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Abstract—This paper presents a neural-network based self-

learning mechanism for improving the performance of model 

predictive control (MPC). Model parameters mismatch in MPC 

can occur due to manufacturing variance, temperature variance, 

component aging, loading condition or other sources. Model 

uncertainties decreases the overall efficiency of the MPC leading 

to non-optimal switching sequence generation. To mitigate 

mismatch, this paper proposes an artificial intelligence (AI) 

scheme to provide model parameter healing in real-time. Two AI 

approaches are evaluated. The first approach is a classification 

two-steps network, and the second approach is a model 

adaptation network. Fine tree and feedforward neural networks 

are trained to implement these layers. The proposed neural 

network schemes are verified to correct for mismatch, then 

compared to each other to find the optimal solution for a grid-

interactive inverter. Several case studies provided to validate the 

theoretical expectations. 
 

Index Terms— model predictive control, machine learning, 

artificial intelligence, smart inverter, self-healing control.  

I. INTRODUCTION  

Advancements in computational processing power in the 
last decade enabled model-based controllers with online 
optimization such as model predictive control (MPC). Recent 
studies in academia and industry demonstrates superiority of 
MPC over classical control such as fast dynamic response, 
elimination of tuning effort and the simple inclusion of 
constrains [1, 2]. For instance, in comparison to proportional-
resonant control (PR) and other classical control methods for 
power electronic interfaces, MPC demonstrates superior 
performance with minimal tuning [3-6]. Among different MPC 
categories, finite-set MPC (FS-MPC) features such as online 
optimization can improve the dynamic performance and 
minimize tracking error which can eventually improve the 
resiliency of power electronic systems [7, 8].  
 The primary feature of MPC is that it uses a model of the 
system to predict the future behavior of the control objectives 
for each potential switching state of a power converter. For 
proper operation and prediction of control variables, MPC 
requires accurate values of system parameters, such as filter 
inductance. Additionally, for a grid-interactive inverter 
application, other external variables such as ambient 
temperature, aging, and magnetic saturation might create 
changes in the model impedance parameters, resulting in a 

mismatch and causing an imperfect prediction of control 
variables for MPC cost function that determines the optimal 
switching sequences [9, 10]. The impact of model parameter 
mismatch in power electronics applications has been 
empirically investigated in the literature by looking at inverter 
behavior under various condition and assessing the power 
quality [11]. In [11], an auto-tune heuristic algorithm is 
implemented  used to fine-tune the parameters of the model, 
[12] has implemented robust MPC algorithm with parallel 
compensation terms against multi-parameter mismatches. An 
advanced state observer is developed in [13]  to estimate 
interference caused by model parameter mismatches, and 
mitigated the impact with a feedforward loop. In [14], the 
effects of model parameter uncertainty on prediction error have 
been investigated, but no solutions for mitigating the model 
parameter mismatch problem have been proposed. The authors 
in [15] proposed a predictive controller based on parameter 
estimation instead of a pre-defined model, and [16] considers 
an algorithm for online parameter identification of inductance 
and flux linkage of motor. These approaches improve the MPC 
performance, but the main drawbacks are accuracy of detecting 
the mismatch and needed correction. 

This paper proposes a data-driven approach coupled with 
MPC for realization of a highly accurate model parameter 
mismatch detection and self-healing process without 
requirement of an additional control loop or complex 
computation. Two artificial intelligence (AI) methods are 
investigated for tackling the stated problem in grid-interactive 
inverter applications. The first approach is a one-network 
scheme which utilizes a feedforward neural network as a model 
adaptation network to find the extent of mismatch. The second 
approach is a two-networks scheme, which consists of a 
classification network, followed by the model adaptation 
network. Both feedforward network and fine tree classification 
network topologies are investigated in this paper. When it 
detects mismatch, the model adaptation network is executed. 
The model adaptation network is integrated with a neural 
network approach through a healing factor,  𝐿∆, for adapting the 
model during the optimization. The objective of the healing 
factor 𝐿∆ is to mitigate the mismatch between the model value 
and the actual filter inductance, which is an uncertainty in 
model due to a variety of external agents including ambient 
temperature, component aging, and magnetic saturation. The 
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proposed control mitigates the impact of model parameter 
mismatch on power quality and tracking error.  

