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17 9  Abstract

18

19 10  Water monitoring in households provides occupants and utilities with key information to support
;? 11 water conservation and efficiency in the residential sector,.High costs, intrusiveness, and

22 12 practical complexity limit appliance-level monitoring via sub-meters on every water-consuming
23 13 end use in households. Non-intrusive machine learning methods have emerged as promising

;2‘ 14 techniques to analyze observed data collected by a single meter at the inlet of the house and

26 15  estimated the disaggregated contribution of gach water end use. While fine temporal resolution
27 16  data allow for more accurate end-use disaggregation, there is an inevitable increase in the

;g 17  amount of data that needs to be stored and analyzed. Te explore this tradeoff and advance

30 18  previous studies based on synthetic data;we.first collected 1-second resolution indoor water use
31 19  data from a residential single-point smart'water metering system installed at a 4-person

gg 20  household, as well as ground-truth end-use labels based on a water diary recorded over a 4-week
34 21 study period. Second, we trained aisupervised machine learning model (random forest classifier)
35 22 to classify six water end use categories across different temporal resolutions and two different
g? 23 model calibration scenarios. Finally, we evaluated the results based on three different

38 24 performance metrics (microgyweighted, and macro F1 scores). Our findings show that data

39 25  collected at 1- to 5-second intérvals allow for better end-use classification (weighted F-score

2(1) 26  higher than 0.85), particularly for toilet events; however, certain water end uses (e.g., shower and
4 27  washing machine events) canstill be predicted with acceptable accuracy even at coarser

43 28  resolutions, up to 1 minute; provided that these end use categories are well represented in the

44 29 training dataset. Overall, our study provides insights for further water sustainability research and
22 30 widespread deployment of smart water meters.

j; 31  Keywords: smart.water meter, temporal resolution, residential water use, water sustainability,

49 32 superviseéd machine learning

g? 33 1. Introduction

gg 34  Strong emphasis on sustainability in water use has been increasingly brought to light by growing
>4 35 population and urbanization (Cosgrove and Loucks 2015), coupled with climate change impacts
gg 36, on water resources (Jabaloyes et al. 2018; Karamouz and Heydari 2020). With existing
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limitations on water resource availability, new developments to increase water storage and
supply are often physically or economically constrained. Therefore, better management-of
existing water resources has become an issue of paramount importance (Mazzoni etal. 2021).
Public utilities are now investing significant resources and efforts in the development and
implementation of water management strategies, both on the supply and the demand side, to
ensure future water security (Jain and Ormsbee 2002; Herrera et al. 2010). On'the demand side,
these strategies include water saving technologies, new water policy regulations,sebate programs
for water-efficient devices, leakage management, and source substitution (e.g., teplacing non-
potable end-uses with grey, recycled, or harvested rainwater (Dixon et al.;1999)) (Gleick et al.
2003; Inman and Jeffrey, 2006; Stewart et al. 2013; Cominola et al22015; Ntuli and Abu-
Mahfouz 2016).

Beside their direct effect on water resources, residential water,conservation and efficiency
strategies can help save water-related energy required for water treatment, distribution, and
heating (Srinivasan et al. 2011). Residential end uses are tesponsible for more than 70% of all
water-related energy use (Escriva-Bou et al. 2018). However, the effectiveness of these measures
hinges on an accurate estimate of water demand fromudetailed wnderstanding of how and when
water is used in the residential sector. Access/to high resolution water consumption data can help
improve our knowledge of water demand, identify specifi¢ fixture/appliance end uses (e.g.,
toilet, shower, washing machine, outdoor irrigation);.or detect anomalies, such as leaks (Luciani
et al. 2019). Smart water meters, which can provide the fine resolution data necessary to discern
end uses, have been proven essential in'supporting, water conservation and efficiency measures in
practice (Britton et al., 2008).

Conventional residential water ' meters typically collect coarse resolution data and require manual
readings, limiting the understanding of household-scale water use characteristics and its patterns
in time. Conversely, smart (or digital) water meters enable the collection and automated
reporting of fine resolution water use data, thereby allowing planners and utilities to better
understand demand patterns and enact management strategies. Smart metering can help the
development of accurate demand characterization and forecasts and, hence, improve the
operation and long-term planning of water supply and distribution systems (Stewart et al. 2018),
or promote durable conservation behaviors (Cominola et al., 2021). In addition, detailed
knowledge about water consumption at the household level can also translate into financial
savings for home occupants, especially when complemented with information about individual
end uses (e.g., Blokker et al. 2010).

Obtaining information on residential end uses is not a trivial problem. Information about
residential water demand at the end-use level could, in principle, be obtained through direct
measurements via intrusive monitoring, i.e., by installing sub-meters at all household end uses.
Howeyer, this approach is often practically or economically infeasible from a utility perspective
and would likely be rejected by home occupants due to its intrusive nature. Instead, water
utilities'are increasingly installing residential smart water meters that collect fine resolution
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z 76  water consumption data at the service line or entrance into the home, providing aggregate water
5 77  data, which are so far primarily used for billing purposes (Fogarty and Hudson 2006; Ereehlich
6 78  etal. 2009). Similarly to previous experiences in the electricity sector, limits to directly

; 79  collecting water-use data at the residential end uses has motivated the development of several

9 80 non-intrusive disaggregation approaches, which have the advantage of allowing the

10 81 decomposition of a signal measured at the household level (i.e., aggregate water use) into the

N 82  individual contribution of each end use (Cominola et al. 2017; Di Mauro et al. 2020; Bethke et
13 83 al.2021).

