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Abstract: Automated or semi-automated pavement condition data collection is replacing manual data collection in many state and local
highway agencies due to its advantages of reducing labor, time, and cost. However, the practical experience of highway agencies indicates that
there are still data quality issues with the pavement condition data collected using existing image and sensor-based data collection tech-
nologies. This study aims to investigate the implementation experiences and issues of automated or semi-automated pavement condition
surveys. An online questionnaire survey was conducted, along with scheduled virtual/phone interviews to gather information from
government, industry, and academia about the state of the practice and state of the art. Open questions about the data quality and quality
control & quality assurance (QC/QA) were used to receive first-hand inputs from highway agencies and pavement experts. The study has
compiled the following observations: (1) Highway agencies urgently need a uniform data collection protocol for automated data collection;
(2) the current QA requires too much human intervention; (3) cost ($100–$200 per mile) is a significant burden for state and local agencies;
(4) the main issues regarding data quality are data inconsistencies and discrepancies; (5) agencies expect a greater accuracy once the image
processing algorithms are improved using artificial intelligence technologies; and (6) existing automated data collection methods are not
available for project-level data collection. DOI: 10.1061/JPEODX.0000392. © 2022 American Society of Civil Engineers.
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Introduction

In the past two decades, one of the greatest improvements in pave-
ment management is the use of three dimensional (3D) camera and
laser sensor-based automated or semi-automated technologies for
pavement condition data collection. Updated existing technology
has sensor systems able to obtain 1 mm resolution 3D pavement im-
age data. These data provide full lane coverage in all three directions,
and can be collected at highway speeds up to 100 km=h (Wang et al.
2015). In recent years, researchers have been creating algorithms for
automated pavement cracking detection and analysis on 3D pave-
ment image data using deep learning and neural networks (Tsai and
Chatterjee 2017; Tsai et al. 2017, 2021; Zhang et al. 2017, 2019;
Hsieh and Tsai 2020; Yang et al. 2021). In the last two decades,

many other efforts were devoted to driving technological innovation
in the field of automated pavement condition data collection
(McGhee 2004; Flintsch and McGhee 2009; Pierce et al. 2013;
Pierce and Weitzel 2019; Chang et al. 2020). With these dedicated
and continuing efforts, automated or semi-automated technologies
for pavement condition data collection have become more and
more sophisticated. Compared with the traditional manual data col-
lection method, automated or semi-automated pavement condition
surveys can provide safer, faster, and more cost-effective data col-
lection and more convenient and efficient data services. Therefore,
automated or semi-automated technologies have been widely
adopted by state and local highway agencies for pavement condi-
tion data collection.

However, problems have arisen with the use of these technolo-
gies, and many highway agencies have reported data quality issues
(Pierce and Weitzel 2019). Agencies have taken various quality
management measures to improve automated data collection, in-
cluding monitoring quality control (QC) requirements on the
vendor side and implementing quality assurance (QA) procedures
on the agency side. For instance, the Virginia Department of
Transportation (VDOT) contracts with a third party to validate and
verify 10% of the collected pavement condition data (Flintsch and
McGhee 2009). The Texas Department of Transportation (TxDOT)
conducts a quality assurance audit that uses in-house staff and a
third-party contractor to visually evaluate about 6% of roadbed miles
for surface distress and ride quality (TxDOT 2016). State and local
agencies have acquired much valuable experience and many lessons
learned by implementing automated data collection, but there is a
lack of an appropriate platform to share these experience and lessons.
Most of the reported experience about quality control & quality as-
surance (QC/QA) of the automated pavement condition data collec-
tion focuses on state highway agencies (Flintsch and McGhee 2009;
Pierce et al. 2013; Pierce and Weitzel 2019; Chang et al. 2020),
although some studies focus on the issues that local agencies are
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having. Data collection vendors perform data collection for the agen-
cies and directly face the problems of data acquisition; thus, their
perspectives on data collection technology and data quality improve-
ment are important. It is necessary to conduct a comprehensive study
that combines the experiences of implementing automated or semi-
automated technologies in pavement condition surveys by research-
ers and industry, for both state and local highway agencies.

The main objective of this study is to present the experiences of
US highway agencies, the industry, and researchers in implement-
ing automated or semi-automated pavement condition surveys. The
study focuses on data collection methods, service providers, pro-
tocols, requirements, and costs. To fulfill this objective, the study
was conducted by using an online questionnaire, along with virtual/
phone interviews. The questionnaire served to collect current pol-
icies and practices of state highway agencies regarding automated
data collection and data quality management. The virtual/phone in-
terviews were designed to cover various relevant topics related to
conducting automated pavement condition surveys and possible
ways for improving the data quality.

Background

Automated Pavement Condition Data Collection

The traditional manual pavement condition survey is based on walk-
ing or traveling at a slow speed and noting surface distresses (Pierce
and Weitzel 2019). It is a labor-intensive and time-consuming pro-
cess that is difficult to cover the entire roadway length. To overcome
the challenges of the manual survey, many highway agencies have
adopted high-speed automated data collection technologies for
network-level pavement condition data collection. Automated data
collection is a process of collecting pavement condition data using
imaging technologies or other sensor equipment (McGhee 2004).
Data and images collected through automated data collection re-
quire processing, using either fully or semi-automated methods.
In semi-automated data processing, the collected images and data
are processed using imaging technologies or other sensor equip-
ment, but involve significant human input during the processing
and/or recording of the data (Flintsch and McGhee 2009). The
semi-automated method usually processes images at workstations
by personnel trained to rate visible cracks and other distresses
(Pierce et al. 2013). For fully automated data processing, the pave-
ment condition is identified and quantified through techniques that
require either no or very minimal human intervention (Flintsch and
McGhee 2009). Some fully automated systems use video and/or la-
ser technology to detect and classify pavement cracking in real-time,
and at highway speeds. Alternatively, some data collection vendors
use systems to capture the pavement image first, and then detect and
classify the cracks using automated post-processing (Pierce and
Weitzel 2019).