The remainder of this paper is structured as follows; Section 
II covers the mathematical derivation of MPC as a groundwork 
for the proposed control scheme, Section III details the network 
training and generation, Section IV covers case studies 
demonstrating the impact of the proposed approach for 
improving the MPC performance, and Section V concludes the 
paper. 

II. GROUND WORK OF MODEL PREDICTIVE CONTROL 

An overview of the illustrated control is presented in Fig. 1. 
The inverter is interfaced with an inductor L. The grid angle is 
detected, and the reference is split to the 𝛼𝛽-framework using a 
phase locked loop (PLL) with a second order generalized 
integrator (SOGI)-based orthogonal signal generator (OSG). A 
more detailed explanation of the MPC derivation is found in [8, 
17], this section provides a brief overview of MPC formulation. 

The reference current is constructed in the dq framework as, 

where 𝑃𝑘
𝑟𝑒𝑓

 and 𝑄𝑘
𝑟𝑒𝑓

 are active and reactive power, 𝑒𝑑,𝑘 and 

𝑒𝑞,𝑘 are the grid voltage, and 𝑖𝑑 and 𝑖𝑞 are the decoupled current 

components in the rotating frame. The dynamic model of the L 
filter is given by,  
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where 𝑣𝑖𝑛𝑣 is the bridge voltage of the inverter and 𝑒𝑜 is the grid 

voltage, 𝐿 is the learned filter inductance which will be defined 

later and 𝑅𝐸𝑆𝑅 is the equivalent series resistance. The Euler 

forward method is applied to the discretize (2) and predict the 

current one-step ahead in horizon of time as following, 
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where 𝑖𝑘+1 is the one step ahead prediction of the current, and 

𝑇𝑠 is the sampling time. To detect mismatch, the value of L 

used in (3) is defined as 

fL L L= +  (4) 

where Lf is the modeled inductance value, and 𝐿∆ is the 

predicted mismatch between the modeled value and actual 

values. Lf is immutable, while 𝐿∆ is the healing factor which is 

adaptively changed based on the neural network approach 

detailed in Section III. 

Finally, a cost function is constructed to determine the 

optimal switching sequence and tracking the desired grid 

current,  

1

ref

k kJ i i += −  (5) 

III. NETWORK TRAINING AND GENERATION 

A. Training Data Collection 

Two neural network approaches are used and compared in 

this paper. The first approach is a classification network; the 

second approach is a model adaptation network. The 

classification network determines if there is mismatch in the 

filter. When using the classification network, if model 

mismatch is detected, the output of the classification network 

activates the model adaptation network to adjust 𝐿∆. Thus, 

when using the classification network, a two-network 

approach is used to adjust mismatch. Conversely, the other 
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Fig. 1. Proposed self-learning MPC for grid-interactive inverters with disturbance mitigation capability. Two different network approaches are studied in this 

paper: A shows the one-network network which utilizes the model adaptation network every 5 kHz, thus adjusting 𝐿∆ regardless of potential mismatch. The 

second approach B is the two-network network which only runs the model adaptation network when the classification network indicates there is mismatch. 

Therefore, only the classification network is guaranteed to operate every 5 kHz. 



neural network proposed consists only of the model adaptation 

network. The model adaptation network is a neural network 

which determines the healing factor for the system. Thus, to 

adjust the network this model adaptation network is 

mandatory. This paper determines whether the classification 

network provides utility. It will benefit the system if it prevents 

the model adaptation network from executing when mismatch 

is negligible. If not, only the model adaptation network is 

needed. 

 To initiate the neural network training process, data must 

be collected to train the system. MATLAB/Simulink is used 

for all data collection and simulations in this training process. 

The data is collected by executing the system of Fig. 1 at 

several values of L. By varying L, the training network can 

adapt to whichever filter size is needed by the system designer. 

