Benchmarking the Performance of Accelerators on National
Cyberinfrastructure Resources for Artificial Intelligence /
Machine Learning Workloads

Abhinand S. Nasari
HPRC, Texas A&M University,
College Station TX
abhinand@tamu.edu

Zhenhua He
HPRC, Texas A&M University,
College Station TX
happidencel@tamu.edu

Alex Tsyplikhin
Graphcore Inc., Palo Alto CA
alext@graphcore.ai

Lisa M. Perez
HPRC, Texas A&M University,
College Station TX
perez@tamu.edu

Hieu T. Le
Department of Electrical and
Computer Engineering, Texas A&M
University, College Station TX
hieult@tamu.edu

Xin Yang
HPRC, Texas A&M University,
College Station TX
karen890@tamu.edu

Mabhidhar Tatineni
San Diego SuperComputing Center,
University of San Diego, San Diego,
CA
mahidhar@sdsc.edu

Dhruva K. Chakravorty
HPRC, Texas A&M University,
College Station TX
chakravorty@tamu.edu

Richard Lawrence
HPRC, Texas A&M University,
College Station TX, ,
rlawrence@tamu.edu

Mario M. Krell
Graphcore Inc., Palo Alto CA
mmk@graphcore.ai

Tim Cockerill
Texas Advanced Computing Center,
University of Texas at Austin, Austin,
TX
cockerill@tacc.utexas.edu

Honggao Liu
HPRC, Texas A&M University,
College Station TX
honggao@tamu.edu

ABSTRACT

Upcoming regional and National Science Foundation (NSF)-funded
Cyberinfrastructure (CI) resources will give researchers opportuni-
ties to run their artificial intelligence / machine learning (AI/ML)
workflows on accelerators. To effectively leverage this burgeoning
ClI-rich landscape, researchers need extensive benchmark data to
maximize performance gains and map their workflows to appro-
priate architectures. This data will further assist CI administrators,
NSF program officers, and CI allocation-reviewers make informed
determinations on Cl-resource allocations. Here, we compare the
performance of two very different architectures: the commonly used
Graphical Processing Units (GPUs) and the new generation of Intel-
ligence Processing Units (IPUs), by running training benchmarks
of common AI/ML models. We leverage the maturity of software
stacks, and the ease of migration among these platforms to learn
that performance and scaling are similar for both architectures.
Exploring training parameters, such as batch size, however finds
that owing to memory processing structures, IPUs run efficiently

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC °22, July 10-14, 2022, Boston, MA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9161-0/22/07...$15.00
https://doi.org/10.1145/3491418.3530772

with smaller batch sizes, while GPUs benefit from large batch sizes
to extract sufficient parallelism in neural network training and in-
ference. This comes with different advantages and disadvantages
as discussed in this paper.As such considerations of inference la-
tency, inherent parallelism and model accuracy will play a role
in researcher selection of these architectures. The impact of these
choices on a representative image compression model system is
discussed.

CCS CONCEPTS

» Machine Learning; - Hardware Acceleration; - Benchmark-
ing;

KEYWORDS

ResNet50, ACES (Accelerating Computing for Emerging Sciences),
Expanse, Graphics Processing Unit, Intelligence Processing Unit,
PopVision, Classification, Convolution Neural Network, Optimiza-
tion, Frontera, LoneStar6

ACM Reference Format:

Abhinand S. Nasari, Hieu T. Le, Richard Lawrence, Zhenhua He, Xin Yang,
Mario M. Krell, Alex Tsyplikhin, Mahidhar Tatineni, Tim Cockerill, Lisa M.
Perez, Dhruva K. Chakravorty, and Honggao Liu. 2022. Benchmarking the
Performance of Accelerators on National Cyberinfrastructure Resources
for Artificial Intelligence / Machine Learning Workloads. In Practice and
Experience in Advanced Research Computing (PEARC °22), July 10-14, 2022,
Boston, MA, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3491418.3530772


https://doi.org/10.1145/3491418.3530772
https://doi.org/10.1145/3491418.3530772
https://doi.org/10.1145/3491418.3530772

PEARC °22, July 10-14, 2022, Boston, MA, USA

1 INTRODUCTION

Researchers increasingly depend on specialized hardware for their
computing workflows. In 2022, the NSF-funded Accelerating Com-
puting for Emerging Sciences (ACES), a novel CI testbed with ac-
celerators to support scientific ML workflows will be available to
the national CI community. Hosted at Texas A&M University, this
test-bed complements the GPU-equipped NSF Frontera and NSF-
Expanse resources, the Habana-equipped NSF Voyager resource,
and the planned FPGA-equipped NSF National Research Platform
resource at San Diego Supercomputing Center (SDSC). These NSF
investments in CI are strengthened by powerful regional GPU-
enabled CI resources such as Lonestar 6 at the Texas Advanced
Computing Center (TACC), HiPerGator Al at the University of
Florida (UF), and Grace at Texas A&M University. The CI-ecosystem
is today in a position where hardware-availability will no longer
be a determining factor in CI research-productivity or scope [1].
Our previous work focused on developing platforms that help re-
searchers adopt upcoming CI technologies in their workflows [1].
There have been several proven cases in history where the availabil-
ity of hardware (and software) slowed down research and develop-
ment and there are probably much more unknown cases [2, 3]. Deep
learning started as early as 1963 [4] but it required the repurposing
of GPUs (circa. 2005) to achieve real breakthroughs with AlexNet in
the ImageNet benchmark in 2012 [5]. While researchers can explore
new techniques on various architectures, there is an urgent need to
understand the optimal means to use these accelerators in research
CI. To achieve this, we need to understand (a) how to use emergent
CI technologies (b) when to use them, (c) the trade-offs between
the various technologies and (d) the challenges to reproducibility
introduced by various accelerators.

