Theorem 6.1. We
first show that DY (n,m) is of type W(2,3, ..., (m+1)(n+1)—1) using its free
field limit. Next, we show that DY (n,m) is at worst an extension of a vertex
subalgebra D¥(n,m) which is of type W(2,3,...,N) for some N < (m +
1)(n+1)—1, and is a one-parameter quotient of W(c, ). Therefore V¥ (n, m)
is an extension of # ® V~¢="*1(sl,,,) ® D¥(c,\). A similar reconstruction
argument then shows that if W is any one-parameter quotient of W' (c,\)
for some ideal I with the property that H ® V=¢="*"1(sl,,) ® W admits an
extension containing odd fields { P!} transforming as C™ & (C™)*, then W
must be a quotient of W/»m(c, \), where J,, ,,, is the ideal given in Theorem
7.1. In particular, D¥(n, m) must be a quotient of W”/»= (¢, \). Finally, we
use a similar exhaustiveness argument to prove that DY (n,m) = D¥(n,m).

Lemma 7.1. Form > 1 and n > 1, D¥(n,m) is of type W(2,3,...,(m +
1)(n+1)—1) as a one-parameter vertex algebra. Equivalently, this holds for
generic values of .

Proof. First, suppose that m # n, and recall the free field limit Vfree(n, m) =
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W (50,1, fom). Then VEC(n,m) =

Ocy(m?,2) ® (®?:2 Oev(1, 22)) ® Soaa(m,n+1), n odd,
Ocv(m?,2) @ ( Qs Ocv(1,2i)) @ Ogad(2m,n + 1), n even.

Here Oey(m?,2) = H(m?) is just the rank m? Heisenberg algebra coming
from the affine subalgebra, Oe,(1,2i) is the algebra generated by w’ for
i=2,...,n,and the fields { P} generate Soqq(m,n+1) or Opqq(2m, n+1)
when n is odd or even, respectively. By Lemma 4.2,

(7.2)
Jim DY (n,m) 2 ((R) Oev(1,2i)) @ Spaa(m,n + 1))
—00
=2
> (R Oy (1,20)) ® (Soaa(m,n+ 1)), 1 odd,
=2
(7.3)

3

lim DY (n,m) 2 ((R) Ocv(1,24)) @ Opaa(2m,n + 1)) "

N
h—o0 5

S .

(X) Oev(1,2i)) @ (Opda(2m,n + 1))GLm, n even.

2

12

)

It follows from Theorems 4.7 and 4.8 that (Sodd(m, n + 1))GL"” and
(Ooad(2m, n+ 1))GL’“ are both of type W(n+1,n+2,...,(m+1)(n+1)—1).
Since Oey(1,4)®0ey(1,6)®- - -®@0ey (1, 2n) is of type W(2, 3, ..., n), it follows
that limg_,o DY (n,m) is of type W(2,3,...,(m + 1)(n+ 1) — 1). Therefore
DY¥(n,m) has the same type as a one-parameter vertex algebra.

Finally, we consider the case m = n. Then the free field limit V*¢(n, n) :=
Wfree(psln‘n, fnin) Tequires only a slight modification: Viree(n, n) =

Oov(m? —1,2) ® (®?:2 Oev(1, 21)) ® Soad(n,n+1), n odd,
Ocv(m? = 1,2) ® (Qi_y Ocv(1,2i)) @ Ooqa(2n,n + 1), n even.
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Then we have

wlim D¥(n,n) = (((X) Oev(1,2i)) @ Soda(n,n + 1))
— 00
=2

(7.4)

SL” X GL1

S .

I

(@) Oer(1,20)) @ (Soaa(m,n + 1)), n odd,

1=2

(7.5)

n

(( Oev(172i)) ®Oodd(2nan+ 1
=2

(®Oev(172i)) ® (Oodd<2n7n+ 1))GLH, n even.
i=2
The rest of the argument is the same as the case m # n. O

1

lim Dw(n,n) ))SL"XGL1

P—o0

S

I

As in the previous section, we modify the weight 3 field w3 € DY (n, m)
by subtracting an appropriate a multiple of JL to make it L-primary. We
then rescale it so that its 6th order pole with itself is 51, and we denote this
modified field by W?. We now consider the vertex subalgebra D¥(n,m) C
DY (n, m) generated by W3,

The proof of the next lemma is the same as the proof of Lemma 6.2.

Lemma 7.2. For m > 1 and n > 1, D¥(n,m) is a quotient of W(c, \)
for some ideal J, and is therefore of type W(2,3,...,N) for some N <
(m+1)(n+1)—1.

Since DY (n,m) is at worst an extension of D¥(n, m), we obtain

Corollary 7.1. Form > 2 andn > 1, and m # n, V¥ (n,m) is an extension
of HOV—Y="4(sl,.) @ D¥ (n,m). Similarly, form =1 andn > 2, V¥(n, 1)
is an extension of H @ D¥(n,1). Finally, for m = n > 1, V¥(n,n) is an
extension of V""" (sl,) @ D¥(n,n).

7.1. The reconstruction argument

Let W be any vertex algebra arising as a one-parameter quotient of W(e, A),
with the usual strong generating set {L, W"| i > 3}. First, we assume that
m > 2, n > 1, and m # n. We shall deal with the cases m = 1 and n > 2,
and m = n > 1 separately. We set the central charge of L to be

(n+m —n— 1) — Y+ m—n+1)(n+p+m—n)

C= — y

(Y= 1)y
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and we normalize the generator J of H so that

m(ny +m —n)
m—n

J(z)J(w) ~ (z —w)~2

In H® V-¥="(s,) ® W, the total Virasoro field is T = L + L' + L.

We postulate that H ® V-¢~™*1(sl,,) ® W admits an extension which
has additionally 2m odd strong generators {P*?| i = 1,...,m} which are
primary of conformal weight "TH with respect to 7', and satisfy

J(2) P (w) ~ £PF (w)(z — w) 7L,
¢ij(2)PTH(w) ~ 8P (w) (2 —w) ™,

(7.6) hi(2) P (w) ~ (01,5 — 8i,5) P (w) (2 — w) Y,
ei,j(z)P_’k(w) ~ =0k P (w)(z — w) 7,
hi(2) P79 (w) ~ (=01 + 8i,3) P~ (w)(z — w) ",

This forces

(7.7)

There are similar expressions for L(z)P*#(w) for i > 1, and L(z)P~(w),
which we omit. Since {e; j, by, L, W?, P*7} close under OPE, and W3 com-
mutes with e; ;, hj, the most general OPEs of W3 with P! is

(7.8)
W3(2) P (w) ~ agP ™ (w)(z — w) ™2 + <a13P+’1 +... ) (w)(z — w) ™2

+ <a2 P azd? Pt 4L ) (w)(z —w) ™1,

Here the omitted expressions are not needed. As in the previous section, we
impose three Jacobi identities of type (L, W3, PT1) in order to express the
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constants ag, aj,as in terms of az. First, we impose (6.7), and using (7.6),
(7.7), and (7.8), we get

(m? — 1)ay ai(ln—m)
(7.9) —3ag + a1 +ain + @ —1) er(mb—{—m—n)_o

Next, we impose (6.9), and we get

(m? —1)(2ag + 3a3)
m(y —1)

asc
— 6ag + 2a2 + 3asz + % + n(2az + 3as) +

(7.10) (2a2 + 3a3)(n —m)

m(ny +m —n) =0

Finally, we impose (6.11) and we extract the coefficient of 9PT!, obtaining

2(m? — 1)as 2a3(n —m)
m(yp — 1) m(ny +m—n)

Solving (7.9), (7.10), and (7.11), we obtain

(7.11) —4aq + 3as + 4az + 2azn +

(7.12)
apg =
mp+m—-n—-2)(np+m-n—1)(nY+v+m—n)(np+2¢Y+m-—n)
6(¢p — 1)2(nyp +m —n)?
(np+m—mn—2)(n+2¢+m—n)
2(¢ = 1)(ng + m —n)
2¢

ag = — as.

