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Abstract — This paper presents an intelligent predictive 

control schemes that integrates model and data-driven schemes 

for enhancing the resiliency of grid-interactive inverters to 

mitigate the impact of dynamic grid condition on model-based 

control performance. Conventional model predictive control 

(MPC) techniques feature several advantages such as fast 

dynamic response, single loop optimization instead of cascaded 

control schemes, and several others that are enabled by 

enhancements in micro-controllers for control of power 

electronics converters. These inherent features of MPC enable 

design of control schemes with advance functionalities for grid-

interactive inverters. MPC efficacy is highly dependent on 

prediction accuracy of control variables. The prediction 

accuracy for a predictive controlled grid-interactive inverter 

depends on many factors including the controller knowledge on 

filter model parameters and variation of grid impedance. The 

variation of grid impedance can impact the current prediction 

accuracy due to the effect of the equivalent impedance on the 

effective impedance the inverter experiences at its point of 

common coupling (PCC). The grid impedance variation is 

expected in future power electronics dominated grid (PEDG) 

with multiple point of common coupling (MPCC). The proposed 

resilient artificial intelligence (AI) inspired MPC scheme 

addresses these challenges towards improving the performance 

of grid-interactive inverters in PEDG. This is done through the 

introduction of a Learned Impedance Factor to the MPC cost 

formulation equation. In this paper an overview of the proposed 

integrated data-driven and model-based control scheme is 

provided, and results demonstrate the proposed controller 

improves the THD and tracking error compared to conventional 

MPC that is purely model-based.  

Keywords – neural network, model predictive control, power 

electronics dominated grid, self-learning inverter, smart 

inverter, grid-interactive inverter 

I. INTRODUCTION  

Model predictive control (MPC) is a promising control 

scheme for power converters which uses a model of a power 

converter to select optimal switching states [1-3]. MPC is 

capable of delivering a multitude of control objectives with a 

simple model of the power electronics system [4, 5]. By 

creating a model based cost optimization function, MPC is able 

to determine optimal switching states at every sampling instant 

[6-8]. The benefits of MPC for power electronics is enhanced 

with Finite Set MPC (FS-MPC) using finite number of 

switching states for online optimization. The smaller set of 

possible solutions leads to simplifying the optimization 

problem and reducing the computational effort [9-11]. For 

proper operation and prediction of control variables, MPC 

requires accurate values of system parameters, such as filter 

inductors and capacitors. Additionally, other disturbances such 

as changes in grid impedance will lead to inaccurate prediction 

of control variables, such as injected current, in a grid-

interactive inverter. These kinds of disturbances are expected in 

future power electronics dominated grids (PEDG) [6, 12, 13] 

which impacts the MPC efficacy and limits the grid-interaction 

of inverters. The futuristic PEDG features interconnected grid 

clusters with multiple point of common coupling (MPCC) 

which can create variation in grid characteristics and 

consequently the control performance of power electronic 

based generations. MPC can provide utility for realizing grid-

interactive inverters, which motivates numerous researchers in 

academia and industry to investigate this tool’s capabilities. 

This is evident by the uptick number of published articles in 

literature on model predictive controlled inverters [14], [15].  

This paper addresses one of the challenges for 

implementation of MPC for grid-interactive inverters under 

uncertainty in model parameters and grid condition. These 

uncertainties lead to higher error in tracking control variables 

and when propagated among several inverters in a grid cluster, 

which could occur with high penetration of power electronics 

source, could jeopardize the PEDG stability  [6], [16]. Several 

methos proposed in literature to mitigate the parameters 

disturbance in  MPC for power converters, for instance [17] 