The unique NSF ACES test-bed provides a portfolio of accel-
erators such as GPUs, Vector Engines, Field Programmable Gate
Arrays (FPGAs), and the novel Graphcore IPU accelerators. As such
researchers will soon be able to explore the benefits and limita-
tions of GPU- and IPU-accelerated AI/ML workflows. In machine
learning, a mathematical model needs to be evaluated with many
data elements as the inputs. During training, the model is updated
over time to more accurately predict the data elements, offering
opportunities to reduce training time by hardware acceleration and
parallelization. To develop an understanding of these mechanisms,
we need to investigate the most common type of hardware acceler-
ators, the GPU, and a relatively new type of hardware acceleration,
the IPU, in the context of machine learning artificial intelligence
research. GPUs and IPUs implement Arithmetic Logic Units (ALUs)
differently. GPUs are designed to perform floating point operations
simultaneously across a large array, with ALUs controlled centrally
and sharing memory. In contrast, the ALUs of an IPU are divided
into smaller units called tiles, which act independently of one an-
other, having their own local memory and enough compute power
to prepare their own instructions. Tiles communicate with each
other directly over high-bandwidth channels, even across differ-
ent IPUs. As such, GPUs are good at certain types of ML models
like classical dense Convolutional Neural Networks that require
“parallelizing a set of simple decomposable instructions such as ma-
trix multiples” [4]. On the other hand, the graph model of the IPU
and its hardware architecture offers opportunities to fine-grained
parallelism like for example with small batch sizes or grouped op-
erations like group-convolutions or group-normalizations [11-13]

Abhinand Nasari et al.

useful in computer vision [14,179,13], natural language processing
[18], audio processing, graph neural networks, and Markov Chain
Monte Carlo (MCMC) ([19]. In part, this work seeks to illuminate
some of the considerations that might lead a researcher to choose
one or the other architecture, and how to go about making the
transition. By implementing the deep learning framework into the
step of force calculation, IPUs have also been shown to leverage
the performance of molecular dynamics calculations. Whereas this
paper is one of the first to discuss IPU application and its aspect,
there is a large corpus of literature on the application of GPUs in
applications and its inner workings [6-8].

The richness of the emerging CI landscape presents new oppor-
tunities for our research community. Challenges, however, remain
for a researcher who wishes to reproduce published results from
hardware providers, or apply them to their own research. With
the increasing complexity of research workflows, researchers could
potentially find that the sub-tasks in a workflow may have to be
attributed to different architectures to maximize its performance.
These factors are further compounded for reviewers who make
recommendations for allocations for AI/ML workflows to national
CI resources via mechanisms such as the NSF XSEDE Resource
Allocation Committee (XRAC) [9], the NSF Cyberinfrastructure for
Sustained Scientific Innovation (CSSI) program [10], the interna-
tional HPC COVID-19 consortia [11], and NSF Cloud-bank related
processes [12]. Indeed, the XSEDE XRAC would benefit from guid-
ance on realistic benchmarking and scaling of AI/ML processes on
national CI resources. The standard AI/ML benchmarks are typi-
cally optimized for maximum performance and cannot test every
scenario the researchers might face. There is no recipe to turn a
benchmark result into a useful guide for the researcher’s specific
workflow. In order to assign workflows optimally on different hard-
ware architectures, it is necessary to perform benchmark tests on
representative problems. In this manuscript, we present a student-
led benchmarking effort that investigates real-world performance
on accelerators at several major CI resources. In subsequent sec-
tions of this paper, we describe the methods and computational
platforms used to investigate the performance of GPUs and IPUs.
We visit these benchmarks on “production” hardware at Texas A&M
University, TACC, UF, and SDSC to derive a realistic framework
that helps researchers make optimal choices for their workflows.
Whereas execution of GPU programs is well understood, we elabo-
rate on how we executed IPU programs and how certain parameters
influence the performance to improve the understanding of this
new hardware and related software. We analyze the results and
discuss our findings in subsequent sections. We finally conclude
with recommendations and opportunities for future work. In con-
sideration of the ubiquitous presence and use of GPUs at national
CI sites, this paper focuses on giving a better understanding of the
new hardware architecture, IPU, and the underlying user interac-
tion experience and considerations for running machine learning
workloads.

2 METHODS
2.1 Benchmarking

In this manuscript, we focus on well-known AI/ML models that
have been optimized for both GPUs and IPUs, ensuring that we
see the absolute best-case scenarios for each. The benchmarks



Benchmarking the Performance of Accelerators on National Cyberinfrastructure Resources for Artificial Intelligence /

Machine Learning Workloads

encompass a variety of models and are intended to be portable to a
variety of hardware architectures. The target of a machine learning
benchmarking is the time taken to reach a target accuracy when
training an algorithm, or latency and throughput when applying the
algorithm in real-world inference scenarios, where the algorithm
also has to fulfill certain quality requirements on the predictions.
This is the fairest comparison between different training methods
since it properly accounts for both throughput and accuracy. The
optimal training strategy involves selecting the parameters that
yield both a high throughput and a high accuracy. This implies that
different models will potentially be better suited for one type of
hardware architecture or the other, depending on how the training
parameters affect the accuracy of that model. We note that hardware
and software developers compete to get the best MLPerf™[13] times
using a curated list of benchmarks.

