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ABSTRACT

Communication over large-bandwidth millimeter wave (mmWave)

spectrum bands can provide high data rate, through utilizing high-

gain beamforming vectors (briefly, beams). Real-time tracking of

such beams, which is needed for supporting mobile users, can be

accomplished through developing machine learning (ML) models.

While computer simulations were used to show the success of such

ML models, experimental results are still limited. Consequently in

this paper, we verify the effectiveness of mmWave beam tracking

over the open-source COSMOS testbed. We particularly utilize a

multi-armed bandit (MAB) scheme, which follows reinforcement

learning (RL) approach. In our MAB-based beam tracking model,

the beam selection is modeled as an action, while the reward of the

algorithm is modeled through the link throughput. Experimental

results, conducted over the 60-GHz COSMOS-based mobile plat-

form, show that the MAB-based beam tracking learning model can

achieve almost 92% throughput compared to the Genie-aided beams

after a few learning samples.
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1 INTRODUCTION

Communication over Millimeter wave (mmWave) spectrum bands

can provide high data rate, thanks to their abundant bandwidth [1ś

3]. Such high data rate is crucial for many emerging applications,

over static or mobile networks, such as extended reality and self-

driving cars. However mmWave communication, with its frequency

bands of 30 GHz or more, suffers from the inherent large path-loss

at such high frequencies. To compensate for such large path-loss,

high-dimensional phased antenna arrays have been employed. The

directional alignment of these phased antenna arrays at both trans-

mitter and receiver can produce high power gain to compensate

for large path-loss [4ś6]. While such alignment of beamforming

vectors is possible for static communication nodes (i.e., transmitter,

receiver), it is much harder to be maintained for mobile users in-

cluding vehicles [7]. In particular, beamforming requires accurate

knowledge for pointing beams towards the receiver, which comes

at the cost of large overhead [8]. This is achievable for static or

slowly-changing environments but is difficult for fast-changing

environments, such as those in the vehicular context where the

UEs are dynamic [9]. Therefore, there is a need for real-time track-

ing of mmWave beamforming vectors (briefly, beams) in mobile

communication, and this is the scope of this paper.

Recently, mmWave beam tracking was addressed in the liter-

ature via either analytical approaches or machine learning (ML)

models. For example, beam tracking approaches using extended

Kalman filtering were proposed in [9, 10]. Furthermore, data detec-

tion was jointly considered with mmWave beam tracking in [11].

Beyond model-based analytical approaches, multiple ML models

have been proposed for mmWave beam tracking. For example, a

supervised deep learning (DL) model was employed in [12] for

mmWave mobile systems. Furthermore, a recurrent neural network

(RNN) was proposed in [13] to track the angle of arrival (AoA) at the

user equipment (UE). Moreover, a deep neural network (DNN) was

introduced in [14] to predict a user’s temporal channel behavior

using a long short term memory (LSTM) model.

In addition to supervised DL, multiple reinforcement learning

(RL) models were also proposed beam tracking in mmWave commu-

nications. For example, mmWave beam tracking for single-user was

considered in [15]. Going beyond a single user, we were able to de-

velop in [16] an RL model for simultaneously tracking the mmWave

beams for multiple UEs. While the aforementioned learning models

introduce novel beam tracking solutions, they were mostly verified
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via computer simulations or proprietary testbeds (e.g., in [15]). On

the contrary, there is a need to validate such mmWave beam track-

ing solutions on open-source and large-scale testbed, and this is the

experimentation gap addressed in this paper.

The National Science Foundation (NSF), through its Platforms for

AdvancedWireless Research (PAWR) program, is currently support-

ing a few open-source testbeds. Of particular interest in this paper

is the Cloud Enhanced Open Software Defined Mobile Wireless

Testbed for City-Scale Deployment (COSMOS) platform [17, 18].

The COSMOS platform supports mmWave communication and

can emulate multiple mobility scenarios, which can be remotely

controlled. Therefore, the goal of this paper is to design and vali-

date an RL model for mmWave beam tracking, using the COSMOS

platform.

In this paper, we propose an RL-basedmulti-armed bandit (MAB)

learning model to track the mmWave beams in the indoor COSMOS

platform, which is located in Rutgers University, New Jersey, USA.

In the COSMOS platform, two software-defined radio (SDR) kits

are used to represent two communication nodes, namely, a base

station and a UE. The UE is placed over a remotely-controlled XY-

table, which is used to randomly move the UE within the lab area.

The proposed MAB model aims to continuously find an adequate

beamforming vector for the moving UE, as it traverses the COSMOS

lab area. In doing so, the base station works as the MAB agent to

select the best beam.