used simplified repetitive control, [18] creates a predictive 

controller based on parameter estimation instead of a model, 

and [19] utilized an auto-tuned algorithm to finely adjust the 

model parameters. To the best of the author’s knowledge, none 

of these works and others published in literature are discussing 

the impact of grid impedance variation on prediction accuracy 

of control variable in a grid-interactive inverter. Weak grid 

conditions are observable when the short circuit ratio of the grid 

reveals high impedance as seen at PCC [20]. The literature has 

provided adaptive solutions to accounting for weak grid 



conditions: A virtual impedance is used in [21] to shape the grid 

and thus improve the SCR to create a stiff grid, [22, 23] both 

utilize the impedance shaping to dampen unstable grids, and 

[24] adjusts the MPC objective during weak grid conditions to 

prevent resonance which causes instability. However, while 

these techniques can maintain grid stability, they lack the ability 

to adapt to uniformly react to all disturbance sources which 

affect the converter impedance in a general fashion. Thus, there 

is a need to realize a method for MPC to mitigate the impact of 

any grid impedance variation on the control performance while 

leveraging the inherent features of MPC for efficient grid-

interaction of inverters. 

This paper proposes an integrated data-driven and model-

based approach to realize a resilient predictive control scheme 

for grid-interactive inverters that mitigates the impact of 

potential disturbances in the network impedance. This is 

accomplished through a neural network approach which 

implements a ‘Learned Impedance Factor’ into the model 

during state optimization. The proposed learning approach 

objective is to determine the effective impedance that the 

inverter bridge experiences at its terminals instead of the rated 

filter parameters from manufacturer. In fact, the proposed 

approach is optimizing the model in real-time by taking into 

account the variation in grid-impedance. The learning approach 

is based on tracking error of the controller which introduced in 

the MPC framework as a learned impedance factor.  

The remainder of the paper is as follows: Section II covers 

the system modeling for the MPC, Section III covers the 

artificial intelligence (AI) disturbance adaptation and the neural 

network training, Section IV covers the case study used to 

verify the operation of the proposed technique, and Section V 

concludes the paper and summarizes the results.  

II. SYSTEM MODELING 

The general structure of the proposed MPC-based 

controller is depicted in Fig. 1. The dc source represents a 

battery storge unit and the inverter is interfaced to the grid via 

an L filter. A phase locked loop (PLL) with a second order 

generalized integrator (SOGI)-based orthogonal signal 

generator (OSG) is utilized to detect the grid voltage angle and 

split the reference to the 𝛼𝛽-framework. The inherent filtering 

capabilities of the SOGI OSG and moving to the αβ-framework 

make the reference voltage and current more resistant for any 

distortion and irregularity on grid conditions [25]. The 

reference of the decoupled active and reactive power is 

constructed on the dq framework and is given by, 
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where 𝑃𝑘  and 𝑄𝑘  are active and reactive power. 𝑒𝑑,𝑘  and 𝑒𝑞,𝑘 

are the grid voltage in the dq  rotating frame, 𝑖𝑑,𝑘 and 𝑖𝑞.𝑘 are 

decoupled current in the rotating frame. Rearranging equation 

(1) yields the current reference, which is given in (2). 
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The inverse Park transformation is used to convert the reference 

current components from the rotating frame to the stationary 

reference frame from (2),  

, ( ) ( ) ( ) ( ) ( )sin( ) cos( )k d k k q k ki i i   = +  (3) 

  

 

Fig. 1. Proposed AI inspired MPC for grid-interactive inverters with disturbance mitigation capability. The proposed controller incorporates a 

Learned Impedance Factor “𝜁” into the MPC cost function subject to minimization. 



where 𝜃𝑘  denotes the grid angle detected by the PLL. At the 

PCC with the grid, the filter dynamic equation is given by, 

1
( )inv o

di
V ri e

dt L
= − −  (4) 

where 𝐿 is the inductance of the filter, and 𝑟 is the equivalent 

series resistance. The Euler forward method is used to discretize 

(4) in order to predict the current one step ahead in horizon of 

time: 
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The inverter output current is estimated by (5a) and (5b) for the 

next sampling interval, (k+1), where the corresponding 

voltage, 𝑒𝑜, is calculated from the feasible switching states. The 

learned impedance factor,  , adapts the predicted current in 

response to any impedance disturbances. The process of 

creating and adjusting  is covered in Section III.  The 

orthogonal grid voltage and current signal is created via SOGI 

module, the transfer function is given by, 
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where 𝑘  is the SOGI gain and  is the fundamental angular 

frequency. A cost function which minimizes the error is then 

derived as follow: 

( ) ( 1) ( ) ( 1)k k k kJ i i i i   + += − + −  (7) 

III. ARTIFICAL INTELLIGENCE DISTURBANCE DETECTION 

A. Learned Impedance Factor  

The conventional MPC approach is appropriate for 

controlling the inverter, provided the model accurately depicts 

the physical system. However, without any method of 

responding to grid disturbances, the MPC can become unstable 

or unsuitable for grid connection according to grid standards. 

