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Abstract — This paper presents an intelligent predictive
control schemes that integrates model and data-driven schemes
for enhancing the resiliency of grid-interactive inverters to
mitigate the impact of dynamic grid condition on model-based
control performance. Conventional model predictive control
(MPC) techniques feature several advantages such as fast
dynamic response, single loop optimization instead of cascaded
control schemes, and several others that are enabled by
enhancements in micro-controllers for control of power
electronics converters. These inherent features of MPC enable
design of control schemes with advance functionalities for grid-
interactive inverters. MPC efficacy is highly dependent on
prediction accuracy of control variables. The prediction
accuracy for a predictive controlled grid-interactive inverter
depends on many factors including the controller knowledge on
filter model parameters and variation of grid impedance. The
variation of grid impedance can impact the current prediction
accuracy due to the effect of the equivalent impedance on the
effective impedance the inverter experiences at its point of
common coupling (PCC). The grid impedance variation is
expected in future power electronics dominated grid (PEDG)
with multiple point of common coupling (MPCC). The proposed
resilient artificial intelligence (AI) inspired MPC scheme
addresses these challenges towards improving the performance
of grid-interactive inverters in PEDG. This is done through the
introduction of a Learned Impedance Factor to the MPC cost
formulation equation. In this paper an overview of the proposed
integrated data-driven and model-based control scheme is
provided, and results demonstrate the proposed controller
improves the THD and tracking error compared to conventional
MPC that is purely model-based.

Keywords — neural network, model predictive control, power
electronics dominated grid, self-learning inverter, smart
inverter, grid-interactive inverter

1. INTRODUCTION

Model predictive control (MPC) is a promising control
scheme for power converters which uses a model of a power
converter to select optimal switching states [1-3]. MPC is
capable of delivering a multitude of control objectives with a
simple model of the power electronics system [4, 5]. By
creating a model based cost optimization function, MPC is able
to determine optimal switching states at every sampling instant

[6-8]. The benefits of MPC for power electronics is enhanced
with Finite Set MPC (FS-MPC) using finite number of
switching states for online optimization. The smaller set of
possible solutions leads to simplifying the optimization
problem and reducing the computational effort [9-11]. For
proper operation and prediction of control variables, MPC
requires accurate values of system parameters, such as filter
inductors and capacitors. Additionally, other disturbances such
as changes in grid impedance will lead to inaccurate prediction
of control variables, such as injected current, in a grid-
interactive inverter. These kinds of disturbances are expected in
future power electronics dominated grids (PEDG) [6, 12, 13]
which impacts the MPC efficacy and limits the grid-interaction
of inverters. The futuristic PEDG features interconnected grid
clusters with multiple point of common coupling (MPCC)
which can create variation in grid characteristics and
consequently the control performance of power electronic
based generations. MPC can provide utility for realizing grid-
interactive inverters, which motivates numerous researchers in
academia and industry to investigate this tool’s capabilities.
This is evident by the uptick number of published articles in
literature on model predictive controlled inverters [14], [15].
This paper addresses one of the challenges for
implementation of MPC for grid-interactive inverters under
uncertainty in model parameters and grid condition. These
uncertainties lead to higher error in tracking control variables
and when propagated among several inverters in a grid cluster,
which could occur with high penetration of power electronics
source, could jeopardize the PEDG stability [6], [16]. Several
methos proposed in literature to mitigate the parameters
disturbance in MPC for power converters, for instance [17]
used simplified repetitive control, [18] creates a predictive
controller based on parameter estimation instead of a model,
and [19] utilized an auto-tuned algorithm to finely adjust the
model parameters. To the best of the author’s knowledge, none
of these works and others published in literature are discussing
the impact of grid impedance variation on prediction accuracy
of control variable in a grid-interactive inverter. Weak grid
conditions are observable when the short circuit ratio of the grid
reveals high impedance as seen at PCC [20]. The literature has
provided adaptive solutions to accounting for weak grid
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Fig. 1. Proposed Al inspired MPC for grid-interactive inverters with disturbance mitigation capability. The proposed controller incorporates a
Learned Impedance Factor “{” into the MPC cost function subject to minimization.

conditions: A virtual impedance is used in [21] to shape the grid
and thus improve the SCR to create a stiff grid, [22, 23] both
utilize the impedance shaping to dampen unstable grids, and
[24] adjusts the MPC objective during weak grid conditions to
prevent resonance which causes instability. However, while
these techniques can maintain grid stability, they lack the ability
to adapt to uniformly react to all disturbance sources which
affect the converter impedance in a general fashion. Thus, there
is a need to realize a method for MPC to mitigate the impact of
any grid impedance variation on the control performance while
leveraging the inherent features of MPC for efficient grid-
interaction of inverters.

