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Abstract—This paper presents a neural-network based self-
learning mechanism for improving the performance of model
predictive control (MPC). Model parameters mismatch in MPC
can occur due to manufacturing variance, temperature variance,
component aging, loading condition or other sources. Model
uncertainties decreases the overall efficiency of the MPC leading
to non-optimal switching sequence generation. To mitigate
mismatch, this paper proposes an artificial intelligence (AI)
scheme to provide model parameter healing in real-time. Two Al
approaches are evaluated. The first approach is a classification
two-steps network, and the second approach is a model
adaptation network. Fine tree and feedforward neural networks
are trained to implement these layers. The proposed neural
network schemes are verified to correct for mismatch, then
compared to each other to find the optimal solution for a grid-
interactive inverter. Several case studies provided to validate the
theoretical expectations.

Index Terms— model predictive control, machine learning,
artificial intelligence, smart inverter, self-healing control.

I. INTRODUCTION

Advancements in computational processing power in the
last decade enabled model-based controllers with online
optimization such as model predictive control (MPC). Recent
studies in academia and industry demonstrates superiority of
MPC over classical control such as fast dynamic response,
elimination of tuning effort and the simple inclusion of
constrains [1, 2]. For instance, in comparison to proportional-
resonant control (PR) and other classical control methods for
power electronic interfaces, MPC demonstrates superior
performance with minimal tuning [3-6]. Among different MPC
categories, finite-set MPC (FS-MPC) features such as online
optimization can improve the dynamic performance and
minimize tracking error which can eventually improve the
resiliency of power electronic systems [7, 8].

The primary feature of MPC is that it uses a model of the
system to predict the future behavior of the control objectives
for each potential switching state of a power converter. For
proper operation and prediction of control variables, MPC
requires accurate values of system parameters, such as filter
inductance. Additionally, for a grid-interactive inverter
application, other external variables such as ambient
temperature, aging, and magnetic saturation might create
changes in the model impedance parameters, resulting in a

mismatch and causing an imperfect prediction of control
variables for MPC cost function that determines the optimal
switching sequences [9, 10]. The impact of model parameter
mismatch in power electronics applications has been
empirically investigated in the literature by looking at inverter
behavior under various condition and assessing the power
quality [11]. In [11], an auto-tune heuristic algorithm is
implemented used to fine-tune the parameters of the model,
[12] has implemented robust MPC algorithm with parallel
compensation terms against multi-parameter mismatches. An
advanced state observer is developed in [13] to estimate
interference caused by model parameter mismatches, and
mitigated the impact with a feedforward loop. In [14], the
effects of model parameter uncertainty on prediction error have
been investigated, but no solutions for mitigating the model
parameter mismatch problem have been proposed. The authors
in [15] proposed a predictive controller based on parameter
estimation instead of a pre-defined model, and [16] considers
an algorithm for online parameter identification of inductance
and flux linkage of motor. These approaches improve the MPC
performance, but the main drawbacks are accuracy of detecting
the mismatch and needed correction.

This paper proposes a data-driven approach coupled with
MPC for realization of a highly accurate model parameter
mismatch detection and self-healing process without
requirement of an additional control loop or complex
computation. Two artificial intelligence (AI) methods are
investigated for tackling the stated problem in grid-interactive
inverter applications. The first approach is a one-network
scheme which utilizes a feedforward neural network as a model
adaptation network to find the extent of mismatch. The second
approach is a two-networks scheme, which consists of a
classification network, followed by the model adaptation
network. Both feedforward network and fine tree classification
network topologies are investigated in this paper. When it
detects mismatch, the model adaptation network is executed.
The model adaptation network is integrated with a neural
network approach through a healing factor, L,, for adapting the
model during the optimization. The objective of the healing
factor L, is to mitigate the mismatch between the model value
and the actual filter inductance, which is an uncertainty in
model due to a variety of external agents including ambient
temperature, component aging, and magnetic saturation. The
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Fig. 1. Proposed self-learning MPC for grid-interactive inverters with disturbance mitigation capability. Two different network approaches are studied in this
paper: A shows the one-network network which utilizes the model adaptation network every 5 kHz, thus adjusting L, regardless of potential mismatch. The
second approach B is the two-network network which only runs the model adaptation network when the classification network indicates there is mismatch.

Therefore, only the classification network is guaranteed to operate every 5 kHz.

proposed control mitigates the impact of model parameter
mismatch on power quality and tracking error.