Model mismatch is intentionally created in the training data set 

by iteratively changing the percent error mismatch needed in 

L. This intentional mismatch is pivotal as it allows the neural 

network to have enough data for accurate determination of a 

change in the filter inductance. For the iterative process, L is 

varied from 0 to 5 mH in 0.5 mH increments. This is equivalent 

to Lf  in (4). Then, mismatch is created by altering the actual 

filter inductance by a certain percentage of the L value. This 

value is again iteratively changed from 50% to 150% of the 

initial value in 10% increments. This is equivalent to 𝐿∆ in (4). 

The system is simulated, and data is sampled at rate of 5kHz to 

generate the training data for the system. The system dc-bus 

voltage is Vdc=200V, active and reactive power references are 

𝑃𝑘
𝑟𝑒𝑓

= 3kW, 𝑄𝑘
𝑟𝑒𝑓

 =0 var, and the grid voltage is 120 Vrms. At 

each sampling instant k, the following variables are collected 

to fill out the array INP, 
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where err(k) is the mean square current tracking error, Vdc(k) 

is the dc-link voltage, eo(k) is the voltage at the point of 

common coupling, 
refi (k) is the reference current , iL(k) is the 

measured inductor current, err(k) is the mean square current 

tracking error between 
refi (k) and iL(k), and Lf (k) is the 

reference model inductance. eo(k-1) and iL(k-1) are the 

previous voltage and current measurements, respectfully. The 

result of each data sample is a 1x8 array, the neural network 

training input. The classification training data will have an 

output value of either 0 or 1 indicating a logic LOW or HIGH. 

A HIGH value denotes there is no mismatch, and the system is 

operating properly, while and LOW indicates there is 

mismatch to be corrected. The model adaptation training data 

likewise has a single output value per sample indicating the 

value of 𝐿∆. These data are divided into training, verification, 

and testing data with ratio of 70%, 15%, and 15% respectfully. 

Two neural network approaches are trained to determine 

which is more accurate for classification data. One deep 

learning approach, the fine tree classification network, and 

another a shallow learning approach, a feedforward artificial 

neural network.  

B. Classification Network Training 

The fine tree classification network creates a decision tree 

which uses weighted values to determine the next branch for 

each input [18]. Classification is determined when an input 

reaches the terminal node of the tree, each of which is assigned 

to a specific class. These weights are determined by the neural 

network training process. The fine tree classification network 

has an advantage as a tree’s asymmetry can lead to quick 

classification of well-known decision paths, and only use 

longer paths for features which require the extra computation. 

The fine tree approach is compared to the shallow neural 

network approach. A shallow neural network consists of an 

input layer, several intermediate hidden layers, and an output 

layer. Simplified diagrams of a fine tree classification network 

and shallow neural network are illustrated in Fig. 1. 

In the fine tree classification network, the relevant 

hyperparameter is the number of decision nodes given in the 

tree. The MATLAB Deep Learning Toolbox is used to 

determine the weights of each split and the only variable 

hyperparameter is the number of decision nodes. For the 

shallow neural network, the hyperparameters adjusted are the 

number of hidden layers and the number of neurons per layer. 

These hyperparameters were determined heuristically to see 

the effect on accuracy, and the MATLAB ‘train()’ command is 

used to train the neural network. The hyperparameters chosen 

and the accuracy of each result are in Table I for the fine tree 

classification and Table II for the shallow neural network. The 

tree classification accuracy struggles to achieve accuracy 

beyond 64.6% as shown in the confusion matrix in Fig. 2a. 

