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9 Abstract

10 Water monitoring in households provides occupants and utilities with key information to support 
11 water conservation and efficiency in the residential sector. High costs, intrusiveness, and 
12 practical complexity limit appliance-level monitoring via sub-meters on every water-consuming 
13 end use in households. Non-intrusive machine learning methods have emerged as promising 
14 techniques to analyze observed data collected by a single meter at the inlet of the house and 
15 estimated the disaggregated contribution of each water end use. While fine temporal resolution 
16 data allow for more accurate end-use disaggregation, there is an inevitable increase in the 
17 amount of data that needs to be stored and analyzed. To explore this tradeoff and advance 
18 previous studies based on synthetic data, we first collected 1-second resolution indoor water use 
19 data from a residential single-point smart water metering system installed at a 4-person 
20 household, as well as ground-truth end-use labels based on a water diary recorded over a 4-week 
21 study period. Second, we trained a supervised machine learning model (random forest classifier) 
22 to classify six water end use categories across different temporal resolutions and two different 
23 model calibration scenarios. Finally, we evaluated the results based on three different 
24 performance metrics (micro, weighted, and macro F1 scores). Our findings show that data 
25 collected at 1- to 5-second intervals allow for better end-use classification (weighted F-score 
26 higher than 0.85), particularly for toilet events; however, certain water end uses (e.g., shower and 
27 washing machine events) can still be predicted with acceptable accuracy even at coarser 
28 resolutions, up to 1 minute, provided that these end use categories are well represented in the 
29 training dataset. Overall, our study provides insights for further water sustainability research and 
30 widespread deployment of smart water meters.

31 Keywords: smart water meter, temporal resolution, residential water use, water sustainability, 
32 supervised machine learning

33 1. Introduction

34 Strong emphasis on sustainability in water use has been increasingly brought to light by growing 
35 population and urbanization (Cosgrove and Loucks 2015), coupled with climate change impacts 
36 on water resources (Jabaloyes et al. 2018; Karamouz and Heydari 2020). With existing 
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37 limitations on water resource availability, new developments to increase water storage and 
38 supply are often physically or economically constrained. Therefore, better management of 
39 existing water resources has become an issue of paramount importance (Mazzoni et al. 2021). 
40 Public utilities are now investing significant resources and efforts in the development and 
41 implementation of water management strategies, both on the supply and the demand side, to 
42 ensure future water security (Jain and Ormsbee 2002; Herrera et al. 2010). On the demand side, 
43 these strategies include water saving technologies, new water policy regulations, rebate programs 
44 for water-efficient devices, leakage management, and source substitution (e.g., replacing non-
45 potable end-uses with grey, recycled, or harvested rainwater (Dixon et al. 1999)) (Gleick et al. 
46 2003; Inman and Jeffrey, 2006; Stewart et al. 2013; Cominola et al. 2015; Ntuli and Abu-
47 Mahfouz 2016). 

48 Beside their direct effect on water resources, residential water conservation and efficiency 
49 strategies can help save water-related energy required for water treatment, distribution, and 
50 heating (Srinivasan et al. 2011). Residential end uses are responsible for more than 70% of all 
51 water-related energy use (Escriva-Bou et al. 2018). However, the effectiveness of these measures 
52 hinges on an accurate estimate of water demand from detailed understanding of how and when 
53 water is used in the residential sector. Access to high resolution water consumption data can help 
54 improve our knowledge of water demand, identify specific fixture/appliance end uses (e.g., 
55 toilet, shower, washing machine, outdoor irrigation), or detect anomalies, such as leaks (Luciani 
56 et al. 2019). Smart water meters, which can provide the fine resolution data necessary to discern 
57 end uses, have been proven essential in supporting water conservation and efficiency measures in 
58 practice (Britton et al., 2008).

59 Conventional residential water meters typically collect coarse resolution data and require manual 
60 readings, limiting the understanding of household-scale water use characteristics and its patterns 
61 in time. Conversely, smart (or digital) water meters enable the collection and automated 
62 reporting of fine resolution water use data, thereby allowing planners and utilities to better 
63 understand demand patterns and enact management strategies. Smart metering can help the 
64 development of accurate demand characterization and forecasts and, hence, improve the 
65 operation and long-term planning of water supply and distribution systems (Stewart et al. 2018), 
66 or promote durable conservation behaviors (Cominola et al., 2021). In addition, detailed 
67 knowledge about water consumption at the household level can also translate into financial 
68 savings for home occupants, especially when complemented with information about individual 
69 end uses (e.g., Blokker et al. 2010).

70 Obtaining information on residential end uses is not a trivial problem. Information about 
71 residential water demand at the end-use level could, in principle, be obtained through direct 
72 measurements via intrusive monitoring, i.e., by installing sub-meters at all household end uses. 
73 However, this approach is often practically or economically infeasible from a utility perspective 
74 and would likely be rejected by home occupants due to its intrusive nature. Instead, water 
75 utilities are increasingly installing residential smart water meters that collect fine resolution 
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76 water consumption data at the service line or entrance into the home, providing aggregate water 
77 data, which are so far primarily used for billing purposes (Fogarty and Hudson 2006; Froehlich 
78 et al. 2009). Similarly to previous experiences in the electricity sector, limits to directly 
79 collecting water-use data at the residential end uses has motivated the development of several 
80 non-intrusive disaggregation approaches, which have the advantage of allowing the 
81 decomposition of a signal measured at the household level (i.e., aggregate water use) into the 
82 individual contribution of each end use (Cominola et al. 2017; Di Mauro et al. 2020; Bethke et 
83 al. 2021). 