(¥ =1)(ny +m —n)

Next, we have

as,

ay = as,

W) P (w) ~ b P w) (2 — w) ™ -

(7.13) Wo(z) P (w) ~ b PP (w)(z —w) > + -+,

for some constants by, b;. By imposing four Jacobi identities, the constants
as, bg, by are determined up to a sign, and the parameter A in W(e, A) is
uniquely determined. First, we impose (6.15). This has weight ”T“, and
is therefore a scalar multiple of P*!. Using the OPE relations (5.3)-(5.6)
together with (7.6), (7.7), (7.8), and (7.13), we compute this scalar to obtain

m2—1 n—m
.14 1 — b =
(7 ) +3a0a1 0+n+m(¢_1)+m(nw+m_n) 0
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Next, we impose (6.17). Again, this has weight "TH7 and is therefore a scalar
multiple of P!, We obtain

m?—1 n—m
7.15) 1+6 2a3) — 2b =0
(7.15) 14 6ag(az + 2a3) O+n+m(w—1)+m(n¢+m—n)

Next we impose (6.19), which yields

1
3 ( — 40a3bg + Hao ((2 + c)A — 16) + 4b1>

+8a2(1+m7m2+mn7m1/)fmmj))

(7.16)
m(y — 1)
8ag(n —m)
az(3c + 8bg) + ey —— 0.
Finally, we impose (6.21), which yields
(7.17) — 8a1by + 5ag ((2 + ¢)A — 16) + 2by = 0.

Substituting the values of ag, a1, a2 in terms of a3 given by (7.12) into the
equations (7.14)-(7.17), and solving for for as, bo, b1, A yields a unique solu-
tion for by and A, and a unique solution up to sign for ag and b;. In particular,

we obtain

(7.18)
N (¢ - 1y

mp+m-—n—2)(np —2¢+m—n+2)(nyY +2¢ +m—n)’

%:ifzw_n/%jggg

b — mp+m-—n—1)(nY+¢Y+m-—n)ry
OT 20— )(n+m—n)2(n —20+m —n+2)’

V=2 (np+m—n—1)(np+¢+m—n)rs
(¢—1)(nw+m—n)5/2(m/)—2¢+m—n+2)\/7“_1'

by =—=%
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In this notation,

7.19
(1"1 :) (nYp+m—n—2)(nyY —2¢p +m —n+2)(nyY +2¢p +m —n),
Ty = 6m 4+ m? — 6n — 2mn + n? + 4 — 6m + 12n9 + 2mnyp — 2n?eY
— 6n1)? 4+ n?y?,
ryg = —36m? + 4m? + 5m* + 72mn — 12m%n — 20m>n — 36n% + 12mn>
+ 30m2n? — 4n3 — 20mn® + 5n* — 88map + 48m>* — 4m31p + 88nap
— 168mnp + 24m>nyp + 20m3nap + 1200y — 36mn?y — 60m>ny
+ 16031 + 60mn3y — 200y — 1642 + 88myp? — 36m>y? — 176n1)>
+ 168mnip? — 12m?nyp? — 168n2¢? + 36mny? + 30m3n2y? — 24n3y?
— 60mn3Y? + 30n*Y? + 88ny® — 72mnap® + 1200203 — 12mn?y3
+ 16139 + 20mn>y3 — 20n Y3 — 36n2y* — an3y* + sty

This proves the following

Lemma 7.3. Let m,n > 2 and m # n. Suppose that W is some quotient of
W(c, ) and that HQV ~Y=mF1(sl,,)@W admits an extension containing 2m
odd primary fields {P%!| i =1,...,m} of conformal weight "TH, satisfying
(7.6), (7.7), (7.8), and (7.13). Then W is in fact a quotient of W”nm(c,\) =
W(e,N)/Inm - W(c,X) where Jy, m C Cle, A] is the ideal given in Theorem
7.1.

As in the previous section, the formula for ag involves square root func-
tions, but this is just because we scaling W? so that its leading pole is 51, as
in [110]. As before, the sign ambiguity in the formula for a3 and b; reflects
the Zg-symmetry of W(e, A) and its quotients.

Next, we show that Lemma 7.3 also holds in the case m =1 and n > 1.
First we let m = 1 and n > 2, and consider extensions of H ® W. Here W
is a one-parameter quotient of W(c, A) where Virasoro field L has central
charge

_ onmp—¢p—n+2)(mp+v—n+1)
w Y

and the generator J of H satisfies

nY—n+1

J(2)J(w) ~ —

(z —w)~2
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In H ® W, the total Virasoro field is T = L + L*. We postulate that H ® W
admits an extension which has additional odd strong generators P* which

are primary of conformal weight "TH with respect to T, and satisfy
(7.20) J(2)PE(w) ~ £PE(w)(z —w) L.
This forces
+1 n—1
L(\PT ~ n pt _ -2
P @)~ ("5 g ) P - w
(7.21) 1
Pty " . JPt: —w) L,
+<8 +(n¢+1—n) J )(w)(z w)

Next, we have the OPEs (7.8) and (7.13) with undetermined coefficients
ap,ai,az,as and by, by. By imposing the same set of Jacobi relations (6.7),
(6.9), (6.11), (6.15), (6.17), (6.19), (6.21) as above, we find a unique solu-
tion by and A, and a unique solution up to sign for ag, a1, as,as and by. In
particular, Lemma 7.3 holds in the case m =1 and n > 2.

Finally, we consider the case m,n > 2 and m = n. We now consider
extensions of V~¥~"*1(s[,) ® W, where W is a one-parameter quotient of
W(c, A) with central charge

(n+ 1Dy —1)(ny =4 +1)
P =1 '

In V=¥="F1(s[,) @ W, the total Virasoro field is T = L+ L*". We postulate

that V—¥="*+1(sl,) ® W admits an extension which has 2n additional odd

strong generators P*% which are primary of conformal weight ”TH with

respect to T', and satisfy

eij(2)PHE(w) ~ 85 P (w) (2 — w) ™Y,
hi(2) P (w) ~ (01,5 — 5i,j)P+’j(w)(z —w)7 L,
ei,j(z)P_’k(w) ~ —5i,kP_’j(w)(z —w)7 1,
hi(2) P~ (w) ~ (=61, + §15) P~ (w) (2 —w) ™",

(7.22)
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This forces

(7.23) 2
L(z)PPY(w) ~ <n—21— ! + 2:(w__ll))P+’1(w)(z —w) 2

m—1 m
1 1 ;
+ <8P+’1 + m E . hiP+’1 . +ﬁ % : el,jP-h‘j : )('UJ)(Z — 'UJ)_l.
=1 7j=2

There are similar expressions for L(z)P%?(w) which we omit. As usual, we
have the OPEs (7.8) and (7.13) with undetermined coefficients ag, a1, ag, as
and by, b1. By imposing the same set of Jacobi relations as above, we find a
unique solution by and A, and a unique solution up to sign for ag, a1, as, as
and by. In particular, Lemma 7.3 holds in the case m = n and n > 2. It is
also easy to verify it directly in the case m =n = 1.

