

ACCEPTED MANUSCRIPT • OPEN ACCESS

Is smart water meter temporal resolution a limiting factor to residential water end-use classification? A quantitative experimental analysis

To cite this article before publication: Zahra Heydari *et al* 2022 *Environ. Res.: Infrastruct. Sustain.* in press <https://doi.org/10.1088/2634-4505/ac8a6b>

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2022 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence <https://creativecommons.org/licenses/by/3.0>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the [article online](#) for updates and enhancements.

1 1 Is smart water meter temporal resolution a limiting factor to residential water 2 2 end-use classification? A quantitative experimental analysis 3 3

4 4 Zahra Heydari¹, Andrea Cominola^{2,3}, and Ashlynn S. Stillwell¹
5

6 5 ¹Civil and Environmental Engineering, University of Illinois Urbana-Champaign; ²Chair of
7 6 Smart Water Networks, Technische Universität Berlin, Berlin, Germany; ³Einstein Center
8 7 Digital Future, Berlin, Germany.

9 9 **Abstract**

10 10 Water monitoring in households provides occupants and utilities with key information to support
11 11 water conservation and efficiency in the residential sector. High costs, intrusiveness, and
12 12 practical complexity limit appliance-level monitoring via sub-meters on every water-consuming
13 13 end use in households. Non-intrusive machine learning methods have emerged as promising
14 14 techniques to analyze observed data collected by a single meter at the inlet of the house and
15 15 estimated the disaggregated contribution of each water end use. While fine temporal resolution
16 16 data allow for more accurate end-use disaggregation, there is an inevitable increase in the
17 17 amount of data that needs to be stored and analyzed. To explore this tradeoff and advance
18 18 previous studies based on synthetic data, we first collected 1-second resolution indoor water use
19 19 data from a residential single-point smart water metering system installed at a 4-person
20 20 household, as well as ground-truth end-use labels based on a water diary recorded over a 4-week
21 21 study period. Second, we trained a supervised machine learning model (random forest classifier)
22 22 to classify six water end use categories across different temporal resolutions and two different
23 23 model calibration scenarios. Finally, we evaluated the results based on three different
24 24 performance metrics (micro, weighted, and macro F1 scores). Our findings show that data
25 25 collected at 1- to 5-second intervals allow for better end-use classification (weighted F-score
26 26 higher than 0.85), particularly for toilet events; however, certain water end uses (e.g., shower and
27 27 washing machine events) can still be predicted with acceptable accuracy even at coarser
28 28 resolutions, up to 1 minute, provided that these end use categories are well represented in the
29 29 training dataset. Overall, our study provides insights for further water sustainability research and
30 30 widespread deployment of smart water meters.

47 31 Keywords: smart water meter, temporal resolution, residential water use, water sustainability,
48 32 supervised machine learning

51 33 **1. Introduction**

53 34 Strong emphasis on sustainability in water use has been increasingly brought to light by growing
54 35 population and urbanization (Cosgrove and Loucks 2015), coupled with climate change impacts
55 36 on water resources (Jabaloyes et al. 2018; Karamouz and Heydari 2020). With existing

1
2
3 37 limitations on water resource availability, new developments to increase water storage and
4 supply are often physically or economically constrained. Therefore, better management of
5 existing water resources has become an issue of paramount importance (Mazzoni et al. 2021).
6 40 Public utilities are now investing significant resources and efforts in the development and
7 implementation of water management strategies, both on the supply and the demand side, to
8 ensure future water security (Jain and Ormsbee 2002; Herrera et al. 2010). On the demand side,
9 these strategies include water saving technologies, new water policy regulations, rebate programs
10 for water-efficient devices, leakage management, and source substitution (e.g., replacing non-
11 potable end-uses with grey, recycled, or harvested rainwater (Dixon et al. 1999)) (Gleick et al.
12 45 2003; Inman and Jeffrey, 2006; Stewart et al. 2013; Cominola et al. 2015; Ntuli and Abu-
13 50 Mahfouz 2016).
14 46
15 55
16 60
17 65
18 70
19 75
20 80
21 85
22 90
23 95
24 100
25 105
26 110
27 115
28 120
29 125
30 130
31 135
32 140
33 145
34 150
35 155
36 160
37 165
38 170
39 175
40 180
41 185
42 190
43 195
44 200
45 205
46 210
47 215
48 220
49 225
50 230
51 235
52 240
53 245
54 250
55 255
56 260
57 265
58 270
59 275
60 280

18 48 Beside their direct effect on water resources, residential water conservation and efficiency
19 49 strategies can help save water-related energy required for water treatment, distribution, and
20 50 heating (Srinivasan et al. 2011). Residential end uses are responsible for more than 70% of all
21 51 water-related energy use (Escriva-Bou et al. 2018). However, the effectiveness of these measures
22 52 hinges on an accurate estimate of water demand from detailed understanding of how and when
23 53 water is used in the residential sector. Access to high resolution water consumption data can help
24 54 improve our knowledge of water demand, identify specific fixture/appliance end uses (e.g.,
25 55 toilet, shower, washing machine, outdoor irrigation), or detect anomalies, such as leaks (Luciani
26 56 et al. 2019). Smart water meters, which can provide the fine resolution data necessary to discern
27 57 end uses, have been proven essential in supporting water conservation and efficiency measures in
28 58 practice (Britton et al., 2008).

33 59 Conventional residential water meters typically collect coarse resolution data and require manual
34 60 readings, limiting the understanding of household-scale water use characteristics and its patterns
35 61 in time. Conversely, smart (or digital) water meters enable the collection and automated
36 62 reporting of fine resolution water use data, thereby allowing planners and utilities to better
37 63 understand demand patterns and enact management strategies. Smart metering can help the
38 64 development of accurate demand characterization and forecasts and, hence, improve the
39 65 operation and long-term planning of water supply and distribution systems (Stewart et al. 2018),
40 66 or promote durable conservation behaviors (Cominola et al., 2021). In addition, detailed
41 67 knowledge about water consumption at the household level can also translate into financial
42 68 savings for home occupants, especially when complemented with information about individual
43 69 end uses (e.g., Blokker et al. 2010).

48 70 Obtaining information on residential end uses is not a trivial problem. Information about
49 71 residential water demand at the end-use level could, in principle, be obtained through direct
50 72 measurements via intrusive monitoring, i.e., by installing sub-meters at all household end uses.
51 73 However, this approach is often practically or economically infeasible from a utility perspective
52 74 and would likely be rejected by home occupants due to its intrusive nature. Instead, water
53 75 utilities are increasingly installing residential smart water meters that collect fine resolution

1
2
3 76 water consumption data at the service line or entrance into the home, providing aggregate water
4 data, which are so far primarily used for billing purposes (Fogarty and Hudson 2006; Froehlich
5 et al. 2009). Similarly to previous experiences in the electricity sector, limits to directly
6 collecting water-use data at the residential end uses has motivated the development of several
7 non-intrusive disaggregation approaches, which have the advantage of allowing the
8 decomposition of a signal measured at the household level (i.e., aggregate water use) into the
9 individual contribution of each end use (Cominola et al. 2017; Di Mauro et al. 2020; Bethke et
10 al. 2021).
11
12

13 84 Several state-of-the-art disaggregation techniques require additional sensing on the premise
14 plumbing infrastructure and/or a manual characterization of each end use (Fogarty and Hudson
15 2006; Kim et al. 2008). These techniques can be intrusive, expensive, and time consuming, thus
16 they are not easy to develop or replicate at large scales (Froehlich et al. 2009, 2011; Srinivasan et
17 al. 2011; Ellert et al. 2015; Ntuli and Abu-Mahfouz). Other disaggregation techniques use only
18 flow (or volume) data collected at the household water inlet point. They can classify end uses in
19 a non-intrusive way, with the accuracy of results varying across different data sampling temporal
20 resolutions (e.g., 1-10 seconds vs. minutes; Clifford et al. 2018; Vitter and Webber 2018).
21 Understanding the tradeoff between the value of the information provided by fine-resolution data
22 and the economic and operational costs of the metering system is crucial to inform the design of
23 future metering networks and associated analytics to facilitate customer data interpretation.
24
25

26 95 The availability of fine-resolution smart meter data generates several opportunities for advancing
27 water demand management. Sub-minute sampling resolution is essential for most water end-use
28 disaggregation algorithms to provide a reliable categorization of household level water use into
29 different fixtures/appliances (e.g., shower, toilet, dishwasher, etc.) (Willis et al. 2010; Nguyen et
30 al. 2013; Abdallah and Rosenberg, 2014; Horsburgh et al. 2017; Cominola et al. 2018).
31
32

33 100 However, high resolution metering inevitably increases the amount of data the water utility must
34 collect, process, and manage. Sampling at 1-second resolution, for instance, implies replacing the
35 typical 12 monthly readings per user with over 31.5 million data readings. Large amounts of data
36 can compromise hardware and software performance due to issues with meter power sources,
37 battery life, telemetry network capacity, data gaps, and billing software, besides requiring
38 utilities to acquire new skill sets for their employees (Stewart et al., 2010; Suero et al. 2012).
39
40

41 106 Among the existing literature that has already explored the implication of data sampling
42 resolution on water end use disaggregation (e.g., Wonders et al. 2016), Cominola et al. (2018)
43 developed an analysis based on synthetic time series of water end use generated with STREaM,
44 the STochastic Residential water End-use Model. Their model relied on statistical distributions
45 of end-use characteristics derived from a large dataset of disaggregated water end-uses from over
46 300 single-family households in nine U.S. cities (DeOreo, 2011). STREaM generated synthetic
47 time series of water end uses with diverse sampling resolutions, which were analyzed with a
48 multi-resolution assessment framework to identify potentially critical thresholds in data
49 resolution for different aspects of information retrieval and demand management. While such
50 studies tend to make up for the shortness of (or limited access to) data through stochastic
51
52

1
2
3 116 modeling to generate synthetic disaggregated water use data, a data gap remains with limited
4 availability of ground-truth water end-use observations from real-world data (Di Mauro et al.
5 2020; Di Mauro et al. 2021).
6

7 119 Here, we address the challenge of testing if and how the theoretical results obtained in the
8 literature on synthetic data change when similar analysis is replicated directly on real-world data.
9 Compared to synthetic data, real-world data might be characterized by higher signal noise, data
10 gaps, and limited dataset size for model calibration. We build on the above modeling efforts
11 through collection and analysis of observed data from a monitored study home in the Midwest
12 United States, exploring the tradeoffs between data sampling resolution and performance in
13 water end-use classification. We examine different data sampling resolutions and explore water
14 end use disaggregation results by aggregating 1-second water consumption data from a 4-person
15 study household to coarser resolutions. We evaluate a set of performance metrics regarding water
16 end-use classification using supervised machine learning informed by ground-truth end-use
17 labels obtained from a water diary recorded over a 4-week study period. Findings from our
18 multi-resolution assessment can support further research and assist utilities in quantifying the
19 benefits associated with second-to-minute data sampling resolutions and the costs of adopting
20 and maintaining fine-resolution metering infrastructures.
21
22

23 133 The major contributions of this work include:
24
25

- 26 134 • Training and testing a water end-use classification model on real-world observation data
27 obtained with a single-point smart meter for a 4-person household coupled with labels
28 from a water diary.
- 29 137 • Quantifying the effects of temporal data sampling resolution on the performance of water
30 end-use classification.
- 31 139 • Analyzing the tradeoff between end-use classification performance and data sampling
32 resolution under two scenarios characterized by different model calibration strategies.