Only marginal improvements are observed as the number of 

 

Fig. 2 Best confusion matrix of the (a) fine tree and (b) shallow 

neural network classification networks. The “1” class indicates no 

mismatch and “0” indicates mismatch. The green squares 

indicated the correct classifications, while red squares are 

incorrect classifications. By adding the correct classifications, the 

total accuracy is recorded as 64.6% in (a), 72.6% in (b) 

TABLE. I: FINE TREE CLASSIFICATION ACCURACY 
Maximum Number of Splits Accuracy 

8 59.7% 

16 61.2% 

32 63.0% 

64 64.6% 

 



splits increases exponentially. On the other hand, the shallow 

neural network classification can outperform the fine tree 

classification across almost all hyperparameters chosen. The 

neural network classification accuracy tends to increase as the 

number of neurons increases as well as when the number of 

hidden layers increases. Thus, the best classification network 

scheme is the classification network with three hidden layers 

consisting of 16 neurons in layer one, 32 neurons in layer two, 

and 16 neurons in layer three. These results in a classification 

accuracy of 72.63% and yields the confusion matrix shown in 

Fig. 2b.  

C. Model Adaptation Network Training 

As the shallow neural network consistently performed 

better than the fine tree network in the training process for the 

classification network, only the shallow neural network is 

considered for the model adaptation network. The testing data 

used matches the training data acquired from Section III-A. 

However, instead of a Boolean output, the neural network 

outputs the estimated value for the healing factor 𝐿∆. Thus, 

instead of determining a new value for L, the model mismatch 

detection network is designed to simply add or subtract 𝐿∆ 

from Lf and use it in determining the cost function (5). The 

mismatch is corrected using this method without complex 

algorithms and computationally heavy heuristic approaches. 

This allows the proposed mismatched detection method to be 

used in any MPC controller with minimal invasion. 

The ‘train()’ command is used in MATLAB to determine 

the optimal hyperparameters for the shallow neural network. 

The input data for each instant is the array INP and the output 

datum is 𝐿∆. The hyperparameters considered for this training 

network are the same as the shallow neural network in the 

Section III-B. The maximum number of neurons considered, 

64, is chosen to minimize the total training time. More neurons 

could be considered for training, should designers substantially 

increase training time or processing power. Additionally, the 

number of layers and  number of neurons per layer  could be 

fine tuned to include more configurations. However, 

expanding the number of layouts increases the total training 

time. Hyperparameter optimization methods [19] may be used 

to find maximally optimal hyperparameters efficiently, but 

determining them though these methods is beyond the scope of 

this paper.  

Defining accuracy for the model adaptation network is 

more complicated than for the classification network. This is 

because each classification prediction is either correct or 

incorrect, as the data is Boolean. However, for the model 

adaptation network, each prediction will have some error 

compared to the actual value. The determination of the most 

accurate model adaptation network is therefore determined as 

the number of predictions within a determined accuracy range. 

This is visualized by plotting the histogram of the predictions 

as a percentage error of the actual value, as it is demonstrated 

in Fig. 3. The predetermined accuracy range is the tolerance 

band between the black lines and the number of values in this 

band are considered accurate. So, whichever neural network 

has the most samples between these values is considered the 

most accurate. For this work, 2% error above or below the 

actual inductance value is considered acceptable. So, the neural 

networks are trained based on the hyperparameters listed in 

Table III and the accuracy shown is the percentage of the 

testing data with 2% or lower error. From these results, it is 

again observed that the 3-layers, 16, 32, 16 neuron 

configuration yields the most accurate neural network with 

85.11% of testing data within the tolerance band. Fig. 4a shows 

the histogram of this neural network, displaying the error bins 

between -5% and 5% testing error. The mean of the data set is 

0.444, while the standard deviation is unexpectedly high at 8.3. 

The high standard deviation appears to occur because of a 

small number of incredibly high outliers in the prediction. Fig. 

4b shows the histogram of the entire span of the prediction 

network, vertically scaled to only show the first few instances. 

The most error-prone bins go as low as a -80% error to a 100% 

error. Few predictions are highly inaccurate as demonstrated 

by the high number of bins within the tolerance bands. These 

outliers cause the standard deviation to exceed 2%, where it 

would be expected to be since more than 68% of data values 

are within this variance band. So, while it cannot be assumed 

this data set follows the normal distribution, the high number 

of values within the tolerance band indicate practical 

applications of the neural network are achievable. 