12 84  Several state-of-the-art disaggregation techniques require additional sensingon the premise

16 85  plumbing infrastructure and/or a manual characterization of each end usé (Fogarty and Hudson
17 86  20006; Kim et al. 2008). These techniques can be intrusive, expensive, and time consuming, thus
B 87  they are not easy to develop or replicate at large scales (Froehlich et'al.2009, 2011; Srinivasan et

20 88 al. 2011; Ellert et al. 2015; Ntuli and Abu-Mahfouz). Other disaggregation techniques use only
21 89  flow (or volume) data collected at the household water inlet point. They can classify end uses in

;g 90 anon-intrusive way, with the accuracy of results varying across different data sampling temporal
24 91  resolutions (e.g., 1-10 seconds vs. minutes; Clifford et:al. 20185 Vitter and Webber 2018).

25 92  Understanding the tradeoff between the value of the information provided by fine-resolution data
;? 93  and the economic and operational costs of the meteringsystem is crucial to inform the design of
28 94  future metering networks and associated analytics to.facilitate customer data interpretation.

;g 95  The availability of fine-resolution smart meter.data generates several opportunities for advancing
g; 96  water demand management. Sub-minute sampling resolution is essential for most water end-use

97  disaggregation algorithms to provide a reliablejcategorization of household level water use into
34 98 different fixtures/appliances (e.g., shower, toilet, dishwasher, etc.) (Willis et al. 2010; Nguyen et
35 99 al. 2013; Abdallah and Rosenberg, 2014; Horsburgh et al. 2017; Cominola et al. 2018).

100  However, high resolution metering,inevitably increases the amount of data the water utility must
33 101  collect, process, and manage: Sampling at 1-second resolution, for instance, implies replacing the
39 102 typical 12 monthly readings per user with over 31.5 million data readings. Large amounts of data
40 103 can compromise hardware and software performance due to issues with meter power sources,

47 104  battery life, telemetry network.capacity, data gaps, and billing software, besides requiring

43 105 utilities to acquire new skill sets for their employees (Stewart et al., 2010; Suero et al. 2012).

45 106  Among the existing literature that has already explored the implication of data sampling

46 107  resolution on Wwater end use'disaggregation (e.g., Wonders et al. 2016), Cominola et al. (2018)
108  developed an analysi§ based on synthetic time series of water end use generated with STREaM,
49 109  the STochastic Residential water End-use Model. Their model relied on statistical distributions
50 110 of end-use characteristics derived from a large dataset of disaggregated water end-uses from over
51 111 300 single-family households in nine U.S. cities (DeOreo, 2011). STREaM generated synthetic
112 timeseries of water end uses with diverse sampling resolutions, which were analyzed with a

54 113 multi-résolution assessment framework to identify potentially critical thresholds in data

55 114 "nwresolution for different aspects of information retrieval and demand management. While such

56 115, studies tend to make up for the shortness of (or limited access to) data through stochastic

58 3
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modeling to generate synthetic disaggregated water use data, a data gap remains with limited
availability of ground-truth water end-use observations from real-world data (Di Mauroset al.
2020; Di Mauro et al. 2021).

Here, we address the challenge of testing if and how the theoretical results obtained in the
literature on synthetic data change when similar analysis is replicated directly en real-world data.
Compared to synthetic data, real-world data might be characterized by highersignal noise, data
gaps, and limited dataset size for model calibration. We build on the above modeling efforts
through collection and analysis of observed data from a monitored study home in the Midwest
United States, exploring the tradeoffs between data sampling resolution and performance in
water end-use classification. We examine different data sampling resolutions and explore water
end use disaggregation results by aggregating 1-second water consumption data from a 4-person
study household to coarser resolutions. We evaluate a set of performanceimetrics regarding water
end-use classification using supervised machine learning informed by ground-truth end-use
labels obtained from a water diary recorded over a 4-week study period. Findings from our
multi-resolution assessment can support further research and assist utilities in quantifying the
benefits associated with second-to-minute data sampling tesolutions and the costs of adopting
and maintaining fine-resolution metering infrastructures.

The major contributions of this work include:

e Training and testing a water end-use classification model on real-world observation data
obtained with a single-point smart meter for a 4-person household coupled with labels
from a water diary.

¢ Quantifying the effects of temporal data sampling resolution on the performance of water
end-use classification.

e Analyzing the tradeoff between end-use classification performance and data sampling
resolution under two scenarios characterized by different model calibration strategies.

2. Material and Methods
2.1. Metering setup, data collection, and temporal aggregation

In this study, we used-data from a single-point smart water metering system installed at a 4-
person, single-family, fully-detached residence in the Midwest United States, collecting 1-second
resolution flow rate data oyer a 4-week study period from September 3 to October 1, 2021.
Aggregate indoor household water use data were collected from a custom ally® electromagnetic
flow meter provided by Sensus, installed on the main water supply pipe into the residents’ home.
In additiofn to measuring flow rate (gal/min), the meter also sensed temperature (K) and pressure
(psi) dataat a 1-second resolution. Although these pressure and temperature data are useful to
water'system operations, they are not as valuable to demand disaggregation due the large impact
the distribution system has on these variables. We validated this assumption through feature
analysis based on correlation and data visualization (see Figures S15-S18 in the Supporting
Information). Consequently, we focused our analysis on flow rate data. The water meter writes
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data to a computer running a script that parses the raw data into a suitable format for further
analysis. A data acquisition system connected to the water meter parsed the raw data inte.a
timestamped comma separated value (csv) format for further analysis.