33 141 **2. Material and Methods**

34 142 **2.1. Metering setup, data collection, and temporal aggregation**

35 143 In this study, we used data from a single-point smart water metering system installed at a 4-
36 person, single-family, fully-detached residence in the Midwest United States, collecting 1-second
37 resolution flow rate data over a 4-week study period from September 3 to October 1, 2021.
38 146 Aggregate indoor household water use data were collected from a custom ally® electromagnetic
39 147 flow meter provided by Sensus, installed on the main water supply pipe into the residents' home.
40 148 In addition to measuring flow rate (gal/min), the meter also sensed temperature (K) and pressure
41 149 (psi) data at a 1-second resolution. Although these pressure and temperature data are useful to
42 150 water system operations, they are not as valuable to demand disaggregation due the large impact
43 151 the distribution system has on these variables. We validated this assumption through feature
44 152 analysis based on correlation and data visualization (see Figures S15-S18 in the Supporting
45 153 Information). Consequently, we focused our analysis on flow rate data. The water meter writes
46
47

1
2
3 154 data to a computer running a script that parses the raw data into a suitable format for further
4 analysis. A data acquisition system connected to the water meter parsed the raw data into a
5 timestamped comma separated value (csv) format for further analysis.
6
7

8 157 To examine the effects of data sampling temporal resolution on water end-use classification, we
9 aggregated the 1-second resolution time series to resolutions of 5 seconds, 10 seconds, 30
10 seconds, and 1 minute. The 1-minute resolution has been recognized as a critical threshold for
11 certain end-use data analytics in the electricity sector (Armel et al. 2013). Similarly, a previous
12 study based on analysis of synthetic data identified the same threshold as critical for end-use
13 disaggregation in the water sector (Cominola et al. 2018). Here, we test these findings with an
14 experimental study based on real-world data and aim to identify a similar critical data sampling
15 resolution threshold for water end-use classification in the residential sector. Meanwhile, since
16 the study is only based on a 4-person household, we preliminarily compare water consumption
17 patterns with a larger study to ensure the study home is representative of larger scale behavioral
18 patterns.
19
20

21 168 During the study period, the home occupants manually recorded a water diary of labeled end
22 uses. In this study, six types of indoor water end uses contributed to the total household water
23 demand: faucets, toilets, showers, refrigerator, dishwasher, and washing machine. We used a
24 written water diary over the 4-week study period to collect ground truth end use data for model
25 training and validation. The 4-week period was selected based on previous studies and
26 practicality (Beal et al. 2011; DeOreo et al. 2016; Horsburgh et al. 2017). The water diary
27 included end use labels, start time, and date that were completed by the household occupants.
28 More details about the diary are reported in the Supporting Information, including the water
29 diary template (Figure S19) and an example of completed recordings (Figure S20). This data
30 collection included only factual data such that this work was determined not to meet the
31 definition of human subjects research and, therefore, did not require Institutional Review Board
32 (IRB) approval. Documentation of this IRB decision is available upon request. Limitations that
33 naturally arose during the water diary process were as follows:
34
35

36 181 • Events that occupants would forget to fill in the diary could not be labeled after the
37 disaggregation of the data.
38 182 • Start times listed in the diary would sometimes correspond to events that occurred 1-2
39 minutes before the reported time, implying that occupants would sometimes fill in the
40 diary after the event.
41 183 • Specifically for faucet events, occupants mentioned occasionally leaving the faucet on to
42 avoid reporting multiple events, resulting in long faucet durations that can represent
43 atypical behavior in the model training process.
44 184 • The water diary was completed manually and was unreadable for some events.
45 185 • Some reported events did not match the information received from the meter.
46
47

48 191 In addition to these limitations, a power outage created a 2-day data gap in the smart water meter
49 dataset, where the water diary was completed but measured water flow was missing.
50
51

193 2.2. End-use disaggregation

194 The end-use disaggregation step separates concurrent water use events along with single events,
195 that, aggregated on the axis of time, would give the original time series collected at the single-
196 point residential water meter. While end-use disaggregation and end-use classification
197 sometimes coalesce into one concept in literature, in this study we consider disaggregation as the
198 first step of the end-use classification process (Nguyen et al. 2018). Single events are defined as
199 those that occur in isolation (e.g., dishwasher only), while combined or concurrent events have
200 simultaneous occurrences of water usage (e.g., a toilet flush during a shower). A single i -th water
201 use event E_i can be quantitatively characterized by a vector of features F_i , which include values
202 of, e.g., start time, end time, average flow, and volume of that event. Separating and identifying
203 overlapping, or concurrent, water use events is a significant challenge in residential water
204 studies, and the accuracy of existing smart meter disaggregation models decreases significantly
205 when these types of events are encountered (Cominola et al. 2015). Concurrent events occur
206 often, especially during longer duration events such as showers or outdoor irrigation. Thus,
207 disaggregating concurrent events from one another by leveraging information on the
208 characteristics of individual fixtures or by learning the patterns of individual end uses is essential
209 for the purpose of creating a comprehensive water profile for the household.

210 In this analysis, we used the disaggregation model from Bethke et al. (2021), developed based on
211 Nguyen et al.'s (2013) method of separating concurrent events by calculating the vector
212 gradients of the flow rate data to identify start and end times of overlapping events. Once we
213 separated events with the above disaggregation approach, we manually labeled each
214 appliance/fixture water event based on the water diary and examined the events further with the
215 classification model described below. We repeated this process for every resampled resolution as
216 well as the original 1-second data. At coarser resolutions, the performance of the disaggregation
217 model deteriorated when detecting multiple short duration events happening simultaneously
218 (e.g., hand washing), or short duration events happening on top of a long duration event.
219 Therefore, in addition to naturally having fewer observations at coarser resolutions, the number
220 of events that we were able to match with the diary also decreased (Figure S21).

221 2.3. End-use classification

222 After disaggregating the original water use time series, we labeled each event by matching with
223 the water diary. We then trained a random forest (RF) classifier to perform appliance/fixture end-
224 uses classification, using the disaggregated water events resulting from the previous step of end-
225 use disaggregation. The classification algorithm allocated each data point (i.e., a i -th water use
226 event E_i) in the dataset to one of the labeled classes, after training on tuples of events and
227 associated features (E_i, F_i).

228 RF models have been presented by Breiman (2001) as classical ensemble learning algorithms and
229 have shown to be outstanding predictive models in classification tasks (Herrera et al. 2010;
230 James et al. 2013). Random forests are built using the same fundamental principles as decision

1
2
3 231 trees and bagging (Bootstrap Aggregation). Bagging introduces randomness into the tree
4 building process by building many trees on random subsets of the training data with replacement;
5 this process is also known as bootstrapping. Bagging then aggregates the predictions across all
6 the trees, which reduces the variance of the overall procedure and improves predictive
7 performance (Géron 2019). However, bagging trees could result in tree correlation that limits the
8 effect of variance reduction. Random forests help reduce variance by injecting more randomness
9 into the training process (Hastie et al. 2009). The random forest algorithm is a bagging algorithm
10 that draws random bootstrap samples from the training set. However, while bagging provides
11 each tree with the full set of features, random forests have a random feature selection that makes
12 trees more independent of each other, which often results in better variance-bias tradeoffs (Table
13 S1) (Friedman et al. 2001; Probst et al. 2019). In this study, the two features of average flow and
14 duration were eventually selected to build the final models, based on the results of our feature
15 importance analysis (Figure S22). Therefore, the search for the split variable was limited to a
16 random subset of the two chosen features. Feature importance was performed based on
17 permutation-based feature importance (Breiman 2001) by evaluating which features contributed
18 the most to the generalization power of the model.
19
20

21 247 To understand the mechanism used by RF models, it is necessary to understand the construction
22 of classification decision trees. The goal of such a tree is to partition data into small and
23 homogeneous groups. When travelling down the tree, data are split into possible responses called
24 nodes that symbolize the branches of a tree. To perform each partitioning operation, a decision is
25 based on an index (e.g., the Gini index), which allows RF models to partition the nodes of each
26 tree into more homogenous groups that contain a larger proportion of one class in each
27 subsequent node (Kuhn & Johnson, 2013). The Gini index is calculated as in Eq. 1, where C is
28 the total number of classes in the model and p_{nk} is the probability of the occurrence of class k at
29 node n . In this study, six different classes were evaluated based on typical household end uses:
30 faucets (f), toilets (t), showers (s), refrigerator (r), dishwasher (d), and washing machine (w). The
31 sum of all probabilities at a certain node is equal to one (see Eq. 2):
32
33

$$G = \sum_{k \in C} p_{nk}(1 - p_{nk}) \quad (Eq.1)$$

$$p_t + p_s + p_f + p_r + p_w + p_d = 1 \quad (Eq.2)$$

34 260 Other metrics similar to the Gini index can be used to build decision trees, including cross
35 entropy and misclassification error. However, the Gini coefficient is the most commonly used
36 metric in the literature (James et al. 2013). Moreover, according to Raileanu and Stoffel (2004),
37 the frequency of disagreement of the Gini index and entropy is only 2% of all cases, yet entropy
38 is generally slower to compute because it requires a logarithmic function. For the above reasons,
39 we used the Gini coefficient in this study.
40
41