Recently, investigators have confirmed that the automated data
collection technologies have advanced pavement performance
quality assessments (McGhee 2004; Flintsch and McGhee 2009;
Pierce et al. 2013; Pierce and Weitzel 2019). The automated pave-
ment condition survey has become a commonly acceptable data
collection method because it has a minimal impact on traffic, while
providing a significant increase in safety, increased time efficiency,
and the possibility of 100% network coverage. A recent survey of
highway transportation agencies by the National Cooperative High-
way Research Program (NCHRP) shows that 45 out of 57 respond-
ers (46 US highway agencies and 11 Canadian provincial and
territorial governments) are using automated data collection meth-
ods exclusively. Six of the other 12 agencies are using both manual

and automated condition surveys, and the final six agencies are us-
ing manual pavement condition surveys (Pierce and Weitzel 2019).
With the wide adoption of automated pavement condition surveys
by state DOTs, the agencies are the end-users of automated pave-
ment condition data collection technologies, and of the collected
pavement condition data. It is thus important to capture those agen-
cies’ experiences in the implementation of automated pavement
condition data collection.

Data Quality Management Program

High-quality pavement performance data can provide critical infor-
mation to support decisions involving the Federal aid program for
highway pavements (FHWA 2018). To enhance the quality of the
pavement performance data, the Federal Highway Administration
(FHWA) promulgated a rule: The National Performance Manage-
ment Measures: Assessing Pavement Condition for the National
Highway Performance Program and Bridge Condition for the Na-
tional Highway Performance Program (PM2) (FHWA 2018). Rule
PM2, which became effective in 2017, surface roughness
[International Roughness Index (IRI)], rutting, faulting, and cracking
percent, along with present serviceability rating (PSR) as the pave-
ment condition metrics. The state highway agencies are required to
collect and report these pavement condition metrics to the FHWA’s
Highway Performance Monitoring System (HPMS) as either good,
fair, or poor, per 23 CFR 490.309(c) (FHWA 2018).

To collect pavement condition metrics accurately and report the
entire highway pavement performance comparably, each state high-
way agency was required to develop a Data Quality Management
Program (DQMP), following the requirements of FHWA and their
own states, according to 23 CFR 490.319(c). The DQMP is also
required by the Moving Ahead for Progress in the 21st Century
Act (MAP-21) and Fixing America’s Surface Transportation
(FAST) Act (Simpson et al. 2018). The DQMP is a document that
defines the acceptable level of data quality and describes how the
data collection process will ensure this level of quality in its proc-
esses and deliverables (FHWA 2018). The DQMP has five compo-
nents: (1) data collection equipment calibration and certification;
(2) certification process for persons performing manual data collec-
tion; (3) data quality control measures to be conducted before data
collection begins and periodically during data collection; (4) data
sampling, review, and checking processes; and (5) error resolution
procedures and data acceptance criteria (Simpson et al. 2018). The
DQMP aims to address the errors that occur due to data collection
equipment malfunction, unintended mistakes by operators, com-
puter glitches, mechanical failures, and other issues that can result
in poor data quality and the need for expensive recollection efforts
(FHWA 2018). Reviewing state highway agency’s DQMPs can be
an efficient way to understand how state highway agencies collect,
enhance and report their pavement condition data. However, the
data metrics vary by agency, and according to state highway agen-
cies’ data collection manuals, different data definitions are used.

Automated Data Collection Protocols and Standards

A data collection protocol/standard is a description of the proce-
dures used to ensure consistency in the collection and recording
of pavement condition data (FHWA 2018). In accordance with
23 CFR 490.309(c), pavement condition metrics are to be collected
and reported following the standardized HPMS format on an annual
cycle for Interstate highways, and on a two-year maximum cycle
for all other roads. The HPMS format conforms to ten AASHTO
(American Association of State Highway and Transportation Offi-
cials) standards, with some modifications specified in the HPMS
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Field Manual for IRI, cracking percent, rutting (for asphalt pave-
ments), and faulting (for jointed concrete pavements) (FHWA
2018). However, the automated data collection standards are not
limited to the HPMS Field Manual. A previous survey showed that
some state agencies also use ASTM standards in their automated
data collection, especially in measuring profile and macrotexture,
and analyzing precision and bias (Pierce and Weitzel 2019). The
Long-Term Pavement Performance Distress Identification Manual
(LTPP) has also been adopted by a few state agencies. Some state
highway agencies, such as the California Department of Transpor-
tation (Caltrans) and Pennsylvania Department of Transportation
(PennDOT), have their own standards for automated data collection
that serve their state-level data collection, analysis, and decision
making. A review of the automated data collection protocols and
standards being used by state highway agencies is included in this
study.