To examine the effects of data sampling temporal resolution on water end-use classification, we
aggregated the 1-second resolution time series to resolutions of 5 seconds, 10 seconds; 30
seconds, and 1 minute. The 1-minute resolution has been recognized as a critical threshold for
certain end-use data analytics in the electricity sector (Armel et al. 2013), Similarly,-a previous
study based on analysis of synthetic data identified the same threshold a§ critical for end-use
disaggregation in the water sector (Cominola et al. 2018). Here, we test these findings with an
experimental study based on real-world data and aim to identify a similazcritical data sampling
resolution threshold for water end-use classification in the residential sector. Meanwhile, since
the study is only based on a 4-person household, we preliminarily ¢ompare water consumption
patterns with a larger study to ensure the study home is representative of larger scale behavioral
patterns.

During the study period, the home occupants manually fecorded a'water diary of labeled end
uses. In this study, six types of indoor water end uses.contributed to the total household water
demand: faucets, toilets, showers, refrigerator, dishwasher; and washing machine. We used a
written water diary over the 4-week study peried to collect ground truth end use data for model
training and validation. The 4-week period was selected based on previous studies and
practicality (Beal et al. 2011; DeOreo et al. 2016; Horsburgh et al. 2017). The water diary
included end use labels, start time, and date that were completed by the household occupants.
More details about the diary are reported in'the Supporting Information, including the water
diary template (Figure S19) andian example of completed recordings (Figure S20). This data
collection included only factual data'such that this work was determined not to meet the
definition of human subjects research andy therefore, did not require Institutional Review Board
(IRB) approval. Documentation of this IRB decision is available upon request. Limitations that
naturally arose during the water diary process were as follows:

e Events that occupants would forget to fill in the diary could not be labeled after the
disaggregation of the data.

e Start times listed i the diary would sometimes correspond to events that occurred 1-2
minutes befote the reported time, implying that occupants would sometimes fill in the
diary after the event.

e Specifically for faucet events, occupants mentioned occasionally leaving the faucet on to
avoid reporting multiple events, resulting in long faucet durations that can represent
atypical behavior in the model training process.

o« The water diary was completed manually and was unreadable for some events.

e Some reported events did not match the information received from the meter.

In addition to these limitations, a power outage created a 2-day data gap in the smart water meter
dataset, where the water diary was completed but measured water flow was missing.
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2.2. End-use disaggregation

The end-use disaggregation step separates concurrent water use events along with single events,
that, aggregated on the axis of time, would give the original time series collected at'the single-
point residential water meter. While end-use disaggregation and end-use classification
sometimes coalesce into one concept in literature, in this study we consider disaggregation as the
first step of the end-use classification process (Nguyen et al. 2018). Single events are defined as
those that occur in isolation (e.g., dishwasher only), while combined or concurrent events have
simultaneous occurrences of water usage (e.g., a toilet flush during a shower). A single i-th water
use event E; can be quantitatively characterized by a vector of features.F;, which include values
of, e.g., start time, end time, average flow, and volume of that event. Separating and identifying
overlapping, or concurrent, water use events is a significant challenge in.reSidential water
studies, and the accuracy of existing smart meter disaggregation models decreases significantly
when these types of events are encountered (Cominola et al. 2015). Concurrent events occur
often, especially during longer duration events such as showers,or outdoor irrigation. Thus,
disaggregating concurrent events from one another by leveraging information on the
characteristics of individual fixtures or by learning thepatterns’of individual end uses is essential
for the purpose of creating a comprehensive water profile for the household.

In this analysis, we used the disaggregation model.from Bethke et al. (2021), developed based on
Nguyen et al.’s (2013) method of separating concurrent events by calculating the vector
gradients of the flow rate data to identify start-and end times of overlapping events. Once we
separated events with the above disaggregation approach, we manually labeled each
appliance/fixture water event based on the water diary and examined the events further with the
classification model described below. We repeated this process for every resampled resolution as
well as the original 1-second data. At coarser resolutions, the performance of the disaggregation
model deteriorated when detectingimultiple short duration events happening simultaneously
(e.g., hand washing), or short duration events happening on top of a long duration event.
Therefore, in addition to naturally having fewer observations at coarser resolutions, the number
of events that we were able to match with the diary also decreased (Figure S21).

2.3. End-use classification

After disaggregating the original water use time series, we labeled each event by matching with
the water diary. We then trained a random forest (RF) classifier to perform appliance/fixture end-
uses classification, using the disaggregated water events resulting from the previous step of end-
use disaggregation. The classification algorithm allocated each data point (i.e., a i-th water use
event E;) in the dataset to one of the labeled classes, after training on tuples of events and

associated features (E;, F;).

RF models have been presented by Breiman (2001) as classical ensemble learning algorithms and
have shown to be outstanding predictive models in classification tasks (Herrera et al. 2010;
James et al.2013). Random forests are built using the same fundamental principles as decision

6
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trees and bagging (Bootstrap Aggregation). Bagging introduces randomness into the tree
building process by building many trees on random subsets of the training data with replacement;
this process is also known as bootstrapping. Bagging then aggregates the predictions across all
the trees, which reduces the variance of the overall procedure and improves predictive
performance (Géron 2019). However, bagging trees could result in tree correlation that limits.the
effect of variance reduction. Random forests help reduce variance by injecting more randomness
into the training process (Hastie et al. 2009). The random forest algorithm is'a bagging algorithm
that draws random bootstrap samples from the training set. However, while bagging provides
each tree with the full set of features, random forests have a random feature selection that makes
trees more independent of each other, which often results in better yariance-bias tradeoffs (Table
S1) (Friedman et al. 2001; Probst et al. 2019). In this study, the two features of average flow and
duration were eventually selected to build the final models, baséd on. the results of our feature
importance analysis (Figure S22). Therefore, the search for thesplit variable was limited to a
random subset of the two chosen features. Feature importance was performed based on
permutation-based feature importance (Breiman 2001) by evaluating which features contributed
the most to the generalization power of the model.