42 266 Besides Gini, the RF algorithm involves several other hyperparameters that can be tuned to
43 optimize model performance. While studies have shown that RF models are less sensitive
44 to hyperparameter tuning than other machine learning models (Kuhn & Johnson, 2013),
45 this study found that tuning the number of trees and the feature selection method can significantly
46 improve model performance. In this study, the two features of average flow and duration were
47 selected to build the final models, based on the results of our feature importance analysis.
48

1
2
3 268 towards tuning than other algorithms such as support vector machines (Probst et al. 2019),
4 269 modest performance gains can still be valuable considering the limitations that naturally come
5 270 with a small dataset. Using grid search, we gave ranges to RF hyperparameters to exhaustively
6 271 try all possible combinations and select the best hyperparameter combination. Minimum sample
7 272 at each leaf (2- 5), minimum sample split (2, 5, 8, 12) number of sub-features (1, 2), maximum
8 273 depth (3-10), and the number of trees (10, 20, 50, 100, 200) were initially given to the grid for
9 274 hyperparameter tuning.
10
11

12
13 **2.4. Model calibration and data sampling resolution scenarios**
14

15 276 We considered two scenarios for calibration analysis of the classification model: the “1-second
16 277 only calibration” (Scenario 1), and “multi-resolution calibration” (Scenario 2).
17

18 278 The “1-second only calibration” (Scenario 1): In this scenario, the RF model was trained only on
19 279 the measured data at the 1-second resolution. Extended time series of 1-second resolution water
20 280 use data are not usually available from utility records, but they can be collected in small-scale
21 281 customized and experimental smart meter installations. With this scenario, we test whether
22 282 investing efforts and resources in gathering a small model calibration dataset at sub-minute
23 283 resolution is worth the potential gain of model disaggregation accuracy at coarser resolutions.
24 284 Our assumption behind this scenario is that the features of water use events can be more
25 285 accurately learned from data collected at higher resolutions. In the 1-second trained RF model
26 286 scenario, we split the labeled data into train (70% of the data) and validation (30% of the data)
27 287 datasets. The validation set was used to assess the model performance on the 1-second trained
28 288 data. Then, the entire resampled dataset from all other resolutions were separately used as test
29 289 sets to compare the performance of the model on coarser resolutions.
30
31

32 290 The “multi-resolution calibration” (Scenario 2): In this scenario, we trained different RF models
33 291 for each resolution (5 seconds, 10 seconds, 30 seconds, and 1 minute) on their own dataset and
34 292 compare their performances both with one another and with Scenario 1. In this scenario, we
35 293 examine the value of retraining the RF model specifically for different temporal resolutions to
36 294 quantify differences in performance between sampling resolution and, comparatively with
37 295 Scenario 1, across different model training strategies. To retain the value of limited data and
38 296 improve generalizability of the models, we implemented a k-fold cross-validation strategy
39 297 (Hawkins et al. 2003). We thus split the training set into k subsets, called folds, and then
40 298 iteratively fit the model k times, each time training the data on k-1 folds and evaluating on the
41 299 remaining single fold (representing the validation data). In this study, we fit the model with k =
42 300 10. At the end of training, we averaged the performance across all validation folds as the final
43 301 performance metric for the model.
44
45

46
47 **302 2.5. Performance metrics**
48

49 303 RF is a noise robust technique. However, when considering imbalanced problems,
50 304 canonical machine learning algorithms generally tend to be biased towards the majority group.
51
52

1
2
3 305 This behavior happens because such algorithms consider the number of objects in each group to
4 306 be roughly similar (Krawczyk, 2016, Ribeiro and Reynoso-Meza 2020). However, the minority
5 307 class is often the most important when dealing with skewed distributions, and a performance
6 308 metric should be chosen in a way to overcome such bias. While we do not directly balance the
7 309 dataset used in this study because of its limited size, in this analysis we evaluate and compare the
8 310 model performance using different formulations of the F1-score (FS). Specifically, we compare
9 311 (i) micro-FS, which is a global metric attributing equal importance to each sample, thus giving
10 312 emphasis on common labels, (ii) macro-FS, which attributes equal importance to each class, and
11 313 (iii) weighted FS, which computes the weighted average of the FS values obtained for individual
12 314 classes. While using these metrics does not solve class imbalance, we examine different F-score
13 315 formulations to see whether our classifier gets biased towards well represented classes or not.
14
15

16 316 Micro-FS (usually referred to as simply FS) is a global performance metric that puts more
17 317 emphasis on the most represented labels in the data set since it gives each sample the same
18 318 importance. Labels that are underrepresented in the dataset may not be intended to influence the
19 319 overall micro-FS heavily if the model is performing well on the other more common classes.
20 320 Micro-FS (Eq. 3) is defined as the harmonic mean of the precision (Eq. 4) and recall (Eq. 5):
21
22

$$321 \quad \text{Micro - FS} = 2 \times \frac{(\text{precision} \times \text{recall})}{(\text{precision} + \text{recall})} \quad (\text{Eq.3})$$

$$322 \quad \text{Precision} = \frac{TP}{TP + FP} \quad (\text{Eq.4})$$

$$323 \quad \text{Recall} = \frac{TP}{TP + FN} \quad (\text{Eq.5})$$

324
325 where true positives (TP) are the number of correctly classified positive instances, false positives
326 (FP) are the number of negative instances incorrectly classified as positive, and false negatives
327 (FN) are the number of positive instances incorrectly classified as negative.
328

329 Macro-FS (short for macro-averaged F1 score) is used to assess the quality of classification in
330 problems with multiple classes. The macro-FS gives the same importance to each class, with low
331 values for models that only perform well on the common classes while performing poorly on the
332 classes with less data. The macro-FS is defined as the mean of class-wise FS in Eq. 6:
333

$$332 \quad \text{Macro - FS} = \frac{1}{N} \sum_{i=1}^N FS_i \quad (\text{Eq.6})$$

333 where i is the class index and N is the number of classes/labels.
334

335 The weighted-average FS (Eq. 7) is calculated by taking the mean of all per-class F1
336 scores while considering the number of actual occurrences of each class in the dataset.
337
338

$$Weighted - FS = \frac{1}{H} \sum_{i=1}^N |i| \times FS_i \quad (Eq.7)$$

336 where i and N are as above, and H is the total number of aggregated elements across all classes
337 (Cominola et al. 2021).

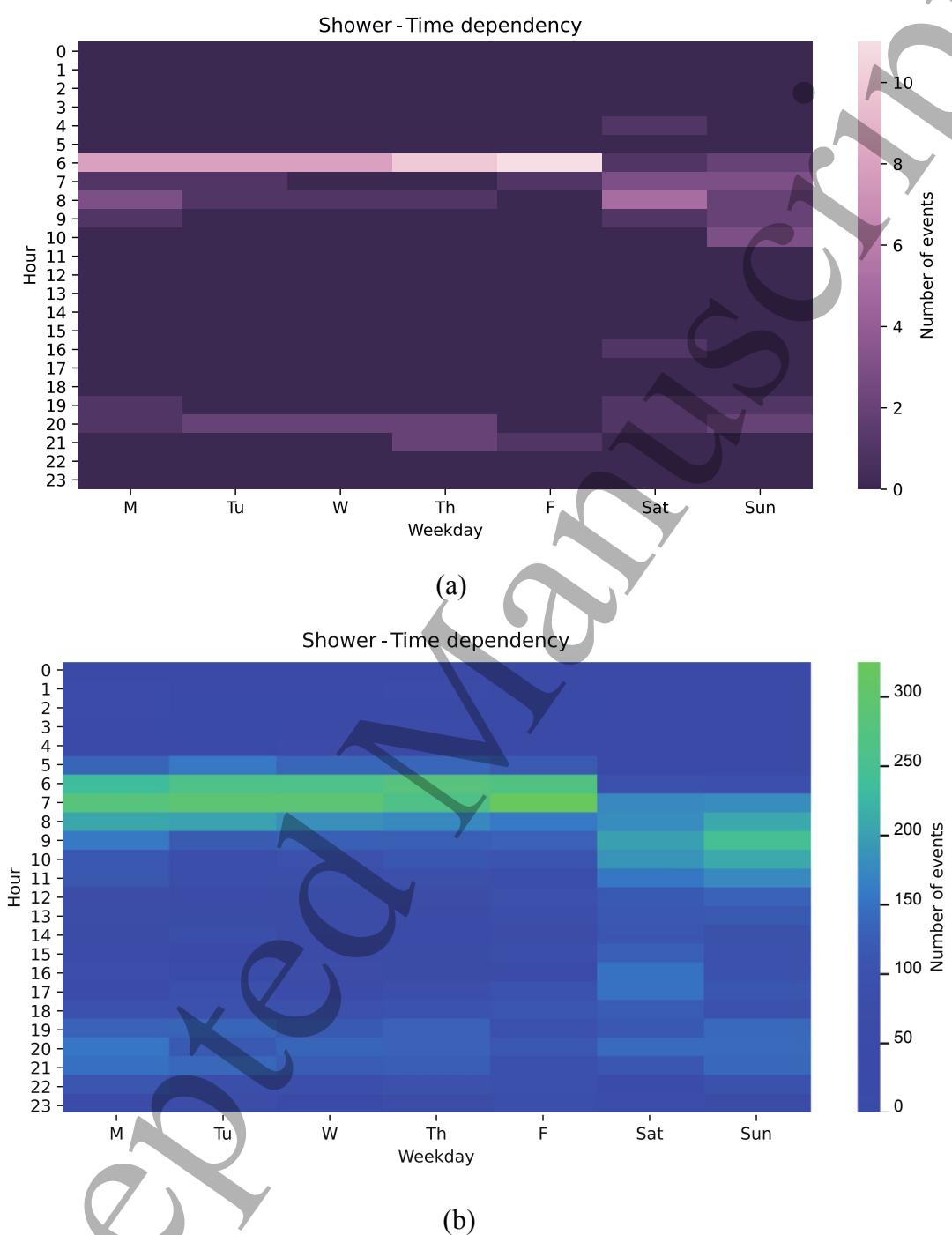
339 The weighted-FS formulation modifies the macro-FS to account for class imbalance, while
340 imbalance is not considered in micro-FS and macro-FS.