7.2. The exhaustiveness argument

In this subsection, we prove that D¥(n,m) = D¥(n,m) as one-parameter
vertex algebras. Recall that the specialization D¥°(n, m) of D¥(n, m) at ¢ =
10, can be a proper subalgebra of the coset Com(V ~%o=m+1(gl,.), V¥ (n, m))
in the case n # m, or of the orbifold Com(V~%0~"+1(s[,), V¥ (n,n))% in
the case n = m, but this can only occur for rational numbers g < 1, or
when 19 = "™ in the case n # m, since J then lies in the coset. As
before, we use the same notation D¥(n,m) if ¢ is regarded as a complex
number rather than a formal parameter, so that D¥(n,m) always denotes
the specialization of the one-parameter algebra at ¢ € C even if it is proper
subalgebra of the coset. For all ¢ € C, we denote by Dy(n, m) the simple
quotient of D¥(n,m). Similarly, for all ¢» € C, we denote by f?w(n,m) the
simple quotient of DY (n,m).

Lemma 7.4. Fors >3, m > 1, andn > 1, we have isomorphisms of simple
vertex algebras

~ n—m m+ s
D o [ = - _ .
(1, m) = W,(sl,), ) s T s+ e

Proof. This is immediate from the fact that the truncation curves V(Jy, )
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and V(I ) intersect at the corresponding point (¢, A) given by

(s—=1)(ms—ns—n—s)(m+ s+ ms—ns)
(m+s)(n+s)
(m+s)(n+s)
(s —2)(ms —ns — 2n — 25)(2m + 25 + ms — ns)

C= — s

(7.24)

A=—

By the same argument as the proof of Corollary 6.2, we obtain

Corollary 7.2. Form > 1 and n > 1, as a one-parameter vertex algebra,
DY¥(n,m) is of type W(2,3,...,N), for some N > (m+1)(n+1) — 1.

Since D¥(n, m) is of type W(2,3,...,(m+1)(n+1) —1), and D¥(n, m)
is a subalgebra of D*(n, m) of type W(2,3, ..., N) for some N > (m+1)(n+
1) — 1, we must have N = (m + 1)(n + 1) — 1, and we immediately obtain

Corollary 7.3. For m > 1 and n > 1, D¥(n,m) = D¥(n,m) as one-
parameter vertex algebras.

Proof of Theorem 7.1. This now follows from Lemma 7.1, Lemma 7.3, and
Corollary 7.3, together with the generic simplicity of D¥(n,m). O

8. Proof of main theorem

Finally, we are ready to prove the main result of this paper, Theorem 1.1.

Proof of Theorem 1.1. In all cases where C¥(n, m) and D¥ (n, m) arise as quo-
tients of W(c, A), the statement follows immediately from the parametriza-
tions of I, and Jy ., given by Theorems 6.1 and 7.1, together with [110,
Cor. 10.2] which says that the simple one-parameter quotients of W(c, A)
are in bijection with the set of truncation curves.

In the case D¥(2,0) = C¥ '(2,0) = D¥'(0,2), the first isomorphism is
just Feigin-Frenkel duality for the Virasoro algebra, and the second follows
from [18, Thm. 8.7] for g = sls.

Finally, the cases D¥(1,0) = C¥ '(1,0) = D¥(0,1) and D¥(0,0) =
CY ' (0,0) = DY (0,0) hold trivially because all these vertex algebras are
just C. O
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9. Uniqueness and reconstruction

In this section, we prove a strong uniqueness theorem for the WW-algebras
WY (n, m) and W-superalgebras V¥ (n,m). As a corollary, in the case m = 1,
we exhibit Wy (5,41, fsubreg) as a simple current extension of Vi, ® W, (sly),

in the case ¥ = %‘9*1 and r = —8+Sf_jg}rl, where s > 3and s+1,s+n+1

coprime. Here V7, is the lattice vertex algebra for L = /s(n+ 1) Z. This
gives a new and independent proof of Arakawa and van Ekeren’s recent result
that Wi (slp+1, foubreg) is rational for these values of k =19 —n —1 [21]. In
the case m > 1, we conjecture that for ¢ = 2 H @ Ly, (sly)
embeds in Wy (n,m), which by Corollary 6.5 and [16, Lemma 2.1] would
imply that Com(H ® Ly—_m—1(skn), Wy(n,m)) = Wy (sly) for ¢ = mEnts
and r = —s + 25 We indicate how our uniqueness theorem will be used

. mAnts .
to prove this conjecture in future work.

Theorem 9.1. For m > 1 and n > 0, the full OPE algebra of WY (n,m) is
determined completely from the structure of Wy, , (c,\), the normalization
of J, the action of gl,, on the generators {P™}, and the nondegeneracy
condition

Py P = i1,

In particular, for m > 2, if the generator J of H is normalized as in
Lemma 3.4, and Aw(n, m) is a one-parameter vertex algebra which extends
HRVY=™"L(sl,,)@Wy, . (¢, A) by even fields {P i =1,...,m} of confor-
mal weight ”TH which are primary with respect to H@ VY~ "1(sl,,) as well
as the total Virasoro field T = L + L*' + L™ then AY(n,m) = W¥(n,m).

Similarly, if m = 1 and J is normalized as in Lemma 3.4, and A¥(n, 1)
is a one-parameter vertex algebra which extends H ® Wr, (¢, \) by even
fields {P*} of conformal weight "TH which are primary with respect to the
action of H as well as the total Virasoro field T = L+ L™, then A¥(n,1) =

W¥(n,1).

Proof. Suppose first that m > 1. Let AY (n, m) be a vertex algebra extension
of H®V¥=""Y(sl,) @ Wy, (¢, \) by fields {P™| i = 1,...,m} satisfying
the above properties. Recall that the generator W3 € Wy, (c, ) is nor-
malized so that W(%)W3 = 51, and Wt = I/V(‘SI)VV"*1 for i = 4,...,n. Our
assumptions imply that (6.4), (6.5), (6.6), and (6.14) must hold, as well as
the formulas (6.13) and (6.23).

First, we claim that the OPE W3(2)P*!(w) is completely determined
by known OPEs up to the sign of as; in particular, all terms appearing
in this OPE are linear in a3, and are given by asf(1) for some algebraic
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function f (1/)) By weight considerations, we only need to compute VV(SO)PJr 1

and W(l) , since W( )PJr I = qoPt! and ag has been computed above.
We must have
m—1
Wi, Pt = a,0PH! + ZA e1 ;P4 i P
Jj=2 =1

for constants Aj, i;. Using the fact that

(9.1)

J(l) (W(?’l)P—’_’l) =0, (63',1)(1)(W(31)P+’1) =0, (hi)(l) (W(P’I)P—’-’l) =0,
JoPtt =Pl (ej) 0Pt =P (h)oPt! =Pl

the constants \;, p; are uniquely determined. Finally, VV(?’O)PJ“1 is uniquely
determined from the identity

2
Liy(WE P = Wi (L P = > (LnW?) gy PT! = 0.
=0
Since {P™% i = 1,...,m} is irreducible as an sl,,-module, by act-

ing by elements of V¥~™!(sl,,) on I/Vgn)PJ“1 for r = 0,1,2, the OPEs
W3(2) P (w) are also determined uniquely up to the sign of a3. Next, we
claim that for j = 4,...,n, the OPEs WJ(2)P%J(w) are uniquely deter-
mined up to the sign of a3. This follows by induction on j from the identity,

' i j i —~ (T j K
(9.2) W W) PR = W (Wey PR = 3 <@> (W W) sy P
=0

together with the fact that (W3) Wt =W for r > 4.
Next, we need to consider the OPEs WJ( )P~ (w). We can carry out

same procedure as in Section 6 using P! instead of P™!. Starting with
the OPEs

(9.3)

W3(2)P~H(w) ~ agP " (w)(z — w) ™ + (&18]3’1 +... ) (w)(z — w) ™2

+ (&2 cLP™Y agdtP ot 4L ) (w)(z —w)™ 1,
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W4(2) P~ Y w) ~ P~ (w)(z
WP(2) P~ (w) ~ by P~ (w) (2

w) ™

— _|_ s

i w) 5 + s,

solving the same set of Jacobi identities (6.7), (6.9), (6.11), (6.15), (6.17),
(6.19), (6.21) as before, we obtain the same value for A as well as a; and
b;, with the same sign ambiguity in a3 and b;. The choice of sign for as
and as are not independent; it turns out that we must have a3 = —ag. This
is a consequence of the nondegeneracy given by Lemma 3.5. We have the

identity
(9-4) Wiy (P oy P = (P oy (Wiey P™1) = (Wgy P ) oy P21 = 0.