84 Several state-of-the-art disaggregation techniques require additional sensing on the premise 
85 plumbing infrastructure and/or a manual characterization of each end use (Fogarty and Hudson 
86 2006; Kim et al. 2008). These techniques can be intrusive, expensive, and time consuming, thus 
87 they are not easy to develop or replicate at large scales (Froehlich et al. 2009, 2011; Srinivasan et 
88 al. 2011; Ellert et al. 2015; Ntuli and Abu-Mahfouz). Other disaggregation techniques use only 
89 flow (or volume) data collected at the household water inlet point. They can classify end uses in 
90 a non-intrusive way, with the accuracy of results varying across different data sampling temporal 
91 resolutions (e.g., 1-10 seconds vs. minutes; Clifford et al. 2018; Vitter and Webber 2018). 
92 Understanding the tradeoff between the value of the information provided by fine-resolution data 
93 and the economic and operational costs of the metering system is crucial to inform the design of 
94 future metering networks and associated analytics to facilitate customer data interpretation. 

95 The availability of fine-resolution smart meter data generates several opportunities for advancing 
96 water demand management. Sub-minute sampling resolution is essential for most water end-use 
97 disaggregation algorithms to provide a reliable categorization of household level water use into 
98 different fixtures/appliances (e.g., shower, toilet, dishwasher, etc.) (Willis et al. 2010; Nguyen et 
99 al. 2013; Abdallah and Rosenberg, 2014; Horsburgh et al. 2017; Cominola et al. 2018). 

100 However, high resolution metering inevitably increases the amount of data the water utility must 
101 collect, process, and manage. Sampling at 1-second resolution, for instance, implies replacing the 
102 typical 12 monthly readings per user with over 31.5 million data readings. Large amounts of data 
103 can compromise hardware and software performance due to issues with meter power sources, 
104 battery life, telemetry network capacity, data gaps, and billing software, besides requiring 
105 utilities to acquire new skill sets for their employees (Stewart et al., 2010; Suero et al. 2012).

106 Among the existing literature that has already explored the implication of data sampling 
107 resolution on water end use disaggregation (e.g., Wonders et al. 2016), Cominola et al. (2018) 
108 developed an analysis based on synthetic time series of water end use generated with STREaM, 
109 the STochastic Residential water End-use Model. Their model relied on statistical distributions 
110 of end-use characteristics derived from a large dataset of disaggregated water end-uses from over 
111 300 single-family households in nine U.S. cities (DeOreo, 2011). STREaM generated synthetic 
112 time series of water end uses with diverse sampling resolutions, which were analyzed with a 
113 multi-resolution assessment framework to identify potentially critical thresholds in data 
114 resolution for different aspects of information retrieval and demand management. While such 
115 studies tend to make up for the shortness of (or limited access to) data through stochastic 
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116 modeling to generate synthetic disaggregated water use data, a data gap remains with limited 
117 availability of ground-truth water end-use observations from real-world data (Di Mauro et al. 
118 2020; Di Mauro et al. 2021).

119 Here, we address the challenge of testing if and how the theoretical results obtained in the 
120 literature on synthetic data change when similar analysis is replicated directly on real-world data. 
121 Compared to synthetic data, real-world data might be characterized by higher signal noise, data 
122 gaps, and limited dataset size for model calibration. We build on the above modeling efforts 
123 through collection and analysis of observed data from a monitored study home in the Midwest 
124 United States, exploring the tradeoffs between data sampling resolution and performance in 
125 water end-use classification. We examine different data sampling resolutions and explore water 
126 end use disaggregation results by aggregating 1-second water consumption data from a 4-person 
127 study household to coarser resolutions. We evaluate a set of performance metrics regarding water 
128 end-use classification using supervised machine learning informed by ground-truth end-use 
129 labels obtained from a water diary recorded over a 4-week study period. Findings from our 
130 multi-resolution assessment can support further research and assist utilities in quantifying the 
131 benefits associated with second-to-minute data sampling resolutions and the costs of adopting 
132 and maintaining fine-resolution metering infrastructures.

133 The major contributions of this work include:

134  Training and testing a water end-use classification model on real-world observation data 
135 obtained with a single-point smart meter for a 4-person household coupled with labels 
136 from a water diary.
137  Quantifying the effects of temporal data sampling resolution on the performance of water 
138 end-use classification.
139  Analyzing the tradeoff between end-use classification performance and data sampling 
140 resolution under two scenarios characterized by different model calibration strategies.

141 2. Material and Methods 

142 2.1. Metering setup, data collection, and temporal aggregation

143 In this study, we used data from a single-point smart water metering system installed at a 4-
144 person, single-family, fully-detached residence in the Midwest United States, collecting 1-second 
145 resolution flow rate data over a 4-week study period from September 3 to October 1, 2021. 
146 Aggregate indoor household water use data were collected from a custom ally® electromagnetic 
147 flow meter provided by Sensus, installed on the main water supply pipe into the residents’ home. 
148 In addition to measuring flow rate (gal/min), the meter also sensed temperature (K) and pressure 
149 (psi) data at a 1-second resolution. Although these pressure and temperature data are useful to 
150 water system operations, they are not as valuable to demand disaggregation due the large impact 
151 the distribution system has on these variables. We validated this assumption through feature 
152 analysis based on correlation and data visualization (see Figures S15-S18 in the Supporting 
153 Information). Consequently, we focused our analysis on flow rate data. The water meter writes 
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154 data to a computer running a script that parses the raw data into a suitable format for further 
155 analysis. A data acquisition system connected to the water meter parsed the raw data into a 
156 timestamped comma separated value (csv) format for further analysis.  

157 To examine the effects of data sampling temporal resolution on water end-use classification, we 
158 aggregated the 1-second resolution time series to resolutions of 5 seconds, 10 seconds, 30 
159 seconds, and 1 minute. The 1-minute resolution has been recognized as a critical threshold for 
160 certain end-use data analytics in the electricity sector (Armel et al. 2013), Similarly, a previous 
161 study based on analysis of synthetic data identified the same threshold as critical for end-use 
162 disaggregation in the water sector (Cominola et al. 2018). Here, we test these findings with an 
163 experimental study based on real-world data and aim to identify a similar critical data sampling 
164 resolution threshold for water end-use classification in the residential sector. Meanwhile, since 
165 the study is only based on a 4-person household, we preliminarily compare water consumption 
166 patterns with a larger study to ensure the study home is representative of larger scale behavioral 
167 patterns.