Quality Improvement of Automated Pavement Data
Collection

With the wide adoption of automated pavement data collection
technologies, there is much concern that the quality of the automati-
cally collected pavement condition data varies with differences in
equipment, algorithms, operation procedures, and human interven-
tions. The AFH20 Quality Assurance Management Committee of
the Transportation Research Board (TRB) directed a NCHRP Syn-
thesis Study titled “Agency Inspection and Monitoring of Quality
Control (QC) Plans for Use in Administering Quality Assurance
Specifications.” A major objective of the AFH20 committee was to
interview states with good practices for QC plans, as well as those
that do not have such requirements, to get a clearer picture of the
state of the practice (TRB 2020). TxDOT funded a research project
titled “Improve Data Quality for Automated Pavement Distress
Data Collection” to address the data accuracy and precision issues
associated with the reliability of existing automated and semi-
automated data collection methods. TxDOT also wanted to establish
data acceptance and QA guidelines, procedures, and specifications
for automated and semi-automated pavement condition surveys that
could be used to improve data quality management practices for con-
tracting pavement condition data collection (TxDOT 2020). Various
other highway agencies are also making efforts to manage the quality
of automated pavement data, including monitoring of vendor QC
requirements and agency QA procedures (Pierce and Weitzel 2019).

Data Quality Control
According to the AASHTO R10-06 (AASHTO 2006), QC includes
the activities needed to adjust production processes to achieve the
desired level of quality of pavement condition data. QC includes
sampling, testing, inspection, and corrective action (where required),
to maintain continuous control of a production process (FHWA
2018). Specific QC activities are required by each state’s DQMP
and are primarily implemented by the data collection team to mon-
itor, assess, and adjust data collection processes (Chang et al. 2020).
QC activities may include equipment calibration, software check and
control, verification, and blind site data collection, which are per-
formed during data collection (Pierce and Weitzel 2019). The pave-
ment performance indicators for QC, verification, and blind site
check mainly focus on IRI, rutting, faulting, cracking, and location,
but the specific requirements/tolerances for the control site checks
vary among state highway agencies.

Data Quality Assurance
After data processing and vendor internal quality check, the pave-
ment condition data are submitted to the agency. The agency team
then conducts a final data acceptance check for QA. Data acceptance

criteria for QA at the agency’s final data quality assessment are de-
fined in the state highway agency’s DQMP. A review of highway
agencies’ DQMPs shows that each state agency has its own data
sampling rate and method to select samples and conduct QA. The
QA criteria are in a wide range, depending on state agencies’ differ-
ent needs. The major contents of QA include IRI, rutting, faulting,
cracking, and images. If the submitted pavement condition data did
not pass the data acceptance check for QA, the data collection team
takes corrective actions to prevent erroneous data collection or data
analysis procedures from being processed (FHWA 2017).

Even with existing QC and QA procedures, the state agencies
are still struggling with data quality issues when applying auto-
mated data collection technologies. The quality of the automated
data varies, due to the previously-identified variances in equipment,
algorithms, operation procedures, and human interventions. The
reasons that cause this problem could be deficient QC and QA dur-
ing and after data collection. This study aims to identify and review
successful practices, and discuss the outstanding issues in the au-
tomated pavement condition data collection.

Methodology

The methods used in this study include an online questionnaire and
virtual/phone interviews. The questionnaire, named “Automated
Pavement Condition Data Collection—Data Quality Control and
Quality Assurance (QC/QA) Questionnaire,” was designed to sup-
port a TxDOT research project titled “Improve Data Quality for
Automated Pavement Distress Data Collection.” The questionnaire
was drafted in December 2020. Five TxDOT pavement engineers
reviewed, commented on, and provided suggestions to improve the
original draft. The finalized version of the questionnaire has five
sections (data collection, DQMP for quality control, DQMP for
quality assurance, open question for data quality issues, and DQMP
standard sharing request) with thirty-five questions. The question-
naire was created using Qualtrics Surveys software and distributed
to 52 pavement management engineers (including Washington, DC
and Puerto Rico) on April 1, 2021 through the TxDOT email
system.

The interviews were conducted pursuant to the National Science
Foundation’s Innovation Corps (I-Corps) program. Because of the
COVID-19 pandemic, all interviews were conducted virtually, via
online communication platforms (e.g., Zoom and Microsoft Teams)
and phone calls. The interviewees were pavement experts from the
government, industry, and academia, with practical experience in
automated pavement condition data collection. The questions asked
during the interviews varied according to the positions and respon-
sibilities of the interviewees. For government interviewees, the
questions mainly focused on the methods used, challenges faced,
data quality issues experienced, and price considerations. For in-
dustry interviewees, the questions focused on the development
of technologies, efficiency of data collection, quality control meth-
ods, and marketing experience. For academic researchers, the ques-
tions focused on technical experience in research and development,
along with challenges and innovation trends of the technologies.
The interviews were conducted during the I-Corps program period,
from January 12 to February 23, 2021.

Results and Discussion

A tremendous amount of information was collected by the ques-
tionnaire survey and interview responses. By the end of April
2021, 37 responses to the online questionnaire were received from
33 state highway agencies. Twenty-nine agencies also shared their
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DQMP standards. In addition, 101 pavement experts were inter-
viewed, 77 by virtual meetings and 24 by phone calls. The aggre-
gate results were organized by category. Due to space limits, only
those results falling into the following categories are presented,
which provide a fairly current picture of the automated pavement
condition data collection community. It should be noted that the
reported results and associated analysis only reflect the opinions
of the respondents in the online survey and interviews.