For this study, we selected some well-known machine learning
models: ResNet [14], EfficientNet [15], MobileNet [16], and BERT
models [17]. ResNet, EfficientNet, and MobileNet are classical im-
age classification models built with convolutional neural networks
(CNN), and also, they are the backbones of other tasks (e.g., object
detection, segmentation) in computer vision. BERT (i.e., Bidirec-
tional Encoder Representation from Transformers) is an important
method on many Natural Language Processing (NLP) tasks. These
models are supported by both NVIDIA and Graphcore who provide
useful examples and optimal parameters. Additionally, we analyze
the translation of an application from one accelerator to the other
for a custom test model. We especially investigate the influence
of the batch size and scaling behavior. In the ideal scenario, we
assume perfect linear scaling, i.e., doubling the number of accelera-
tors doubles the throughput and thus cuts the time to train in half.
In practice, each application is different, the impact of the batch
size on convergence, as well as individual settings of the hardware
have to be considered and fine-tuned to achieve close to optimal
scaling. In addition, we are interested in the acceleration of the
total hardware package, including non-compute resources such as
networking and memory.

2.2 Batch size

An important training parameter for ML tasks is batch size, which
is the number of training data elements that will be processed
before updating the model. The batch size requires delicate tuning
because it is relevant for throughput, accuracy, and time to train,
i.e., the time to reach a certain accuracy. Time to train balances
information of accuracy and throughput: it is quite often possible
that the throughput is high, but it takes much longer to reach
the accuracy target compared to a setup with lower throughput
but reaching a convergence criterion faster. Each model has its
own specific expectations for the batch size because it is related
to convergence. Updating the model too frequently can cause the
model to converge slowly or fail to converge, as the training process
is stochastic, and each data element can introduce wild variation
and mask the underlying pattern. Similarly, updating the model
too infrequently can cause the model to converge slowly or fail to
converge, if it happens to get stuck in a local minimum, because any
variance in the data gets diluted by the average [18, 19]. However,

PEARC 22, July 10-14, 2022, Boston, MA, USA

in addition to the model-specific limitations, there are hardware-
specific limitations. If the batch size is too small, then there may
not be enough data to keep all the compute resources busy and the
compute resources are wasted. If the batch size is too large, then
fitting the data in memory and delivering it rapidly to the computing
resources becomes a challenge. Thus, for any combination of a
model and a hardware architecture, there will be a range of batch
sizes which are effective. We observe that the choice of batch size
has a measurable impact on throughput and time-to-train, and this
relationship is different for different hardware architectures. IPUs
offer greater throughput with smaller batch sizes, while GPUs have
better throughput performance with larger batch sizes. The absolute
ranges for batch size differ substantially. The IPU reaches highest
throughput even for small batch sizes, whereas the GPU requires
much bigger batch sizes to create large arrays which benefit from
its acceleration. The reason for this difference is directly related to
the internal details of the hardware architecture designs and are
explored in this paper.

2.3 Performing the calculations

NVIDIA and Graphcore container catalogs provide precompiled
machine learning software that is optimized for use with their
accelerators. They also provide a repository of example machine
learning models with optimal parameters for those. Graphcore
provides a development toolkit for building software for use on
their IPUs. Through the Graphcloud service, Graphcore provides
access to IPUs, preinstalled software, and even training data. The
methods chosen in this work are based on the information provided
by the two vendors and are intended to provide useful advice for a
researcher who wished to replicate the procedures.

GPU calculations were performed on NVIDIA A100 (40GB,
PClIe)[20] and NVIDIA RTX GPUs [21] on Grace at Texas A&M Uni-
versity. These GPUs are integrated into dual-socket 48-core Intel
Cascade Lake compute nodes, with one GPU on each socket. Tensor-
Flow and PyTorch software frameworks are supported by NVIDIA
through their container catalog, which is ported to the Grace clus-
ter via the Singularity container runtime. These same frameworks
are also built locally on the Grace cluster from source using the
EasyBuild framework. This work was expanded to NVIDIA T4
GPUs on Grace and NVIDIA V100 GPUs on NSF Expanse. To en-
sure that these runs were performed in an optimal manner and
comparable to published results, benchmark experiments were per-
formed on standalone NVIDIA A100 GPUs on LoneStar6 at TACC
and on NVIDIA A100-equipped DGX servers on NSF Frontera at
TACC and HiPerGator Al at the University of Florida. Benchmark-
ing tools for common AI/ML models are also provided by NVIDIA
and have been pre-populated with optimal parameters for run-
ning those modes on A100 GPUs. The testing environment on
the GPU-providing clusters is set up using the Singularity con-
tainer runtime engine, which enables a common container im-
age to run on different local node architectures. The container
images are provided by the NVIDIA container registry [22]. In
particular, the nvidia/pytorch:21.11-py3 image for PyTorch and
nvidia/tensorflow:20.06-tf1-py3 images were selected for Tensor-
Flow frameworks. Code to perform benchmark tests using these



PEARC °22, July 10-14, 2022, Boston, MA, USA

containerized software stacks is provided by NVIDIA GitHub repos-
itory DeepLearningExamples along with tutorials and even some
published benchmark results.

For the PyTorch framework, association of GPUs is handled
by NVIDIA’s CUDA framework, which automatically detects and
selects local available GPUs. Distribution of training tasks across
multiple GPUs is handled within the PyTorch framework, which
internally controls its processes. Specification of the number of
processes is done as an argument to the training script. The training
script is executed within the container.