The first term vanishes because (P*1),) P! is a constant. As for the re-
maining terms, recall that all terms appearing in I/V(%)PJ“1 are linear in the

scalar asz, which is the coefficient of : LP™! :. Similarly, all terms appear-
ing in VV(%)P_’1 are linear in @3, which is the coefficient of : LP~! :. From
second term above, we obtain a multiple of L coming from —(P*1),(as :
LP~!:), and the only such term is —az : L((P™!),)P~!) : = —asL, since
(P+’1)(n)P*’1 = 1. Similarly, from the third term, the only contribution
comes from —(ag : LP! :)(n)P_’l, and yields —agL. This forces as = —as.

By the above argument, all OPEs W7(z)P~"*(w) are then determined
uniquely up to the choice of sign of as. Next, we claim that all OPEs
Pi(2)PTi(w) are completely determined up to the sign of az. This fol-
lows inductively from the identity

(9.5)
W(?’l)((P+’l)(r+1)P_’]) _ (Wa)P+’l)(r+1)P_’]) _ (P+’Z)(r+1)(W(31)P_7J)
_ (W(%)P-&-,Z)(TJFQ)P—J =0,

together with the fact that all OPEs W7 (z)P*%(w) are determined up to
the sign of az. However, changing the sign of ag corresponds to rescaling the
field W2 by —1 and does not change the isomorphism type of A¥(n,m).

This argument shows that AY (n, m) and W¥ (n, m) have the same strong
generators and OPE algebras. Finally, since WY (n,m) is freely generated
and simple as a one-parameter vertex algebra (equivalently, this holds for
generic values of 1), its universal enveloping vertex algebra in the sense of
[58] is already simple, and hence is the unique object in the category of vertex
algebras with this OPE algebra. It follows that A¥(n,m) = W¥(n,m) as
one-parameter vertex algebras.
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In the case m = 1, the proof is similar but easier since there is no action of
sl,,. First, the OPE W3(2) P*(w) is completely determined up to the sign of
as. Using (9.2), the OPEs W/ (z) Pt (w) for j = 4,...,n, are also determined
up to this sign. Next, the OPE W3(2)P~(w) is uniquely determined up to
the sign of as, and (9.4) implies that a3 = —as. The OPE P (2)P~(w) is
then determined from (9.5), up to this sign. Finally, the choice of sign for
ag does not affect the isomorphism type of A¥(n,1). O

Remark 9.1. In the above theorem, suppose that the formal parameter 1 is
specialized to some complex number 1. Since the OPE algebra of A% (n, m)
is the same as the OPE algebra of W¥° (n, m), the simple quotients Ay, (n, m)
and Wy, (n,m) must also coincide.

Under some mild arithmetic conditions on n and k, we shall now use
this result to exhibit Wy, (sl,41, fsubreg) as a simple current extension of Vi, ®

W, (sls) for L = \/s(n+1) Z, in the case k = —(n + 1) + 25t and r =
+1

S
—s+ s+n+1"°

Let n,r be in Z~1 such that n+ 1 and n + r are coprime (in particular,
nr is even). Following the notation in [52], we define

n+r
n+1

V(n,r) = Wy(sl,), {=—n+

Let L = /nr Z and Vi, the lattice vertex algebra of L. Recall that the mod-
ules for Y(n,r) are parameterized by modules of L, (sl,), i.e. by integrable
positive weights of sl,, at level r. Then [37, Main Theorem 4] gives the fu-
sion rules; see also [73, 20] for these fusion rules assuming a certain coprime
condition. In particular,

Lmsngt:Lrwm, T+5:{T‘+s r+s<n,

r+s—m r4+s>n,

and we identify wy with zero. In [52], it was shown that

(96) A(nu T) = @ VL-‘r e & Lrws

is a simple vertex algebra extending Vi, ® Y(n,r). If r is even, this is a Z-
graded vertex algebra, while for odd r it is only %Z—graded. The subspace
of lowest conformal weight in each of the V4 o ® L, is one-dimensional,

Tn

and we denote the corresponding vertex operators by X,. The top level of
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X1 and X,,_1 has conformal weight % and in general the one of X is the

minimum of {%, @} It follows that

(9.7) Xl(Z)Xl(w) ~ 0, anl(Z)anl(’LU) ~ 0.

By [46, Prop. 4.1] the OPE of X, and X,,_s has a nonzero multiple of the
identity as leading term. Without loss of generality, we may rescale X; and
X,,—1 so that

n—1
(9.8) X1(2)Xpo1(w) ~ [k +n=-1) =)z —w) " +....
i=1

Let J be the Heisenberg field of V;, and we normalize it such that

(n—1)k

(9.9) J(2)J(w) ~ < ——fn- 2> (z —w)~2.

Then we have
(9.10)
J(2) X1 (w) ~ X1 (w)(z — w)_l, J(2) X1 (w) ~ —=Xp—1(w)(z — w)_l.

Proposition 9.1. A(n,r) is generated by J, X1, X,,—1 together with gener-
ators of Y(n,r).

Proof. As a simple current extension A(n,r) is generated by the fields in
VL+J§_ ® L, for s =0,1,n — 1 (this is for example a special case of [48,
Main Theorem 1]. Due to Corollary 3.8 it is enough to take the top level of

Vit - ®Lyw, and V; rin=) ®Ly, .. Thus A(n,r) is generated by X1, X;,_1

together with generators of V7, ® Y(n,r). Denote the Fock module of weight
p of the Heisenberg vertex algebra by F),. This can then be further improved,
since A(n,r) is also an infinite order simple current extension

n—1
A(n,r) = @@F\/ﬁﬁ'_% ®]L7«ws
teZ s=0

and so again by [48, Main Theorem 1] this vertex algebra is generated by
J, X1, X—1 together with generators of Y(n,r). O

Theorem 9.2. Let n,r be as above and let k = —r + Zi’{ Then

A(n, ’I”) = Wk(ﬁ[r, fsubreg)'
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In particular, we recover the theorem of Arakawa and van Ekeren [21] that
Wi (sly, feubreg) is lisse and rational.

Proof. 1t follows from (9.7), (9.8) and (9.9), together with Theorem 9.1
and the previous Proposition that A(n,r) has the same strong generating
type and OPE algebra as Wi (sl,, fsubreg), and since Wi(sl,, foubreg) is the
unique simple graded object of this kind, we get a homomorphism A(n,r) —
Wi (81, fsubreg)- This must be an isomorphism since A(n,r) is simple. [

Remark 9.2. Similar results are expected to hold for m > 1. In that case one
however has to deal with vertex algebra extensions that are not of simple
current type. Thanks to [48] this situation can be handled provided one can
show that subcategories of principal W-algebras of type A are braid-reversed
equivalent to corresponding categories of affine vertex algebras at admissible
level, but this is exactly [37, Thm. 7.1]. The latter have been understood in
[44, 37]. Study of fusion categories of type A is work in progress and those
results will allow us to reconstruct Wy, (n, m) and Vy(n,m) at those levels
where the simple quotient of the coset is a rational principal W-algebra of
type A.