Practice of Pavement Condition Data Collection

Data Collection Methods
The questionnaire result shows that automated and semi-automated
pavement data collection methods have been widely adopted by
state highway agencies. Fig. 1 summarizes the pavement condition
data collection methods currently in use. Of the 33 agencies that re-
sponded, 32 have used automated or semi-automated data collection
methods. Among these 32 agencies, 12 have used automated or
semi-automated data collection technologies for more than 10 years;
eight have five to 10 years of experience; and five have one to four

years of experience (seven agencies did not respond to this aspect of
the question). This result indicates that different states may be at dif-
ferent stages of using automated/semi-automated data collection
technologies. For instance, the automated data collection in Cal-
trans still needs manual intervention for QC/QA. Florida DOT uses
a fully automated laser crack measurement system (LCMS) for
HPMS, while for the pavement condition survey, it is still in a tran-
sition from manual distress data collection to fully automated rat-
ings. Mississippi DOT uses manual data collection for concrete
pavement cracking evaluation, which constitutes 3% of the lane
miles. Nevada DOT and South Dakota DOT use manual data col-
lection for distress and automated technologies for profile, rutting,
and faulting. Alaska DOT uses a semi-automated system for patch-
ing and raveling evaluation.

Data Collection Service Provider
The questionnaire survey results summarized in Fig. 2 show that
there are three ways in which state highway agencies collect pave-
ment condition data:
• Of the 33 respondents, 20 contract with vendors for pavement

condition surveys. Contracting with a vendor is a common

Fig. 1. Summary of agency data collection methods (33 responses).

Fig. 2. Summary of data collection service providers (33 responses).
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approach for state highway agencies and can save a lot of time
for engineers and staff, but the cost of contracting with a vendor
can be much different from that of using in-house staff. Some
state highway agencies take additional actions to enhance the
quality of the vendor’s services. For instance, Caltrans has a
field crew to perform QC/QA. The Indiana Department of
Transportation (INDOT) and PennDOT collect project-level
pavement condition data using their own staff.

• Of the 33 respondents, 11 collect data using their own staff.
Some of these state agencies, such as the Minnesota Department
of Transportation (MnDOT), Maryland DOT, and Washington
DOT, own data collection vehicles.

• The final two respondents use both vendors and staff for data
collection. For example, Florida DOT collects Interstate high-
way data using its own LCMS, while a vendor collects data from
non-Interstate roads.

Implementation of Pavement Condition Data Collection

Data Collection Protocols
Before implementing automated data collection, a state highway
agency should specify its data collection metrics and protocols.
As mentioned in the background, data standards and protocols vary
by agency. Although FHWA requires states to collect and report
pavement condition data following the HPMS field manual, gen-
erally a state agency can use more than one data collection protocol.
The commonly used protocols include various ASTM standards,
AASHTO standards, and the LTPP standard. Delaware, Florida,
Illinois, Minnesota, Mississippi, Nevada, Nebraska, Ohio, Oregon,
South Dakota, Texas, Washington, and Wyoming have standards of
their own design.

Data Collection Items
The data items collected by state agencies using automated/semi-
automated data collection methods primarily include distress data
(different kinds of cracking), roughness (IRI), rutting, and faulting,
according to FHWA’s data reporting requirements. Some state

agencies collect additional items. For example, Arkansas collects
macro texture; Caltrans collects mean profile depth (MPD); Florida
plans to expand raveling as a separate distress category; the Loui-
siana Department of Transportation and Development (LAODTD)
collects friction texture, macrotexture, horizontal and vertical align-
ment data, and fill quantity; Mississippi collects friction data; and
TxDOT collects skid numbers.

Data Collection Length and Cycle
The data collection length depends on the state’s roadway network
length. Fig. 3 summarizes the survey results about each state’s data
collection length and frequency. Of the 32 respondent states, 26
collect pavement condition data by roadbed miles, four collect
pavement data by lane miles, and two collect pavement data by
centerline miles. (The centerline mile is defined as the distance
measured between the beginning point and the end point shown
on the design plan, regardless of the number of lanes or roadbeds.
The roadbed mile is defined as the distance along each roadbed
regardless of the number of lanes.) Of the 32 states that use auto-
mated or semi-automated data collection, Texas has the longest
automated data collection network, and Caltrans has the second-
longest.

In its 2016 Field Manual, FHWA specified that the data collec-
tion frequency for the Interstate System pavement is annual, and
for non-Interstate National Highway System (NHS) pavement is
biennial (Simpson et al. 2020). Both the annual data collection
frequency for Interstate System pavement and the biennial data col-
lection frequency for non-Interstate NHS require annual data report-
ing to HPMS so that the most recently collected data replaces the
data from the prior data collection cycle. To manage the state road-
way network and meet FHWA’s data reporting requirements, 21 of
the 32 respondent states (solid bars in Fig. 3) collect data on all state-
maintained roads annually. The other 11 state highway agencies
collect data annually on the Interstate, or both the Interstate and
non-Interstate NHS, but collect data biennially on the other state-
maintained roads.

Fig. 3. Data collection lengths and cycles of state highway agencies (32 responses with automated or semi-automated data collection).
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QC/QA Processes
During a virtual interview, a senior pavement engineer from Agi-
leAssets noted that “Pavement survey accuracy is really important
because it concerns [a] multi-million dollar maintenance plan.”
However, the accuracy of automated survey technologies can be
easily affected by survey equipment. QC before and during the data
collection and QA after the data collection are crucial to enhance
the quality of the pavement condition data.