TheMAB formulation is well suited algorithm for the exploration-

exploitation learning nature of RL models [19], as it can track the

changes in a mobile environment and adapt to them accordingly.

Moreover, Thompson Sampling (TS) [19] is considered for selecting

the best arms (i.e., beams) of the proposed MAB model. Through-

out the learning process, one arm is played by the MAB agent at

each time slot and an associated reward is observed. We model the

reward as the achievable throughput at the UE, which is computed

using the information-theoretic Shannon capacity formula taking

into account the received signal-to-noise ratio (SNR). Our experi-

mental results show that the proposed MAB model can successfully

track the best beams after a few time instants, and achieve 92% of

the genie-aided throughput, which always picks the optimal beam.

The rest of the paper is organized as follows. Section 2 introduces

the system model and describes how we formulate the beam se-

lection problem into an MAB one. Section 3 explains the proposed

MAB solution. The system setup and the experimental results are

discussed in Section 4. Finally, Section 5 concludes the paper.

2 SYSTEM MODEL AND PROBLEM
FORMULATION

In this section, we first describe the system model for beamforming

selection in mmWave mobile communications over the COSMOS

testbed. Then, we show the problem formulation of the beam track-

ing and its mapping into an MAB one.

2.1 System Model

We consider a downlink system with a base station sending data

packets to a mobile UE. This consideration can be applied to a vehic-

ular system, as illustrated in Fig. 1. While we fix the position of the

base station, the mobile UE moves along a random trajectory within

gNB

UE

Figure 1: An illustration of the considered network with a

base station serving a mobile UE.

the COSMOS testbed over the COSMOS XY-table. We asssume that

the base station has𝑀 antennas while the UE has a single antenna.

The 𝑀 × 1 complex channel vector between the base station and

the UE at a specific time slot 𝑡 is denoted as h𝑡 . We choose the

beamforming vectors from a fixed codebook F = {f1, f2, · · · , f𝑚},

where𝑚 indicates the maximum number of available beams in the

codebook. We assume a beamforming vector f𝑡 is selected at time

slot 𝑡 from the codebook F.

The received signal for a given time slot 𝑡 is modeled as

𝑦𝑡 = h
𝐻
𝑡 f𝑡 𝑥𝑡 +𝑤𝑡 , (1)

where 𝑥𝑡 is the transmitted signal at time 𝑡 with a transmission

power 𝑃 . The𝑤𝑡 term in (1) represents an additive white Gaussian

noise (AWGN) with zero-mean and variance 𝜎2. The received SNR

can be computed as,

SNR𝑡 =
𝑃 |h𝐻𝑡 f𝑡 |

2

𝜎2
. (2)

Finally, we apply the Shannon’s modified capacity formula to com-

pute the throughput at time slot 𝑡 as

𝐶𝑡 = 𝐵
𝑆𝑐

𝑆tot
log2 (1 + SNR𝑡 ) , (3)

where 𝐵 is the transmission bandwidth, and 𝑆𝑐 is the number of

subcarriers, for orthogonal frequency divisionmultiplexing (OFDM)

technology, used out of the total 𝑆tot subcarriers.

2.2 Problem Formulation

The problem can be formulated as maximizing the capacity given in

(3), over the𝑇 time slots. Consequently, the optimum beamforming

codeword, f∗𝑡 , is the one that maximizes the following optimization

formula

f
∗
𝑡 = argmax

f𝑡 ∈F

1

𝑇

𝑇
∑︁

𝑡=1

𝐵
𝑆𝑐

𝑆tot
log2

(

1 +
𝑃 |h𝐻𝑡 f𝑡 |

2

𝜎2

)

. (4)

Such problem is mapped into an MAB one by first modeling each

beamforming vector in codebook F as an arm of the MAB agent.

Therefore, selecting an action a𝑡 for any time 𝑡 refers to select-

ing the beamforming vector f𝑡 from codebook F by the proposed

MAB solution. Second, the observed reward, denoted as r𝑡 , for

any selected action a𝑡 (i.e., a codebook vector) is equivalent to the

throughput given in (3). These rewards are modeled as random
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samples from the selected beams underlying reward distribution.

Third, the proposed MAB solution based on TS algorithm, produces

a set of selected arms a𝑡 that are equivalent to the desired beams

f𝑡 , and their associated rewards r𝑡 are observed till 𝑡 = 𝑇 . The goal

of the proposed MAB model is to select the optimal beams that

maximize the expected time-average reward i.e., [ 1
𝑇

∑𝑇
𝑡=1 = r𝑡 ].