168 During the study period, the home occupants manually recorded a water diary of labeled end 
169 uses. In this study, six types of indoor water end uses contributed to the total household water 
170 demand: faucets, toilets, showers, refrigerator, dishwasher, and washing machine. We used a 
171 written water diary over the 4-week study period to collect ground truth end use data for model 
172 training and validation. The 4-week period was selected based on previous studies and 
173 practicality (Beal et al. 2011; DeOreo et al. 2016; Horsburgh et al. 2017). The water diary 
174 included end use labels, start time, and date that were completed by the household occupants. 
175 More details about the diary are reported in the Supporting Information, including the water 
176 diary template (Figure S19) and an example of completed recordings (Figure S20). This data 
177 collection included only factual data such that this work was determined not to meet the 
178 definition of human subjects research and, therefore, did not require Institutional Review Board 
179 (IRB) approval. Documentation of this IRB decision is available upon request. Limitations that 
180 naturally arose during the water diary process were as follows:

181  Events that occupants would forget to fill in the diary could not be labeled after the 
182 disaggregation of the data.
183  Start times listed in the diary would sometimes correspond to events that occurred 1-2 
184 minutes before the reported time, implying that occupants would sometimes fill in the 
185 diary after the event.
186  Specifically for faucet events, occupants mentioned occasionally leaving the faucet on to 
187 avoid reporting multiple events, resulting in long faucet durations that can represent 
188 atypical behavior in the model training process.
189  The water diary was completed manually and was unreadable for some events.
190  Some reported events did not match the information received from the meter.

191 In addition to these limitations, a power outage created a 2-day data gap in the smart water meter 
192 dataset, where the water diary was completed but measured water flow was missing.
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193 2.2. End-use disaggregation

194 The end-use disaggregation step separates concurrent water use events along with single events, 
195 that, aggregated on the axis of time, would give the original time series collected at the single-
196 point residential water meter. While end-use disaggregation and end-use classification 
197 sometimes coalesce into one concept in literature, in this study we consider disaggregation as the 
198 first step of the end-use classification process (Nguyen et al. 2018). Single events are defined as 
199 those that occur in isolation (e.g., dishwasher only), while combined or concurrent events have 
200 simultaneous occurrences of water usage (e.g., a toilet flush during a shower). A single i-th water 
201 use event  can be quantitatively characterized by a vector of features , which include values 𝐸𝑖 𝐹𝑖
202 of, e.g., start time, end time, average flow, and volume of that event. Separating and identifying 
203 overlapping, or concurrent, water use events is a significant challenge in residential water 
204 studies, and the accuracy of existing smart meter disaggregation models decreases significantly 
205 when these types of events are encountered (Cominola et al. 2015). Concurrent events occur 
206 often, especially during longer duration events such as showers or outdoor irrigation. Thus, 
207 disaggregating concurrent events from one another by leveraging information on the 
208 characteristics of individual fixtures or by learning the patterns of individual end uses is essential 
209 for the purpose of creating a comprehensive water profile for the household. 

210 In this analysis, we used the disaggregation model from Bethke et al. (2021), developed based on 
211 Nguyen et al.’s (2013) method of separating concurrent events by calculating the vector 
212 gradients of the flow rate data to identify start and end times of overlapping events. Once we 
213 separated events with the above disaggregation approach, we manually labeled each 
214 appliance/fixture water event based on the water diary and examined the events further with the 
215 classification model described below. We repeated this process for every resampled resolution as 
216 well as the original 1-second data. At coarser resolutions, the performance of the disaggregation 
217 model deteriorated when detecting multiple short duration events happening simultaneously 
218 (e.g., hand washing), or short duration events happening on top of a long duration event. 
219 Therefore, in addition to naturally having fewer observations at coarser resolutions, the number 
220 of events that we were able to match with the diary also decreased (Figure S21).

221 2.3. End-use classification

222 After disaggregating the original water use time series, we labeled each event by matching with 
223 the water diary. We then trained a random forest (RF) classifier to perform appliance/fixture end-
224 uses classification, using the disaggregated water events resulting from the previous step of end-
225 use disaggregation. The classification algorithm allocated each data point (i.e., a i-th water use 
226 event ) in the dataset to one of the labeled classes, after training on tuples of events and 𝐸𝑖

227 associated features ( ). 𝐸𝑖, 𝐹𝑖

228 RF models have been presented by Breiman (2001) as classical ensemble learning algorithms and 
229 have shown to be outstanding predictive models in classification tasks (Herrera et al. 2010; 
230 James et al.2013). Random forests are built using the same fundamental principles as decision 
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231 trees and bagging (Bootstrap Aggregation). Bagging introduces randomness into the tree 
232 building process by building many trees on random subsets of the training data with replacement; 
233 this process is also known as bootstrapping. Bagging then aggregates the predictions across all 
234 the trees, which reduces the variance of the overall procedure and improves predictive 
235 performance (Géron 2019). However, bagging trees could result in tree correlation that limits the 
236 effect of variance reduction. Random forests help reduce variance by injecting more randomness 
237 into the training process (Hastie et al. 2009). The random forest algorithm is a bagging algorithm 
238 that draws random bootstrap samples from the training set. However, while bagging provides 
239 each tree with the full set of features, random forests have a random feature selection that makes 
240 trees more independent of each other, which often results in better variance-bias tradeoffs (Table 
241 S1) (Friedman et al. 2001; Probst et al. 2019). In this study, the two features of average flow and 
242 duration were eventually selected to build the final models, based on the results of our feature 
243 importance analysis (Figure S22). Therefore, the search for the split variable was limited to a 
244 random subset of the two chosen features. Feature importance was performed based on 
245 permutation-based feature importance (Breiman 2001) by evaluating which features contributed 
246 the most to the generalization power of the model.