QC activities include automated data collection equipment cer-
tification, verification, and calibration. Table 1 lists the QC activ-
ities taken by the 32 responding state highway agencies using
automated or semi-automated data collections. The results show
that most of the state highway agencies conduct equipment certif-
ication, verification, and calibration for cracking, IRI, and rutting,
by vendors and staff. Some of the state highway agencies contract
with an independent third party for equipment certification, but
very few agencies use third parties for verification and calibration.
The results also indicate that some state highway agencies only ap-
ply verification and calibration for IRI and rutting, and not for
cracking.

QA activities are involved in the data acceptance check process,
which includes data allowable range check, data quality validation,
data sampling checks with a specific sampling rate, and methods
for the automated pavement condition survey. Table 2 provides the
QA activities undertaken by the 32 respondents using automated or
semi-automated data collection. The result indicates that most of the
state highway agencies have data allowable range checks as well as
data quality validation processes for distress data, IRI, rutting, and
faulting. These state highway agencies also conduct data sampling
with different sampling rates and sampling methods. The sampling
rates for distress data are mainly in the range of 0.5%–10%. The
sampling rates for distress data can also be 25%, 35%, and even

100%. For IRI, rutting, and faulting, most states are sampling
100% of the collected network length, while a few states apply
sampling rates of 0.5%–10% (except for Illinois, which uses a sam-
pling rate of 50% for IRI and rutting). The most commonly-used
sampling method is random sampling by picking a desired sample
size (i.e., percent of the surveyed state network pavement sections
or population) and selecting observations from the population. Sys-
tematic sampling and stratified sampling are also used by many
state highway agencies. Systematic sampling is conducted by se-
lecting sample units or elements (pavement sections) of a popula-
tion at a regular interval determined in advance. Stratified sampling
is applied by separating the sample elements (pavement sections)
of a population (all pavement sections in the state-maintained net-
work) into subgroups or strata, and then randomly selecting ele-
ments from each stratum. Generally, there are more similarities
among elements within a stratum than among elements in different
strata. Contrary to other states, Caltrans uses cluster sampling,
which is very similar to stratified sampling, by dividing the pop-
ulation into multiple groups or clusters, and then selecting random
elements from these clusters. These QA activities for data accep-
tance checks are mainly conducted by the agency staff, and they
generally take a considerable amount of time. Only a few state
highway agencies are working with a vendor or other third party
to perform the data acceptance checks.

One of the open questions in the questionnaire concerns the data
quality issues that the state highway agencies are facing. Table 3
summarizes the responses of state highway agencies to some typ-
ical data quality issues and their possible causes. Eight states men-
tioned issues about cracking data, such as cracking identification/
determination, cracking detection, and cracking classification.
Some state agencies have data quality issues with specific pave-
ment types, such as jointed concrete pavement (JCP). IRI data

Table 1. Quality control of automated pavement data collection at state highway agencies

Quality control items Vendor/contractor Agency staff Third party

Who does the equipment certification for distress
data (cracking)?

AK, CO, DE, GA, IL, IN, KY, LA,
MD, MI, NE, NY, NM, WY

AL, AR, IL, KY, MD, MN, MS,
MT, NV, NH, SD

AL, CA, FL, GA,
TX, WA

Who does the equipment certification for
roughness (IRI)?

AK, AR, CO, DE, GA, IL, IN, KY,
LA, MI, NE, NY, NM, WY

AR, IL, MD, MI, MN, MS, MT,
ND, NV, NH, OR, PA, SD

AL, AK, CA, FL,
GA, NH, NJ, TN,
TX

Who does the equipment certification for rutting? CO, DE, GA, IL, IN, KY, LA, MD,
MI, NE, NY, NM, TN, WY

AL, AR, IL, MD, MN, MS, NV,
NH, PA, SD, WA,

CA, FL, GA, TX

Who does the equipment verification for distress
data (cracking)?

AL, AK, CO, DE, GA, IL, IN, KY,
LA, MD, MI, NY, NM, OR, TN,
TX, WY

AR, CA, FL, IL, MD, MI, MN, MT,
NV, NE, NH, PA, SD, WA

FL, NJ

Who does the equipment verification for?
Roughness (IRI)?

AL, AK, CO, DE, GA, IL, IN, KY,
LA, MD, MI, NY, NM, OR, TN,
TX, WY

AR, CA, FL, IL, MD,MI, MN,MS,
MT, ND, NV, NE, NH, NM, PA,
SD, WA

FL, NJ

Who does the equipment verification for rutting? AL, AK, CO, DE, GA, IL, IN, KY,
LA, MD, MI, NY, NM, OR, PA,
TN, TX, WY

AR, CA, FL, IL, MD,MI, MN,MS,
MT, NE, NH, NJ, SD, WA,

FL

Who does the equipment calibration for distress
data (cracking)?

AL, FL, GA, IL, IN, KY, LA, MI,
NE, NH, NY, NJ, NM, WY

AK, AR, CA, FL, IL, MD,MI, MN,
NE, NH, OR, PA, SD, TN, WA,

FL, NJ, TX

Who does the equipment calibration for roughness
(IRI)?