To understand the mechanism used by RF models, it is necessary to understand the construction
of classification decision trees. The goal of such.a treeiis.to partition data into small and
homogeneous groups. When travelling down the tree, data are split into possible responses called
nodes that symbolize the branches of a tree. To perform each partitioning operation, a decision is
based on an index (e.g., the Gini index);,swhich allows RF models to partition the nodes of each
tree into more homogenous groups that contain a larger proportion of one class in each
subsequent node (Kuhn & Johnsen, 2013). The Gini index is calculated as in Eq. 1, where C is
the total number of classes in the model and p,,, is the probability of the occurrence of class k at
node n. In this study, six different classes were evaluated based on typical household end uses:
faucets (f), toilets (t), showersi(s), refrigerator (r), dishwasher (d), and washing machine (w). The
sum of all probabilities at acertain node is equal to one (see Eq. 2):

G=Ypull—pw)  (Eq.D)
keC

pi+ostprtp-+owtpa=1 (Eq2)

Other metrics/similarito the Gini index can be used to build decision trees, including cross
entropy and misclassification error. However, the Gini coefficient is the most commonly used
metric in/the literature (James et al. 2013). Moreover, according to Raileanu and Stoffel (2004),
the frequency of disagreement of the Gini index and entropy is only 2% of all cases, yet entropy
is generally slower to compute because it requires a logarithmic function. For the above reasons,
we used the Gini coefficient in this study.

Besides Gini, the RF algorithm involves several other hyperparameters that can be tuned to
optimize model performance. While studies have shown that RF models are less sensitive

7
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towards tuning than other algorithms such as support vector machines (Probst et al. 2019),
modest performance gains can still be valuable considering the limitations that naturally.come
with a small dataset. Using grid search, we gave ranges to RF hyperparameters to exhaustively
try all possible combinations and select the best hyperparameter combination. Minimum,sample
at each leaf (2- 5), minimum sample split (2, 5, 8, 12) number of sub-features (1, 2);maximum
depth (3-10), and the number of trees (10, 20, 50, 100, 200) were initially given to the grid for
hyperparameter tuning.

2.4. Model calibration and data sampling resolution scenarios

We considered two scenarios for calibration analysis of the classification model: the “1-second
only calibration” (Scenario 1), and “multi-resolution calibration” (Scenario 2).

The “1-second only calibration” (Scenario 1): In this scenario, the RE:model was trained only on
the measured data at the 1-second resolution. Extended time series.of 1-second resolution water
use data are not usually available from utility records, but they.can be collected in small-scale
customized and experimental smart meter installations. With this scenario, we test whether
investing efforts and resources in gathering a small meodel calibration dataset at sub-minute
resolution is worth the potential gain of model disaggregation accuracy at coarser resolutions.
Our assumption behind this scenario is that the features.of water use events can be more
accurately learned from data collected at higher resolutions. In the 1-second trained RF model
scenario, we split the labeled data into.train (70% of the data) and validation (30% of the data)
datasets. The validation set was used to'assess the model performance on the 1-second trained
data. Then, the entire resampled dataset fromiall other resolutions were separately used as test
sets to compare the performanceof the model on coarser resolutions.

The “multi-resolution calibration” (Scenario 2): In this scenario, we trained different RF models
for each resolution (5 seconds, 10 seconds, 30 seconds, and 1 minute) on their own dataset and
compare their performances/both with one another and with Scenario 1. In this scenario, we
examine the value of retraining the RF model specifically for different temporal resolutions to
quantify differences in performance between sampling resolution and, comparatively with
Scenario 1, across different model training strategies. To retain the value of limited data and
improve generalizability of the models, we implemented a k-fold cross-validation strategy
(Hawkins et al. 2003): We thus split the training set into k subsets, called folds, and then
iteratively fit the model k times, each time training the data on k-1 folds and evaluating on the
remaining singlé fold (representing the validation data). In this study, we fit the model with k =
10. At the‘end of training, we averaged the performance across all validation folds as the final
performance metric for the model.

2.5./Performance metrics

RF is‘anoise robust technique. However, when considering imbalanced problems,
canonical machine learning algorithms generally tend to be biased towards the majority group.
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305  This behavior happens because such algorithms consider the number of objects in each group to
306  be roughly similar (Krawczyk, 2016, Ribeiro and Reynoso-Meza 2020). However, the.minority
307  class is often the most important when dealing with skewed distributions, and a performance

308  metric should be chosen in a way to overcome such bias. While we do not directly balance the

9 309  dataset used in this study because of its limited size, in this analysis we evaluate’and.compate. the
10 310 model performance using different formulations of the F1-score (FS). Specifically, we compare
11 311 (i) micro-FS, which is a global metric attributing equal importance to each sample, thus giving

13 312 emphasis on common labels, (ii) macro-FS, which attributes equal importance to each class, and
14 313  (iii) weighted FS, which computes the weighted average of the FS values obtained for individual
15 314  classes. While using these metrics does not solve class imbalance, we examine different F-score

oNOYTULT D WN =

16 . . .

17 315 formulations to see whether our classifier gets biased towards well represented classes or not.
18 . . . ;

19 316 Micro-FS (usually referred to as simply FS) is a global performance metric that puts more

20 317 emphasis on the most represented labels in the data set since it gives each sample the same

21 318  importance. Labels that are underrepresented in the datasét may not be intended to influence the
319  overall micro-FS heavily if the model is performing well'on the other more common classes.