The remainder of this paper is structured as follows; Section
II covers the mathematical derivation of MPC as a groundwork
for the proposed control scheme, Section III details the network
training and generation, Section IV covers case studies
demonstrating the impact of the proposed approach for
improving the MPC performance, and Section V concludes the

paper.
II. GROUND WORK OF MODEL PREDICTIVE CONTROL

An overview of the illustrated control is presented in Fig. 1.
The inverter is interfaced with an inductor L. The grid angle is
detected, and the reference is split to the aff-framework using a
phase locked loop (PLL) with a second order generalized
integrator (SOGI)-based orthogonal signal generator (OSG). A
more detailed explanation of the MPC derivation is found in [8,
17], this section provides a brief overview of MPC formulation.

The reference current is constructed in the dg framework as,
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where Pkr °f and Q,:ef are active and reactive power, ey and
eq k are the grid voltage, and i; and i, are the decoupled current
components in the rotating frame. The dynamic model of the L
filter is given by,

di 1

71 2

(vinv - RESR iL(k) - e())

where v;,,,, is the bridge voltage of the inverter and e,, is the grid
voltage, L is the learned filter inductance which will be defined
later and Rggsg is the equivalent series resistance. The Euler
forward method is applied to the discretize (2) and predict the
current one-step ahead in horizon of time as following,

-R 3)
where i, is the one step ahead prediction of the current, and

T is the sampling time. To detect mismatch, the value of L
used in (3) is defined as

L=L,+L,

. _ 1 _— .
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“
where Ly is the modeled inductance value, and L, is the
predicted mismatch between the modeled value and actual
values. L,is immutable, while L, is the healing factor which is
adaptively changed based on the neural network approach
detailed in Section III.

Finally, a cost function is constructed to determine the
optimal switching sequence and tracking the desired grid
current,
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IIT. NETWORK TRAINING AND GENERATION

A. Training Data Collection

Two neural network approaches are used and compared in
this paper. The first approach is a classification network; the
second approach is a model adaptation network. The
classification network determines if there is mismatch in the
filter. When using the classification network, if model
mismatch is detected, the output of the classification network
activates the model adaptation network to adjust L,. Thus,
when using the classification network, a two-network
approach is used to adjust mismatch. Conversely, the other



neural network proposed consists only of the model adaptation
network. The model adaptation network is a neural network
which determines the healing factor for the system. Thus, to
adjust the network this model adaptation network is
mandatory. This paper determines whether the classification
network provides utility. It will benefit the system if it prevents
the model adaptation network from executing when mismatch
is negligible. If not, only the model adaptation network is
needed.

To initiate the neural network training process, data must
be collected to train the system. MATLAB/Simulink is used
for all data collection and simulations in this training process.
The data is collected by executing the system of Fig. 1 at
several values of L. By varying L, the training network can
adapt to whichever filter size is needed by the system designer.
Model mismatch is intentionally created in the training data set
by iteratively changing the percent error mismatch needed in
L. This intentional mismatch is pivotal as it allows the neural
network to have enough data for accurate determination of a
change in the filter inductance. For the iterative process, L is
varied from 0 to 5 mH in 0.5 mH increments. This is equivalent
to Ly in (4). Then, mismatch is created by altering the actual
filter inductance by a certain percentage of the L value. This
value is again iteratively changed from 50% to 150% of the
initial value in 10% increments. This is equivalent to L, in (4).
The system is simulated, and data is sampled at rate of SkHz to
generate the training data for the system. The system dc-bus
voltage is V=200V, active and reactive power references are

Pkr °f = 3kW, Q,:ef =0 var, and the grid voltage is 120 Vims At

each sampling instant £, the following variables are collected
to fill out the array INP,

TABLE. I: FINE TREE CLASSIFICATION ACCURACY

Maximum Number of Splits Accuracy
8 59.7%
16 61.2%
32 63.0%
64 64.6%

Confusion Matrix Confusion Matrix

20 41.9% 7.9% 20 31.5% 9.0%
k- -
] ]
2 2
= =
°) 27.4% 22.7% © 18.3% 41.1%
0 | 0 |
Target Class Target Class
a) b)