This paper proposes an integrated data-driven and model-
based approach to realize a resilient predictive control scheme
for grid-interactive inverters that mitigates the impact of
potential disturbances in the network impedance. This is
accomplished through a neural network approach which
implements a ‘Learned Impedance Factor’ into the model
during state optimization. The proposed learning approach
objective is to determine the effective impedance that the
inverter bridge experiences at its terminals instead of the rated
filter parameters from manufacturer. In fact, the proposed
approach is optimizing the model in real-time by taking into
account the variation in grid-impedance. The learning approach
is based on tracking error of the controller which introduced in
the MPC framework as a learned impedance factor.

The remainder of the paper is as follows: Section II covers
the system modeling for the MPC, Section III covers the
artificial intelligence (AI) disturbance adaptation and the neural
network training, Section IV covers the case study used to
verify the operation of the proposed technique, and Section V
concludes the paper and summarizes the results.

II. SYSTEM MODELING

The general structure of the proposed MPC-based
controller is depicted in Fig. 1. The dc source represents a
battery storge unit and the inverter is interfaced to the grid via
an L filter. A phase locked loop (PLL) with a second order
generalized integrator (SOGI)-based orthogonal signal
generator (OSQ) is utilized to detect the grid voltage angle and
split the reference to the aff-framework. The inherent filtering
capabilities of the SOGI OSG and moving to the ap-framework
make the reference voltage and current more resistant for any
distortion and irregularity on grid conditions [25]. The
reference of the decoupled active and reactive power is
constructed on the dg framework and is given by,
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where Py and Q, are active and reactive power. e and eg
are the grid voltage in the dg rotating frame, iy ) and g are
decoupled current in the rotating frame. Rearranging equation
(1) yields the current reference, which is given in (2).
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The inverse Park transformation is used to convert the reference
current components from the rotating frame to the stationary
reference frame from (2),
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where 6, denotes the grid angle detected by the PLL. At the
PCC with the grid, the filter dynamic equation is given by,

di 1 .
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where L is the inductance of the filter, and r is the equivalent
series resistance. The Euler forward method is used to discretize
(4) in order to predict the current one step ahead in horizon of
time:

. T, . .
Lohsry = gTS(va _la(k)r_eo)+la(k) (5a)
. TS . .
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The inverter output current is estimated by (5a) and (5b) for the
next sampling interval, (k+1), where the corresponding
voltage, e,, is calculated from the feasible switching states. The
learned impedance factor, ¢ , adapts the predicted current in
response to any impedance disturbances. The process of
creating and adjusting ¢ is covered in Section III. The
orthogonal grid voltage and current signal is created via SOGI
module, the transfer function is given by,
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where k is the SOGI gain and @ is the fundamental angular
frequency. A cost function which minimizes the error is then
derived as follow:
J=
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III. ARTIFICAL INTELLIGENCE DISTURBANCE DETECTION

A. Learned Impedance Factor

The conventional MPC approach is appropriate for
controlling the inverter, provided the model accurately depicts
the physical system. However, without any method of
responding to grid disturbances, the MPC can become unstable
or unsuitable for grid connection according to grid standards.
Thus, to improve the robustness of the MPC, the “Learned
Impedance Factor” ¢ is introduced to the MPC in (5a) and (5b)

to improve the performance of the controller and account for
any disturbance which affect the system impedance.

TABLE. I: NEURAL NETWORK TRAINING PARAMETERS

Parameter Value
DC Link Voltage 400 V
Grid Voltage 120 Vrms
Sampling frequency 20 kHz
Grid Frequency 60 Hz
R, 0.05Q
P 3 kW
Lf 2 mH
L, 0.5: 5.0 mH
Lervor 50:150 %
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Fig. 2. Impact of Inductance and Resistance disturbance in
Tracking Error

Disturbances to the conventional MPC scheme can be
introduced by change in grid condition and transitioning from
stiff grid to weak grid and ultra-weak grid. The grid strength of
Fig. 1 can be determined by the short circuit ratio (SCR)
2
X ©
ref

Where V, is the RMS of the grid voltage, L, is the grid
impedance, fis the grid frequency, and P, is the active power
reference. The grid is stiff when SCR > 10, weak when 3 <SCR
<10, and ultra-weak when SCR < 3 [26]. From this, the design
principle for determining ¢ is to adapt predictions of control

objectives, i.e. the inverter output current, to changes in L,
during grid condition variation.