For the TensorFlow framework, association of GPUs is handled
by NVIDIA’s CUDA framework, which automatically detects and
selects local available GPUs. Distribution of training tasks across
multiple GPUs is accomplished using the mpirun command, which
has several important arguments. For example, the command be-
low starts two processes, each of which will associate itself to a
different GPU, because they are located on different sockets. The
NVIDIA TensorFlow ResNet 50 benchmarking example is executed
within the container and within an mpirun launch, if applicable. It
is important to note that batch size and the precision (tf AMP) are
both selected at this stage, whose values are specific to a GPU type.
While this example is for the A100 GPU, scripts for other GPUs
were similarly implemented [23].

Calculations were performed on Graphcore IPU-POD16 com-
pute nodes running with a Dell R6525 server on the Graphcloud.
Graphcloud is equipped with a large number of Graphcore Colossus
GC200 IPUs (also referred to as Mk2 IPUs). 4 such IPUs are located
in each IPU-M2000 machine, and four such machines are integrated
into the virtual IPU-POD16 compute node with 8 NUMA nodes.
Whereas the experiments were performed with the classic systems,
TensorFlow and PyTorch software frameworks are supported by
Graphcore through their Poplar software development kit. Bench-
marking tools and documentation for common AI/ML models are
also provided by Graphcore and offer a detailed description of run-
ning environments [24, 25]. Here, we briefly discuss some salient
factors. Environment variables are set to use the Graphcore tools
and Poplar, a graph programming framework for IPUs. Parallel
host processes on the IPU-POD16 (number of instances) for data
loading and preprocessing are launched using the “poprun” com-
mand while specifying the number of replicas (model copies) where,
each replica is an identical copy of the same graph. Graphs can be
partitioned across a number of IPUs working on different subsets
of that graph, or each IPU could keep the entire graph in memory.
The total number of IPUs equals the number of IPUs per replica
multiplied by the number of replicas. We specify the number of
processes running on the host CPUs. These instances handle data
input/output and are not responsible for the computation on the
IPUs. This value is chosen based on how intense the data load is
expected to be for the model. It is generally equal to or a divisor of
the number of replicas.

3 RESULTS

A series of benchmark experiments were performed on GPUs and
IPUs as described above. Owing to different CPU technologies and
software stacks, we anticipated small differences in performance on

Abhinand Nasari et al.

the A100 GPUs on Grace, Lonestar 6, HiPerGator Al at the Univer-
sity of Florida. The runs on Expanse were performed on NVIDIA
V100 GPUs. Performance on NVIDIA GPUs was checked using
common methods like NVIDIA SMI for GPUs and the PopVision
Graph Analyzer for Graphcore IPUs. PopVision Graph Analyzer is
a visualization tool that summarizes how a program is performing
on the IPUs. Features include Summary, Memory Report, Liveness
Report, and etc. The Liveness Report displays the memory usage
throughout the lifetime of the program, showing the operations or
layers of the model using the most memory (e.g., the spikes in the
graph below). Based on these data, one can optimize the model.

One of the key considerations of this work is to understand how
performance scales with available resources. Here, we examined
the scaling efficiency of the GPUs and IPUs using the ResNet50
V1.5 model benchmark experiment on PyTorch and TensorFlow.
This is a convolution neural network (CNN) that performs image
classification [14]. This model is trained using image data from the
ImageNet 2012 machine learning challenge [26]. ResNet50 training
requires a lot of data (ImageNet2012) and data loading and prepro-
cessing is a burden. Since a lot of optimizations should be on the
host side, a distributed-friendly dataset can be generated to reduce
read times from disk. This is the webdataset format dataset for Py-
Torch and tfrecord format dataset for TensorFlow. As measurement
of performance, we us throughput, measured in images per second.
A reasonable batch of images for training ResNet 50 is on the or-
der of a hundred, and a single batch of images can be processed
in parallel efficiently. Thus, an excess of file read operations can
be a bottleneck if not handled properly. For the case of PyTorch,
Graphcore supports a tape-archive based file format that reduces
the number of file read operations to an acceptable level. PyTorch
with NVIDIA must be treated carefully so as to minimize the effect
of the file read bottleneck. For the case of TensorFlow, both Graph-
core and NVIDIA support a TensorFlow-specific file format that
reduces file read operations to an acceptable level. Keeping the data
on the closest local disk to the GPU helps, but a slight reduction in
performance is still expected.

3.1 PyTorch ResNet50 Scaling

As described in previous sections, the experiments on IPU POD-16
were performed using the recommended ratio of one instance per
replica. Table 1 describes the effect on scaling the number of IPUs
from 1 to 16 in an incremental manner. The batch size parameter in
the benchmarking code specifies the per-IPU minibatch. For mea-
suring the increase in throughput due to the increase in resources,
training is measured after a fixed number of epochs and only the
throughput and training time for those first few epochs is recorded.
This is represented in the data as we see that the throughputs in the
first and second epochs are significantly different, especially when
the IPU count is larger. This is because in the first epoch, the graph
compilation is included. Considering the throughput for the second
epoch allows us to focus on the part of the performance which is
due to hardware acceleration and not due to the training method.
As such it is more representative when evaluating performance
in this study. We note a performance drop when the number of
instances exceeds the number of NUMA nodes on the pod system.
On starting more than 8 instances, the processes are dedicated to



Benchmarking the Performance of Accelerators on National Cyberinfrastructure Resources for Artificial Intelligence /

Machine Learning Workloads

PEARC 22, July 10-14, 2022, Boston, MA, USA

Table 1: ResNet50 model Training performance on various number of IPUs with different instances setup

Total IPU Count Instances Replicas Throughput (images/sec)
1st epoch 2nd epoch
1 1 1 1,113.0 1,862.9
2 2 2 1,538.2 3,717.2
4 4 4 1,893.9 7,078.1
8 8 8 2,233.7 13,931.7
16 8 16 2,189.7 23,082.9
16 16 16 2,256.2 18,532.6

the NUMA nodes and are swapped among them. As such, we find
that for the POD-16 with 8 NUMA nodes, the best performance
was achieved with a configuration of 8 instances as opposed to 16
instances. We find that when the IPU count is small (e.g., <8), the
training performance (image throughput) scales almost linearly
with the IPU count. However, when the IPU count continues to
increase, the performance starts decreasing. The last entry in the
table shows a performance drop because the number of instances
exceeds the number of available NUMA nodes, and the processes
swap among the nodes, overwhelming the host server.