Let m > 4. Set )\ = 275;?;3)2) and consider the extension of Y(m —
2,2) =W,_,,  mi1(sly,—2) times L_1(sly,) times a Heisenberg vertex algebra
given by

B(m,2) :== @ Lo, ® W_1(As) @ Fax.
SEZ
Here 5 = s mod m — 2 and the notation of L_j(sl,,)-modules is taken

from [55, Section 5.2] where it was shown that these modules form a vertex
tensor category of simple currents, see also [9], that is W_1(As) IW_1(\;) =
W_1(As4¢). Moreover the top level of W_1(Ag) is ps,, of s is non-negative
and p_g,, , otherwise. Let J be the Heisenberg field and we normalize it
to have norm A~2. Let Y, be the field corresponding to the top level of
L,. @ W_1(As) ® Fsy. Tt follows that

Xl (w)

(z —w)

Xfl(w)

-w)

J(2) X1 (w) ~ o JEXa(w) ~ -

Moreover the top level of X1; is computed to be % and conformal weight

of the top level of Xo ensures that the operator product of X; with X_;
is regular. Thus the same proof as the one of Theorem 9.2 applies, and we
obtain
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Theorem 9.3. For m > 4, B(m,2) = Wy,(m,2). In particular [55, Cony.
4. 3. 2] for r = 0 is true, and hence the category of ordinary modules of
Sl o at level minus two is a vertex tensor category by [55, Cor. 4.3.3].

Let ¢ = 2L and consider Cy(n — 1,1) which has ¢ = —2 and so it
is just the W_g, a(sl3) algebra. Consider S(1)%/"% which is easily checked

n

to be strongly generated by : 8" :,: 4" | ’6;—7 together with the two strong

generators of W_ s (sl3). Tt follows that S(1)%/"” has the same strong gen-

erating type and OPE algebra as Wy, (sly, fsubreg) and hence we can again
conclude that

Theorem 9.4. For i) = n—“, qufn(ﬁrn?fsubreg) = 5(1)2/%-

n

Finally, we have a uniqueness theorem for hook-type W-superalgebras.

Theorem 9.5. For m > 1 and n > 1, the full OPE algebra of V¥ (n,m) is
determined completely from the structure of Wy, . (c,\), the normalization
of J, the action of gl,, on the generators {P™}, and the nondegeneracy
condition

Poy Py = bl

In particular, form > 2 and m # n, if the generator J of H is normalized
as in Lemma 3.6, and AY(n,m) is a one-parameter vertex algebra which
extends HRV V" (sl,,)@W, | (¢, A) by odd fields {P*%| i =1,...,m} of
conformal weight "TH which are primary with respect to H@ V=Y~ (s,,)
as well as the total Virasoro field T = L + L' + L™, then AY(n,m) =
WY (n,m).

Similarly, if m =1 and n > 1, J is normalized as in Lemma 3.6, and
A¥(n, 1) is a one-parameter vertex algebra which extends H@ Wy, ,(c, A) by
odd fields {P*} of conformal weight ”T‘H which are primary with respect to
H as well as the total Virasoro field T = L+ L™, then A¥(n,1) = W¥(n,1).

Finally, if m = n and n > 1, and AY(n,n) is a one-parameter vertex
algebra which extends VY"1 (sl,) @ W;, (¢, \) by odd fields {P%*] i =
1,...,n} of conformal weight ”TH which are primary with respect to both
V—¥=ntl(s1,) and the total Virasoro field T = L + L%, then AY(n,n) =
W¥(n,n).

The proof is omitted since it is the same as the proof of Theorem 9.1. It
is now easy to prove the analogues of Theorems 9.2, 9.3 and 9.4 for principal
W-superalgebras of sl,,|;, since this JW-superalgebra coincides with V¥ (n,1)
and can be realized as the Heisenberg coset of a subregular VWW-algebra times
a pair of free fermions [42].
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10. Another perspective on triality

Let

Alsly, ¢ VEA) @ VIO @V, s

)ga (A) VNZ+2R)
with v = k+ N,¢' = ¢+ N and iﬂ% = 1. The map s : Pt — Z/NZ
is defined by s(A) =t if A =w; mod @, where w; is the ¢-th fundamental
weight of sy and we identify wy with 0. The V*()\) are generalized Verma
modules at level & whose top level is the integrable sly-module py of highest-
weight A. Let f be a nilpotent element with corresponding complex CY, i.e.
the homology H;(V*(g) ® Cy) is the W-algebra W¥(g, f). We then denote
the W* (g, f)-module H;(M ®C}) simply by H;(M) for M a V*(g)-module.
One then sets

Alsly, f,¢] == €D VF(\) ® Hy( v%))cav\mm%
AP+

and conjectures that

Conjecture 10.1. [40] With the above notation and for generic k£ and any

nilpotent element f, the object A[sly, f, 1] can be given the structure of a

simple vertex superalgebra, such that the top level of VF(\) ® Hy(V*(\)) ®
s 1 f = _1.

V\/NZ+% is odd for A = wi,wny_1

For f the principal nilpotent, this is just A[sly, f,1] = VF1(sly) ®
F(2N) by the coset construction of principal W-algebras of [18]. Here F(2N)
is the vertex superalgebra of 2N free fermions.

Set N = n+m and consider the nilpotent element f = f,, , correspond-
ing to the partition N =n + 1+ --- 4 1 so that W(sly, f) = WY (n,m)
is a hook-type W-algebra with V¢*"~1(gl,,) as subalgebra. The top level
corresponding to the standard representation of sl in A[sly, f, 1] has con-
formal welght > = ”T_l = m—“, and it is expected to be odd. We want to
take a coset that contains these elements. For this let J be as in Lemma
3.6 and let v be the generator of vVNZ = Z, i.e. ¥2 = N. Denote the
corresponding Heisenberg field by v as well and set H = J — v, and H the
Heisenberg vertex algebra generated by H. This ensures that the commutant
with V"~ 1(s[,,) ® H contains the fields of conformal weight mT‘H in the
standard representation of sly, and its conjugate. Moreover, if the generator
H of H is normalized as in Lemma 3.4, then these fields have Heisenberg

weight £1.
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Theorem 10.1. With the above notation and for generic k, if Conjecture
10.1 is true for f = fum, then Com (V" L(sl,) @ 1, Alsly, fom,¥]) =
W_k_m+1(5[m\N7 fm\N) .