Fig. 2 Best confusion matrix of the (a) fine tree and (b) shallow
neural network classification networks. The “1” class indicates no
mismatch and “0” indicates mismatch. The green squares
indicated the correct classifications, while red squares are
incorrect classifications. By adding the correct classifications, the
total accuracy is recorded as 64.6% in (a), 72.6% in (b)
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where err(k) is the mean square current tracking error, Vyc(k)
is the dc-link voltage, e,(k) is the voltage at the point of

common coupling, i;“'/ (k) is the reference current , iz(k) is the

Lise,gysipg

measured inductor current, err(k) is the mean square current
tracking error between i;"’f (k) and ir(k), and Ls (k) is the

reference model inductance. e,(k-1) and i (k-1) are the
previous voltage and current measurements, respectfully. The
result of each data sample is a 1x8 array, the neural network
training input. The classification training data will have an
output value of either 0 or 1 indicating a logic LOW or HIGH.
A HIGH value denotes there is no mismatch, and the system is
operating properly, while and LOW indicates there is
mismatch to be corrected. The model adaptation training data
likewise has a single output value per sample indicating the
value of L,. These data are divided into training, verification,
and testing data with ratio of 70%, 15%, and 15% respectfully.

Two neural network approaches are trained to determine
which is more accurate for classification data. One deep
learning approach, the fine tree classification network, and
another a shallow learning approach, a feedforward artificial
neural network.

B. Classification Network Training

The fine tree classification network creates a decision tree
which uses weighted values to determine the next branch for
each input [18]. Classification is determined when an input
reaches the terminal node of the tree, each of which is assigned
to a specific class. These weights are determined by the neural
network training process. The fine tree classification network
has an advantage as a tree’s asymmetry can lead to quick
classification of well-known decision paths, and only use
longer paths for features which require the extra computation.
The fine tree approach is compared to the shallow neural
network approach. A shallow neural network consists of an
input layer, several intermediate hidden layers, and an output
layer. Simplified diagrams of a fine tree classification network
and shallow neural network are illustrated in Fig. 1.

In the fine tree classification network, the relevant
hyperparameter is the number of decision nodes given in the
tree. The MATLAB Deep Learning Toolbox is used to
determine the weights of each split and the only variable
hyperparameter is the number of decision nodes. For the
shallow neural network, the hyperparameters adjusted are the
number of hidden layers and the number of neurons per layer.
These hyperparameters were determined heuristically to see
the effect on accuracy, and the MATLAB ‘train()’ command is
used to train the neural network. The hyperparameters chosen
and the accuracy of each result are in Table I for the fine tree
classification and Table II for the shallow neural network. The
tree classification accuracy struggles to achieve accuracy
beyond 64.6% as shown in the confusion matrix in Fig. 2a.
Only marginal improvements are observed as the number of



splits increases exponentially. On the other hand, the shallow
neural network classification can outperform the fine tree
classification across almost all hyperparameters chosen. The
neural network classification accuracy tends to increase as the
number of neurons increases as well as when the number of
hidden layers increases. Thus, the best classification network
scheme is the classification network with three hidden layers
consisting of 16 neurons in layer one, 32 neurons in layer two,
and 16 neurons in layer three. These results in a classification
accuracy of 72.63% and yields the confusion matrix shown in
Fig. 2b.

C. Model Adaptation Network Training

As the shallow neural network consistently performed
better than the fine tree network in the training process for the
classification network, only the shallow neural network is
considered for the model adaptation network. The testing data
used matches the training data acquired from Section III-A.
However, instead of a Boolean output, the neural network
outputs the estimated value for the healing factor L,. Thus,
instead of determining a new value for L, the model mismatch
detection network is designed to simply add or subtract L,
from Ly and use it in determining the cost function (5). The
mismatch is corrected using this method without complex
algorithms and computationally heavy heuristic approaches.
This allows the proposed mismatched detection method to be
used in any MPC controller with minimal invasion.

The ‘train()’ command is used in MATLAB to determine
the optimal hyperparameters for the shallow neural network.
The input data for each instant is the array /NP and the output
datum is L,. The hyperparameters considered for this training
network are the same as the shallow neural network in the
Section III-B. The maximum number of neurons considered,
64, is chosen to minimize the total training time. More neurons
could be considered for training, should designers substantially
increase training time or processing power. Additionally, the
number of layers and number of neurons per layer could be
fine tuned to include more configurations. However,
expanding the number of layouts increases the total training
time. Hyperparameter optimization methods [19] may be used
to find maximally optimal hyperparameters efficiently, but
determining them though these methods is beyond the scope of
this paper.