341 3. Results and discussion

342 3.1 Data characterization - time of the day visualization

343 To make sure our study home could be a proper representative of a larger study scale, we
344 initially visualized the time-of-day and day-of-week distribution of three major classes of events
345 (shower, washing machine, and dishwasher) to find regular patterns of consumption similar to
346 those displayed in larger datasets. Much of the occupants' water consumption occurs during
347 typical weekday mornings and evenings. Figure 1(a) depicts shower end use distribution
348 throughout the week and time of the day in our study home. The results show that showers have
349 a more sporadic pattern of use on weekends while during weekdays most of them occur during
350 regular morning and evening peak hours. These behavioral patterns align with the time-of-day
351 and day-of-week distribution of showers reported in an analysis of water end use data gathered
352 for 762 U.S. households (Cominola et al. 2020), shown in Figure 1(b). The time-of-day and day-
353 of-week distribution figures for the washing machine (Figure S1) and dishwasher (Figure S2) are
354 also shown in the Supporting Information, with similar results. Washing machine events are
355 observed mostly during weekends with a wide distribution throughout time of the day, while
356 dishwashers are typically used throughout the week, either mornings or evenings. Comparison of
357 the results show similar patterns between our study home and the larger study of U.S. households
358 used in Cominola et al. (2020), demonstrating the potentially transferrable nature of our study
359 home results. Similar widespread end-use data would help water planners and managers
360 understand water consumption patterns, consumer behavior, and temporal variability. Decreasing
361 consumption during peak time on a widespread scale could contribute to lowering overall peak
362 demand for the local utility and reduce pressure on existing water infrastructure.

363

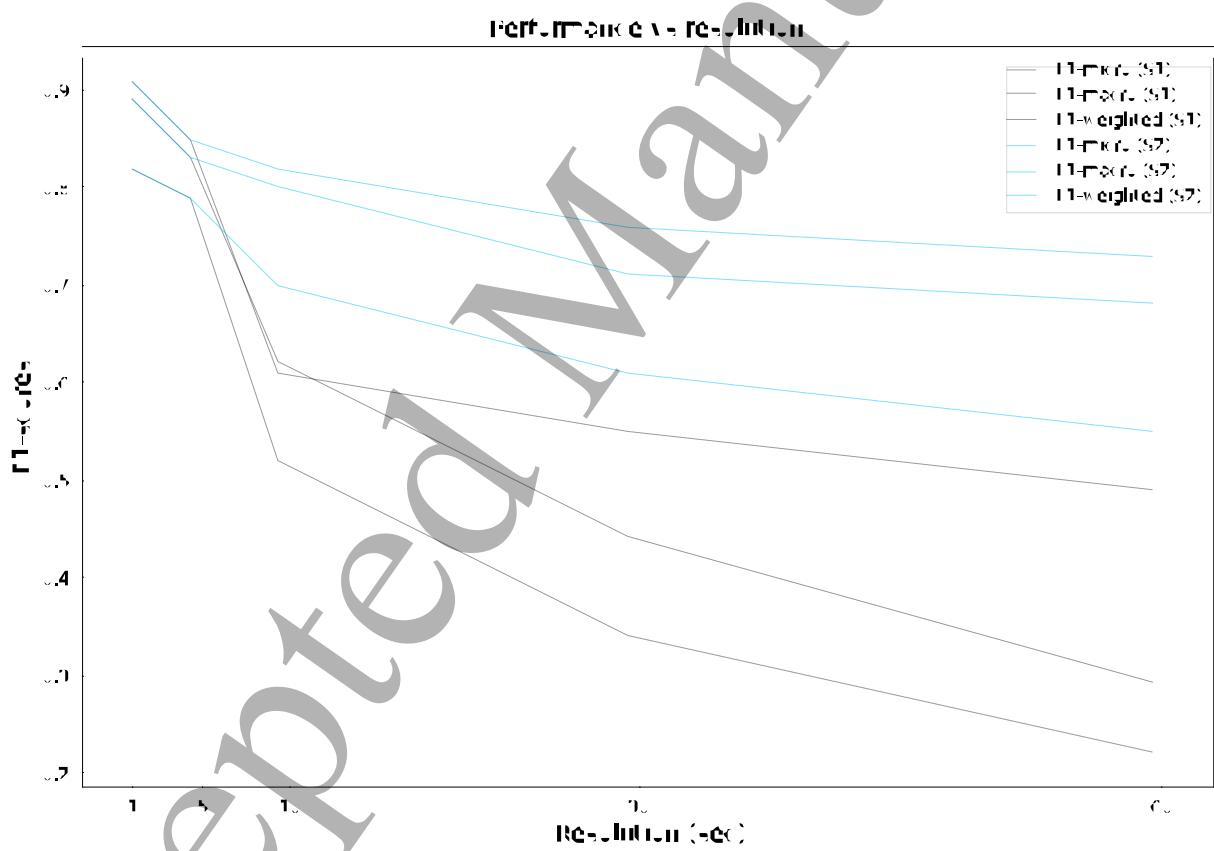


364 Figure 1. Time-of-day and day-of-week analysis: (a) Results from shower end use in this study home, 4-
 365 week study with 1-second resolution data; (b) Results adapted (with permission) from Cominola et al.
 366 (2020) from shower end-uses in 762 U.S. homes, 2-week study period with 10-second resolution data.

368 3.2. Comparative multi-resolution scenario analysis

369 The overall RF model performance across different resolutions in both calibration scenarios is
 370 presented in Figure 2. Grey lines represent Scenario 1 (1-second only calibration) and blue lines

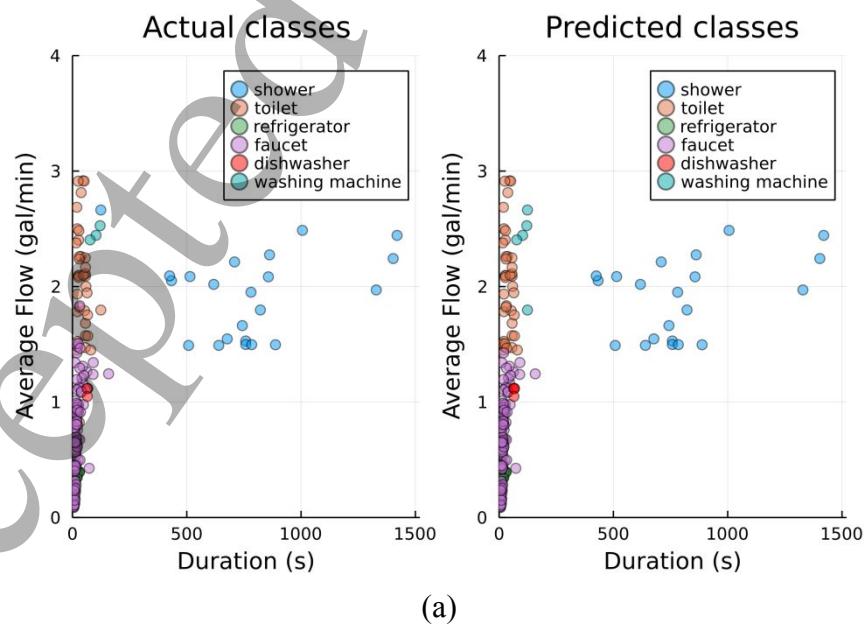
371 represent Scenario 2 (multi-resolution calibration). The micro-FS, weighted-FS, and macro-FS
 372 are represented with dashed, solid, and dotted lines, respectively. We observe that Scenario 2
 373 gives higher performance across different temporal resolutions regardless of the performance
 374 metric. For both 1-second and 5-second resolutions, the micro-FS and weighted-FS values are
 375 similar: 0.91 and 0.89 for the micro- and weighted-FSs, respectively, at the 1-second resolution,
 376 and 0.87 and 0.85 for the micro- and weighted-FSs, respectively, at the 5-second resolution. The
 377 macro-FS generally shows the lowest values for all resolutions for both scenarios. We observe a
 378 mild decrease in performance metrics with coarser temporal resolutions in Scenario 2, while
 379 performance metrics decrease notably for resolutions coarser than 5 seconds in Scenario 1,
 380 dropping as low as 0.2 for the 1-minute resolution.



49
 50 Figure 2. F1-score vs resolution curves for different F1-score formulations for Scenario 1 (grey lines) and
 51 Scenario 2 (blue lines). The micro-FS (dashed lines), weighted-FS (solid lines), and macro-FS (dotted
 52 lines) are represented.

53 Overall, our results indicate that the RF models learned end use event features better when
 54 trained at the same data sampling resolution that they are tasked to use to classify unseen events,
 55 provided that a training dataset with labelled events at that resolution is available. If
 56

1
2
3 390 classification models are trained for application on data measured at the same resolution
4 (Scenario 2), those models can perform at an acceptable level of performance even at coarser
5 resolutions, depending on the relative importance of different end use classes. This observation
6 has important implications related to the tradeoffs between fine-resolution data collection and
7 increased data analytics needs. For instance, if a utility wants an estimate of water consumption
8 by the main indoor water uses in households (e.g., toilets and showers), the 1-minute resolution
9 model still provides an acceptable performance (weighted-FS equal to 0.73). This performance is
10 lower than the FS of 0.89 obtained for the 1-second resolution model, but this loss in model
11 accuracy is balanced by the benefit of gathering, storing, and analyzing fewer data observations
12 at the coarser temporal resolution. Conversely, if detailed information on all end uses is required,
13 only the 1-second and 5-second resolutions provide high performance predictions on all end use
14 classes; for less represented end uses, performance is compromised at coarser resolutions.
15
16 401
17
18 402
19 3.3. Detailed end-use classification results
20
21 403 Our detailed RF model validation results are presented in Figure 3, where the predicted classes
22 (right) are compared to the actual classes (left). Figure 3(a) represents the entire 1-second
23 resolution set of events, while Figure 3(b) zooms in on shorter duration events for clarity. The
24 average flow rate (gal/min) and duration (s) were used as identifying features for our model. Of
25 the total 654 events labeled, we used 196 events as a validation set. The model predicts the test
26 set with an accuracy of 92% and a weighted-FS of 0.89, which is noteworthy given the fact that
27 the training dataset had limited observations in some classes such as dishwasher and washing
28 machine. The model correctly predicts 179 events out of 196 total events of the test set.
29
30 410
31
32 411
33
34