B. Neural Network Data Collection
A neural network approach is used for determining ¢ in

this paper. Network configuration begins with the collection of
training and testing data. For data collection, it is desired to
reduce the total amount of variables which affect the system to
minimize training time and network complexity. As the goal of
the network is to reduce the cost function in (7), a preliminary
case study is executed to determine the effect of Rrand Lyon the
tracking error of the system. This case study presents the
inverter seen in Fig. 1 with L;=3mH, R,=50mQ and L, = OmH
(ignoring grid impedance). Then, the system iterates with
model values ranging from 50% to 350% of the actual value for
both R, and inductances. The variation of inductance is
considered the combined changes in L, and Lz By this
disturbance metric, when the model values are at 100% of
actual parameters, there is no difference between the model and
the actual values. Then, the mean square tracking error is
recorded for each result. The error is presented as a percentage
of the injected RMS current. The surface plot shown in Fig. 2
demonstrates tracking error is lowest near 100% and inductance
plays a larger role in tracking error than resistance. Thus,
variance in Ryis not considered to reduce the size of the data set
and needed complexity of the system.

To collect training data, the conventional MPC without
incorporating learned impedance factor is simulated in
MATLAB/Simulink at various operating conditions. Table I
displays the operating conditions during data collection. The
parameters L, and L. are iteratively changed to account for



changing grid conditions. L, is varied from 0.5mH to 5SmH in
0.1mH increments and L, is varied from 50% to 150% in 1%
in increments. L. is the impedance disturbance, the ratio of
the actual inductance to the modeled inductance. From these
simulations, the 1x8 input array NN/ at time £ is extracted as

NN = ef"r(lo’Vdc<k)’Vpcc<k>jire/(A') ©)
l/‘(/c)’Lf’Vpcc(/cfl)’lll(k—l)

where err is the mean square tracking error, Vg is the dc-link
voltage, V. is the voltage at the point of common coupling, ir.r
is the reference current, i is the measured inductor current, and
Lsis the model inductance. This data collection results in
training data set of 2,327,646 samples of the 8 input variables.
These are split 70%, 15%, and 15% into training, validation,
and testing data respectfully.

The neural network is trained offline using the MATLAB
command ‘train()’. This creates a shallow feedforward neural
network. The constructed network is seen in Fig. 3a and
consists of three hidden layers of 8, 25, and 5 neurons
respectfully. The output of the neural network is the learned
impedance factor ¢ as calculated by the disturbance of L, and
Leror. To verify the accuracy of the neural network, testing data

is used to calculate the error between the actual inductance and
the predicted value. The results of this calculation seen in the
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Fig. 3. (a) Diagram of the feedforward neural network used for
determining the Learned Impedance Factor. The network input is
the vector NNI, utilizes 3 layers of 8, 25, and 3 neurons, and
outputs a single variable, £ . (b) Histogram of the training results
of the Neural Network in estimating impedance. The Neural

Network can accurately predict the impedance with 2% error of
lower in 83.4% of the test data.

histogram of Fig. 3b. The testing data show the neural network
prediction has < 1% error in 67.9% of test data and < 2% error
in 83.4% of test data. This is deemed sufficient for use as the
Learned Impedance Factor, and verification of this claim is
demonstrated in Section IV.

IV. CASE STUDY

To verify the operation of the Learned Impedance Factor
in MPC, a case study is utilized to examine the proposed control
scheme illustrated in Fig. 1. The scenarios are all run using
MATLAB/Simulink. In each scenario the MPC is tested with
and without the Learned Impedance Factor. When the Learned
Impedance Factor is implemented, ¢ is actively changing

during the converter operation. The input vector NN/ is feed to
the neural network at each sampling instant, which provides the
value of ¢ at instant £&. When the Learned Impedance Factor is

not implemented, it could be considered that ¢ =1.

To examine changing grid conditions, the impedance L, is
varied from 0 to 6 mH in 1 mH increments. In all tests, Ly is
equal to 2 mH. All other values match the parameters used for
training the neural network, as seen in Table I. In each grid
condition, the inverter is run with and without the adaptive £

implementation, resulting in a total of 14 simulations. In each
of these simulations, both the THD and the tracking error are
recorded to directly compare the MPC methods. The THD is
calculated over 10 cycle periods. The tracking error compares
the current injected into the grid to the reference current
calculated in (5a) and (5b). To find a single value for tracking
error, the total tracking error observed at each instance is
combined as a root mean square measurement. This RMS error
is then divided by the rated i..;rus which for 3 kW is 25 A. This
results in a percentage error which is recorded as a single value
for each scenario. All data collected through this process are
seen in Table II.