Defining accuracy for the model adaptation network is
more complicated than for the classification network. This is
because each classification prediction is either correct or
incorrect, as the data is Boolean. However, for the model
adaptation network, each prediction will have some error
compared to the actual value. The determination of the most
accurate model adaptation network is therefore determined as
the number of predictions within a determined accuracy range.
This is visualized by plotting the histogram of the predictions
as a percentage error of the actual value, as it is demonstrated
in Fig. 3. The predetermined accuracy range is the tolerance
band between the black lines and the number of values in this
band are considered accurate. So, whichever neural network

has the most samples between these values is considered the
most accurate. For this work, 2% error above or below the
actual inductance value is considered acceptable. So, the neural
networks are trained based on the hyperparameters listed in
Table III and the accuracy shown is the percentage of the
testing data with 2% or lower error. From these results, it is
again observed that the 3-layers, 16, 32, 16 neuron
configuration yields the most accurate neural network with
85.11% of testing data within the tolerance band. Fig. 4a shows
the histogram of this neural network, displaying the error bins
between -5% and 5% testing error. The mean of the data set is
0.444, while the standard deviation is unexpectedly high at 8.3.
The high standard deviation appears to occur because of a
small number of incredibly high outliers in the prediction. Fig.
4b shows the histogram of the entire span of the prediction
network, vertically scaled to only show the first few instances.
The most error-prone bins go as low as a -80% error to a 100%
error. Few predictions are highly inaccurate as demonstrated
by the high number of bins within the tolerance bands. These
outliers cause the standard deviation to exceed 2%, where it
would be expected to be since more than 68% of data values
are within this variance band. So, while it cannot be assumed
this data set follows the normal distribution, the high number
of wvalues within the tolerance band indicate practical
applications of the neural network are achievable.

IV. SIMULATION AND RESULTS

A. One-network and Two-networkComparison

Practical applications of the neural network mismatch
approach are examined through two case studies. The first case

TABLE. II: NEURAL NETWORK CLASSIFICATION ACCURACY

Hidden Layers Neuron Configuration Accuracy
1 8 60.52%
1 16 61.11%
1 32 62.55%
1 64 59.56%
2 6,2 58.46%
2 12,4 60.45%
2 24,8 62.75%
2 48,16 62.79%
3 2,4,2 59.85%
3 4,8,4 60.87%
3 8,16,8 64.13%
3 16,32, 16 72.63%

TABLE. I1I: MODEL ADAPTATION NETWORK ACCURACY

Hidden Layers Neuron Configuration Accuracy
1 8 7.60%
1 16 14.27%
1 32 12.97%
1 64 11.46%
2 6,2 7.92%
2 12,4 28.70%
2 24,8 1.205
2 48,16 2.77%
3 2,4,2 8.23%
3 4,8,4 57.23%
3 8,16,8 80.77%
3 16, 32, 16 85.11%




study will only consider the model adaptation neural network,
while in the second, the classification network is used in
conjunction with the model adaptation network. In the single
neural network approach, the model adaptation network is
executed at a set rate of 5 kHz. The MPC operates at 50 kHz.
Thus, the entire neural network is executed at 5 kHz regardless
of parameter mismatch. To filter out the high outliers
mentioned in Section III, a moving average block is used to
prevent false increases of the healing factor. In this case study,
the proposed approach is tested first to a single step change in
L. In this instance L increases from 2mH to 3.5 mH, so the
expected L, increases from 0 to 1.5 mH at time 0.5s. The
results of the case study are in Fig. 5. This case study is
repeated for the two-network approach and the response is
captured in Fig. 6. Like the one-network approach, this
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Fig. 3 Example histogram to demonstrate the tolerance band which is
acceptable in the model adaptation neural network. The accuracy of the
neural network is defined as the total percentage of instances which fall
within the tolerance band which is +2%
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Fig. 4 Histogram of best Model Adaptation Network (a) demonstrating
the error bins from -5% to 5% error, which shows most of the prediction
mismatch and that 85.1% of results are within the 2% tolerance band (b)
the entire span of the histogram showing a small percentages of very large
prediction errors skew the standard deviation, however they do not affect
the practical applications of the neural network.

approach is also able to adjust the value of L, with a near
identical response and accuracy. When combining the two-
network, near identical results are realized from the system
response.