CO, GA, IL, IN, KY, LA, MI, NE,
NH, NY, NM, WY

AK, AR, CA, IL, MD, MI, MN,
MS, MT, ND, NV, NE, NH, OR,
PA, SD, TN, TX

AL, NJ

Who does the equipment calibration for rutting? CO, FL, GA, IL, IN, KY, LA, MD,
MI, NE, NH, NY, NJ, NM, WY

AL, AK, AR, CA, FL, IL, MD, MI,
MN, MS, NV, NE, NH, OR, PA,
SD, TN, TX, WA

FL

Who does the data acceptance check? MD, NH, TN, TX AL, AK, CA, CO, DE, FL, GA, IL,
KY, MD, MI, ND, NV, NE, NH,
NY, NJ, NM, OR, PA, SD, TN, TX,
WA, WY

DE, NM, TX

Note: Verification: weekly check that the inertial profiler for IRI measurements and the 3D systems for rut measurements are in good operating condition; and
calibration: comparison of data collected using an inertial profiler and skid trucks with those of a reference device (TxDOT 2018).
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collection has caused issues in some state agencies, especially in
urban areas. The IRI sensors are very sensitive to the traffic envi-
ronment, and the low vehicle speeds and frequent stops due to traf-
fic signals in urban areas can cause issues with IRI data collection.
Another issue that has been raised is alignment of the vendor col-
lected data with the state referencing systems and standards.

In addition, the lack of a standard for the format of automated
pavement condition surveys has been another problem in QC for a
long time. AASHTO has recently approved a new standard speci-
fication (Pavement Standard Image, or PSI) to define the two and
three-dimensional (2D/3D) pavement image data format for pave-
ment surface condition and profile surveys. This standard provides
a uniform nationwide format for automated pavement condition sur-
veys, and could decrease the unit price of the automated pavement
condition survey. For state highway agencies, federal regulations
specify how automated pavement surveys should be conducted
and how data quality should be handled. For municipal governments,
however, there is no standard for automated data collection; the re-
quirements are quite loose and municipal governments have no clear
guidance for their data collection vendors.

Data Collection Cost
Cost is a big concern when state and local agencies switch to auto-
mated data collection. Many interviewees from both the government
and industry believe that the current automated data collection serv-
ices are too expensive. An engineer from National Construction
Enterprises shared that the cost of manual data collection could
be as low as $15 per hour, while the price of high-quality automated
data collection could be $100–$150 per mile. VDOT spends about
$100–$200 per mile for an automated pavement condition survey
that includes an independent third party for QA that manually reads
the image data. The cost of automated data collection is quite sig-
nificant to customers (agencies) such as small cities and counties.
The City of Nevada (Iowa) had five vendors bidding for its auto-
mated pavement condition survey. After an evaluation of price and
service quality, the price of the pavement condition survey from the
chosen vendor was $105 per mile. Unlike other state and local
agencies, MnDOT conducts automated pavement condition data
collection itself. One significant advantage is cost reduction—
The current cost is approximately $40 per mile for the annual sur-
vey. MnDOT replaces their survey vans every 5–6 years, and on
average the total data collection cost is around $55 per mile.

The final contract with a data collection vendor typically
includes a fixed price, plus a per-mile charge. The unit cost of
network-level pavement condition data collection depends on the
state agency’s requirements regarding collected network length,
measurement items, featured information, QC/QA, and timing.
Therefore, in many cases, the price for high-quality pavement
condition data is unpredictable. For instance, an engineer from
Applied Pavement Technology (AP Tech) stated that they could
adopt various procedures to ensure the survey data are accurate, and
each procedure would add a certain amount to the total cost. Thus, if
survey data proved acceptable without manual intervention, a 10%
surchargewould be added. If not, an additional charge, unpredictable
at the time of contract formation, might be needed to make the data
acceptable to the agency. For reasons such as this, many engineers
advised that reducing data collection costs and data processing time
are urgent needs for automated data collection.

Problems with Existing Automated Data Collection

Data Quality of Automated Data Collection Technologies
Most of the interviewees agreed that automated data collection can
improve the work efficiency of pavement engineers. However, theT
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current automated pavement data collection technologies have a lot
of room for improvement, especially regarding data processing algo-
rithms. Pavement engineers claimed that data quality is a serious is-
sue with current automated data collection technologies. Some
interviewees noted that data inconsistencies and discrepancies are
the main issues after state and local agencies switch to automated
data collection. Take as an example a Pavement Management super-
visor at TxDOT, who said “Data inconsistency and false-positive
cost us extra time for data validation, and also create troubles for
us to serve the other functional departments in TxDOT.”

Inconsistency means differences between two or more runs of
automated data collection at the same pavement locations. Discrep-
ancy means differences between the true distress values and the
collected measurements at the same pavement locations. A typical
manifestation of discrepancy is a false positive. Several pavement
engineers mentioned that current automated pavement survey tech-
nologies tend to raise the rate of false-positive, which has caused a
significant discrepancy problem. An engineer from Roadway Asset
Services (RAS) concluded that the inconsistencies between differ-
ent pavement condition survey systems, as well as the inconsisten-
cies between human ratings and automated systems, are currently
among the biggest challenges. As an example, the City of Austin
used three vendors to collect data at different times, and the result-
ing data inconsistencies have been a big issue. The main reason is
that the vendors all used proprietary image data formats that prevent
sharing and cross-checking of data.

Meanwhile, some highway agencies are also having trouble
matching automated data with historical data that were collected
manually. This data continuity issue was raised by many engineers
from state and local agencies in interviews. An engineer from Qual-
ity Engineering Solutions (QES) said that current technologies have
issues in concrete pavement surveys for patched/sealed cracking
detection, crack type classification, and crack severity quantifica-
tion. He also noted, however, that the vendors all have provided
timely and effective technical support services when data quality
issues were reported.