IV. SIMULATION AND RESULTS 

A. One-network and Two-networkComparison 

Practical applications of the neural network mismatch 

approach are examined through two case studies. The first case 

TABLE. II: NEURAL NETWORK CLASSIFICATION ACCURACY 

Hidden Layers Neuron Configuration Accuracy 

1 8 60.52% 

1 16 61.11% 

1 32 62.55% 

1 64 59.56% 

2 6, 2 58.46% 

2 12, 4 60.45% 

2 24, 8 62.75% 

2 48, 16 62.79% 

3 2, 4, 2 59.85% 

3 4, 8, 4 60.87% 

3 8, 16, 8 64.13% 

3 16, 32, 16 72.63% 

 
TABLE. III: MODEL ADAPTATION NETWORK ACCURACY 

Hidden Layers Neuron Configuration Accuracy 

1 8 7.60% 

1 16 14.27% 

1 32 12.97% 

1 64 11.46% 

2 6, 2 7.92% 

2 12, 4 28.70% 

2 24, 8 1.205 

2 48, 16 2.77% 

3 2, 4, 2 8.23% 

3 4, 8, 4 57.23% 

3 8, 16, 8 80.77% 

3 16, 32, 16 85.11% 

 



study will only consider the model adaptation neural network, 

while in the second, the classification network is used in 

conjunction with the model adaptation network. In the single 

neural network approach, the model adaptation network is 

executed at a set rate of 5 kHz. The MPC operates at 50 kHz. 

Thus, the entire neural network is executed at 5 kHz regardless 

of parameter mismatch. To filter out the high outliers 

mentioned in Section III, a moving average block is used to 

prevent false increases of the healing factor. In this case study, 

the proposed approach is tested first to a single step change in 

L. In this instance L increases from 2mH to 3.5 mH, so the 

expected 𝐿∆ increases from 0 to 1.5 mH at time 0.5s. The 

results of the case study are in Fig. 5. This case study is 

repeated for the two-network approach and the response is 

captured in Fig. 6. Like the one-network approach, this 

approach is also able to adjust the value of 𝐿∆ with a near 

identical response and accuracy. When combining the two-

network, near identical results are realized from the system 

response. 

Crucially, the similarity of the two responses indicates the 

classification network is not adding sufficient utility to the 

network. To examine this cause, the output of the classification 

network during the step change is recorded in Fig. 7. The 

classification is predicting false negatives and positives which 

result in the model updating both when the mismatch is zero 

and not triggering when there is mismatch. Because of 

classification inaccuracy, the system response updates the 

healing factor almost every sampling instance. Thus, it is 

essentially the single network approach but with an increased 

computational burden.  

To verify if there is substantial difference between the 

approaches in other operating conditions, the mismatch study 

is expanded to test the entire range of mismatch percentage 

from the training set. Thus, an initial Lf value of 2 mH, the 

actual 𝐿 is varied from 1mH to 3mH in 0.2mH intervals. Each 

mismatch scenario is executed for duration of 1s to allow 

sufficient time for 𝐿∆ to be determined and an average error 

calculated. The resulting accuracy is the mean percentage error 

between the estimated L and the actual value L in that scenario. 

This process is executed twice, with the one-network and again 

for the two-network configuration. The results are recorded in 

Table IV. The two-network response is more accurate in six 

scenarios, while the one-network approach is best in five 

scenarios. There are some situations where the two-network 

approach is superior, particularly for lower values of 𝐿∆. 

However, at an accuracy rate of 72%, the model adaptation 

network is still running most of the time, meaning a higher 

computational burden presents for only slight accuracy gains 

in a small range of operating conditions. Therefore, with the 

reported accuracy of the classification network, it is suggested 

the best approach is to use only the model adaptation network. 

A two-network scheme needs to increase classification 

accuracy before practical implementation. 