247 To understand the mechanism used by RF models, it is necessary to understand the construction 
248 of classification decision trees. The goal of such a tree is to partition data into small and 
249 homogeneous groups. When travelling down the tree, data are split into possible responses called 
250 nodes that symbolize the branches of a tree. To perform each partitioning operation, a decision is 
251 based on an index (e.g., the Gini index), which allows RF models to partition the nodes of each 
252 tree into more homogenous groups that contain a larger proportion of one class in each 
253 subsequent node (Kuhn & Johnson, 2013). The Gini index is calculated as in Eq. 1, where  is 𝐶
254 the total number of classes in the model and is the probability of the occurrence of class  at 𝑝𝑛𝑘 𝑘
255 node . In this study, six different classes were evaluated based on typical household end uses: 𝑛
256 faucets (f), toilets (t), showers (s), refrigerator (r), dishwasher (d), and washing machine (w). The 
257 sum of all probabilities at a certain node is equal to one (see Eq. 2): 

258 G =∑
𝑘𝜖𝐶

𝑝𝑛𝑘(1 ― 𝑝𝑛𝑘)         (𝐸𝑞.1)

259 𝑝𝑡 + 𝑝𝑠 + 𝑝𝑓 + 𝑝𝑟 + 𝑝𝑤 + 𝑝𝑑 = 1        (𝐸𝑞.2)

260 Other metrics similar to the Gini index can be used to build decision trees, including cross 
261 entropy and misclassification error. However, the Gini coefficient is the most commonly used 
262 metric in the literature (James et al. 2013). Moreover, according to Raileanu and Stoffel (2004), 
263 the frequency of disagreement of the Gini index and entropy is only 2% of all cases, yet entropy 
264 is generally slower to compute because it requires a logarithmic function. For the above reasons, 
265 we used the Gini coefficient in this study.

266 Besides Gini, the RF algorithm involves several other hyperparameters that can be tuned to 
267 optimize model performance. While studies have shown that RF models are less sensitive 

Page 7 of 27 AUTHOR SUBMITTED MANUSCRIPT - ERIS-100188.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt

https://www.sciencedirect.com/topics/computer-science/data-partition
https://www.sciencedirect.com/topics/engineering/homogeneous-group
https://www.sciencedirect.com/science/article/pii/S0957417421010174?casa_token=uqTTuRZ_ZBAAAAAA:PDH0H-dO4EFryoZ85JV97YFI4QTzX_WDoGKhUkjLuSMW1GYQcRwRwRDqVYnXgJmW1ZQmRHxJ#b0085
https://www.sciencedirect.com/science/article/pii/S0957417421010174?casa_token=uqTTuRZ_ZBAAAAAA:PDH0H-dO4EFryoZ85JV97YFI4QTzX_WDoGKhUkjLuSMW1GYQcRwRwRDqVYnXgJmW1ZQmRHxJ#b0065


8

268 towards tuning than other algorithms such as support vector machines (Probst et al. 2019), 
269 modest performance gains can still be valuable considering the limitations that naturally come 
270 with a small dataset. Using grid search, we gave ranges to RF hyperparameters to exhaustively 
271 try all possible combinations and select the best hyperparameter combination. Minimum sample 
272 at each leaf (2- 5), minimum sample split (2, 5, 8, 12) number of sub-features (1, 2), maximum 
273 depth (3-10), and the number of trees (10, 20, 50, 100, 200) were initially given to the grid for 
274 hyperparameter tuning.

275 2.4. Model calibration and data sampling resolution scenarios 

276 We considered two scenarios for calibration analysis of the classification model: the “1-second 
277 only calibration” (Scenario 1), and “multi-resolution calibration” (Scenario 2).

278 The “1-second only calibration” (Scenario 1): In this scenario, the RF model was trained only on 
279 the measured data at the 1-second resolution. Extended time series of 1-second resolution water 
280 use data are not usually available from utility records, but they can be collected in small-scale 
281 customized and experimental smart meter installations. With this scenario, we test whether 
282 investing efforts and resources in gathering a small model calibration dataset at sub-minute 
283 resolution is worth the potential gain of model disaggregation accuracy at coarser resolutions. 
284 Our assumption behind this scenario is that the features of water use events can be more 
285 accurately learned from data collected at higher resolutions. In the 1-second trained RF model 
286 scenario, we split the labeled data into train (70% of the data) and validation (30% of the data) 
287 datasets. The validation set was used to assess the model performance on the 1-second trained 
288 data. Then, the entire resampled dataset from all other resolutions were separately used as test 
289 sets to compare the performance of the model on coarser resolutions.

290 The “multi-resolution calibration” (Scenario 2): In this scenario, we trained different RF models 
291 for each resolution (5 seconds, 10 seconds, 30 seconds, and 1 minute) on their own dataset and 
292 compare their performances both with one another and with Scenario 1. In this scenario, we 
293 examine the value of retraining the RF model specifically for different temporal resolutions to 
294 quantify differences in performance between sampling resolution and, comparatively with 
295 Scenario 1, across different model training strategies. To retain the value of limited data and 
296 improve generalizability of the models, we implemented a k-fold cross-validation strategy 
297 (Hawkins et al. 2003). We thus split the training set into k subsets, called folds, and then 
298 iteratively fit the model k times, each time training the data on k-1 folds and evaluating on the 
299 remaining single fold (representing the validation data). In this study, we fit the model with k = 
300 10. At the end of training, we averaged the performance across all validation folds as the final 
301 performance metric for the model.