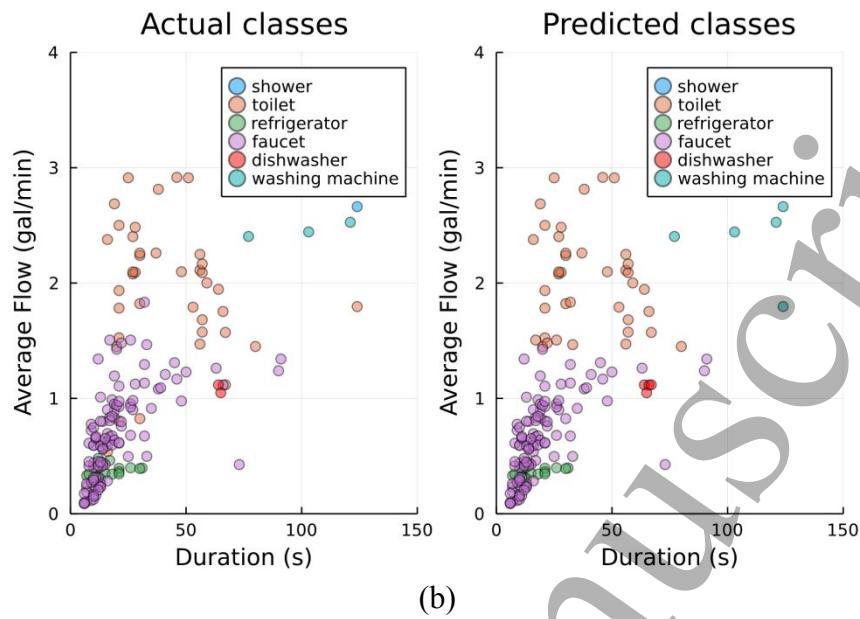


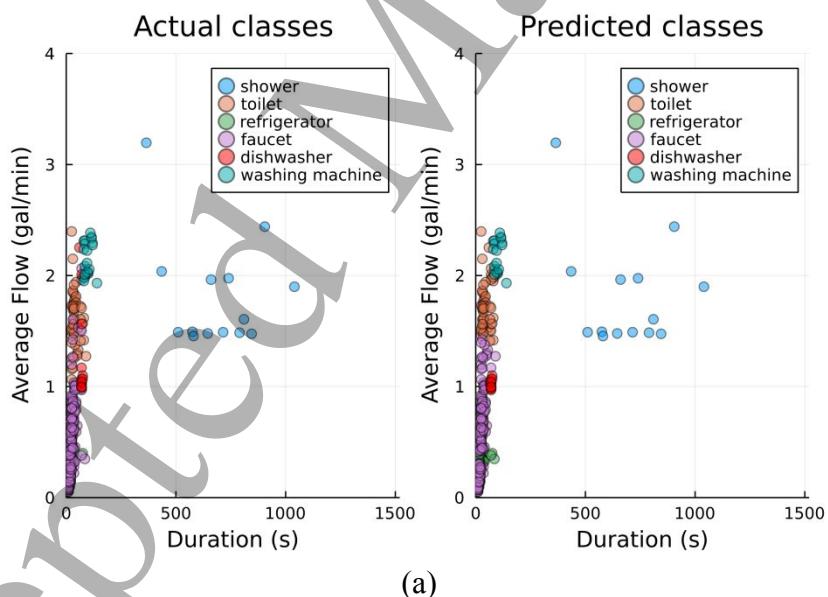
Figure 3. Actual and predicted water end-use classes. Predicted classes are obtained as results of the RF classifier on the 1-second resolution test set: (a) shows the entire dataset with durations ranging from 1-1500 seconds, and (b) shows the same results zoomed in on events within a duration range of 150 seconds (excluding 23 shower events) for clarity.

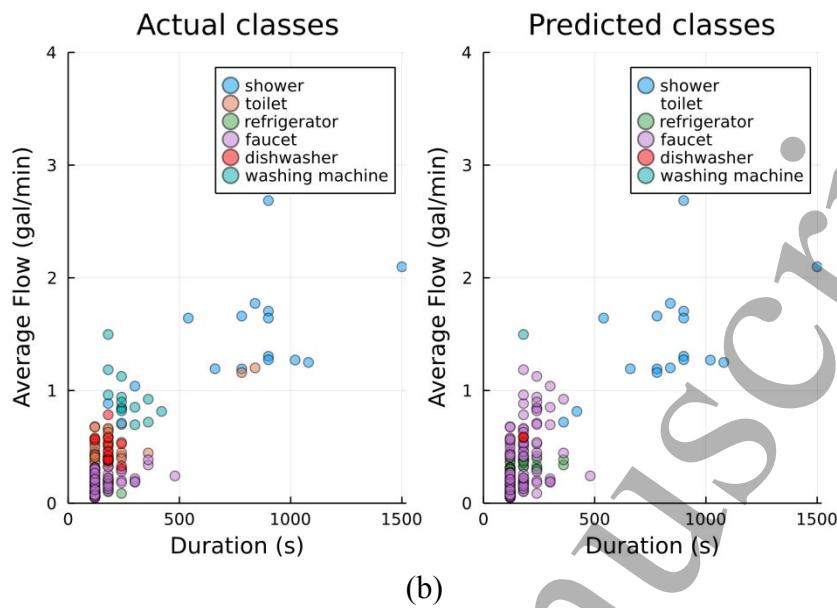
412 Yet, the high model performance in all classes might overrepresent the overall ability of our RF
 413 models to classify unseen end use events. Our results might imply that, due to the fine temporal
 414 resolution of the data, the model discerns the constant range of duration and average flow of
 415 those end uses with automatic water consumption cycles (e.g., washing machine, dishwasher)
 416 and detects them correctly. However, since our study represents a single household only, the
 417 model might be overfitting on data from automatic appliances due to the invariance of duration
 418 and flow in these specific automatic appliances, thus results on these specific end uses may not
 419 be generalizable.

420 It is important to note that, while individual toilet uses are typically homogeneous in terms of
 421 water consumption volume and duration, even considering dual-flush systems, the combination
 422 of toilet and bathroom faucet uses are difficult to detect and disaggregate because such uses are
 423 often almost simultaneous (e.g., use of toilet and consequent handwashing in a same minute).
 424 Although temporal resolutions finer than 1 minute reduce disaggregation errors (Mazzoni et al.
 425 2021), we were not able to disaggregate all toilet events followed by faucets. Rather, we labeled
 426 the mentioned events as toilets since we attributed the subsequent faucet use due to the toilet use.
 427 As a result, toilets have a wider range of flow and duration, as shown in Figure 3.

428 Figure 4 shows the classification results for Scenario 1 (1-second only calibration) applied to the
 429 resampled 5-second (Figure 4(a)) and 1-minute resolutions (Figure 4(b)), respectively, selected
 430 as examples at the two extremes of the considered spectrum of data resolutions. We report our
 431 analysis results in both U.S. customary units (gal/min) and SI units (L/min). In comparing

1
2
3 432 different temporal resolutions, coarser resolutions tend to compress data points on the vertical
4 433 axis (i.e., decrease average event flow) and extend their range on the horizontal axis (i.e.,
5 434 increase event duration) due to temporal averaging. For example, toilet events that originally
6 435 ranged from 1.7-3 gal/min (6.4-11.4 L/min) average flow in the measured 1-second resolution
7 436 tend to shift to 1-2.5 gal/min (3.8-9.5 L/min) in the 5-second resolution and decrease further to
8 437 0.4-0.8 gal/min (1.5-3 L/min) in the 1-minute resolution. The duration of events increases with
9 438 coarser temporal resolution to an extent that the total volume of events is the same as to the
10 439 volume in the original 1-second resolution measurements. The mentioned shifts in values of end-
11 440 use features leads to decreased model performance with coarser temporal resolutions, up to a
12 441 point where, as shown in Figure 4(b), the model can no longer detect any toilet events. The
13 442 model still correctly predicts showers and a few washing machine events at the 1-minute
14 443 resolution; however, the model application to the 1-minute data predicts most other end uses as a
15 444 faucet under Scenario 1. Similar Scenario 1 classification results for the 10- and 30-second
16 445 resolutions are presented in the Supporting Information (Figures S3-S4) along with the zoomed
17 446 in figures of the 5-second and 1-minute resolutions for a detailed view (Figures S5-S8).
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60





(b)

Figure 4. Actual and predicted water end-use classes. Predicted classes are obtained as results of the RF classifier trained on the 1-second data (Scenario 1) and applied to the (a) 5-second resolution test set, and (b) 1-minute resolution test set.

Figure 5 shows the confusion matrices of water end use classification across the events of our 4-person study household for Scenario 1. Faucets (f) account for the most frequent end uses, followed by toilets (t). The matrices show the total number of events labeled for each resolution, the actual classes, and the predicted classes by the model. The results for the 5-second resolution show that of 382 total events that we were able to match with the water diary, 324 events were classified correctly (Figure 5(a)). The main misclassifications were in predicting 14 actual toilet end uses as faucets and 4 actual faucet end uses as toilets. This misdetection mostly occurs for data that fall in the area with average flows of 1-1.5 gal/min (3.8-5.7 L/min) and durations of 25-50 seconds (see Figure S5 in the Supporting Information). For the 1-minute resolution (Figure 5(b)), only 187 events had corresponding end uses in the water diary due to disaggregation errors where the model was not able to separate concurrent events because of loss of information that naturally accompanies coarser resolutions. Out of these 187 events, 92 were classified correctly. The classification model predicts 135 events as faucets. While only 73 of these events are actually faucets, they still account for 40% of the prediction accuracy, motivating consideration of F1-score metrics due to the imbalanced dataset.