24 320  Micro-FS (Eq. 3) is defined as the harmonic mean ofithe preeision (Eq. 4) and recall (Eq. 5):

2% (precision X recall)

321 [ - =2 X .
27 Micro-FS=2 (precision + recall) (Eq3)

29 TP

30 322 Precision= TP FP (Eq.4)

TP
33 -y
" 323 Recall TP+ FN (Eq.5)

36 324

38 325  where true positives (TP) are the number of correctly classified positive instances, false positives
39 326  (FP) are the number of negative instances incorrectly classified as positive, and false negatives

j? 327  (FN) are the number of pesitive instances incorrectly classified as negative.
fé 328  Macro-FS (short for'macre-averaged F1 score) is used to assess the quality of classification in

44 329  problems with multiple classes. The macro-FS gives the same importance to each class, with low
45 330  values for models;that only perform well on the common classes while performing poorly on the
331  classes with less/data.; The macro-FS is defined as the mean of class-wise FS in Eq. 6:

1 N
49 332 Macro - FS = ﬁlesi (Eq.6)
L=

52 333  where i is the class index and N is the number of classes/labels.

54 334  The weighted-average FS (Eq. 7) is calculated by taking the mean of all per-class F1
55 335 scores while considering the number of actual occurrences of each class in the dataset.


https://www.sciencedirect.com/science/article/pii/S0957417420300580?casa_token=blhJeGpvfdUAAAAA:ezpSvHchUCiiXeCb5URSkohUiQ9d6RoGkpbVdbO5J6fh0Lc2u56Y56aroG8bsrggIBVhT7SL#bib0020
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1N
Weighted - FS =+ Y lil X FS; (Eq.7)
i=1

where i and N are as above, and H is the total number of aggregated elements,across all classes
(Cominola et al. 2021).

The weighted-FS formulation modifies the macro-FS to account for class imbalance, while
imbalance is not considered in micro-FS and macro-FS.

3. Results and discussion
3.1 Data characterization - time of the day visualization

To make sure our study home could be a proper representative of a larger study scale, we
initially visualized the time-of-day and day-of-week distribution of thre¢ major classes of events
(shower, washing machine, and dishwasher) to find regular patterns of consumption similar to
those displayed in larger datasets. Much of the occupants’ water consumption occurs during
typical weekday mornings and evenings. Figure 1(a) depicts shower end use distribution
throughout the week and time of the day in our studytheme. The results show that showers have
a more sporadic pattern of use on weekends while during weekdays most of them occur during
regular morning and evening peak hours. These:behavioral patterns align with the time-of-day
and day-of-week distribution of showers reported iman analysis of water end use data gathered
for 762 U.S. households (Cominola et.al. 2020), shown in Figure 1(b). The time-of-day and day-
of-week distribution figures for the washing machine (Figure S1) and dishwasher (Figure S2) are
also shown in the Supporting Information, with similar results. Washing machine events are
observed mostly during weekends, with a wide distribution throughout time of the day, while
dishwashers are typically used throughout the week, either mornings or evenings. Comparison of
the results show similar patterns between our study home and the larger study of U.S. households
used in Cominola et al. (2020)sdemonstrating the potentially transferrable nature of our study
home results. Similar widespread end-use data would help water planners and managers
understand water consumptionpatterns, consumer behavior, and temporal variability. Decreasing
consumption during peak time on a widespread scale could contribute to lowering overall peak
demand for the local utility and reduce pressure on existing water infrastructure.

10
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Figure 1. Time-of-day and day-of-week analysis: (a) Results from shower end use in this study home, 4-
week study with 1-second resolution data; (b) Results adapted (with permission) from Cominola et al.
(2020) from shower end-uses in 762 U.S. homes, 2-week study period with 10-second resolution data.

3.2..Comparative multi-resolution scenario analysis

The overall RF model performance across different resolutions in both calibration scenarios is
presented in Figure 2. Grey lines represent Scenario 1 (1-second only calibration) and blue lines

11
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represent Scenario 2 (multi-resolution calibration). The micro-FS, weighted-FS, and macro-FS
are represented with dashed, solid, and dotted lines, respectively. We observe that Scenario 2
gives higher performance across different temporal resolutions regardless of the performance
metric. For both 1-second and 5-second resolutions, the micro-FS and weighted-FS values are
similar: 0.91 and 0.89 for the micro- and weighted-FSs, respectively, at the 1-second resolution,
and 0.87 and 0.85 for the micro- and weighted-FSs, respectively, at the 5-second resolution. The
macro-FS generally shows the lowest values for all resolutions for both scenarios:, We observe a
mild decrease in performance metrics with coarser temporal resolutions in Scenario 2, while
performance metrics decrease notably for resolutions coarser than 5 seconds inScenario 1,
dropping as low as 0.2 for the 1-minute resolution.

IFerf.manc e v = re=Lhnticn

11 rrr. 81
-9 11 F2cr. (6T
1T weglted (61;
11 rki. 47,
11 raor. 870
11 weighted 7]

M1 =< .re-

1 5 10 . [
Re=hition [=¢c

Figure 2.[F1-score vs resolution curves for different F1-score formulations for Scenario 1 (grey lines) and
Scenario 2,(blue lines). The micro-FS (dashed lines), weighted-FS (solid lines), and macro-FS (dotted
lines) are represented.