In contrast, several engineers reported that they are quite satis-
fied with current automated data collection technologies, especially
during the Covid-19 lockdown; these engineers believed that data
inconsistency and discrepancy issues are normal and acceptable.
This conclusion is supported by the FHWA experience: Most of the
annual reports submitted by state highway agencies to the FHWA
are based on automated data, and only a small percentage of the
reports are found to have data issues.

Promoting Automated Data Collection Technologies
Current automated and semi-automated pavement survey technol-
ogies are not fully automated, and have limitations. One pavement
engineer with experience in government, industry, and academia
shared that the current automated data collection technologies are
far removed from fully automated (without human interruption)
data collection. A senior pavement engineer from AgileAssets

Table 3. Data quality issues of state highway agencies

Agency Data quality issues and possible reasons

Alabama DOT (1) Cracking data has been underreported by vendor since the beginning. It is getting better.
(2) OGFC remains a challenge. The vendor may have trouble rating it.

Alaska DOT (1) Low speed IRI collection, which is likely a challenge in most states in urban areas.
(2) Occasionally vendor’s cracking identification misses some cracks, but that has not been a large issue overall and is
normally very isolated.
(3) The largest issue probably is aligning the vendor collected data to state’s linear referencing system for HPMS
reporting.

Caltrans (1) Vendor turn over.
(2) Accurate execution of automated pavement data collection is a major issue.
(3) At network level, we need to accept imperfection for localized issues and focus on project development.
(4) Accurate cracking determination appears to be the most challenging.

Colorado DOT (1) Corner breaks are interpreted manually.
(2) Vendor-collected data did not align with the LTPP definition, but was corrected.

Maryland DOT (1) Data quality issues do arise, but sophisticated data quality assurance and quality control checks are in place to
address them.
(2) These issues arise due to the nature of the data collection procedures, personnel changes in equipment operations,
and data processing.
(3) Continuous refinement of processes, training of new staff, and well documented standard operating procedures
(SOPs) allow for effective resolution of issues.

Minnesota DOT The biggest issue we have with automated distress classification is on JCP.
Mississippi DOT We are aware that the pavement type is crucial on the distress classification. The contractor may have issues classifying

the pavement type.
Nevada DOT (1) Certain types of distress data are less reliable because so many people are involved in the collection effort.

(2) We are slowly transitioning to a more centralized approach that should make it more reliable.
New Jersey DOT Traffic lights and traffic congestion impact the quality of the IRI data in those locations.
Oregon DOT (1) Distresses rated manually from the pavement images are more likely to have problems.

(2) For concrete pavement, separating important cracks from unimportant map cracking is an issue.
(3) For asphalt pavement, patching, potholes, and raveling can be an issue, especially with regard to capturing the
proper severity level.

PennDOT (1) Data quality is mostly limited to right edge deterioration and left edge joint distress on asphalt pavements.
(2) Limitations of the imaging system to capture the full extent of the lane in some cases. Also limitations of the crack
detection software in identifying these two distresses.

South Dakota There have been isolated issues from time to time. Usually, an equipment malfunction has been to blame.
Tennessee DOT Data variability. The reason could be operation issues and quality of the downward 3-D images.
Utah DOT (1) One of the biggest headaches was matching the Location Referencing System.

(2) Another was how to handle routes that were closed/under construction, as well as need to recollect data.
Wyoming DOT Consistency of automated crack detection on JCP.
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commented that its current pavement survey is not fully automated;
for instance, patches still need manual detection. Feedback from
other pavement engineers confirms that semi-automated pavement
surveys still require a huge amount of manual labor.

The information gained from the interviews shows that while an
accuracy of 95% is expected, current data accuracies for automated
pavement surveys are around 70%–80%. The engineers from sur-
vey companies insisted that current automated technologies need
to be improved, and that artificial intelligence (AI) technologies
should be applied to improve the data quality. Some companies
have started using AI technologies. For example, deep learning al-
gorithms have been used for automated data detection, classifica-
tion, and quantification. However, the interviewees from academia
pointed out that the current deep learning method still needs data
pre-treatment. The lack of training data due to the low availability
of annotated ground truth image data, and difficulties with sharing
data in the public domain, have caused delays in developing and
using AI. Current AI-driven automated pavement condition survey
technologies cannot detect all types of pavement distresses. An im-
portant reason for this is that the current distress definition standard
is designed for human raters, and not for computers, so some dis-
tresses cannot adequately be detected or measured by current au-
tomated technologies.

Implementation of QA
As mentioned previously, the main issues with current automated
data collection technologies are data inconsistencies and discrepan-
cies, for which manual correction is needed to make the data usable.
This problem was brought up in many interviews with pavement
management engineers at state agencies. The vendors have internal
QA processes, but still could not satisfy highway agencies’ data qual-
ity requirements. Four pavement engineers from state and local agen-
cies said that they would not trust the survey data without validation.
Many interviewees indicated that they spent substantial staff time
doing image checks for data QA. In four states, it took engineers
months to validate the yearly pavement survey data. For instance,
a district engineer at TxDOT mentioned that it is hard to verify the
data from thewhole network because it would take engineers months
to review all the data. In Mississippi, the IT staff and pavement en-
gineers work together to check the image data and the historical
Pavement Management System (PMS) data and make corrections
to the information in the PMS. A pavement engineer shared that data
validation in Caltrans is conducted manually by three engineers
working full-time. QA is time-consuming and labor-intensive, and
involves much subjectivity. This feedback mirrors the findings from
the reviews of agency DQMPs, in that the most labor-intensive
checks were image checks, though the manual image checks only
represented a subset of the data.