302 2.5. Performance metrics

303 RF is a noise robust technique. However, when considering imbalanced problems, 
304 canonical machine learning algorithms generally tend to be biased towards the majority group. 
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305 This behavior happens because such algorithms consider the number of objects in each group to 
306 be roughly similar (Krawczyk, 2016, Ribeiro and Reynoso-Meza 2020). However, the minority 
307 class is often the most important when dealing with skewed distributions, and a performance 
308 metric should be chosen in a way to overcome such bias. While we do not directly balance the 
309 dataset used in this study because of its limited size, in this analysis we evaluate and compare the 
310 model performance using different formulations of the F1-score (FS). Specifically, we compare 
311 (i) micro-FS, which is a global metric attributing equal importance to each sample, thus giving 
312 emphasis on common labels, (ii) macro-FS, which attributes equal importance to each class, and 
313 (iii) weighted FS, which computes the weighted average of the FS values obtained for individual 
314 classes. While using these metrics does not solve class imbalance, we examine different F-score 
315 formulations to see whether our classifier gets biased towards well represented classes or not.

316 Micro-FS (usually referred to as simply FS) is a global performance metric that puts more 
317 emphasis on the most represented labels in the data set since it gives each sample the same 
318 importance. Labels that are underrepresented in the dataset may not be intended to influence the 
319 overall micro-FS heavily if the model is performing well on the other more common classes. 
320 Micro-FS (Eq. 3) is defined as the harmonic mean of the precision (Eq. 4) and recall (Eq. 5):

321 𝑀𝑖𝑐𝑟𝑜 - 𝐹𝑆 = 2 ×
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)        (𝐸𝑞.3)

322 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃      ( 𝐸𝑞.4)

323 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁      ( 𝐸𝑞.5)

324

325 where true positives (TP) are the number of correctly classified positive instances, false positives 
326 (FP) are the number of negative instances incorrectly classified as positive, and false negatives 
327 (FN) are the number of positive instances incorrectly classified as negative. 

328 Macro-FS (short for macro-averaged F1 score) is used to assess the quality of classification in 
329 problems with multiple classes. The macro-FS gives the same importance to each class, with low 
330 values for models that only perform well on the common classes while performing poorly on the 
331 classes with less data. The macro-FS is defined as the mean of class-wise FS in Eq. 6:

332 𝑀𝑎𝑐𝑟𝑜 - 𝐹𝑆 =
1
𝑁

𝑁
∑
𝑖 = 1

𝐹𝑆𝑖       (𝐸𝑞.6)

333 where  is the class index and  is the number of classes/labels.𝑖 𝑁

334 The weighted-average FS (Eq. 7) is calculated by taking the mean of all per-class F1 
335 scores while considering the number of actual occurrences of each class in the dataset.
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336 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 - 𝐹𝑆 =
1
𝐻

𝑁
∑
𝑖 = 1

|𝑖| × 𝐹𝑆𝑖 (𝐸𝑞.7)

337 where  and  are as above, and  is the total number of aggregated elements across all classes 𝑖 𝑁 𝐻
338 (Cominola et al. 2021). 

339 The weighted-FS formulation modifies the macro-FS to account for class imbalance, while 
340 imbalance is not considered in micro-FS and macro-FS.

341 3. Results and discussion

342 3.1 Data characterization - time of the day visualization 

343 To make sure our study home could be a proper representative of a larger study scale, we 
344 initially visualized the time-of-day and day-of-week distribution of three major classes of events 
345 (shower, washing machine, and dishwasher) to find regular patterns of consumption similar to 
346 those displayed in larger datasets. Much of the occupants’ water consumption occurs during 
347 typical weekday mornings and evenings. Figure 1(a) depicts shower end use distribution 
348 throughout the week and time of the day in our study home. The results show that showers have 
349 a more sporadic pattern of use on weekends while during weekdays most of them occur during 
350 regular morning and evening peak hours. These behavioral patterns align with the time-of-day 
351 and day-of-week distribution of showers reported in an analysis of water end use data gathered 
352 for 762 U.S. households (Cominola et al. 2020), shown in Figure 1(b). The time-of-day and day-
353 of-week distribution figures for the washing machine (Figure S1) and dishwasher (Figure S2) are 
354 also shown in the Supporting Information, with similar results. Washing machine events are 
355 observed mostly during weekends with a wide distribution throughout time of the day, while 
356 dishwashers are typically used throughout the week, either mornings or evenings. Comparison of 
357 the results show similar patterns between our study home and the larger study of U.S. households 
358 used in Cominola et al. (2020), demonstrating the potentially transferrable nature of our study 
359 home results. Similar widespread end-use data would help water planners and managers 
360 understand water consumption patterns, consumer behavior, and temporal variability. Decreasing 
361 consumption during peak time on a widespread scale could contribute to lowering overall peak 
362 demand for the local utility and reduce pressure on existing water infrastructure.

363
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                                                                      (a)
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                                                                       (b)
364 Figure 1. Time-of-day and day-of-week analysis: (a) Results from shower end use in this study home, 4-
365 week study with 1-second resolution data; (b) Results adapted (with permission) from Cominola et al. 
366 (2020) from shower end-uses in 762 U.S. homes, 2-week study period with 10-second resolution data.
367
368 3.2. Comparative multi-resolution scenario analysis 

369 The overall RF model performance across different resolutions in both calibration scenarios is 
370 presented in Figure 2. Grey lines represent Scenario 1 (1-second only calibration) and blue lines 
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371 represent Scenario 2 (multi-resolution calibration). The micro-FS, weighted-FS, and macro-FS 
372 are represented with dashed, solid, and dotted lines, respectively. We observe that Scenario 2 
373 gives higher performance across different temporal resolutions regardless of the performance 
374 metric. For both 1-second and 5-second resolutions, the micro-FS and weighted-FS values are 
375 similar: 0.91 and 0.89 for the micro- and weighted-FSs, respectively, at the 1-second resolution, 
376 and 0.87 and 0.85 for the micro- and weighted-FSs, respectively, at the 5-second resolution. The 
377 macro-FS generally shows the lowest values for all resolutions for both scenarios. We observe a 
378 mild decrease in performance metrics with coarser temporal resolutions in Scenario 2, while 
379 performance metrics decrease notably for resolutions coarser than 5 seconds in Scenario 1, 
380 dropping as low as 0.2 for the 1-minute resolution.