Overall;.our results indicate that the RF models learned end use event features better when
trained at the same data sampling resolution that they are tasked to use to classify unseen events,
provided that a training dataset with labelled events at that resolution is available. If

12
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390 classification models are trained for application on data measured at the same resolution

391  (Scenario 2), those models can perform at an acceptable level of performance even at coarser

392  resolutions, depending on the relative importance of different end use classes. This ebservation
393  has important implications related to the tradeoffs between fine-resolution data collection and

9 394 increased data analytics needs. For instance, if a utility wants an estimate of water consumption
10 395 by the main indoor water uses in households (e.g., toilets and showers), the l-minute resolution
11 396  model still provides an acceptable performance (weighted-FS equal to 0.73). This.performance is
13 397 lower than the FS of 0.89 obtained for the 1-second resolution model, but this less.in model

14 398 accuracy is balanced by the benefit of gathering, storing, and analyzing fewer data observations

oNOYTULT D WN =

15 399 at the coarser temporal resolution. Conversely, if detailed informatign on all end uses is required,
400  only the 1-second and 5-second resolutions provide high performance predictions on all end use
18 401  classes; for less represented end uses, performance is compromisediat coarser resolutions.

20 402  3.3. Detailed end-use classification results

22 403  Our detailed RF model validation results are presented in Figure:3;y where the predicted classes
23 404 (right) are compared to the actual classes (left). Figure 3(a) represents the entire 1-second

405  resolution set of events, while Figure 3(b) zooms in‘on shorter duration events for clarity. The
26 406  average flow rate (gal/min) and duration (s)Mwere used as identifying features for our model. Of
27 407 the total 654 events labeled, we used 196 events as a validation set. The model predicts the test
408  set with an accuracy of 92% and a weighted-FS,of 0.89; which is noteworthy given the fact that
30 409 the training dataset had limited observations:in.some ‘classes such as dishwasher and washing

31 410 machine. The model correctly predicts 179,events out of 196 total events of the test set.

33 411
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Actual classes Predicted classes
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Figure 3. Actual and predicted water end-use classes. Predicted classes are obtained as results of the RF
classifier on the 1-second resolution test set: (a) shows the entire dataset with durations ranging from 1-
1500 seconds, and (b) shows the same results, zoomed in on.events within a duration range of 150
seconds (excluding23 shower events) for clarity.

Yet, the high model performance in all classes might overrepresent the overall ability of our RF
models to classify unseen end use events. Qurresults might imply that, due to the fine temporal
resolution of the data, the model discerns the constant range of duration and average flow of
those end uses with automatic water consumption cycles (e.g., washing machine, dishwasher)
and detects them correctly. However, since our study represents a single household only, the
model might be overfitting on data fromrautomatic appliances due to the invariance of duration
and flow in these specific automatic appliances, thus results on these specific end uses may not
be generalizable.

It is important to note that, whiledndividual toilet uses are typically homogeneous in terms of
water consumption volumeand)duration, even considering dual-flush systems, the combination
of toilet and bathroom faucet uses are difficult to detect and disaggregate because such uses are
often almost simultaneous (e.g., use of toilet and consequent handwashing in a same minute).
Although temperal resolutions finer than 1 minute reduce disaggregation errors (Mazzoni et al.
2021), we wete not able to disaggregate all toilet events followed by faucets. Rather, we labeled

the mentioned events as toilets since we attributed the subsequent faucet use due to the toilet use.

As a result, toilets have a wider range of flow and duration, as shown in Figure 3.

Figure4 shows the classification results for Scenario 1 (1-second only calibration) applied to the
resampled 3-second (Figure 4(a)) and 1-minute resolutions (Figure 4(b)), respectively, selected
as examples at the two extremes of the considered spectrum of data resolutions. We report our
analysisresults in both U.S. customary units (gal/min) and SI units (L/min). In comparing

14
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different temporal resolutions, coarser resolutions tend to compress data points on the vertieal
axis (i.e., decrease average event flow) and extend their range on the horizontal axis (i.es
increase event duration) due to temporal averaging. For example, toilet events that originally
ranged from 1.7-3 gal/min (6.4-11.4 L/min) average flow in the measured 1-second resolution
tend to shift to 1-2.5 gal/min (3.8-9.5 L/min) in the 5-second resolution and decrease further:to
0.4-0.8 gal/min (1.5-3 L/min) in the 1-minute resolution. The duration of events increases with
coarser temporal resolution to an extent that the total volume of events is the same as to the
volume in the original 1-second resolution measurements. The mentioned shifts, in values of end-
use features leads to decreased model performance with coarser temporal zesolutions, up to a
point where, as shown in Figure 4(b), the model can no longer detect any toilet events. The
model still correctly predicts showers and a few washing machine events atithe 1-minute
resolution; however, the model application to the 1-minute data’predicts most other end uses as a
faucet under Scenario 1. Similar Scenario 1 classification results for the 10- and 30-second
resolutions are presented in the Supporting Information (Figures S3=S4) along with the zoomed
in figures of the 5-second and 1-minute resolutions for a.detailed,view (Figures S5-S8).
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Figure 4. Actual and predicted water end-use classes. Predicted classessare obtained as results of the RF
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Predicted classes
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© washing machine
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classifier trained on the 1-second data (Scenario 1) and applied toithe, (a) 5-second resolution test set, and
(b) 1-minute resolution test set.