Thus, to improve the robustness of the MPC, the “Learned 

Impedance Factor”   is introduced to the MPC in (5a) and (5b) 

to improve the performance of the controller  and account for 

any disturbance which affect the system impedance. 

Disturbances to the conventional MPC scheme can be 

introduced by change in grid condition and transitioning from 

stiff grid to weak grid and ultra-weak grid. The grid strength of 

Fig. 1 can be determined by the short circuit ratio (SCR) 
2 / (2 )g g

ref

V L f
SCR

P


=  (8) 

Where Vg is the RMS of the grid voltage, Lg is the grid 

impedance, f is the grid frequency, and Pref is the active power 

reference. The grid is stiff when SCR > 10, weak when 3 ≤ SCR 

≤ 10, and ultra-weak when SCR < 3 [26]. From this, the design 

principle for determining  is to adapt predictions of control 

objectives, i.e. the inverter output current, to changes in Lg 

during grid condition variation. 

B. Neural Network Data Collection 

A neural network approach is used for determining   in 

this paper. Network configuration begins with the collection of 

training and testing data. For data collection, it is desired to 

reduce the total amount of variables which affect the system to 

minimize training time and network complexity. As the goal of 

the network is to reduce the cost function in (7), a preliminary 

case study is executed to determine the effect of Rf and Lf on the 

tracking error of the system.  This case study presents the 

inverter seen in Fig. 1 with Lf = 3mH, Rf =50mΩ and Lg = 0mH 

(ignoring grid impedance). Then, the system iterates with 

model values ranging from 50% to 350% of the actual value for 

both Rf and inductances. The variation of inductance is 

considered the combined changes in Lg and Lf. By this 

disturbance metric, when the model values are at 100% of 

actual parameters, there is no difference between the model and 

the actual values. Then, the mean square tracking error is 

recorded for each result. The error is presented as a percentage 

of the injected RMS current. The surface plot shown in Fig. 2 

demonstrates tracking error is lowest near 100% and inductance 

plays a larger role in tracking error than resistance. Thus, 

variance in Rf is not considered to reduce the size of the data set 

and needed complexity of the system.  

To collect training data, the conventional MPC without 

incorporating learned impedance factor is simulated in 

MATLAB/Simulink at various operating conditions. Table I 

displays the operating conditions during data collection. The 

parameters Lg and Lerror are iteratively changed to account for 

TABLE. I: NEURAL NETWORK TRAINING PARAMETERS 

Parameter Value 

DC Link Voltage 400 V 

Grid Voltage 120 VRMS 

Sampling frequency 20 kHz 

Grid Frequency 60 Hz 

Rf 0.05 Ω 

Pref 3 kW 

Lf 2 mH 

Lg 0.5: 5.0 mH 

Lerror 50 : 150 % 

 

 

Fig. 2. Impact of Inductance and Resistance disturbance in 

Tracking Error 
 



changing grid conditions. Lg is varied from 0.5mH to 5mH in 

0.1mH increments and Lerror is varied from 50% to 150% in 1% 

in increments. Lerror is the impedance disturbance, the ratio of 

the actual inductance to the modeled inductance. From these 

simulations, the 1x8 input array NNI at time k is extracted as 
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where err is the mean square tracking error, Vdc is the dc-link 

voltage, Vpcc is the voltage at the point of common coupling, iref 

is the reference current, iL is the measured inductor current, and 

Lf is the model inductance. This data collection results in 

training data set of 2,327,646 samples of the 8 input variables. 

These are split 70%, 15%, and 15% into training, validation, 

and testing data respectfully. 