3 PROPOSED MULTI-ARMED BANDIT
LEARNING MODEL

The proposed MAB beam tracking scheme selects a beam based on

its prior knowledge from the past information. One arm is played by

the agent at each time slot 𝑡 and an associated reward is observed.

The algorithm uses this information about the reward to select the

beam in the next time slot 𝑡 + 1.

Algorithm 1: Thompson sampling based MAB

for 𝑡 = 1 to 𝑇 do

for any beam 𝑏 in F do

// Choose and apply action

Select action a𝑡 based on {𝛼1, 𝛼2, · · · , 𝛼𝑚};

for action a𝑡 observe reward r𝑡 do

// Update distributions

for 𝑏 ∈ 𝑭 do

if a𝑡 = 𝑏 then
𝛼𝑏,𝑡+1 ← 𝛾1𝛼𝑏,𝑡 + 𝛾2r𝑡

else if a𝑡 ≠ 𝑏 and max{𝛾1𝛼𝑏,𝑡 } > 1 then
𝛼𝑏,𝑡+1 ← 𝛾1𝛼𝑏,𝑡

else
𝛼𝑏,𝑡+1 ← 1

Since we consider a mobile environment, assuming fixed knowl-

edge about the beams associated rewardwill result in lower capacity.

Therefore, we need an update of each beams reward. We employ TS,

which is a Bayesian inference algorithm [19], to update the knowl-

edge about the beams associated reward according to [15, 16]. TS

is a posterior sampling technique that requires a suitable prior to

represent the knowledge of an arm’s reward before making an ob-

servation. The main idea is to choose an arm based on its probability

of being the best arm.

We apply Dirichlet distribution [20] to model the Bayesian prior

of the expected reward for each selected arm. The base station

selects a beam based on the reward distribution of each arm from

a knowledge distribution set {𝛼1, 𝛼2, . . . , 𝛼𝑚}, and observes an as-

sociated reward from the reward distribution set {𝜽 1, 𝜽 2, . . . , 𝜽𝑚}.

We assume a feedback link is available that passes the information

about the observed reward to the base station. The base station

continues to apply the Bayesian inference based on the feedback to

update its knowledge of each arm’s mean reward until time 𝑡 = 𝑇 .

In other words, the base station continuously explores for the best

beam and exploits based on its past learning from the feedback,

thus balancing the exploration/exploitation trade-off. The optimal

reward for any time slot 𝑡 is achieved when the selected action a
∗
𝑡

is equivalent to the optimal codeword f
∗
𝑡 in (4).

Table 1: Parameters

Parameter Value

No. of codebook beams 16

Tx Antenna M layout (𝜆/2) 16 × 4

Operating Frequency 60GHz

Bandwidth (BW) 983MHz

Used subcarriers (𝑆𝑐 ) 800

Total subcarriers (𝑆tot) 1024

Noise figure 7 dB

No. of time slots 1024

Forget factor (𝛾1) 0.3

Boost factor (𝛾2) 12

Furthermore, we need to keep in mind that we want the algo-

rithm to always keep exploring to meet the dynamic vehicular

demand. To accomplish this, we introduce a łforget" factor 𝛾1, that

ignores the relevance from past occurrences and a łboost" factor

𝛾2, that increases the impact of the most recent observations to

account for the non-stationary behaviour [15]. This makes our pro-

posed MAB algorithm adaptive that keeps track of the changes in a

mobile environment. The proposed TS based MAB algorithm for

beam selection considering a mobile user is given in Algorithm 1.

4 PERFORMANCE EVALUATION

In this section, we describe the experimental results of our proposed

MAB model for beam selection in COSMOS testbed.

4.1 Experimental Setup

In [21], the authors describe the mmWave capabilities of the COS-

MOS testbed and the available open-source tutorials [22]. In this

work, we use the resources of the benchtop mmWave setup of

COSMOS-sb1. More specifically, we use a Xilinx RFSoC evaluation

board connected to a Sivers IMA 57−64GHz transceiver. Each array

is on top of an XY table, enabling movement along the X and Y-axis

and rotation around Z-axis. At the transmitter, we select 16 beams

evenly spread from -45 to 45 degrees, while on the receiver, we

select the beam pointing at 0 degrees. The UE moves at a random

location on the X-Y plane at each time step, while the base sta-

tion remains at a specific location throughout the experiment. The

movement of the considered UE is limited by the XY table, which is

1.3m long. The UE requires around 3.6 seconds to cover this length.

The distance between the transmitter and the UE is approximately

20m, according to the COSMOS lab setup. To calibrate the arrays,

we follow the techniques developed by the authors in [23, 24]. To

estimate the received signal strength, we use a frequency-domain

channel sounder. The transmitter repeats a sequence with cyclic

repeat while the receiver performs correlation for each sequence

to collect the power delay profile from every direction. We provide

the implementation as open-source in [25].