381

382

383

384 Figure 2. F1-score vs resolution curves for different F1-score formulations for Scenario 1 (grey lines) and 
385 Scenario 2 (blue lines). The micro-FS (dashed lines), weighted-FS (solid lines), and macro-FS (dotted 
386 lines) are represented.

387 Overall, our results indicate that the RF models learned end use event features better when 
388 trained at the same data sampling resolution that they are tasked to use to classify unseen events, 
389 provided that a training dataset with labelled events at that resolution is available. If 
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390 classification models are trained for application on data measured at the same resolution 
391 (Scenario 2), those models can perform at an acceptable level of performance even at coarser 
392 resolutions, depending on the relative importance of different end use classes. This observation 
393 has important implications related to the tradeoffs between fine-resolution data collection and 
394 increased data analytics needs. For instance, if a utility wants an estimate of water consumption 
395 by the main indoor water uses in households (e.g., toilets and showers), the 1-minute resolution 
396 model still provides an acceptable performance (weighted-FS equal to 0.73). This performance is 
397 lower than the FS of 0.89 obtained for the 1-second resolution model, but this loss in model 
398 accuracy is balanced by the benefit of gathering, storing, and analyzing fewer data observations 
399 at the coarser temporal resolution. Conversely, if detailed information on all end uses is required, 
400 only the 1-second and 5-second resolutions provide high performance predictions on all end use 
401 classes; for less represented end uses, performance is compromised at coarser resolutions.

402 3.3. Detailed end-use classification results 

403 Our detailed RF model validation results are presented in Figure 3, where the predicted classes 
404 (right) are compared to the actual classes (left). Figure 3(a) represents the entire 1-second 
405 resolution set of events, while Figure 3(b) zooms in on shorter duration events for clarity. The 
406 average flow rate (gal/min) and duration (s) were used as identifying features for our model. Of 
407 the total 654 events labeled, we used 196 events as a validation set. The model predicts the test 
408 set with an accuracy of 92% and a weighted-FS of 0.89, which is noteworthy given the fact that 
409 the training dataset had limited observations in some classes such as dishwasher and washing 
410 machine. The model correctly predicts 179 events out of 196 total events of the test set. 

411

(a)
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(b)
Figure 3. Actual and predicted water end-use classes. Predicted classes are obtained as results of the RF 
classifier on the 1-second resolution test set: (a) shows the entire dataset with durations ranging from 1-

1500 seconds, and (b) shows the same results zoomed in on events within a duration range of 150 
seconds (excluding 23 shower events) for clarity.

412 Yet, the high model performance in all classes might overrepresent the overall ability of our RF 
413 models to classify unseen end use events. Our results might imply that, due to the fine temporal 
414 resolution of the data, the model discerns the constant range of duration and average flow of 
415 those end uses with automatic water consumption cycles (e.g., washing machine, dishwasher) 
416 and detects them correctly. However, since our study represents a single household only, the 
417 model might be overfitting on data from automatic appliances due to the invariance of duration 
418 and flow in these specific automatic appliances, thus results on these specific end uses may not 
419 be generalizable. 

420 It is important to note that, while individual toilet uses are typically homogeneous in terms of 
421 water consumption volume and duration, even considering dual-flush systems, the combination 
422 of toilet and bathroom faucet uses are difficult to detect and disaggregate because such uses are 
423 often almost simultaneous (e.g., use of toilet and consequent handwashing in a same minute). 
424 Although temporal resolutions finer than 1 minute reduce disaggregation errors (Mazzoni et al. 
425 2021), we were not able to disaggregate all toilet events followed by faucets. Rather, we labeled 
426 the mentioned events as toilets since we attributed the subsequent faucet use due to the toilet use. 
427 As a result, toilets have a wider range of flow and duration, as shown in Figure 3.

428 Figure 4 shows the classification results for Scenario 1 (1-second only calibration) applied to the 
429 resampled 5-second (Figure 4(a)) and 1-minute resolutions (Figure 4(b)), respectively, selected 
430 as examples at the two extremes of the considered spectrum of data resolutions. We report our 
431 analysis results in both U.S. customary units (gal/min) and SI units (L/min). In comparing 
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432 different temporal resolutions, coarser resolutions tend to compress data points on the vertical 
433 axis (i.e., decrease average event flow) and extend their range on the horizontal axis (i.e., 
434 increase event duration) due to temporal averaging. For example, toilet events that originally 
435 ranged from 1.7-3 gal/min (6.4-11.4 L/min) average flow in the measured 1-second resolution 
436 tend to shift to 1-2.5 gal/min (3.8-9.5 L/min) in the 5-second resolution and decrease further to 
437 0.4-0.8 gal/min (1.5-3 L/min) in the 1-minute resolution. The duration of events increases with 
438 coarser temporal resolution to an extent that the total volume of events is the same as to the 
439 volume in the original 1-second resolution measurements. The mentioned shifts in values of end-
440 use features leads to decreased model performance with coarser temporal resolutions, up to a 
441 point where, as shown in Figure 4(b), the model can no longer detect any toilet events. The 
442 model still correctly predicts showers and a few washing machine events at the 1-minute 
443 resolution; however, the model application to the 1-minute data predicts most other end uses as a 
444 faucet under Scenario 1. Similar Scenario 1 classification results for the 10- and 30-second 
445 resolutions are presented in the Supporting Information (Figures S3-S4) along with the zoomed 
446 in figures of the 5-second and 1-minute resolutions for a detailed view (Figures S5-S8).

447

448

(a)
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(b)
449 Figure 4. Actual and predicted water end-use classes. Predicted classes are obtained as results of the RF 
450 classifier trained on the 1-second data (Scenario 1) and applied to the (a) 5-second resolution test set, and 
451 (b) 1-minute resolution test set. 