Figure 5 shows the confusion matrices of water.end use.classification across the events of our 4-
person study household for Scenario 1. Faucets (f) account for the most frequent end uses,
followed by toilets (t). The matrices show the total number of events labeled for each resolution,
the actual classes, and the predicted ¢lasses by the model. The results for the 5-second resolution
show that of 382 total events that we were able to match with the water diary, 324 events were
classified correctly (Figure 5(a))»The main misclassifications were in predicting 14 actual toilet
end uses as faucets and 4 actual faucet end uses as toilets. This misdetection mostly occurs for
data that fall in the area with avetage flows of 1-1.5 gal/min (3.8-5.7 L/min) and durations of 25-
50 seconds (see Figure S5 in the Supperting Information). For the 1-minute resolution (Figure
5(b)), only 187 events had corresponding end uses in the water diary due to disaggregation errors
where the model was not/ableito separate concurrent events because of loss of information that
naturally accompanies coarser resolutions. Out of these 187 events, 92 were classified correctly.
The classification modelpredicts 135 events as faucets. While only 73 of these events are
actually faucets, they still account for 40% of the prediction accuracy, motivating consideration
of F1-score metrics dueitosthe imbalanced dataset.

16
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18 467 Figure 5. Confusion matrices for Scenario 1 (1-second trained random forest model): (a) S-second
;g 468 resolution with 382 total events; (b) 1-minute resolution with 187 total events. Matrix rows show the
21 469  actual classes and columns show the predicted classes for the following end uses: w (washing machine), s
> 470 (shower), f (faucet), t (toilet), r (refrigerator), and d (dishwasher). Cell.color is proportional to the number
23 471 of events in that cell.

24

o5 472 Figure 6 shows the confusion matrices of end use water ¢ensumption for Scenario 2, the multi-
26 473  resolution calibration, for the 5-second (Figure 6(a)) and 1-minute (Figure 6(b)) resolutions.

27 474  These results illustrate how the percentage of'cortect predictions changes from the 5-second

29 475  resolution to the 1-minute resolution. Compared to Seenario 1 (Figure 5(a)), the 5-second

30 476  resolution performance in Scenario 2‘has eitherslightly improved or stayed the same, with the

31 477 exception of refrigerator events (r). The 1 second resolution trained model in Scenario 1 had a
33 478  better performance in predicting 5-second resolution refrigerator events. The prediction of toilets
34 479  improved notably from 43 out of 57:to 51 out of 57 events. The main misclassifications were in
35 480 predicting 5 actual toilet end uses as faucets and 6 actual faucet end uses as toilets. This

37 481  misdetection mostly occurs for data thatfall in the area with average flows of 1-1.5 gal/min (3.8-
38 482 5.7 L/min) and durations of 25-50 seconds (see Figure S5 in the Supporting Information).

39 483  Overall, the 5-second resolution has a high performance under both scenarios, with performance
484  metrics slightly less than those of the 1-second resolution (as shown in Figure 2). In the 1-minute
42 485  resolution, our model.eorrectlypredicts 139 of 187 labeled events, having the highest prediction
43 486  accuracy in washing machine (100%), faucet (90%), and shower (88%) events. These results
487  imply that if any of the aforementioned end uses are of importance, the 1-minute resolution can
46 488  still be informative.

48 489  With further investigation of the diagonals of the confusion matrices, we see how Figure 6(b) has
49 490 ameliorated in comparison to Figure 5(b), increasing correct predictions from 93 to 139. The 1-
491  minute resolution model is still not able to discern refrigerator faucet events (r) from tap faucet
52 492  events (f); however, this misclassification is not a critical issue since the refrigerator faucet is a
53 493  faucetiin nature. A noteworthy observation is that although the 1-minute resolution model under
494, Scenario 2 incorrectly classifies one shower and one actual faucet event as a washing machine

56 495, (Le., false positive, FP in Eq. 4), it does not label any other actual washing machine event as
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other events (i.e., false negative, FN in Eq. 5), which leads to a higher Recall in this specific
class (100%) than in the 1-second resolution model (86%) (refer to Figure S12) and thesS-second
resolution model (95%), with the tradeoff of lower Precision (88% versus 95% in the 1-minute
and 5-second resolutions, respectively). Additional confusion matrices at other temporal
resolutions are available in Figures S9-S14 of the Supporting Information.
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Figure 6. Confusion matrices for Scenario 2 (random forest model trained at the resampled temporal
resolutions): (a) 5-second resolution with 382 total events, and (b) 1-minute resolution with 187 total
events. Matrix rows show the actual classes,and eolumns show the predicted classes for the following end
uses: w (washing machine), s (shower), f (faucet), t (toilet), r (refrigerator), and d (dishwasher). Cell color
is propertional to the number of events in that cell.

In general, misclassifications do not cause significant degradation in predicting total water
consumption if they are infrequent and roughly symmetric across the diagonal (Srinivasan et al.
2011). For example, if toilet events are'misclassified as faucet events while the same (or nearly
the same) number of faucet events are misclassified as toilet events, these misclassifications can
cancel out in terms of the’accurate total number of events for those classes.