Many state and local agencies contracted with third parties
(e.g., VDOT contracts with QES) to examine the survey data pro-
vided by the data collection vendors, which is expensive. Some
highway agencies and municipal governments treat automated data
collection, data processing, and QA as individual services, and con-
tract with different entities to conduct the pavement condition
evaluation work.

More suggestions regarding the implementation of QA concern
quantifying QA. An engineer from Applied Research Associates
suggested that a threshold could be used to define data quality for
QA purposes, which can vary depending on the needs of different
highway agencies.

Extend Automated Data Collection to Project Level
A few agencies mentioned in the questionnaire survey that they are
using automated technologies for some project-level data collection.
Many pavement engineers from both the industry and government

also said that extending the automated pavement condition data col-
lection technologies to project-level data collection is necessary.
However, current technologies are not fully ready for project-level
data collection, as was noted by an engineer from the City of Austin
who worked with a vendor for automated pavement data collection.
The engineer noted that there were many issues with IRI data col-
lected in the city network. The engineer, who worked on PMS data,
spent much time on QA. Another engineer revealed that the project-
level data collected in the TxDOT San Antonio District is more than
just IRI data, and thus also requires TxDOT staff to utilize a falling
weight deflectometer (FWD) and ground penetrating radar (GPR) to
collect structure data. MnDOT is struggling with traffic control and
seasonal limitations in using GPR and FWD for project-level pave-
ment condition surveys. An engineer at TxDOT Houston District
mentioned that inaccurate GPS referencing is another important issue
that limits the use of automated data collection at the project level.
Pavement engineers from Virginia DOT, TxDOT Dallas and Pharr
Districts, NCE, and StreetSaver provided the same feedback.

The interview result shows that although there is a tremendous
need to extend automated pavement condition data collection from
network level to project level, current automated data collection
technologies have issues that need to be addressed before being
used as the primary method for project-level data collection. The
first major issue is that the data accuracy and precision specifications
used for project-level design model calibration are typically higher
than those used for network-level (Chang et al. 2020). The second
issue is that current automated pavement condition data collection
technologies cannot provide all the data items (e.g., structure data)
needed for project-level decision making.

Conclusions

Automated pavement condition surveying is essential, as it saves
much time and cost for customers who need pavement condition
data (state highway agencies and municipal governments). This
study employed a questionnaire survey to investigate the imple-
mentation of automated or semi-automated pavement surveys and
to summarize the QC/QA practices that are conducted by state and
local highway agencies. The study also conducted 101 virtual or
phone interviews to obtain practical insights about the issues that
government, industry, and academia perceive about automated or
semi-automated data collection. Based on the survey question-
naire and interviews, the following findings are observed:
• Most state and local highway agencies conduct automated or

semi-automated pavement data collection. Many state highway
agencies have more than ten years of experience in using auto-
mated or semi-automated technologies. Contracting with a ven-
dor is the prevailing way to conduct a pavement condition survey.

• There is no uniform data collection protocol for automated or
semi-automated pavement data collection. ASTM standards,
AASHTO standards, and the LTPP standard are the commonly
used standards, but state highway agencies also use standards of
their own design.

• Data collection items and frequency vary among state highway
agencies, although most states collect state maintained network-
level pavement condition data annually.

• QC of automated or semi-automated pavement condition data is
typically conducted by vendors and agency staff. QA activities
are mainly conducted by agency staff, and takes a substantial
amount of time. Random, stratified, and systematic sampling
methods with a specific sampling rate of the roadway network
length are used for state agencies’ QA purposes. However, the
current QA process makes huge demands on agency staff time.

© ASCE 04022042-9 J. Transp. Eng., Part B: Pavements

 J. Transp. Eng., Part B: Pavements, 2022, 148(3): 04022042 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Ja
na

 M
in

ifi
e 

on
 0

8/
23

/2
2.

 C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



Innovation in the QA process is needed to promote automated
pavement condition surveys.

• The high cost of automated or semi-automated pavement con-
dition data collection ($100–$200) per mile is a major concern
for state and local agencies. State highway agencies and local
agencies may have different cost expectations on automated
pavement condition surveys.

• The main issue in automated or semi-automated pavement con-
dition data collection is data quality, which presents as data in-
consistencies and discrepancies. Agencies both contract with
third parties and use internal staff to address the data quality
issues and make the data usable. Vendors provide timely and
effective technical support services to help the agencies and/
or third parties address data quality issues.

• Although existing automated pavement condition data collection
technologies are widely adopted for network-level pavement sur-
veys, data inconsistency and discrepancy problems must be cor-
rected through an intensive QA process. These inconsistency and
discrepancy problems are due to immature data collection tech-
nologies, as well as to vendors’ use of proprietary image data
formats that prevent sharing and cross-checking of data.

• Extending automated data collection to the project-level is a tre-
mendous need for pavement engineers, but current technologies
are still too immature in data accuracy and precision for project-
level use. AI concepts and models are expected to be more
widely used to further improve and optimize image processing
and to be applied to the continued advancement of automated
pavement data collection technologies.
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