Proof. Set BY(n,m) := Com (V"= (sl,,) @ H, Alsly, fnm.]). At generic
level the category K L (sly) is semisimple and so

BY(n,m) = @ V*()) @ D,
AES

for certain modules Dy, of C¥'(n, m). Here the sum is over a set S of weights
of gly. By Theorem 1.1, we also have

W 6l n fagn) = €D VE) @ Cy
AES’

for certain modules Cy of C¥(n,m) and S’ is also a set of weights of
gly. In fact the C) are simple for generic level by Theorem 4.11. The
main step is to prove that the theorem holds on the level of graded char-
acters ch [Bw(n,m)] = ch [W_k_m“(ﬁ[mw,fmw)]. This is a meromor-
phic Jacobi form argument that is deferred to the appendix, see Theo-
rem A.1. The coset BY(n,m) is simple since at generic level the category
KLpip—1(sl,) is semisimple and so [42, Prop. 5.4] applies if Conjecture
10.1 is true for f = f,,». We thus have two simple vertex superalge-
bras that have the same graded character. Especially (and as noted before)
BY(n,m) has odd fields of conformal weight mTH in the standard repre-
sentation of sly, and its conjugate. Recall that if the generator H of H is
normalized as in Lemma 3.4, then these fields have Heisenberg weight +1.
Theorem 9.5 applies to the vertex superalgebra generated by these fields
together with the subalgebra V¥(gly) ® C¥'(n,m), and hence it must be
isomorphic to W*k*mﬂ(s[m‘ N fm|n)- Finally, since graded characters of
W_k_m“‘l(s[m‘ N fm|n) and BY(n,m) coincide, this subalgebra must already
be the complete coset BY (n,m). O

We recall relative semi-infinite Lie algebra cohomology [72], and for this
we use Section 2.5 of [39]. Let g be a simple Lie algebra with basis B and dual
basis B’. Consider free fermions F(g) in two copies of the adjoint represen-
tation of g with generators {b®,c¢* |2 € B, ' € B'} and operator products
b*(2)cY (w) ~ 6zy(z — w)~L. Consider V=2""(g) and let z(z) be the field
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corresponding to x € g. The zero mode d := dy of the field

d(z) = Z - 2(2)c (2) : —% Z L (b (2)e (2) )Y (2)

zEB z,yeB

squares to zero. Let F(g) be the subalgebra of F(g) generated by the b% and
dc® . Let M be a module for V=2""(g). The relative complex is

c(g,d) = (M @ F(g))"

and it is preserved by d [72, Prop. 1.4.]. The corresponding cohomology is
denoted by H*® (g, M). We need the following property that follows from
[72], as explained in Section 2.5 of [39]:

(10,1 Hywva»®v*“*m»={C = el

0  otherwise.
Here wy is the unique Weyl group element that interchanges the fundamental
Weyl chamber with its negative.

Let ¢ € C be generic, and fix n > m € Zx>q. Set £ = =T (n — (n —m)y)
and k = - (ny~' + m — n). Consider W¥(n — m,m) and V¥ (n,m) so
that by our main theorem their cosets are isomorphic. We aim to relate these
two algebras using the relative semi-infinite Lie algebra cohomology. Note
that we normalize the Heisenberg fields of W¥(n — m,m) and V¥ (n,m)
in such a way that they have norm ¢ and k. Consider A[sl,,,1 — ¢] @ 7*~*
with 7%= a rank one Heisenberg vertex algebra generated by X(z) and
normalized such that it has level k — £. Let Y be the Heisenberg field of
the V7 subalgebra of Alsly,,1 — 9] and we normalize it to have level m.

Define J~¢, J*¥ by J=¢ — JF = X and & — £ = Y, so that J* has level
k and J~* has level —£. W¥(n —m,m) has an action of V¥~""1(sl,,) @ 7*
and A[sl,,, 1 — ] @ 787¢ has an action of V=¥=™%1(s,,) ® 7, so that the

diagonal action has level —2h" and we can take relative semi-infinite Lie

algebra cohomology. We conjecture

Conjecture 10.2. With the above set-up, Hégl’o(ﬁlm,Ww(n —m,m) ®
Alsly, 1 — ] @ 7%7F) is a simple vertex superalgebra.

Theorem 10.2. Let k be generic and assume that Conjecture 10.2 is true.
Then V¥ (n,m) = HIE (51, WY (0 — m,m) @ Alsly, 1 — ] @ 787,



174 Thomas Creutzig and Andrew R. Linshaw

Proof. Recall that

WY (n—m,m)= @@ V¥ () @ CY(N)
AERT

and
m)= P VYT ) @ DY (N
AERT

for certain nonzero simple C¥(n — m, n)-modules C¥()\) and D¥ " (\). The
set R is determined in Remark 4.1 and is Rt = {(\,n)|]A € PT,r € Z,\ =
Wiy mod Ay,_1,i(r) € [0,m —1],i(r) = r mod m}. Here P* denotes the
set of dominant weights of sl,,, as usual. On the other hand by (10.1) we
immediately get that

HEE (s, WY (= m) @ Alsl, 1= 0] @ 75

=P VTN @Y (—w(N).
AERT

One computes that the top level of V¢ ="+1(X) @ C¥(—wo(N)) is 2t for
A = w1, wm—1 and further conformal weight computations ensure that Theo-
rem 9.5 applies to the vertex superalgebra generated by these fields together
with the subalgebra V¢~ ~"*1 @ C¥(n — m,n) and is thus isomorphic to
V" (n,m). This already must be the complete algebra HE™ (sl,,, W¥ (n —
m, m)® Alsly,, 1 —y]@7F¢) since both are direct sums over the same set R+
with summands being V¥~"~1()\) times a simple C¥(n — m, n)-module. [J

Appendix A. Decomposing characters

Consider the objects
Alsly, f.k] = @D VF(O) @ Hi(VI(N) @ Voo
AepP+t v
with £ and s : PT — Z/NZ defined by

1 1 .
k+N+€+N_1’ s(A)=t ifA=w; modQ

where w; is the t-th fundamental weight of sl and we identify wy with O.
Let J be as in Lemma 3.6 and let v be the generator of VNZ = ~Z, i.e.

2 = N. Denote the corresponding Heisenberg field by ~ as well, and set
H = J —~ and H the Heisenberg vertex algebra generated by H
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Theorem A.1l. Conjecture 1.1 (2) holds on the level of characters, that is
ch [com (V“"—l(s[m) ® H, Alsly, fn,m,k])} — ¢h [W—k—m“(s[mw, fm‘N)} .

Proof. Set f = fom and C = ch (Com (V“‘”_l(s[m) ® M, Alsly, [, k])).
The proof has several steps.

1. Introduce convenient notations.

2. Give an explicit expression for the character of H;(V¥()\)).

3. Show that the characters of A[sly,0, k] and hence A[sly, f, k] are quo-
tients of certain Jacobi forms.

4. Use the denominator identity of SAIQH to decompose these meromorphic
Jacobi forms. C' is a certain coefficient of this decomposition.

5. Use the denominator identity of sy}, to write C' as an infinite product
and identify it with ch W™= (sl v, f,n/n)]-

Step 1: Notations

The combinatorics of the proof are slightly different depending on N, n, m
being even or odd and can be combined into a uniform proof by setting

{0 M odd,
am =144

5 M even,

for any integer M. We denote the root lattice of sl by @ and embed it in
ZN in the standard way

Q=7(5—02) D DZLON_1—0N) CZN =76, ®--- ® Zdy,

where the §; form an orthonormal basis of Z¥. We choose as a set of positive
roots the set

A+:{5i—5j|1§i<j§m}U{5a—5b|m—|—1§a<b§N} U
n

(A1) {fi-digismm+1+|S]<asn}u

{5a*6i’1§i§m,m+1§a§m+"g-‘}’

with the first two sets the positive roots A" and A’} of the sl,;,, and sl,
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subalgebras. Note that the Weyl vector py of sl then decomposes as

PN = Pm + pn + 0,
m

=5 <5m+1 + Oz — Oz — o — 51\/)

1
+ (an—§> 01+ +m),
with p,, and p, the Weyl vectors of the sl,, and sl,, subalgebras. Set
&4_ = {(Sm_i_{ﬂ“l — 51"1 << m}

These are the positive roots that are needed for the contribution of the

dimension % fields in the character formula.