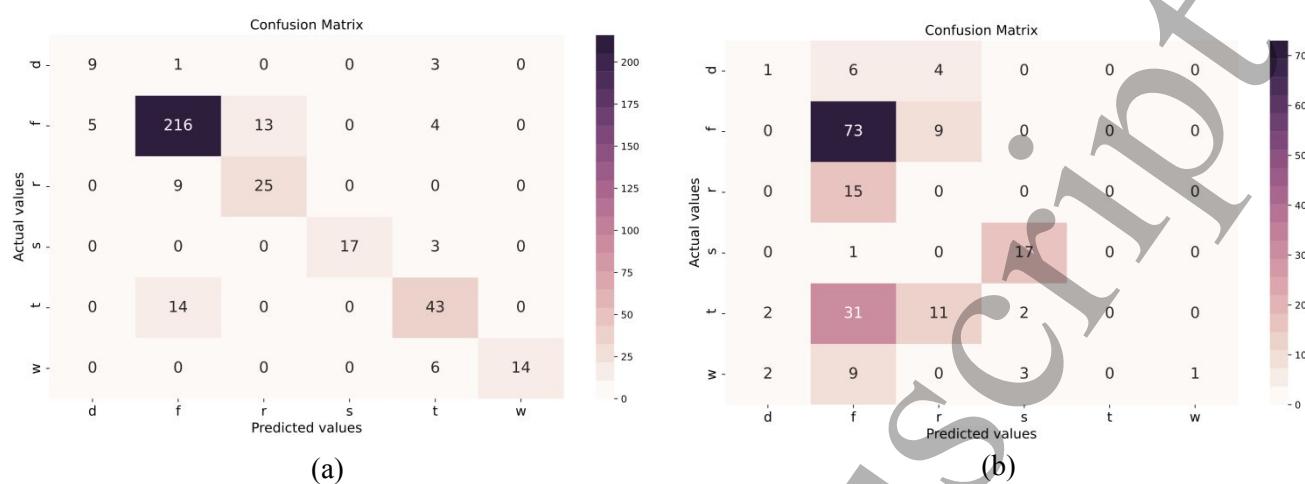


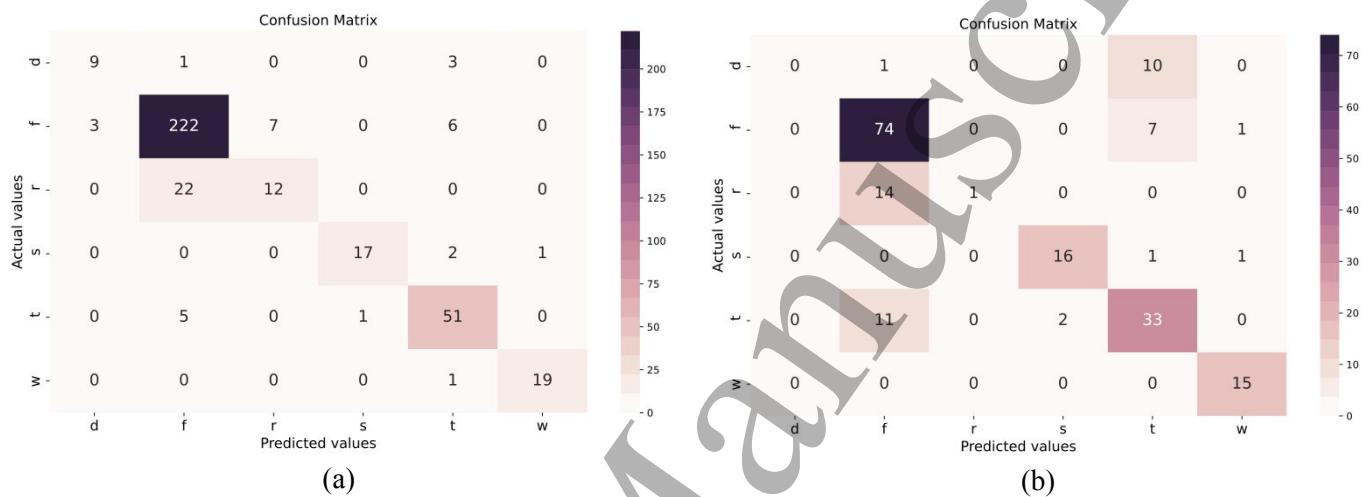
Figure 5. Confusion matrices for Scenario 1 (1-second trained random forest model): (a) 5-second resolution with 382 total events; (b) 1-minute resolution with 187 total events. Matrix rows show the actual classes and columns show the predicted classes for the following end uses: w (washing machine), s (shower), f (faucet), t (toilet), r (refrigerator), and d (dishwasher). Cell color is proportional to the number of events in that cell.

Figure 6 shows the confusion matrices of end use water consumption for Scenario 2, the multi-resolution calibration, for the 5-second (Figure 6(a)) and 1-minute (Figure 6(b)) resolutions. These results illustrate how the percentage of correct predictions changes from the 5-second resolution to the 1-minute resolution. Compared to Scenario 1 (Figure 5(a)), the 5-second resolution performance in Scenario 2 has either slightly improved or stayed the same, with the exception of refrigerator events (r). The 1-second resolution trained model in Scenario 1 had a better performance in predicting 5-second resolution refrigerator events. The prediction of toilets improved notably from 43 out of 57 to 51 out of 57 events. The main misclassifications were in predicting 5 actual toilet end uses as faucets and 6 actual faucet end uses as toilets. This misdetection mostly occurs for data that fall in the area with average flows of 1-1.5 gal/min (3.8-5.7 L/min) and durations of 25-50 seconds (see Figure S5 in the Supporting Information). Overall, the 5-second resolution has a high performance under both scenarios, with performance metrics slightly less than those of the 1-second resolution (as shown in Figure 2). In the 1-minute resolution, our model correctly predicts 139 of 187 labeled events, having the highest prediction accuracy in washing machine (100%), faucet (90%), and shower (88%) events. These results imply that if any of the aforementioned end uses are of importance, the 1-minute resolution can still be informative.

With further investigation of the diagonals of the confusion matrices, we see how Figure 6(b) has ameliorated in comparison to Figure 5(b), increasing correct predictions from 93 to 139. The 1-minute resolution model is still not able to discern refrigerator faucet events (r) from tap faucet events (f); however, this misclassification is not a critical issue since the refrigerator faucet is a faucet in nature. A noteworthy observation is that although the 1-minute resolution model under Scenario 2 incorrectly classifies one shower and one actual faucet event as a washing machine (i.e., false positive, FP in Eq. 4), it does not label any other actual washing machine event as

1
2
3 496 other events (i.e., false negative, FN in Eq. 5), which leads to a higher Recall in this specific
4 497 class (100%) than in the 1-second resolution model (86%) (refer to Figure S12) and the 5-second
5 498 resolution model (95%), with the tradeoff of lower Precision (88% versus 95% in the 1-minute
6 499 and 5-second resolutions, respectively). Additional confusion matrices at other temporal
7 500 resolutions are available in Figures S9-S14 of the Supporting Information.

10 501



502 Figure 6. Confusion matrices for Scenario 2 (random forest model trained at the resampled temporal
503 resolutions): (a) 5-second resolution with 382 total events, and (b) 1-minute resolution with 187 total
504 events. Matrix rows show the actual classes and columns show the predicted classes for the following end
505 uses: w (washing machine), s (shower), f (faucet), t (toilet), r (refrigerator), and d (dishwasher). Cell color
506 is proportional to the number of events in that cell.

507 In general, misclassifications do not cause significant degradation in predicting total water
508 consumption if they are infrequent and roughly symmetric across the diagonal (Srinivasan et al.
509 2011). For example, if toilet events are misclassified as faucet events while the same (or nearly
510 the same) number of faucet events are misclassified as toilet events, these misclassifications can
511 cancel out in terms of the accurate total number of events for those classes.

4. Broader implications

513 Overall, our study contributes to the literature showing that smart water meters provide water
514 utilities with more accurate and less labor-intensive information, enabling better knowledge on
515 changing water demands (Gurung et al. 2015; Stewart et al., 2018). High resolution temporal and
516 spatial water consumption data have undeniable social and technical benefits. Smart metering
517 contributes to more accurate water demand forecasting, demand management strategies, and
518 better informed utility operations and planning strategies (McDaniel and McLaughlin 2009;
519 Cominola et al. 2015; Salomons et al. 2020). Detailed water consumption patterns, which enable
520 researchers to investigate the relationships between human behaviors and the water cycle as part
521 of a broader socio-environmental scale, can be now obtained with advanced analytics, enabled
522 by fast paced computing power improvement and metering technology allowing data collection

1
2
3 523 with unprecedented temporal and spatial granularity (Flint et al. 2017; Zipper et al. 2019). While
4 these advances support greater understanding of water consumption patterns and water-related
5 human behaviors, we also acknowledge that there are potential privacy concerns regarding
6 individuals and communities that need to be addressed and appreciated. Water consumption
7 information transformed from the meter acts as an information side channel (McDaniel and
8 McLaughlin 2009), exposing household habits and behaviors. End-uses like showers and toilets
9 have detectable water consumption signatures, making end use classification information prone
10 to potential privacy abuse. Consequently, well established privacy policies would benefit utilities
11 in appropriate water demand management. Additionally, researchers have an ethical
12 responsibility to protect participant confidentiality.
13
14

15 533 Recent studies have addressed privacy issues in both the water and energy sectors and presented
16 534 solutions to overcome privacy related constraints to maximize the potential of granular data
17 535 (Khurana et al. 2010; Molina-Markham et al. 2010; Gurstein 2011; Amin 2012; Cole and
18 536 Stewart, 2013; Harter et al. 2013; Sankar et al. 2013; Helveston 2015; Park and Cominola 2020;
19 537 Salomons et al. 2020). For instance, smart meter data can be used without invading individual
20 538 privacy by aggregating data to coarser spatial or temporal scales as presented in our study.
21 539 Nevertheless, as shown in this study, aggregation limits the ability of end-use classification, or
22 540 any water consumption related research, to explore fine-scale behavioral dynamics for better
23 541 demand modeling. Therefore, any research intersecting with human behavior should prioritize
24 542 confidentiality (e.g., via anonymized data collected over a large sample of households) while
25 543 providing sufficient information to enable future improvements in that field. While the
26 544 formulation of privacy and security protection strategies is not within the scope of this study, we
27 545 acknowledge that privacy and security considerations must be addressed and proactively planned
28 546 for prior to collecting data throughout the research process so that modern metering technologies
29 547 could be leveraged to their full extent while securing customer privacy (Meyer 2018).
30
31

32 548 From the findings of this study, we can identify the following limitations and opportunities for
33 549 future research. First, future studies could focus on assessing how our results generalize when
34 550 data from a larger household sample or homes from different socio-demographic, geographical,
35 551 and climate contexts are available. Second, in this study we only considered six classes of indoor
36 552 water uses from a 4-person household. Further research could include outdoor water use and test
37 553 end-use disaggregation capabilities on houses with different sizes. Third, as highlighted in the
38 554 methods, end use datasets are often imbalanced, i.e., the number of events in each end use class
39 555 might vary substantially. While here we considered class imbalance *a posteriori*, by assessing
40 556 the disaggregation results with different formulations of the F-score, an alternative approach to
41 557 be tested when larger datasets are available is to balance the classes *a priori* (i.e., before
42 558 performing the classification), e.g., by oversampling/undersampling, which would solve the
43 559 problem of class imbalance. Finally, while here we only considered RF classifiers and a specific
44 560 approach for disaggregation, future studies could comparatively assess the performance of
45 561 different models, possibly accounting for multi-class events.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

562 5. Conclusion

563 In this analysis, we presented a supervised approach to classify residential water consumption
564 end use events and tested it on data collected in a 4-person household through consideration of
565 multiple temporal resolutions by measuring water use data with a 1-second resolution smart
566 water metering system and labeling events based on a water diary for a 4-week study period. We
567 investigated two different scenarios of model calibration in evaluating the effect of temporal
568 resolution on end use classification performance. The first scenario consisted of training a
569 random forest classifier on the original 1-second resolution data only and testing it on other
570 labeled temporal resolution datasets (i.e., 5 seconds, 10 seconds, 30 seconds, 1 minute). In this
571 scenario, our model exhibited high overall performance on the 1-second and 5-second resolution
572 water use events and classified certain classes of end uses with fairly good accuracy for the 10-
573 second resolution. The performance decreased notably for the 30-second and 1-minute
574 resolutions.