452 Figure 5 shows the confusion matrices of water end use classification across the events of our 4-
453 person study household for Scenario 1. Faucets (f) account for the most frequent end uses, 
454 followed by toilets (t). The matrices show the total number of events labeled for each resolution, 
455 the actual classes, and the predicted classes by the model. The results for the 5-second resolution 
456 show that of 382 total events that we were able to match with the water diary, 324 events were 
457 classified correctly (Figure 5(a)). The main misclassifications were in predicting 14 actual toilet 
458 end uses as faucets and 4 actual faucet end uses as toilets. This misdetection mostly occurs for 
459 data that fall in the area with average flows of 1-1.5 gal/min (3.8-5.7 L/min) and durations of 25-
460 50 seconds (see Figure S5 in the Supporting Information). For the 1-minute resolution (Figure 
461 5(b)), only 187 events had corresponding end uses in the water diary due to disaggregation errors 
462 where the model was not able to separate concurrent events because of loss of information that 
463 naturally accompanies coarser resolutions. Out of these 187 events, 92 were classified correctly. 
464 The classification model predicts 135 events as faucets. While only 73 of these events are 
465 actually faucets, they still account for 40% of the prediction accuracy, motivating consideration 
466 of F1-score metrics due to the imbalanced dataset. 
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(a) (b)
467 Figure 5. Confusion matrices for Scenario 1 (1-second trained random forest model): (a) 5-second 
468 resolution with 382 total events; (b) 1-minute resolution with 187 total events. Matrix rows show the 
469 actual classes and columns show the predicted classes for the following end uses: w (washing machine), s 
470 (shower), f (faucet), t (toilet), r (refrigerator), and d (dishwasher). Cell color is proportional to the number 
471 of events in that cell. 

472 Figure 6 shows the confusion matrices of end use water consumption for Scenario 2, the multi-
473 resolution calibration, for the 5-second (Figure 6(a)) and 1-minute (Figure 6(b)) resolutions. 
474 These results illustrate how the percentage of correct predictions changes from the 5-second 
475 resolution to the 1-minute resolution. Compared to Scenario 1 (Figure 5(a)), the 5-second 
476 resolution performance in Scenario 2 has either slightly improved or stayed the same, with the 
477 exception of refrigerator events (r). The 1-second resolution trained model in Scenario 1 had a 
478 better performance in predicting 5-second resolution refrigerator events. The prediction of toilets 
479 improved notably from 43 out of 57 to 51 out of 57 events. The main misclassifications were in 
480 predicting 5 actual toilet end uses as faucets and 6 actual faucet end uses as toilets. This 
481 misdetection mostly occurs for data that fall in the area with average flows of 1-1.5 gal/min (3.8-
482 5.7 L/min) and durations of 25-50 seconds (see Figure S5 in the Supporting Information). 
483 Overall, the 5-second resolution has a high performance under both scenarios, with performance 
484 metrics slightly less than those of the 1-second resolution (as shown in Figure 2). In the 1-minute 
485 resolution, our model correctly predicts 139 of 187 labeled events, having the highest prediction 
486 accuracy in washing machine (100%), faucet (90%), and shower (88%) events. These results 
487 imply that if any of the aforementioned end uses are of importance, the 1-minute resolution can 
488 still be informative.

489 With further investigation of the diagonals of the confusion matrices, we see how Figure 6(b) has 
490 ameliorated in comparison to Figure 5(b), increasing correct predictions from 93 to 139. The 1-
491 minute resolution model is still not able to discern refrigerator faucet events (r) from tap faucet 
492 events (f); however, this misclassification is not a critical issue since the refrigerator faucet is a 
493 faucet in nature. A noteworthy observation is that although the 1-minute resolution model under 
494 Scenario 2 incorrectly classifies one shower and one actual faucet event as a washing machine 
495 (i.e., false positive,  in Eq. 4), it does not label any other actual washing machine event as 𝐹𝑃
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496 other events (i.e., false negative,  in Eq. 5), which leads to a higher Recall in this specific 𝐹𝑁
497 class (100%) than in the 1-second resolution model (86%) (refer to Figure S12) and the 5-second 
498 resolution model (95%), with the tradeoff of lower Precision (88% versus 95% in the 1-minute 
499 and 5-second resolutions, respectively). Additional confusion matrices at other temporal 
500 resolutions are available in Figures S9-S14 of the Supporting Information. 

501

(a)
 

(b)
502 Figure 6. Confusion matrices for Scenario 2 (random forest model trained at the resampled temporal 
503 resolutions): (a) 5-second resolution with 382 total events, and (b) 1-minute resolution with 187 total 
504 events. Matrix rows show the actual classes and columns show the predicted classes for the following end 
505 uses: w (washing machine), s (shower), f (faucet), t (toilet), r (refrigerator), and d (dishwasher). Cell color 
506 is proportional to the number of events in that cell. 

507 In general, misclassifications do not cause significant degradation in predicting total water 
508 consumption if they are infrequent and roughly symmetric across the diagonal (Srinivasan et al. 
509 2011). For example, if toilet events are misclassified as faucet events while the same (or nearly 
510 the same) number of faucet events are misclassified as toilet events, these misclassifications can 
511 cancel out in terms of the accurate total number of events for those classes. 