Let VNZ = +Z with v = N. Let h* be the subalgebra of the Cartan
subalgebra corresponding to the AP U{d}, i.e. it is orthogonal to the Cartan
subalgebra of the sl,-subalgebra.

We choose the basis B of h to be

B:{€i7i+1|l§Z‘§m—1}U{€}U{€i7i+1‘m+lSiSN—l},

1 1=y
ij = € — €4, di(ej) = ;
(A.2) Cuj =G 6 (€5) {0 "y

nler + - +em) —memsr + - +en)
N N

Step 2: the Euler-Poincaré character

Set h = Zf\;l uie; and define z; = % = %) and 2 = *™ with §
dual to e, i.e. 6(e) = 1 and d(e;+1) = 0 for i # m. Then py(e) = o(e) =
m (an — %) The element x of the sls-triple for the reduction is

n—1

T = Z(n +1—28)emys.
s=1

We now specialize to u; = 0if m +1 < ¢ < N. Note that for 1 < i <
m, (5m+[2-| — (51)(63) = —(5,"]', <5m+[ﬂ‘| — (51)(6) = —1. The Euler-Poincaré
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character (3.17) is then

(A.3)
_O+p)? 1
ch[H(VEF(A)](g, h) = ¢®q20+m7 w(A+p)(h—T2)
[H(VEO))(g, k) = ¢"q w%:v Tah
W) = O [Ja =) [T (=g —ety)
r=1 QGAK}

H (1 _ e*ﬂ(h)qrﬂranfl)(l - eﬁ(h)qrfan).
BEA,

Here A is some fixed constant whose precise value is not important. The
domain is |g| < 1 and |e*A(Mg+D/2) < 1 jetahg| < 1for B € Ay, a € AT
Note that e”" = ern(M) if n is even and e?(M) = ePm(Me—um/2 if p ig odd.
Note that z1...x,, = 1. Then

(A.4)
\II(Qa h) -
di o
dimg _m _ _ _ _
g et T - )™ T oy g (2 o)
r=1 1<i<j<m
(_l,)md’qu H (1 - xxiqr—l—an-i-d/—l)(l o x—lxi—lqr—an—d’)
1<i<m
simg oo
=q e WA= ] =27z (A - 2z ')
r=1 1<i<j<m
(_l)md’xm(d’—%-i-an)qu/ H (1 _ xxiqr+“"+d/_1)(1 _ w—lxi—lqr—an—d’)
1<i<m
dimg . (h) - r\N—1 -1 r—1 -1 r
=q = e[ -q) IT -a'eeH0 -z ')
r=1 1<i<j<m
(_1)md’xmqud/ H (1 _ .’L‘.%'iqr+d_l/2)(1 _ x—lxi—lqr—d—l/Z).
1<i<m

Here we did a shift of the form zz; — zx;¢® which gave the prefactor and
Ay is some number depending on d’ and a,, whose precise value is not
important. We will fix the integer d’ later and we set d = d’ — % + an, for
convenience.
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Step 3: The character of Alsly,0, k]

We are interested in the character of A[sly, 0, k] which we abbreviate by
A, ie.

0 s (5 )
A= Y VE)](g )eb[V(N)] (g, h2) m:z{qﬁ |
Aep+

~—

Recall the character of V¥(\) given in (3.14). Recall that ¢ satisfies ﬁ +
ﬁ =1, so that

O+p)? (A +p)? N)\(hl)N/\(hQ)
ch[VE(N)] (g, h1)ch[VEN)](g, ho) = q20+17 g2
[VF(N)](g, h1)eh[VE(N)](g: he) = ¢ q (g, h1)IL(g, ho)

(A+2p)2 N)\(hl)N)\(hQ)
I1(q, h1)I(g, ha)

Set P;" := PTN(Q + w;). Then

Otp)?
Y. a2 Na(ha)Na(he)
\eP;"

- Z Z q%E(W1)6(w2)e‘“1(’\+p)(h1)6w2(/\+p)(h2)

\EP;T wi,w2 €W

e Z Z q%e(wl)e(wQ o) wl)ewl (>\+P)(h1)GLUz(wl()\—l-p))(hz)
\EP;F wi,w2 €W

=Y ew) YN g2 g ko) () g (1 (\+0)) (o)

w €W )\ep:rwlew

2
S X e
weWw AEQ+wi+p

In the third equality we used that e(w;)e(wa o wi) = €(w2), and in the last
one that the Weyl group acts transitively on Weyl chambers, together with
the fact that ) e(w)e?M = 0 for any A that is orthogonal to at least
one simple root.

For hy, hy in b, we set s; = wy — 01 + 6; and y; = esilh) 5. = esi(h2) o
that the character of the standard representation of sly is just

X (h1) =91+ +yn.
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The relation to our previous Jacobi variables is

N 1<i<m,
i xix*m/N m+1<i<N,
and we write (y2,),, for the set {y12,1)¢", ..., ¢"“yn 2z} for any v € P.

Note that p € @ for N odd and p € Q+wyy3 for N even. We thus set vy =0
if N is odd and vy = wyyp for N even. Let v € vy + Q. It follows that we
get theta functions

ST gt —gh (g, (y2)o)
(A5)  AeQtwitp
_ q%e”(hl)ew(”)(h2)9Q+wt (q, (wa)y),

where we used the usual translation property of Jacobi theta functions.
Recall that ay = 0 if N is odd and ay = % if N is even. Let ¢’ be a half
integer to be fixed later and set g = ¢’ +ay. Let v in (yZ)* and w = e"W/N,
Since

N-1 N-1
try try
N _
zN = tlol (Q+w)® <7Z+N> = tUO(Q+wt+,o)@ (vZ+gam+N) :

and using that

NG,NH

2 N
072#»% (CL ’U}) = an 2w 7Z+gaN7+%’ (Qa wan)a

the numerator of A, that is Num := AIl(q, h1)II(q, h2)n(q) is of the form

(A.6)
N-1
Num = Z 6Q+wt+p(Q7 (yzw))evz-i-% (g, w)
t=0
N-1
= ¢"n 2wy Z 0Q-+w.+p(q; (yzw))e’yz+azvg’}’+% (¢, wg™)
t=0
= qa?\f EwNaNGZN (q, (yzw)u, wqg)

_ qa?\,%wNaN

N oo
H H(l + wyizw(i)qr—lﬂ—i—g)(l + w_lyflz;(li)qr_l/2_g)(1 —q")

i=1r=1
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N
2 N
= ¢"¥ 2w [T Os(wyiz )¢’ )
=1
n

~ w0 T (o))~ e (e o))

a=1
N

Hﬁ (wyig™" 2,1y@" 0> q),
i=1

with the standard theta function

oo

(A7) I3(zq) = [J(1+2¢ V)1 = ¢)(1 + 271 2.

r=1

In the last line we used the usual transformation behavior of theta functions
under translation of the Jacobi variable. Here we defined §;~,, to be equal to
one if ¢ > m and zero otherwise. We also defined the symbol ~ for g-series,
meaning that

fl@)~gle) +  FAeC: flg) =q"g(q).

We specialize hy = —z7+h as before, that is §;(h) = 0 form+1 <1 < N.
The specialized numerator is then

Num ~ V9 —"aen sz () y n g (pn)(hz) H I3(wz,q° "5 q)
(A.8) - o=l r=m

[T 9s(wyizoa® @)
=1

We introduce

m -y .l 0
A= B=n———
NN+5 "NTN

These are orthogonal on each other, and we are interested in the constant

coefficient with respect to A. Write a = e*A(tu) p — fB(h+u) apnd ¢ =
yrtm/N? We fix o = s and 8 = so that

__ N N—2
m2+mnN mn+n2N?2>

wr™N = ab" N = acb™ VN waIN = gtV — o = ap Y
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Then

wmix"/N = xiacbfl/N 1<i<m,
wy; = —m/N .
WL;T =zxic=c m+1<i<N.