B. Power Quality Analysis and Proposed Control 

Performance 

The impact of the proposed self-learning MPC on power 

quality is evaluated next. In this case study, the one-network 

 
Fig. 3 Example histogram to demonstrate the tolerance band which is 

acceptable in the model adaptation neural network. The accuracy of the 

neural network is defined as the total percentage of instances which fall 

within the tolerance band which is ±2% 

 
(a) 

 
(b) 

Fig. 4 Histogram of best Model Adaptation Network (a) demonstrating 

the error bins from -5% to 5% error, which shows most of the prediction 

mismatch and that 85.1% of results are within the 2% tolerance band (b) 

the entire span of the histogram showing a small percentages of very large 

prediction errors skew the standard deviation, however they do not affect 

the practical applications of the neural network. 

TABLE. IV: MODEL ADAPTATION NETWORK ACCURACY 

Lf (mH) One-network Error Two-network Error 

1.0 12.60% 10.70% 

1.2 6.25% 5.17% 

1.4 5.57% 5.50% 

1.6 3.69% 2.81% 

1.8 1.56% 1.78% 

2.0 1.45% 1.60% 

2.2 0.36% 0.32% 

2.4 0.42% 0.46% 

2.6 -0.19% -0.27% 

2.8 -0.25% -0.21% 

3.0 -0.57% -0.60% 

 



approach is used to show the system adaptation from an 

inductance mismatch where Lf= 2mH and L= 6mH. The model 

adaptation model is initialized at t=1s. In Fig. 8a, the resulting 

waveform is shown when the adaptation is made. The 

predicted inductance increases to 5.981mH, a prediction error 

of -0.32%. Fig.8b provides a close view of the injected current 

immediately before and after mismatch correction. Fig. 9a 

provides the frequency spectrum before the correction, and 

Fig. 9b afterwards. The mismatch mitigation provided by the 

neural network results in a THD improvement from 4.09% to 

2.58%, verifying improved conditions when implementing the 

proposed scheme.  

V. CONCLUSION 

This paper presented a self-learning MPC to tackle the 
model parameters imperfection and their impacts on the 
controller performance, thereby maximizing the superiority of 
MPC in comparison to classical control schemes for power 

electronics interfaces. The proposed model parameter 
mismatch detection method can accurately predict the value of 
a defined healing factor 𝐿∆ and utilizes it in model predictive 
control. This novel mismatch approach uses neural networks 
trained to detect changes to the system parameters which 
indicate filter mismatch. Two neural network classification 

 
(a) 

 
(b) 

Fig. 8 (a) Waveforms of grid-tied inverter before and after the one-network 

model adaptation network is implemented. At to=1s the neural network 

adaptation network updates the model inductance which results in the 

mismatch percentage dropping from 66% to 0.32% (b) close-up of current 

waveform showing the improved waveform after t0 

 
(a) 

 
(b) 

Fig. 9 Frequency analysis of the injected currant (a) before the mismatch 

detection and healing activation (conventional MPC) (b) after detection 

and self-healing triggered (proposed self-learning MPC). THD is reduced 

from 4.09% to 2.58% 
 

 
 

Fig. 5 The response of the one-network prediction where L increases 1.5 

mH at time 0.5 seconds. Mismatch error is 0.60% 

 
Fig. 6 The response of the two-network prediction where L increases 1.5 

mH at time 0.5 seconds. Mismatch error is 0.57% 

 
Fig. 7 Output of the classification network during the two-network 

scheme in Fig. 6. The inability of the mismatch scheme to have accuracy 

higher than the model adaptation network implies that it operates near 

identically to the one-network scheme. 



techniques, fine tree classification and shallow neural network, 
are used to determine if there is an error and another 
feedforward network adapts the model when this classification 
occurs. Both approaches are evaluated for the application in 
hand. While both can adapt to the change in inductance, it is 
recommended that only the model adaptation network is used 
unless classification accuracy can match or exceed the 
accuracy of the model adaptation network, as the large number 
of false positives lead to the classification network triggering 
the model adaptation network most sampling instances. The 
system is verified with a frequency spectrum analysis which 
demonstrates the mismatch correction improves THD of 
injected grid current from 4.09% to 2.58% when MPC 
experiences uncertainties in model parameters.  
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