The neural network is trained offline using the MATLAB 

command ‘train()’. This creates a shallow feedforward neural 

network. The constructed network is seen in Fig. 3a and 

consists of three hidden layers of 8, 25, and 5 neurons 

respectfully. The output of the neural network is the learned 

impedance factor  as calculated by the disturbance of Lg  and 

Lerror. To verify the accuracy of the neural network, testing data 

is used to calculate the error between the actual inductance and 

the predicted value. The results of this calculation seen in the 

histogram of Fig. 3b. The testing data show the neural network 

prediction has ≤ 1% error in 67.9% of test data and ≤ 2% error 

in 83.4% of test data. This is deemed sufficient for use as the 

Learned Impedance Factor, and verification of this claim is 

demonstrated in Section IV. 

IV.  CASE STUDY 

To verify the operation of the Learned Impedance Factor 

in MPC, a case study is utilized to examine the proposed control 

scheme illustrated in Fig. 1. The scenarios are all run using 

MATLAB/Simulink. In each scenario the MPC is tested with 

and without the Learned Impedance Factor. When the Learned 

Impedance Factor is implemented,  is actively changing 

during the converter operation. The input vector NNI is feed to 

the neural network at each sampling instant, which provides the 

value of  at instant k. When the Learned Impedance Factor is 

not implemented, it could be considered that  =1.   

To examine changing grid conditions, the impedance Lg is 

varied from 0 to 6 mH in 1 mH increments. In all tests, Lf is 

equal to 2 mH. All other values match the parameters used for 

training the neural network, as seen in Table I. In each grid 

condition, the inverter is run with and without the adaptive 

implementation, resulting in a total of 14 simulations. In each 

of these simulations, both the THD and the tracking error are 

recorded to directly compare the MPC methods. The THD is 

calculated over 10 cycle periods. The tracking error compares 

the current injected into the grid to the reference current 

calculated in (5a) and (5b). To find a single value for tracking 

error, the total tracking error observed at each instance is 

combined as a root mean square measurement. This RMS error 

is then divided by the rated iref,RMS which for 3 kW is 25 A. This 

results in a percentage error which is recorded as a single value 

for each scenario. All data collected through this process are 

seen in Table II. 

An example of this test scenario is seen in Fig. 4. These 

scenarios demonstrate when Lg is 2 mH. Fig. 4a displays the 

current waveform which introduces the learn impedance factor 

at t=0.5s, and Fig. 4b shows the same instance, but illustrates 

the RMS tracking error. As seen in Fig. 4a the current becomes 

less distorted and Fig. 4b shows a 78.2% reduction in the 

tracking error. Additionally, Fig. 5 shows the THD of this same 

scenario. The THD before the impedance is implemented factor  

(Fig. 5a) is 3.62% which is reduced to 0.93% after  is 

adaptively implemented factor  (Fig. 5b).  

As seen in Table II, there is an improvement in the 

proposed MPC for all Lg values. The largest improvement in 

THD is at Lg=4 mH, where THD improvement is 2.72% and the 

largest improvement in tracking error is at Lg = 2 mH where 

tracking error improvement is 3.51%. This demonstrates 

improvement for any scenario subject to variable grid 

impedances. The case studies here only consider impedances 

up to 6 mH based on the training data range, but these results 

imply larger impedances could be considered should a larger 

training data set be utilized in the neural network setup 

explained in Section III. 

 
(a) 

 
(b) 

Fig. 3. (a) Diagram of the feedforward neural network used for 

determining the Learned Impedance Factor. The network input is 

the vector NNI, utilizes 3 layers of 8, 25, and 3 neurons, and 

outputs a single variable,  . (b) Histogram of the training results 

of the Neural Network in estimating impedance. The Neural 

Network can accurately predict the impedance with 2% error of 

lower in 83.4% of the test data. 

 

 



The final demonstration of the case study is seen in Fig. 6. 

This case study demonstrates how the proposed MPC would 

work in changing grid conditions which could occur in PEDG. 