Similar experiments were performed on NVIDIA GPUS. NGC
containers were obtained from the NVIDIA container repository
using standard processes identified by NVIDIA [27]. These were
run on several CI sites to afford benchmarks for NVIDIA T4, V100,
A100, and DGX-A100 GPUs. The PyTorch ResNet50 training perfor-
mance benchmarks on GPUs were calculated with both TF32 and
mixed precision, respectively. The number of GPUs were incremen-
tally increased. As shown in Figure 1, our benchmark experiments
on the DGX-A100 GPUs were largely in agreement with figures
published by NVIDIA, establishing the veracity of our approach. A
potential source of discrepancy could be the fact that our runs were
performed on DGX-A100 servers equipped with 40 GB of mem-
ory as opposed to the NVIDIA official runs that were performed
on DGX-A100 servers equipped with 80 GB of memory. As antici-
pated, we note that the A100 GPUs outperform the T4 and V100
GPUs in these experiments. We note that the stand-alone A100
GPUs on Intel Cascade Lake (Grace Cluster) and on the AMD Milan
processors (Lone Star6) are less performant than the comparable
DGX-A100 servers. Irrespective of the platform, we find that the
scaling performance of GPUs and IPUs show similar magnitude
changes per-device. We note that a single IPU is not directly com-
parable to a single GPU. On the CirraScale cloud, we note that IPUs
are priced differently from A100 GPUs. ! For energy consumption,
one notes that a single Colossus Mk2 IPU has a TDP of 300 W. An
A100 DGX with 8 GPUs has a system TDP of 6500 W2, whereas
an [PU-POD16 consists of 16 IPUs with a TDP of 6000 W3 plus the
TDP of the host which can vary due to host disaggregation.

!https://cirrascale.com/cirrascale-cloud-pricing.php
Zhttps://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-a100-
datasheet.pdf
3https://docs.graphcore.ai/projects/graphcore-ipu-m2000-datasheet/en/latest/
product-description.html

3.2 Additional PyTorch model results

In addition to ResNet 50, we also ran several popular models us-
ing the PyTorch framework on IPUs. GPU performance numbers
have been reported by NVIDIA. Similar runs of Efficient Net B0 on
A100 and V100 GPUs found throughputs of 3749.09 img/s (2 A100s)
and 5745 img/s (4 V100s). Here, we used the same approach as in
our previous runs but replaced the respective configuration file
as suggested in the Graphcore public examples for PyTorch CNN
models.

3.3 TensorFlow ResNet50 Scaling

3.3.1 TensorFlow ResNet50 on IPUs. When training ResNet50 with
TensorFlow on IPUs for the purpose of computing throughput, only
1 epoch is used, because graph optimization occurs before epoch 1
in the Poplar variant of TensorFlow. For the number of IPUs used in
this work, the batch size is selected to be small (20), to fit in memory
on as little as a single IPU. To effectively increase the batch size
for convergence considerations, the gradient accumulation feature
is used with a value of 24. Batch norm quality can improve with
aggregating statistics over a large number of samples, which is
achieved on the IPU by distributing batch norm across 2 IPUs
(BN_spann) This yields a total effective batch size of 20 x 24 or
480 per IPU for gradient updates and a micro-batch size of 40 for
normalization purposes. A benefit of the gradient accumulation is
that one can reduce the gradient accumulation when increasing the
number of IPUs, so that the number of images assigned to a single
gradient update (effective batch size) at one time remains roughly
constant. Thus, hyperparameters do not have to be reoptimized
when scaling the application horizontally to more IPUs. The results
from our experiments on the ResNet model are described in Table 3

We first investigate the effect of batch size on a single IPU. For the
case of the single IPU run, the micro batch size was varied from very
small (2) to optimal (20) to investigate the lower bound of efficiency.
ResNet 50 with TensorFlow-1.15 with mixed precision, approaches
its maximum value quickly at small batch sizes, with only a small
performance penalty for moderately small micro batch sizes and
a maximum batch size of 20. Greater batch sizes for convergence
considerations can always be achieved by delaying the gradient
accumulation, so the micro batch size forms a lower bound for
effective batch sizes. The lower bound for the IPU batch size is an
advantage for researchers using models that are optimal at small
batch sizes. On investigating the scaling of throughput across one
or more IPUs, throughput increases with increasing batch sizes.
We find almost linear scaling as one increases the number of IPUs.


https://cirrascale.com/cirrascale-cloud-pricing.php
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://docs.graphcore.ai/projects/graphcore-ipu-m2000-datasheet/en/latest/product-description.html
https://docs.graphcore.ai/projects/graphcore-ipu-m2000-datasheet/en/latest/product-description.html

PEARC °22, July 10-14, 2022, Boston, MA, USA

B Grace A100
B Expanse V100

LS6 A100

. HPG DGX A100
[ NGC DGX V100 [ Graphcore IPU

Abhinand Nasari et al.