4. Broader implications

Overall, our study/ contributes to the literature showing that smart water meters provide water
utilities with mere,accutate and less labor-intensive information, enabling better knowledge on
changing water demands (Gurung et al. 2015; Stewart et al., 2018). High resolution temporal and
spatial water consumption data have undeniable social and technical benefits. Smart metering
contributes to more accurate water demand forecasting, demand management strategies, and
better informedtility operations and planning strategies (McDaniel and McLaughlin 2009;
Cominola et al. 2015; Salomons et al. 2020). Detailed water consumption patterns, which enable
researchers to investigate the relationships between human behaviors and the water cycle as part
of a broader socio-environmental scale, can be now obtained with advanced analytics, enabled
by fast paced computing power improvement and metering technology allowing data collection

18
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523  with unprecedented temporal and spatial granularity (Flint et al. 2017; Zipper et al. 2019). While
524  these advances support greater understanding of water consumption patterns and water-related
525  human behaviors, we also acknowledge that there are potential privacy concerns regarding

526  individuals and communities that need to be addressed and appreciated. Water consumption

9 527 information transformed from the meter acts as an information side channel (McDaniel and

10 528  McLaughlin 2009), exposing household habits and behaviors. End-uses like showers and toilets
11 529 have detectable water consumption signatures, making end use classification information prone
13 530 to potential privacy abuse. Consequently, well established privacy policies would benefit utilities
14 531  in appropriate water demand management. Additionally, researchers have.an ethical

15 532  responsibility to protect participant confidentiality.

oNOYTULT D WN =

17 533  Recent studies have addressed privacy issues in both the water and energy.sectors and presented
534  solutions to overcome privacy related constraints to maximize the potential of granular data

20 535  (Khurana et al. 2010; Molina-Markham et al. 2010; Gurstein 2011; Amin 2012; Cole and

21 536  Stewart, 2013; Harter et al. 2013; Sankar et al. 2013; Helyveston.2015; Park and Cominola 2020;
537  Salomons et al. 2020). For instance, smart meter data can be used without invading individual

24 538  privacy by aggregating data to coarser spatial or temporal scales as presented in our study.

25 539  Nevertheless, as shown in this study, aggregation limits the.ability of end-use classification, or
540  any water consumption related research, to explore fine-seale behavioral dynamics for better

28 541  demand modeling. Therefore, any research intersecting with human behavior should prioritize
29 542  confidentiality (e.g., via anonymized data collected oyer a large sample of households) while
543  providing sufficient information to enable future improvements in that field. While the

32 544  formulation of privacy and security protection strategies is not within the scope of this study, we
33 545 acknowledge that privacy and seeurity considerations must be addressed and proactively planned
546  for prior to collecting data throughoutithe research process so that modern metering technologies
36 547  could be leveraged to their full extent while securing customer privacy (Meyer 2018).

33 548  From the findings of this study, we can identify the following limitations and opportunities for
39 549  future research. First, future studies could focus on assessing how our results generalize when
40 550  data froma larger household sample or homes from different socio-demographic, geographical,
42 551  and climate contexts are available. Second, in this study we only considered six classes of indoor
43 552  water uses from a 4-person.household. Further research could include outdoor water use and test
44 553 end-use disaggregation capabilities on houses with different sizes. Third, as highlighted in the
46 554  methods, end use datasctsiare often imbalanced, i.e., the number of events in each end use class
47 555  might vary substantially. While here we considered class imbalance a posteriori, by assessing
48 556 the disaggreégation results with different formulations of the F-score, an alternative approach to
5o 557  be tested when larger datasets are available is to balance the classes a priori (i.e., before

51 558  performing the classification), e.g., by oversampling/undersampling, which would solve the

52 559  problem ofclass imbalance. Finally, while here we only considered RF classifiers and a specific
54 560  approachifor disaggregation, future studies could comparatively assess the performance of

55 561 "mdifferent models, possibly accounting for multi-class events.
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5. Conclusion

In this analysis, we presented a supervised approach to classify residential water consumption
end use events and tested it on data collected in a 4-person household through. consideration of
multiple temporal resolutions by measuring water use data with a 1-second resoliition smart
water metering system and labeling events based on a water diary for a 4-week study period. We
investigated two different scenarios of model calibration in evaluating the effect of temporal
resolution on end use classification performance. The first scenario consistéd of training a
random forest classifier on the original 1-second resolution data only and testing it on other
labeled temporal resolution datasets (i.e., 5 seconds, 10 seconds, 30 seconds;il'minute). In this
scenario, our model exhibited high overall performance on the 1-secondand 5-second resolution
water use events and classified certain classes of end uses with fairly good-accuracy for the 10-
second resolution. The performance decreased notably for the. 30-second and 1-minute
resolutions.

The second scenario consisted of training separate models for eaeh temporal resolution using k-
fold cross-validation. We saw that coarser temporal resolutions ameliorated in this second
scenario, with F1-score performance metrics as high as 0:89 for certain end use classes at the
finer resolutions. A weighted F1-score above 0.85 was obtained in this scenario for
disaggregation tasks performed at 1- and 5-second.resolutions.

Our results reveal detailed information that can help utilities and residents make informed water
conservation and efficiency decisions based on detailed knowledge on water demands. The
analysis of classification model performancewersus temporal resolution considering different F1-
scoore formulations provides insight for future'water management regarding the selection of an
efficient monitoring resolution baseden priorities and data management capabilities.

In addition, our approach performed end use disaggregation of data aggregated at different
temporal resolutions that are‘closer, to the resolutions of commercial smart water meters (i.e., 1
minute). Thus, while making aise of data collected at a finer resolution (e.g., 1 second) might not
be available to water utilities dueto data management and analysis tradeoffs, we demonstrate
possible model extensions to'broader and further contexts in the field of residential water
demand monitoring!

Ultimately, disaggregating’ and classifying water events obtained from residential smart water
meter data reveals detailed information about how water is consumed within households.
Understanding the everall water consumption profile and performance of different resolutions
presents opportunities for improved residential water conservation and efficiency and long-term
water resource sustainability (Attari 2014; Inskeep and Attari 2014; Horsburgh et al. 2017;
Goulas et al. 2022). Our study presents an experimental example of how using smart water meter
data ean provide end use information to pinpoint opportunities for improved efficiency within
residential buildings.
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