Step 4: Meromorphic Jacobi form decomposition

Let 1 <4 < m. We are interested in the decomposition of

H (1 +wyizo@a”2H9) (1 + w2 a9 (1 - q7)
L 1 — zaiqrta- 1/2)( _ x—lxi—lqr—d—l/Q)

We need the identity (A.2) of [53]

ﬁ (- g PA—w e lg) g ()
N ur D)0 o DU+ u i)+ o lg) ~ 2 Thog

which holds for |g| < |u| < 1. Set u = —zz;¢?ts = —ab"VNagg* 2,0 =
czw(i)qgfd. We will fix d = § — 2 in a moment. Recall that the domain of
the character is |(zx;)* q%l| < 1. In order for the decomposition now to be
valid we restrict this domain to the subdomain |g| < |zz;q™> ~2| < 1. The

decomposition of the meromorphic Jacobi form follows:

M; = H(1 +ezupa N1 = ¢) T A+t ;(ll)qﬂrd_g)
r=1

Z Sl'fb_s/Nq(d+1/2)s
1+ czyqt974

SEZL
(Ag) 19 g o 1/2 a’ sb s/N (d+1/2)s
~n S(CZ ()4 % 1+ cz, )qs+g d
T Y asxfbfs/Nq(dJrl/Z)s
~ (C2() 0 P03 (e @ 0) D

= 1+czw(i)qs+g_d .

Let Num := I (ha, )1y, (2, ¢)n(q)" tch[H (A)] be the numerator of the Euler-
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Poincaré character.

—

Num = (—1)"d gz =mdyyN9—nany;

N m
X Z pn)(hg)H wm—i—a) H 15‘3(w%(i)qg*“";q)l_[Mi
weWw i=m—+1 P}
Cm(d+57an) . m . N B N )
- 7727’” > clw)e O [ )™= T 20ty 1] 9s(ezuiya”50)
weW i=1 am1 =1
H Z b /N (d+1/2)s;
S i+g—d
Py’ 1 + cZy, 9—
cnittimen) (b)) T T B
YT D e(w)e ) T (z00)) 2 ] Pa(czume® "5 q)
weWw i=1 i—1
HZ a®z;ib” S/N (d+1/2)s;
tg—d
iClacz 1+ czypnq¥t9—
Cm Efa" a " m R
Hﬁ?)(czz‘qg 1q) Y e(w)e P T (z) ™2
J wew i=1
HZ axlb /N g(d+1/2)s:
s i+g—d
Pl yp=r’ 1+ cz, 9—
where we used
N
1_[1 w(a) = 1 and 1_[1193 czw(z g C’«n. Hﬁ?’ CZqu an; )

Set ¢ = d + a,,. Then the prefactor becomes z~"4wN9 = N gmampnNam
The multiplicity of the affine gl,,, is the coefficient corresponding to a Ogpm(h) =

m+1—21
a® 1T 1x; * . Recall that z1...2,, = 1 and so we need to consider the

1= .
summand with s; = W — U, that is

n(m)Il(q, he)C
~ ( 1)md’bmam/N danNam (d+%—a") —na,
—a m )Zd;»l

c
M 0 (cz q q)
) ( " w
H Z e’ H 1 _|_ cz,, )qsf,-l-am

=1 wew =1
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N (71)md’ CN(d+am,—an)cm(2d+%)

ﬁ I3(cziq

=1 U(Q) weWw
~ (_1)md’ CN(am—l/Z)

N 0s(czig™ 5 q) T ()
H 3(C%iq 34 Z 6(w)ea.)(pn)(hz) H w(i) —

i=1 n(q) weWw i=1 w(@dd
~ (_1)md’CN(am—1/2)

d+am—an, .
b

N 1 m 2d41

Hﬁg(cziqam—i;Q) S e(w)ele) ) I (czu(s)) 2+ |
1 w(5)q% T

i=1 n(a) wew

=

We now set 2d = n — 4.
Step 5: Denominator identity of s{(N|m)

Recall the denominator identity of the finite dimensional Lie superalge-
bra sl(N|m), [91, Thm. 2.1]. Consider the lattice Ze; & - -- & Zen @ Zpy &
o @ Lphy, With €65 = 0; 5, uie; = 0 and p;pu; = —6; 5. Then we choose the

sets

(A.10) Af={e— €l <i<ji<N} U {u—pll<i<j<m}
' AT ={e—pujl<i<ji<m} U {m—¢ll<i<m,i<j<N}kL
These can be identified with the set of even and odd positive roots of s[(/N|1).

Let pg = %ZaeAi a and p; = %Z%A# a be the even and odd part of the
Weyl vector p = pg — p1. Then

m

N
1 , 1 .
0o = 5;(N+1—22)6i+5;(m+1—2z),ui
= 1=
1 & m 1 &
(A.11) p1= §Z(m+2_21)61_E,Z_Hei—i_i;(]v_%)m
7 i=m =

n

m
n— 1 )
p= 5 51(61—M1)+§ 'El(n+1—2l)€m+i.
1= 1=

I
—_ =




184 Thomas Creutzig and Andrew R. Linshaw

Then the denominator identity reads

e J] (1—e9)

aEAT

A.12 0 = E

( ) e J] (1+e ) S sen(o)
(XEAT TEON

eo(p)

1 + emi—ole)

:]S

1

7

We set e = z; and et = ¢ 1¢(mH1-20)/2 5o that the identity becomes

(A.13)
i (c2u@) T
e(w)e?Pn)(h2) = —
w;v 1;[1 Lt e lzymg oo
TN (2)mm(q)
- N m 12
N2 TT T (1 + zicqg™ 2 )
i=1j=1
_ ~Nlan—1/2) TN (2)Tm(q)
N )
H I[I  (Q+ziegmt=h) T (1+ zicq™t7)
=higi<[7] <5< %]
() = [ (eahi = (uzh)i) = (~nmlEleevt TT e,
1<i<j<N ael,
Tm(q) = H (eltaihi/2 _ e(mi=hi)/2) H (1— ¢ ).
1<i<j<m 1<i<j<m

Recall that d’:d—l—%—an:"—ﬂ—an, so that d =0 mod 2 if n = 0,3

mod 4 and & = 1 mod 2 if n = 1,2 mod 4, ie. (—1)¢ = (—1)™[5],
Putting all together we get the desired answer

md’
P ) Nan—1/2)

n(q)™ (g, h2)

\_//‘\

1 2d+1

193(Cziqam_5 ) q) Z )(h2) o Czw (%)
s +am,
n(q) S 1z,

@
Il
—

K::IZ



" n(g)™(g, h)
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md’ N a, —1
(=pmd CN(a,,,ﬁl/Q)HT%(CZiq "725q)
paley n(q)

(~pymlElers) T (1 - em)

—N(am—1/2) acAy

[T A+ zicqt=1) ] (14 zieqomtI")
hi<i<[g] <5< %]

o) I (1=e) [ (1-g")

aEAL 1<i<j<m
(g, ha2) n(q)™

N

'H1 O3(cziq™ 25 q)n(g) "

N
I[I II (A+4zicgt=1) JI (14 zicgt7)
=higi<[3] 1<j<| %]

Cc

=

)

~ ch [W_k_m+1(5[m\Na fm|N) :
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