An example of this test scenario is seen in Fig. 4. These
scenarios demonstrate when L, is 2 mH. Fig. 4a displays the
current waveform which introduces the learn impedance factor
at t=0.5s, and Fig. 4b shows the same instance, but illustrates
the RMS tracking error. As seen in Fig. 4a the current becomes
less distorted and Fig. 4b shows a 78.2% reduction in the
tracking error. Additionally, Fig. 5 shows the THD of this same
scenario. The THD before the impedance is implemented factor
(Fig. 5a) is 3.62% which is reduced to 0.93% after ¢ is

adaptively implemented factor (Fig. 5b).

As seen in Table II, there is an improvement in the
proposed MPC for all L, values. The largest improvement in
THD is at Lg=4 mH, where THD improvement is 2.72% and the
largest improvement in tracking error is at Ly = 2 mH where
tracking error improvement is 3.51%. This demonstrates
improvement for any scenario subject to variable grid
impedances. The case studies here only consider impedances
up to 6 mH based on the training data range, but these results
imply larger impedances could be considered should a larger
training data set be utilized in the neural network setup
explained in Section III.
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The Total Harmonic Distortion of the case study (a) before

and (b) after the Learned Impedance Factor is implemented. Total
THD is reduced from 3.62% to 0.93%

TABLE. II: CASE STUDY THD AND TRACKING ERROR RESPONSES

Conventional MPC with Learned
MPC Impedance Factor
Le THD Tracking THD Tracking
(mH) Error Error
0 3.56% 4.55% 1.22% 1.40%
1 3.64% 4.56% 1.13% 1.26%
2 3.62% 4.48% 0.93% 0.97%
3 3.53% 4.33% 0.87% 0.87%
4 3.45% 4.13% 0.73% 0.72%
5 3.27% 3.77% 0.67% 0.61%
6 2.97% 3.13% 0.59% 0.50%
TABLE. III: CASE STUDY IMPEDENCE PROFILE
Time Region L, Learned Impedance Factor
t<t, 1 0 mH Not Implemented
t<t<t, I 0 mH Implemented
tB<t<ts 1 1 mH Not Implemented
t<t<ty v 5 mH Not Implemented
t, <t \ 5 mH Implemented

The final demonstration of the case study is seen in Fig. 6.
This case study demonstrates how the proposed MPC would
work in changing grid conditions which could occur in PEDG.
This is executed by utilizing the impedance profile seen in
Table III. This profile is designed to test both the conventional
MPC and the proposed MPC in normal grid conditions (where
L, =0 mH) as well as worsening grid conditions. In Regions II
and IV, ¢ is adaptively changed according to the neural

network, while in the other three regions there is no way of
adapting the impedance. L is equal to 0 mH for Regions I and
II, ImH for Region III, and SmH for Regions IV and V. As seen
from the waveforms, in all scenarios where the proposed MPC
is compared to the conventional MPC the tracking error is
reduced once activated. Additionally, there is no penalty to the
MPC should the Learned Impedance Factor need to be turned
on and off as it is quickly able to adapt to changing greater
conditions. This supports the neural network technique, as once
the input data is collected from the system it can immediately
adapt to the changing grid. From here, it is shown that while
operating in its trained region, implementing the proposed MPC
will always result in the inverter providing purer current to the
grid whether it is experiencing variation in grid impedance or
not.

V. CONCLUSION

This paper presents an integrated data-driven and model
based predictive control by utilizing neural network for
determining disturbances impacting the performance of model
predictive controlled grid-interactive inverter. The model used
to construct the MPC is detailed, as well as the procedure used
to create training data and train the feed forward neural
network. This shallow neural network determines the
introduced “Learned Impedance Factor” aiming to optimize
MPC performance while considering grid condition variation.
The learned impedance factor operates with the online MPC to
adjust the reference generation signals. This allows the MPC to
react to changes in the physical system, allowing the model to
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Fig. 6 Examination of how the MPC techniques discussed affect the
quality of injected current during changing grid conditions. In this
study five operating regions are studied as per the impedance
profile seen in Table III. this combines various impedances were
and determines whether the learned impedance factor is utilized as
seen from the results the scenarios in which the learned impedance
factor is utilized always result in a lower tracking error than those
in which the impedance is not utilized it also shows no impact to
turning on the load impedance factor during operation

remain accurate for effective prediction of control variables. By
implementing the learned impedance factor, the grid-tied
inverter performance is improved and become more robust to
changing grid conditions and other disturbances which would
otherwise have negative impacts on the inverter operation,
which is expected to occur in PEDG. This is verified through
case studies examining the tracking error of the MPC and the
total harmonic distortion of the injected grid current. The
proposed MPC outperforms the conventional MPC in the
considered case study and thus is desirable for implementation
in systems with variable grid conditions.
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