575 The second scenario consisted of training separate models for each temporal resolution using k-
576 fold cross-validation. We saw that coarser temporal resolutions ameliorated in this second
577 scenario, with F1-score performance metrics as high as 0.89 for certain end use classes at the
578 finer resolutions. A weighted F1-score above 0.85 was obtained in this scenario for
579 disaggregation tasks performed at 1- and 5-second resolutions.

580 Our results reveal detailed information that can help utilities and residents make informed water
581 conservation and efficiency decisions based on detailed knowledge on water demands. The
582 analysis of classification model performance versus temporal resolution considering different F1-
583 score formulations provides insight for future water management regarding the selection of an
584 efficient monitoring resolution based on priorities and data management capabilities.

585 In addition, our approach performed end use disaggregation of data aggregated at different
586 temporal resolutions that are closer to the resolutions of commercial smart water meters (i.e., 1
587 minute). Thus, while making use of data collected at a finer resolution (e.g., 1 second) might not
588 be available to water utilities due to data management and analysis tradeoffs, we demonstrate
589 possible model extensions to broader and further contexts in the field of residential water
590 demand monitoring.

591 Ultimately, disaggregating and classifying water events obtained from residential smart water
592 meter data reveals detailed information about how water is consumed within households.
593 Understanding the overall water consumption profile and performance of different resolutions
594 presents opportunities for improved residential water conservation and efficiency and long-term
595 water resource sustainability (Attari 2014; Inskeep and Attari 2014; Horsburgh et al. 2017;
596 Goulas et al. 2022). Our study presents an experimental example of how using smart water meter
597 data can provide end use information to pinpoint opportunities for improved efficiency within
598 residential buildings.

1
2
3 599 **Acknowledgments**
4

5 600 Thanks to the study home occupants for their participation in recording the water diary. The
6 custom ally® water meter used in this analysis was provided by Sensus. Thanks to Marie-Philine
7 Becker (Technische Universität Berlin) and Riccardo Taormina (TU Delft) for sharing the results
8 reproduced in Figures 1(b), S1(b), and S2(b). This work was supported by the National Science
9 Foundation, grant CBET-1847404; the opinions, findings, and conclusions or recommendations
10 expressed here are those of the authors and do not necessarily reflect the views of the National
11 Science Foundation.
12 605
13 606

14 607 Author contributions: Z.H. analyzed data, created and implemented the classification models and
15 quantified performance metrics, and analyzed and summarized results; A.C. assisted with
16 creating the classification models and performance metrics and contributed to scoping the
17 analysis; A.S.S. formulated the analysis scope, supervised the research, and acquired funding to
18 support the analysis; all authors contributed to writing and reviewed the manuscript.
19 610
20 611

21 612 Data availability: The labeled end-use data used in the study are available at
22 613 <https://stillwell.cee.illinois.edu/data/>.
23

614 **References**

615

616 Abdallah, A. M., & Rosenberg, D. E. (2014). Heterogeneous residential water and energy
617 linkages and implications for conservation and management. *Journal of Water Resources
618 Planning and Management*, 140(3), 288-297.

619 Amin, S. M. (2012, July). Smart grid security, privacy, and resilient architectures: Opportunities
620 and challenges. In *2012 IEEE Power and Energy Society General Meeting* (pp. 1-2). IEEE.

621 Armel, K. C., Gupta, A., Shrimali, G., & Albert, A. (2013). Is disaggregation the holy grail of
622 energy efficiency? The case of electricity. *Energy policy*, 52, 213-234.

623 Attari, S. Z. (2014). Perceptions of water use. *Proceedings of the National Academy of
624 Sciences*, 111(14), 5129-5134.

625 Beal, C. D., Gurung, T. R., & Stewart, R. A. (2016). Demand-side management for supply-side
626 efficiency: Modeling tailored strategies for reducing peak residential water demand. *Sustainable
627 Production and Consumption*, 6, 1-11.

628 Beal, C., Stewart, R., Huang, T., & Rey, E. (2011). *South East Queensland residential end use
629 study*. Brisbane, Australia: Urban Water Security Research Alliance.

630 Bethke, G. M., Cohen, A. R., & Stillwell, A. S. (2021). Emerging investigator series:
631 disaggregating residential sector high-resolution smart water meter data into appliance end-uses
632 with unsupervised machine learning. *Environmental Science: Water Research &
633 Technology*, 7(3), 487-503.

634 Blokker, E. J. M., Vreeburg, J. H. G., & Van Dijk, J. C. (2010). Simulating residential water
635 demand with a stochastic end-use model. *Journal of Water Resources Planning and
636 Management*, 136(1), 19-26.

637 Boyle, T., Giurco, D., Mukheibir, P., Liu, A., Moy, C., White, S., & Stewart, R. (2013).
638 Intelligent metering for urban water: A review. *Water*, 5(3), 1052-1081.

639 Breiman, L. (2001). Random forests. *Machine learning*, 45(1), 5-32.

640 Clifford, E., Mulligan, S., Comer, J., & Hannon, L. (2018). Flow-signature analysis of water
641 consumption in nonresidential building water networks using high-resolution and
642 medium-resolution smart meter data: Two case studies. *Water Resources Research*, 54(1), 88-
643 106.

644 Cole, G., & Stewart, R. A. (2013). Smart meter enabled disaggregation of urban peak water
645 demand: precursor to effective urban water planning. *Urban Water Journal*, 10(3), 174-194.

1
2
3 646 Cominola, A., Becker, M.-P., and Taormina, R.: Benchmarking machine learning algorithms for
4 Non-Intrusive Water Monitoring, EGU General Assembly 2020, Online, 4–8 May 2020,
5 647 EGU2020-16119, <https://doi.org/10.5194/egusphere-egu2020-16119>, 2020
6
7 649 Cominola, A., Giuliani, M., Castelletti, A., Frernali, P., Gonzalez, S. L. H., Herrero, J. C. G., ...
8 & Rizzoli, A. E. (2021). Long-term water conservation is fostered by smart meter-based
9 feedback and digital user engagement. *npj Clean Water*, 4(1), 1-10.
10
11 652 Cominola, A., Giuliani, M., Castelletti, A., Rosenberg, D. E., & Abdallah, A. M. (2018).
12 Implications of data sampling resolution on water use simulation, end-use disaggregation, and
13 653 demand management. *Environmental Modelling & Software*, 102, 199-212.
14
15 655 Cominola, A., Giuliani, M., Piga, D., Castelletti, A., & Rizzoli, A. E. (2015). Benefits and
16 challenges of using smart meters for advancing residential water demand modeling and
17 management: A review. *Environmental Modelling & Software*, 72, 198-214.
18
19 658 Cominola, A., Giuliani, M., Piga, D., Castelletti, A., & Rizzoli, A. E. (2017). A hybrid signature-
20 based iterative disaggregation algorithm for non-intrusive load monitoring. *Applied energy*, 185,
21 331-344.
22
23 661 DeOreo, W. B. (2011). Analysis of water use in new single family homes. *By Aquacraft. For Salt*
24 *Lake City Corporation and US EPA*.
25
26 663 DeOreo, W. B., Mayer, P. W., Dziegielewski, B., & Kiefer, J. (2016). *Residential end uses of*
27 *water, version 2*. Water Research Foundation.
28
29 665 Di Mauro, A., Cominola, A., Castelletti, A., & Di Nardo, A. (2021). Urban Water Consumption
30 at Multiple Spatial and Temporal Scales. A Review of Existing Datasets. *Water*, 13(1), 36.
31
32 667 Di Mauro, A., Di Nardo, A., Francesco Santonastaso, G., & Venticinque, S. (2020).
33 Development of an IoT System for the Generation of a Database of Residential Water End-Use
34 668 Consumption Time Series. *Environmental Science Proceedings*, 2(1), 20.
35
36 670 Escriva-Bou, A., Lund, J. R., & Pulido-Velazquez, M. (2018). Saving energy from urban water
37 demand management. *Water Resources Research*, 54(7), 4265-4276.
38
39 672 Figueiredo, M., Ribeiro, B., & de Almeida, A. (2013). Electrical signal source separation via
40 nonnegative tensor factorization using on site measurements in a smart home. *IEEE Transactions*
41 *on Instrumentation and Measurement*, 63(2), 364-373.
42
43 675 Friedman, J., Hastie, T., & Tibshirani, R. (2001). 4.3: Linear Discriminant Analysis. *The*
44 *elements of statistical learning*, 1, 106-119.
45
46 677 Froehlich, J., Larson, E., Saba, E., Campbell, T., Atlas, L., Fogarty, J., & Patel, S. (2011, June).
47 A longitudinal study of pressure sensing to infer real-world water usage events in the home.
48
49 679 In *International conference on pervasive computing* (pp. 50-69). Springer, Berlin, Heidelberg.
50
51
52
53
54
55
56
57
58
59
60