NGC DGX A100
Grace RTX 6000

B Grace T4

25000

20000

15000

10000

Throughput (img/s)

5002 J?I_IJJ !J '_

8

Number of GPUs or pairs of IPUs

Figure 1: Comparison of GPUs and IPUs on the ResNet 50 model in PyTorch with mixed precision. Scaling is similar for GPUs

and IPUs, with similar magnitude per-device.

Table 2: Training performance of different models on various number of IPUs

Model IPU/replica Replicas Throughput(img/sec or items/sec)
Efficient Net B0 2 2 8,905 img/sec

Efficient Net B4 4 4 4,200 img/sec

MobileNet v3 small 1 4 7,222.6 img/sec

MobileNet v3 large 1 16 7,347.6 img.sec

BERT Base Squad fine tuning 4 1 1,297 items/sec

Results from other runs (non-optimal) for exploring the parameters
and a discussion are offered elsewhere [23] .

3.3.2 Establishing Relevant Reference Benchmarks. Results from
benchmark experiments of the ResNet50 model, developed with
TensorFlow 1.15, on GPUs are shown in Figure 2 Much like our
runs with PyTorch, NVIDIA A100, DGX A100, T4, and V100 GPUs
were selected from multiple sites, with the same model and Ima-
geNet dataset, and the same number of epochs (one). Batch size
is 256 on the A100, V100, RTX 6000, and T4 when using mixed
precision. We note that these runs are under optimal conditions to
maximize performance on these architectures. NVIDIA mixed pre-
cision is not identical to Graphcore mixed precision, but the most
comparable option available in this case. The results are similar to
those observed in our experiments with PyTorch. The runs match
NVIDIA’s published benchmarks for DGX-A100s. We see that the

IPUs performance is closer to that of A100 GPUs as opposed to the
NVIDIA T4 and RTX GPUs.

3.4 Custom Test Model on TensorFlow

Over the past decade, ML-based image compression algorithms have
achieved great improvement, surpassing standard codecs, JPEG,
JPEG2000, WebP, BGP in both visual quality and standard met-
rics. Computational cost, ease of use, and effective entropy models
are areas of active research. In this benchmark, a representative
image compression model that resembles an Autoencoder is cre-
ated. This model consists of residual blocks and one bottleneck. It
simplifies the architecture of the compression model, which has
many additional bottlenecks and compression mechanisms to quan-
tize the bottlenecks. Though simplified, the model maintains the
structure of the actual compression model. The model is built on



Benchmarking the Performance of Accelerators on National Cyberinfrastructure Resources for Artificial Intelligence /

Machine Learning Workloads

B Grace A100
B Expanse V100

LS6 A100

40000
= 30000
>
£
5 20000
o
=
o
3
= 10000
=

0 A j.l

Frontera DGX A100
B Graphcore IPU

2

PEARC 22, July 10-14, 2022, Boston, MA, USA

NGC DGX A100
Grace RTX 6000 [ Grace T4

4 8

Number of GPUs or pairs of I[PUs

Figure 2: Comparison of GPUs and IPUs on the ResNet 50 model in TensorFlow-1 with mixed precision. Scaling is similar for

GPUs and IPUs, with similar magnitude per-device.

Table 3: Performance data for scaling in IPU runs. Model was ResNet 50 with TensorFlow 1.

BN_span Batch size num- num-replicas  Total IPUs Throughput Training Time
instances (images/sec) (sec.)

1 2 1 1 1 786 1,948.5

1 4 1 1 1 1,181 1,297.3

1 8 1 1 1 1,608 952.8

1 14 1 1 1 1,884 813.0

1 16 1 1 1 2,030 754.5

1 18 1 1 1 2,033 753.6

1 20 1 1 1 2,130 719.4

2 20 1 2 2 3,895 393.4

2 20 2 4 4 7,804 196.4

2 20 4 8 8 15,274 99.7

2 20 8 16 16 30,170 50.5

2 20 32 64 64 107,535 11.8

IPU-TensorFlow 2.4 and trained on the MNIST dataset, to recon-
struct any given images. In essence, it is similar to the ResNet50
model and can run on both IPUs and GPUs, allowing for a fair com-
parison between the two hardware platforms. When training with
IPUs, the batch size is set to 10, because it is the maximum batch size
that the model can fit into IPUs’ internal memory. The performance
is determined by throughput, which is the total number of images
per second. We note that different training configurations lead to

different total number of training images, because the number of
images need to be preprocessed to be compatible with the set-up
of each model. To keep all values consistent, time spent on each
epoch is scaled to match the time spent on training the original
number of images, which is 70,000 images.

Results from these experiments are shown in Table 4. We find that
when using the same small batch size (10 samples/step), throughput
of the model trained on IPUs (around 3000 images/second) is much



PEARC °22, July 10-14, 2022, Boston, MA, USA

Abhinand Nasari et al.