Crucially, the similarity of the two responses indicates the
classification network is not adding sufficient utility to the
network. To examine this cause, the output of the classification
network during the step change is recorded in Fig. 7. The
classification is predicting false negatives and positives which
result in the model updating both when the mismatch is zero
and not triggering when there is mismatch. Because of
classification inaccuracy, the system response updates the
healing factor almost every sampling instance. Thus, it is
essentially the single network approach but with an increased
computational burden.

To verify if there is substantial difference between the
approaches in other operating conditions, the mismatch study
is expanded to test the entire range of mismatch percentage
from the training set. Thus, an initial Ly value of 2 mH, the
actual L is varied from 1mH to 3mH in 0.2mH intervals. Each
mismatch scenario is executed for duration of 1s to allow
sufficient time for L, to be determined and an average error
calculated. The resulting accuracy is the mean percentage error
between the estimated L and the actual value L in that scenario.
This process is executed twice, with the one-network and again
for the two-network configuration. The results are recorded in
Table IV. The two-network response is more accurate in six
scenarios, while the one-network approach is best in five
scenarios. There are some situations where the two-network
approach is superior, particularly for lower values of L,.
However, at an accuracy rate of 72%, the model adaptation
network is still running most of the time, meaning a higher
computational burden presents for only slight accuracy gains
in a small range of operating conditions. Therefore, with the
reported accuracy of the classification network, it is suggested
the best approach is to use only the model adaptation network.
A two-network scheme needs to increase classification
accuracy before practical implementation.

B. Power Quality Analysis and Proposed Control
Performance

The impact of the proposed self-learning MPC on power
quality is evaluated next. In this case study, the one-network

TABLE. IV: MODEL ADAPTATION NETWORK ACCURACY

Ly (mH) One-network Error Two-network Error
1.0 12.60% 10.70%
1.2 6.25% 5.17%
1.4 5.57% 5.50%
1.6 3.69% 2.81%
1.8 1.56% 1.78%
2.0 1.45% 1.60%
22 0.36% 0.32%
2.4 0.42% 0.46%
2.6 -0.19% -0.27%
2.8 -0.25% -0.21%
3.0 -0.57% -0.60%
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approach is used to show the system adaptation from an
inductance mismatch where L= 2mH and L= 6mH. The model
adaptation model is initialized at t=1s. In Fig. 8a, the resulting
waveform is shown when the adaptation is made. The
predicted inductance increases to 5.981mH, a prediction error
0f-0.32%. Fig.8b provides a close view of the injected current
immediately before and after mismatch correction. Fig. 9a
provides the frequency spectrum before the correction, and
Fig. 9b afterwards. The mismatch mitigation provided by the
neural network results in a THD improvement from 4.09% to
2.58%, verifying improved conditions when implementing the
proposed scheme.

V. CONCLUSION

This paper presented a self-learning MPC to tackle the
model parameters imperfection and their impacts on the
controller performance, thereby maximizing the superiority of
MPC in comparison to classical control schemes for power
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Fig. 8 (a) Waveforms of grid-tied inverter before and after the one-network
model adaptation network is implemented. At t,=1s the neural network
adaptation network updates the model inductance which results in the
mismatch percentage dropping from 66% to 0.32% (b) close-up of current
waveform showing the improved waveform after t,
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Fig. 9 Frequency analysis of the injected currant (a) before the mismatch
detection and healing activation (conventional MPC) (b) after detection
and self-healing triggered (proposed self-learning MPC). THD is reduced
from 4.09% to 2.58%

electronics interfaces. The proposed model parameter
mismatch detection method can accurately predict the value of
a defined healing factor L, and utilizes it in model predictive
control. This novel mismatch approach uses neural networks
trained to detect changes to the system parameters which
indicate filter mismatch. Two neural network classification



techniques, fine tree classification and shallow neural network,
are used to determine if there is an error and another
feedforward network adapts the model when this classification
occurs. Both approaches are evaluated for the application in
hand. While both can adapt to the change in inductance, it is
recommended that only the model adaptation network is used
unless classification accuracy can match or exceed the
accuracy of the model adaptation network, as the large number
of false positives lead to the classification network triggering
the model adaptation network most sampling instances. The
system is verified with a frequency spectrum analysis which
demonstrates the mismatch correction improves THD of
injected grid current from 4.09% to 2.58% when MPC
experiences uncertainties in model parameters.
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