1
2
3 680 Géron, A. (2019). *Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: 681 Concepts, tools, and techniques to build intelligent systems.* " O'Reilly Media, Inc.". 682
4 683 Goulas, A., Goodwin, D., Shannon, C., Jeffrey, P., & Smith, H. M. Public perceptions of 684 household IoT smart water 'event' meters in the UK—implications for urban water governance. 685
5
6 686 Gurung, T. R., Stewart, R. A., Beal, C. D., & Sharma, A. K. (2015). Smart meter enabled water 687 end-use demand data: platform for the enhanced infrastructure planning of contemporary urban 688 water supply networks. *Journal of Cleaner Production*, 87, 642-654.
7
8 689 Hartter, J., Ryan, S. J., MacKenzie, C. A., Parker, J. N., & Strasser, C. A. (2013). Spatially 690 explicit data: stewardship and ethical challenges in science. *PLoS Biology*, 11(9), e1001634.
9
10 691 Hastie, T., Tibshirani, R., & Friedman, J. (2009). Random forests. In *The elements of statistical 692 learning* (pp. 587-604). Springer, New York, NY.
11
12 693 Hastie, T., Tibshirani, R., Botstein, D., & Brown, P. (2001). Supervised harvesting of expression 694 trees. *Genome Biology*, 2(1), 1-12.
13
14 695 Hawkins, D. M., Basak, S. C., & Mills, D. (2003). Assessing model fit by cross- 696 validation. *Journal of chemical information and computer sciences*, 43(2), 579-586.
15
16 697 Helveston, M. N. (2015). Consumer protection in the age of big data. *Wash. UL Rev.*, 93, 859.
17
18 698 Herrera, M., Torgo, L., Izquierdo, J., & Pérez-García, R. (2010). Predictive models for 699 forecasting hourly urban water demand. *Journal of hydrology*, 387(1-2), 141-150.
19
20 700 Horsburgh, J. S., Leonardo, M. E., Abdallah, A. M., & Rosenberg, D. E. (2017). Measuring 701 water use, conservation, and differences by gender using an inexpensive, high frequency 702 metering system. *Environmental modelling & software*, 96, 83-94.
21
22 703 Inskeep, B. D., & Attari, S. Z. (2014). The water short list: The most effective actions US 704 households can take to curb water use. *Environment: Science and policy for sustainable 705 development*, 56(4), 4-15.
23
24 706 J. Fogarty, C. Au, and S. Hudson. Sensing from the basement: a feasibility study of unobtrusive 707 and low-cost home activity recognition. In Proceedings of UIST, 2006.
25
26 708 J. Froehlich, E. Larson, T. Campbell, C. Haggerty, J. Fogarty, and S. Patel. Hydrosense: 709 infrastructure-mediated singlepoint sensing of whole-home water activity. In In UbiComp, 2009.
27
28 710 Jain, A., & Ormsbee, L. E. (2002). Short-term water demand forecast modeling techniques— 711 CONVENTIONAL METHODS VERSUS AI. *Journal-American Water Works 712 Association*, 94(7), 64-72.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 713 James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). *An introduction to statistical*
4 714 *learning* (Vol. 112, p. 18). New York: springer.
5
6 715 Karamouz, M., & Heydari, Z. (2020). Conceptual design framework for coastal flood best
7 716 management practices. *Journal of Water Resources Planning and Management*, 146(6),
8 717 04020041.
9
10 718 Khurana, H., Hadley, M., Lu, N., & Frincke, D. A. (2010). Smart-grid security issues. *IEEE*
11 719 *Security & Privacy*, 8(1), 81-85.
12
13 720 Kowalski, M., & Marshallsay, D. (2003, April). A system for improved assessment of domestic
14 721 water use components. In *II International Conference Efficient Use and Management of Urban*
15 722 *Water Supply*.
16
17 723 Makonin, S., Popowich, F., Bajić, I. V., Gill, B., & Bartram, L. (2015). Exploiting HMM
18 724 sparsity to perform online real-time nonintrusive load monitoring. *IEEE Transactions on smart*
19 725 *grid*, 7(6), 2575-2585.
20
21 726 Mantovani, R. G., Horváth, T., Cerri, R., Junior, S. B., Vanschoren, J., & de Carvalho, A. C. P.
22 727 D. L. F. (2018). An empirical study on hyperparameter tuning of decision trees. *arXiv preprint*
23 728 *arXiv:1812.02207*.
24
25 729 Mayer, P. W., DeOreo, W. B., Opitz, E. M., Kiefer, J. C., Davis, W. Y., Dziegielewski, B., &
26 730 Nelson, J. O. (1999). Residential end uses of water.
27
28 731 Mazzoni, F., Alvisi, S., Franchini, M., Ferraris, M., & Kapelan, Z. (2021). Automated Household
29 732 Water End-Use Disaggregation through Rule-Based Methodology. *Journal of Water Resources*
30 733 *Planning and Management*, 147(6), 04021024.
31
32 734 McDaniel, P., & McLaughlin, S. (2009). Security and privacy challenges in the smart grid. *IEEE*
33 735 *security & privacy*, 7(3), 75-77.
34
35 736 Meyer, M. N. (2018). Practical tips for ethical data sharing. *Advances in methods and practices*
36 737 *in psychological science*, 1(1), 131-144.
37
38 738 Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., & Irwin, D. (2010, November). Private
39 739 memoirs of a smart meter. In *Proceedings of the 2nd ACM workshop on embedded sensing*
40 740 *systems for energy-efficiency in building* (pp. 61-66).
41
42 741 Nguyen, K. A., Zhang, H., & Stewart, R. A. (2013). Development of an intelligent model to
43 742 categorise residential water end use events. *Journal of hydro-environment research*, 7(3), 182-
44 743 201.
45
46 744 Ntuli, N., & Abu-Mahfouz, A. (2016). A simple security architecture for smart water
47 745 management system. *Procedia Computer Science*, 83, 1164-1169.
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 746 Park, S., & Cominola, A. When Privacy Protection Meets Non-Intrusive Load Monitoring:
4 747 Trade-off Analysis and Privacy Schemes via Residential Energy Storage.
5
6 748 Pastor-Jabaloyes, L., Arregui, F. J., & Cobacho, R. (2018). Water end use disaggregation based
7 749 on soft computing techniques. *Water*, 10(1), 46.
8
9 750 Piga, D., Cominola, A., Giuliani, M., Castelletti, A., & Rizzoli, A. E. (2015). Sparse optimization
10 751 for automated energy end use disaggregation. *IEEE Transactions on Control Systems
11 Technology*, 24(3), 1044-1051.
12
13 752
14 753 Probst, P., Wright, M. N., & Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for
15 754 random forest. *Wiley Interdisciplinary Reviews: data mining and knowledge discovery*, 9(3),
16 755 e1301.
17
18 756 Probst, P., Wright, M. N., & Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for
19 757 random forest. *Wiley Interdisciplinary Reviews: data mining and knowledge discovery*, 9(3),
20 758 e1301.
21
22 759 Probst, P., Wright, M. N., & Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for
23 760 random forest. *Wiley Interdisciplinary Reviews: data mining and knowledge discovery*, 9(3),
24 761 e1301.
25
26 762 Rahimpour, A., Qi, H., Fugate, D., & Kuruganti, T. (2017). Non-intrusive energy disaggregation
27 763 using non-negative matrix factorization with sum-to-k constraint. *IEEE Transactions on Power
28 Systems*, 32(6), 4430-4441.
29
30 764
31 765 Raileanu, L. E., & Stoffel, K. (2004). Theoretical comparison between the gini index and
32 766 information gain criteria. *Annals of Mathematics and Artificial Intelligence*, 41(1), 77-93.
33
34 767 Ribeiro, V. H. A., & Reynoso-Meza, G. (2020). Ensemble learning by means of a multi-
35 768 objective optimization design approach for dealing with imbalanced data sets. *Expert Systems
36 with Applications*, 147, 113232.
37
38 769
39 770 Salomons, E., Sela, L., & Housh, M. (2020). Hedging for privacy in smart water meters. *Water
40 Resources Research*, 56(9), e2020WR027917.
41
42 771
43 772 Sankar, L., Rajagopalan, S. R., Mohajer, S., & Poor, H. V. (2012). Smart meter privacy: A
44 773 theoretical framework. *IEEE Transactions on Smart Grid*, 4(2), 837-846.
45
46 774 Sønderlund, A. L., Smith, J. R., Hutton, C. J., Kapelan, Z., & Savic, D. (2016). Effectiveness of
47 775 smart meter-based consumption feedback in curbing household water use: Knowns and
48 776 unknowns. *Journal of Water Resources Planning and Management*, 142(12), 04016060.
49
50 777 Srinivasan, V., Stankovic, J., & Whitehouse, K. (2011, November). Watersense: Water flow
51 778 disaggregation using motion sensors. In *Proceedings of the Third ACM Workshop on Embedded
52 Sensing Systems for Energy-Efficiency in Buildings* (pp. 19-24).
53
54 779
55
56
57
58
59
60

1
2
3 780 Stewart, R. A., Nguyen, K., Beal, C., Zhang, H., Sahin, O., Bertone, E., ... & Kossieris, P.
4 781 (2018). Integrated intelligent water-energy metering systems and informatics: Visioning a digital
5 782 multi-utility service provider. *Environmental Modelling & Software*, 105, 94-117.
6
7 783 Stewart, R. A., Willis, R., Giurco, D., Panuwatwanich, K., & Capati, G. (2010). Web-based
8 784 knowledge management system: linking smart metering to the future of urban water
9 785 planning. *Australian Planner*, 47(2), 66-74.
10
11 786 Suero, F. J., Mayer, P. W., & Rosenberg, D. E. (2012). Estimating and verifying United States
12 787 households' potential to conserve water. *Journal of Water Resources Planning and*
13 788 *Management*, 138(3), 299-306.
14
15 789 Vitter, J. S., & Webber, M. E. (2018). A non-intrusive approach for classifying residential water
16 790 events using coincident electricity data. *Environmental modelling & software*, 100, 302-313.
17
18 791 Willis, R. M., Stewart, R. A., Panuwatwanich, K., Jones, S., & Kyriakides, A. (2010). Alarming
19 792 visual display monitors affecting shower end use water and energy conservation in Australian
20 793 residential households. *Resources, Conservation and Recycling*, 54(12), 1117-1127.
21
22 794 Wonders, M., Ghassemlooy, Z., & Hossain, M. A. (2016). Training with synthesised data for
23 795 disaggregated event classification at the water meter. *Expert Systems with Applications*, 43, 15-
24 796 22.
25
26 797 Y. Kim, T. Schmid, Z. Charbiwala, J. Friedman, and M. Srivastava. Nawms: nonintrusive
27 798 autonomous water monitoring system. In Sensys, 2008.
28
29 799 Zipper, S. C., Stack Whitney, K., Deines, J. M., Befus, K. M., Bhatia, U., Albers, S. J., ... &
30 800 Schlager, E. (2019). Balancing open science and data privacy in the water sciences. *Water*
31 801 *Resources Research*, 55(7), 5202-5211.
32
33 802

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60