Table 4: Performance of the representative model on the Mk2 IPU-POD16 and A100-GPUs

Hardware Platform Replicas (Devices) Micro batch size Time spent on 2nd epoch Throughput(images/second)
(seconds)

A100 GPU 2 512 8.1 8,642
A100 GPU 2 256 11.7 5,983
A100 GPU 2 128 21.8 3,211
A100 GPU 2 10 255.5 274

A100 GPU 1 10 259.0 270

Mk2-IPU 1 10 23.7 2,954
Mk2-IPU 2 10 13.5 5,185
Mk2-IPU 4 10 9.0 7,743
Mk2-IPU 8 10 6.3 11,052
Mk2-IPU 16 10 4.9 21,547

larger than the throughput of the other model trained on GPUs (270
images/second). In contrast, we see tremendous speed up on GPUs
as we increase the batch size. The reason behind this is that the IPUs
distribute workloads on tiles. The NVIDIA A100 has much larger
on-board memory, which means that it can handle a much larger
batch size. Particularly, the batch size of the GPU model can reach
512 samples/step. This leads to a great improvement in training
performance on the GPU, whose throughput is 8,642 images/second
at a batch size of 512. It is noted that the model is partially optimized
for the IPUs. In the case of the 16-IPU model, after implementing
the gradient accumulation method and distributed data loading
with Poprun, the throughput of the model increases from 14,000 to
around 21,500 images/second, offering almost linear scaling.

4 CONCLUSION

In this student-led study we successfully investigated the perfor-
mance of accelerators on several national CI resources. Working
with the project teams, we further queried the effect of batch size
on the throughput of AI/ML runs. In agreement with the expecta-
tions put forward by previous studies, we have observed that the
performance of ML workflows is highly sensitive to the distributed
workflow configuration. Future researchers need to carefully set
up the configuration to achieve optimal performance. A small devi-
ation from the optimal configuration can lead to a massive drop in
performance, to the point of wasted accelerator resources. Although
most optimization happens under the hood by the compilers, there
are a few knobs to tweak optimal performance. Usually, those can
be divided into optimizations for memory, communication, and
compute efficiency/speed but there is a lot of cross-interaction. We
find that increasing the batch size increases the memory pressure
and the amount of data that needs to be communicated, but most
importantly it usually improves hardware utilization and thus com-
putation on IPUs for smaller batch sizes and for GPUs on larger
batch sizes. Whereas the impact of batch size on throughput is
rather straightforward and easy to tune, the influence of the batch
size on accuracy is more subtle, and will be the subject of a future
study. With very small batches, the estimate of the gradient will be
too noisy and the algorithm might not converge, converge slowly,
or not reach a target accuracy. This is compensated on the IPU with
gradient accumulation. With very large batch sizes, a lot of data

needs to be processed before the weights get updated, which can
significantly slow down convergence and might require to actu-
ally work with smaller batch sizes and less hardware utilization,
especially when scaling applications. Hence, depending on the ap-
plication and settings at hand, IPU or GPU can be the preferred
choice depending on the requirements on the choice of the batch
size as well as the resulting throughput. It is thus vitally impor-
tant that the CI community provides consistent comprehensible
information to researchers interested in using accelerator resources.
Part of this is to ensure that the distribution frameworks provide
accurate configuration suggestions, and part of this is to maintain
a standard of benchmarking so that researchers can easily identify
poor quality results. Under the assumption that this information is
readily available, it is certain that most researchers would find that
IPUs or GPUs are of massive utility in their research. We note that
new GPU and IPU architectures would be available for both GPUs
and IPUs. Graphcore’s more recent BOW-POD 16 will be available
to researchers nationwide on the upcoming NSF ACES testbed.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (NSF)
award number 2112356 ACES - Accelerating Computing for Emerg-
ing Sciences, NSF award number 1925764 SWEETER - SouthWest
Expertise in Expanding, Training, Education and Research, NSF
award number 2019136 BRICCs - Building Innovation at Commu-
nity Colleges, NSF award number 2019129 FASTER - Fostering
Accelerated Scientific Transformations, Education, and Research,
Graphcore, staff at Texas A&M HPRC, Chris Peter Francis, and Dr.
Jian Tao. We would like to thank the University of Florida and Erik
Deumens for providing an allocation on the HiPerGator AI HPC
system.

REFERENCES

[1] Michael Lau, Stuti Trivedi, Zhenhua He, Tri Pham, Lisa Perez, and Dhruva Chakra-
vorty. 2021. Research Cloud Bazaar: A software defined cloud workflow cost
management tool. In Practice and Experience in Advanced Research Computing,
ACM, Boston MA USA, 1-4. DOLhttps://doi.org/10.1145/3437359.3465602

[2] Sara Hooker. 2020. The Hardware Lottery. arXiv:2009.06489 [cs] (September
2020). Retrieved February 16, 2022 from http://arxiv.org/abs/2009.06489

[3] Ray Kurzweil. 1990. The age of intelligent machines. MIT Press, Cambridge, Mass.

[4] K. Steinbuch and U. A. W. Piske. 1963. Learning matrices and their applications.
IEEE Trans. Electron. Comput. EC-12, 6 (December 1963), 846-862. DOLhttps:
//doi.org/10.1109/PGEC.1963.263588


https://doi.org/10.1145/3437359.3465602
arXiv:2009.06489
http://arxiv.org/abs/2009.06489
https://doi.org/10.1109/PGEC.1963.263588
https://doi.org/10.1109/PGEC.1963.263588

Benchmarking the Performance of Accelerators on National Cyberinfrastructure Resources for Artificial Intelligence /
Machine Learning Workloads

(5

[o
[10
[11

[12
[13

[14

[15

]

= =

]

]
]

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet classi-
fication with deep convolutional neural networks. Commun. ACM 60, 6 (May
2017), 84-90. DOLhttps://doi.org/10.1145/3065386

Martin Burtscher, Rupesh Nasre, and Keshav Pingali. 2012. A quantitative study of
irregular programs on GPUs. In 2012 IEEE International Symposium on Workload
Characterization (IISWC), IEEE, La Jolla, CA, USA, 141-151. DOLhttps://doi.org/
10.1109/IISWC.2012.6402918