512 4. Broader implications

513 Overall, our study contributes to the literature showing that smart water meters provide water 
514 utilities with more accurate and less labor-intensive information, enabling better knowledge on 
515 changing water demands (Gurung et al. 2015; Stewart et al., 2018). High resolution temporal and 
516 spatial water consumption data have undeniable social and technical benefits. Smart metering 
517 contributes to more accurate water demand forecasting, demand management strategies, and 
518 better informed utility operations and planning strategies (McDaniel and McLaughlin 2009; 
519 Cominola et al. 2015; Salomons et al. 2020). Detailed water consumption patterns, which enable 
520 researchers to investigate the relationships between human behaviors and the water cycle as part 
521 of a broader socio-environmental scale, can be now obtained with advanced analytics, enabled 
522 by fast paced computing power improvement and metering technology allowing data collection 
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523 with unprecedented temporal and spatial granularity (Flint et al. 2017; Zipper et al. 2019). While 
524 these advances support greater understanding of water consumption patterns and water-related 
525 human behaviors, we also acknowledge that there are potential privacy concerns regarding 
526 individuals and communities that need to be addressed and appreciated. Water consumption 
527 information transformed from the meter acts as an information side channel (McDaniel and 
528 McLaughlin 2009), exposing household habits and behaviors. End-uses like showers and toilets 
529 have detectable water consumption signatures, making end use classification information prone 
530 to potential privacy abuse. Consequently, well established privacy policies would benefit utilities 
531 in appropriate water demand management. Additionally, researchers have an ethical 
532 responsibility to protect participant confidentiality.

533 Recent studies have addressed privacy issues in both the water and energy sectors and presented 
534 solutions to overcome privacy related constraints to maximize the potential of granular data 
535 (Khurana et al. 2010; Molina-Markham et al. 2010; Gurstein 2011; Amin 2012; Cole and 
536 Stewart, 2013; Harter et al. 2013; Sankar et al. 2013; Helveston 2015; Park and Cominola 2020; 
537 Salomons et al. 2020). For instance, smart meter data can be used without invading individual 
538 privacy by aggregating data to coarser spatial or temporal scales as presented in our study. 
539 Nevertheless, as shown in this study, aggregation limits the ability of end-use classification, or 
540 any water consumption related research, to explore fine-scale behavioral dynamics for better 
541 demand modeling. Therefore, any research intersecting with human behavior should prioritize 
542 confidentiality (e.g., via anonymized data collected over a large sample of households) while 
543 providing sufficient information to enable future improvements in that field. While the 
544 formulation of privacy and security protection strategies is not within the scope of this study, we 
545 acknowledge that privacy and security considerations must be addressed and proactively planned 
546 for prior to collecting data throughout the research process so that modern metering technologies 
547 could be leveraged to their full extent while securing customer privacy (Meyer 2018).

548 From the findings of this study, we can identify the following limitations and opportunities for 
549 future research. First, future studies could focus on assessing how our results generalize when 
550 data from a larger household sample or homes from different socio-demographic, geographical, 
551 and climate contexts are available. Second, in this study we only considered six classes of indoor 
552 water uses from a 4-person household. Further research could include outdoor water use and test 
553 end-use disaggregation capabilities on houses with different sizes. Third, as highlighted in the 
554 methods, end use datasets are often imbalanced, i.e., the number of events in each end use class 
555 might vary substantially. While here we considered class imbalance a posteriori, by assessing 
556 the disaggregation results with different formulations of the F-score, an alternative approach to 
557 be tested when larger datasets are available is to balance the classes a priori (i.e., before 
558 performing the classification), e.g., by oversampling/undersampling, which would solve the 
559 problem of class imbalance. Finally, while here we only considered RF classifiers and a specific 
560 approach for disaggregation, future studies could comparatively assess the performance of 
561 different models, possibly accounting for multi-class events.
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562 5. Conclusion 

563 In this analysis, we presented a supervised approach to classify residential water consumption 
564 end use events and tested it on data collected in a 4-person household through consideration of 
565 multiple temporal resolutions by measuring water use data with a 1-second resolution smart 
566 water metering system and labeling events based on a water diary for a 4-week study period. We 
567 investigated two different scenarios of model calibration in evaluating the effect of temporal 
568 resolution on end use classification performance. The first scenario consisted of training a 
569 random forest classifier on the original 1-second resolution data only and testing it on other 
570 labeled temporal resolution datasets (i.e., 5 seconds, 10 seconds, 30 seconds, 1 minute). In this 
571 scenario, our model exhibited high overall performance on the 1-second and 5-second resolution 
572 water use events and classified certain classes of end uses with fairly good accuracy for the 10-
573 second resolution. The performance decreased notably for the 30-second and 1-minute 
574 resolutions. 

575 The second scenario consisted of training separate models for each temporal resolution using k-
576 fold cross-validation. We saw that coarser temporal resolutions ameliorated in this second 
577 scenario, with F1-score performance metrics as high as 0.89 for certain end use classes at the 
578 finer resolutions. A weighted F1-score above 0.85 was obtained in this scenario for 
579 disaggregation tasks performed at 1- and 5-second resolutions.

580 Our results reveal detailed information that can help utilities and residents make informed water 
581 conservation and efficiency decisions based on detailed knowledge on water demands. The 
582 analysis of classification model performance versus temporal resolution considering different F1-
583 scoore formulations provides insight for future water management regarding the selection of an 
584 efficient monitoring resolution based on priorities and data management capabilities.

585 In addition, our approach performed end use disaggregation of data aggregated at different 
586 temporal resolutions that are closer to the resolutions of commercial smart water meters (i.e., 1 
587 minute). Thus, while making use of data collected at a finer resolution (e.g., 1 second) might not 
588 be available to water utilities due to data management and analysis tradeoffs, we demonstrate 
589 possible model extensions to broader and further contexts in the field of residential water 
590 demand monitoring.

591 Ultimately, disaggregating and classifying water events obtained from residential smart water 
592 meter data reveals detailed information about how water is consumed within households. 
593 Understanding the overall water consumption profile and performance of different resolutions 
594 presents opportunities for improved residential water conservation and efficiency and long-term 
595 water resource sustainability (Attari 2014; Inskeep and Attari 2014; Horsburgh et al. 2017; 
596 Goulas et al. 2022). Our study presents an experimental example of how using smart water meter 
597 data can provide end use information to pinpoint opportunities for improved efficiency within 
598 residential buildings. 
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