This is executed by utilizing the impedance profile seen in 

Table III. This profile is designed to test both the conventional 

MPC and the proposed MPC in normal grid conditions (where 

Lg =0 mH) as well as worsening grid conditions. In Regions II 

and IV,  is adaptively changed according to the neural 

network, while in the other three regions there is no way of 

adapting the impedance. Lg is equal to 0 mH for Regions I and 

II, 1mH for Region III, and 5mH for Regions IV and V. As seen 

from the waveforms, in all scenarios where the proposed MPC 

is compared to the conventional MPC the tracking error is 

reduced once activated. Additionally, there is no penalty to the 

MPC should the Learned Impedance Factor need to be turned 

on and off as it is quickly able to adapt to changing greater 

conditions. This supports the neural network technique, as once 

the input data is collected from the system it can immediately 

adapt to the changing grid. From here, it is shown that while 

operating in its trained region, implementing the proposed MPC 

will always result in the inverter providing purer current to the 

grid whether it is experiencing variation in grid impedance or 

not.  

V. CONCLUSION 

This paper presents an integrated data-driven and model 

based predictive control by utilizing neural network for 

determining disturbances impacting the performance of model 

predictive controlled grid-interactive inverter. The model used 

to construct the MPC is detailed, as well as the procedure used 

to create training data and train the feed forward neural 

network. This shallow neural network determines the 

introduced “Learned Impedance Factor” aiming to optimize 

MPC performance while considering grid condition variation. 

The learned impedance factor operates with the online MPC to 

adjust the reference generation signals. This allows the MPC to 

react to changes in the physical system, allowing the model to 

 
(a)

 
(b) 

Fig. 4 Case Study examining the current injected into the grid 

while comparing a conventional MPC to the MPC utilizing the 

proposed Learned Impedance Factor. The injected current 

waveform is seen in (a). Here the Learned Impedance Factor (𝜁) 

is implemented at t=0.5s. The injected current waveform is seen 

in (a), while the reduction in tracking error is recorded in (b) 

 

 
(a) 

 
(b) 

Fig. 5 The Total Harmonic Distortion of the case study (a) before 

and (b) after the Learned Impedance Factor is implemented. Total 

THD is reduced from 3.62% to 0.93% 

 

 

 

TABLE. II: CASE STUDY THD AND TRACKING ERROR RESPONSES 

 Conventional 

MPC 

MPC with Learned 

Impedance Factor 

Lg 

(mH) 

THD Tracking 

Error 

THD Tracking 

Error 

0 3.56% 4.55% 1.22% 1.40% 

1 3.64% 4.56% 1.13% 1.26% 

2 3.62% 4.48% 0.93% 0.97% 

3 3.53% 4.33% 0.87% 0.87% 

4 3.45% 4.13% 0.73% 0.72% 

5 3.27% 3.77% 0.67% 0.61% 

6 2.97% 3.13% 0.59% 0.50% 

 

TABLE. III: CASE STUDY IMPEDENCE PROFILE 

Time Region Lg Learned Impedance Factor 

t < t1 I 0 mH Not Implemented 

t1 ≤ t < t2 II 0 mH Implemented 

t3 ≤ t < t3 III 1 mH Not Implemented 

t3 ≤ t < t4 IV 5 mH Not Implemented 

t4 ≤ t  V 5 mH Implemented 

 

 



remain accurate for effective prediction of control variables. By 

implementing the learned impedance factor, the grid-tied 

inverter performance is improved and become more robust to 

changing grid conditions and other disturbances which would 

otherwise have negative impacts on the inverter operation, 

which is expected to occur in PEDG. This is verified through 

case studies examining the tracking error of the MPC and the 

total harmonic distortion of the injected grid current. The 

proposed MPC outperforms the conventional MPC in the 

considered case study and thus is desirable for implementation 

in systems with variable grid conditions. 
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Fig. 6 Examination of how the MPC techniques discussed affect the 

quality of injected current during changing grid conditions. In this 

study five operating regions are studied as per the impedance 

profile seen in Table III. this combines various impedances were 

and determines whether the learned impedance factor is utilized as 

seen from the results the scenarios in which the learned impedance 

factor is utilized always result in a lower tracking error than those 

in which the impedance is not utilized it also shows no impact to 

turning on the load impedance factor during operation 

 