D. Steinkraus, I. Buck, and P.Y. Simard. 2005. Using GPUs for machine learn-
ing algorithms. In Eighth International Conference on Document Analysis and
Recognition (ICDAR’05), IEEE, Seoul, South Korea, 1115-1120 Vol. 2. DOLhttps:
//doi.org/10.1109/ICDAR.2005.251

Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza. 2018.
Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking. arXiv:
1804.06826 [cs] (April 2018). Retrieved February 18, 2022 from http://arxiv.org/
abs/1804.06826

The Extreme Science and Engineering Discovery Environment (XSEDE). 2021.
Retrieved from https://www.xsede.org/

National Science Foundation. 2021. Retrieved from https://beta.nsf.gov/funding/
opportunities/cyberinfrastructure- sustained- scientific-innovation-cssi
COVID-19 HPC Consortium. 2021. Retrieved from https://covid19-hpc-
consortium.org/

National Science Foundation. 2021. Retrieved from https://www.cloudbank.org/
MLPerf, https://github.com/mlcommons/, 2022. The MLPerf name and logo
are trademarks of MLCommons Association in the United States and other
countries. All rights reserved. Unauthorized use is strictly prohibited. See
www.mlcommons.org for more information. Results reported are not verified by
the MLCommons™ Association.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), IEEE, Las Vegas, NV, USA, 770-778. DOLhttps:
//doi.org/10.1109/CVPR.2016.90

Mingxing Tan and Quoc V. Le. 2020. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. arXiv:1905.11946 [cs, stat] (September 2020).
Retrieved February 18, 2022 from http://arxiv.org/abs/1905.11946

(16]

(17]

[18

=
)

S
RS

[27]

PEARC 22, July 10-14, 2022, Boston, MA, USA

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv:
1704.04861 [cs] (April 2017). Retrieved February 18, 2022 from http://arxiv.org/
abs/1704.04861

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs] (May 2019). Retrieved February 18, 2022 from http://arxiv.
org/abs/1810.04805

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. 2017. On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima. arXiv:1609.04836 [cs, math] (February
2017). Retrieved February 16, 2022 from http://arxiv.org/abs/1609.04836
Dominic Masters and Carlo Luschi. 2018. Revisiting Small Batch Training for Deep
Neural Networks. arXiv:1804.07612 [cs, stat] (April 2018). Retrieved February 16,
2022 from http://arxiv.org/abs/1804.07612

NVIDIA. 2020. A100 40GB PCle Product Brief. (September 2020). Retrieved
from https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/
pdf/A100-PCIE-Prduct-Brief.pdf

NVIDIA. 2022. NVIDIA RTX. Retrieved from https://www.nvidia.com/en-us/
design-visualization/rtx/

NVIDIA. 2022. NGC catalog. Retrieved from https://catalog.ngc.nvidia.com/
containers

https://github.tamu.edu/HPRC/Graphcore_IPU_Benchmarks

TAMU HPRC Wiki. 2021. Retrieved Feb 18, 2022 from https://hprc.tamu.edu/wiki/
Graphcore documents. 2022. Retrieved Feb 18, 2022 from https://docs.graphcore.
ai/en/latest/

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander
C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
arXiv:1409.0575 [cs] (January 2015). Retrieved February 17, 2022 from http://
arxiv.org/abs/1409.0575

NVIDIA. 2022. NGC catalog. Retrieved from https://catalog.ngc.nvidia.com/
containers


https://doi.org/10.1145/3065386
https://doi.org/10.1109/IISWC.2012.6402918
https://doi.org/10.1109/IISWC.2012.6402918
https://doi.org/10.1109/ICDAR.2005.251
https://doi.org/10.1109/ICDAR.2005.251
arXiv:1804.06826
arXiv:1804.06826
http://arxiv.org/abs/1804.06826
http://arxiv.org/abs/1804.06826
https://www.xsede.org/
https://beta.nsf.gov/funding/opportunities/cyberinfrastructure-sustained-scientific-innovation-cssi
https://beta.nsf.gov/funding/opportunities/cyberinfrastructure-sustained-scientific-innovation-cssi
https://covid19-hpc-consortium.org/
https://covid19-hpc-consortium.org/
https://www.cloudbank.org/
https://github.com/mlcommons/
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
arXiv:1905.11946
http://arxiv.org/abs/1905.11946
arXiv:1704.04861
arXiv:1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
arXiv:1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
arXiv:1609.04836
http://arxiv.org/abs/1609.04836
arXiv:1804.07612
http://arxiv.org/abs/1804.07612
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/A100-PCIE-Prduct-Brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/A100-PCIE-Prduct-Brief.pdf
https://www.nvidia.com/en-us/design-visualization/rtx/
https://www.nvidia.com/en-us/design-visualization/rtx/
https://catalog.ngc.nvidia.com/containers
https://catalog.ngc.nvidia.com/containers
https://github.tamu.edu/HPRC/Graphcore_IPU_Benchmarks
https://hprc.tamu.edu/wiki/
https://docs.graphcore.ai/en/latest/
https://docs.graphcore.ai/en/latest/
arXiv:1409.0575
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://catalog.ngc.nvidia.com/containers
https://catalog.ngc.nvidia.com/containers

	Abstract
	1 INTRODUCTION
	2 METHODS
	2.1 Benchmarking
	2.2 Batch size
	2.3 Performing the calculations

	3 RESULTS
	3.1 PyTorch ResNet50 Scaling
	3.2 Additional PyTorch model results
	3.3 TensorFlow ResNet50 Scaling
	3.4 Custom Test Model on TensorFlow

	4 CONCLUSION
	Acknowledgments
	References