Several benchmarks are considered for comparison to our pro-

posed solution. The Genie-aided solution is equivalent to an opti-

mal scheme that always selects the best beam resulting in highest

capacity. This scheme is considered as the upper bound for our

MAB-based RL model. The static oracle is the other considered

benchmark that conducts an exhaustive search to find the optimal
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Figure 2: Achievable throughput versus group of time slots

(16 × 4 phased array).

codeword at the beginning of each phase and continues to pick that

particular codeword until the next scan. This scheme is equivalent

to what is proposed for beam tracking in 5G NR, i.e., using the

same beam until the next scan [15]. Lastly, the random selection is

considered as the lower bound that has no prior knowledge of the

beam quality and arbitrarily selects one at each time instance. The

parameters considered for our experiment are given in Table 1.

4.2 Experimental Results

Fig. 2 shows the performance of the proposed MAB beam selection

model with comparison to the other benchmarks. We consider 1024

time slots, each of which are approximately 3.5 ms long. We parti-

tion the available time slots into small groups of 100 instances, and

average over each of them to evaluate the throughput performance.

As shown in Fig. 2, the proposed MAB model can achieve a higher

throughput than the static oracle and random selection benchmarks,

thanks to its accurate learning capability of the best beams. This is

because, unlike our MAB beam selection model, the static oracle or

the random selection benchmark cannot track the optimal beams at

every time slot and hence, achieves lower throughput. In addition,

our proposed MAB beam selection scheme achieves a throughput

of 700 Mb/s, which is 92% compared to the capacity of 760 Mb/s

achieved by the Genie aided solution.

Fig. 2 also shows that it takes a few iterations (i.e, 4 groups of time

slots) before the accomplished throughput starts to be monotoni-

cally increasing. This is an indication that the MAB-based learning

model takes a few iterations to learn the dynamic environment

and allocates the mmWave beamforming vectors accordingly. The

random selection lower bound performs worst as it has no prior

knowledge of the good beams and arbitrarily picks one at each time

instance.

Fig. 3 shows the selected beam index by our proposed MAB

solution approach for the given time slots. As shown in Fig. 3, the

15-th beam index is selected more frequently until the 550-th time

slot due to its high associated reward. However, as the UE moves

0 100 200 300 400 500 600 700 800 900 1000 1100

Time Slot

0

2

4

6

8

10

12

14

16

18

20

S
e
le

c
te

d
 b

e
a
m

 i
n

d
e
x
 (

1
-1

6
)

Figure 3: Selected beam index for proposed Thompson sam-

pling based MAB scheme.
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Figure 4: Achievable throughput at each time slot (16 × 4

phased array).

and the reward associated with 15-th beam index deteriorates, the

algorithm responses to the environmental change by selecting beam

index 1 for most of the remaining time slots. Also, there are some

instances when the proposed scheme selects some other beams,

such as 6-th beam index at 184-th time slot, 9-th beam index at

500-th time slot and 8-th beam index at 920-th time slot. This is a

key feature of the considered TS method, demonstrating that while

beams with currently high predicted rewards are more likely to

be chosen, other beams may also be explored at some instances,

even if they have a lower associated reward i.e., exploration versus

exploitation.

The impact of selecting such beams with lower associated reward

is demonstrated in Fig. 4, where we show the throughput achieved

at every time slot by the proposed MAB model. The lower spikes

produced by our MAB approach at some instances indicate that
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a less significant throughput was achieved due to the selection of

beams which are not optimal for those locations. Nonetheless, over

90% of occurrences indicate a high throughput, implying that the

proposed beam tracking model can select the good beams more

often due to its improved learning accuracy.

5 CONCLUSIONS AND FUTUREWORK

In this paper, we have proposed a multi-armed bandit learning

model for tracking of mmWave bramforming vectors in mobile

environment. The proposed model was experimentally evaluated

using the mmWave COSMOS lab. The proposed MAB beam track-

ing model applies Thompson sampling to select the best beam that

maximizes the capacity for a mobile user. Experimental results vali-

dated the efficacy of the proposed model with comparison to other

benchmarks. We have shown that the proposed learning model

provides 92% of the data rate achieved by a Genie-aided benchmark

within a few learning iterations. The solution was applied for a

single-user scenario considering two SDRs, where one acted as the

base station and the other as the UE. Considering multiple dynamic

UEs for beam tracking in mmWave COSMOS environment is a

future work of this paper.
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