
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgis20

International Journal of Geographical Information
Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tgis20

GIS-KG: building a large-scale hierarchical
knowledge graph for geographic information
science

Jiaxin Du, Shaohua Wang, Xinyue Ye, Diana S. Sinton & Karen Kemp

To cite this article: Jiaxin Du, Shaohua Wang, Xinyue Ye, Diana S. Sinton & Karen Kemp (2021):
GIS-KG: building a large-scale hierarchical knowledge graph for geographic information science,
International Journal of Geographical Information Science, DOI: 10.1080/13658816.2021.2005795

To link to this article:  https://doi.org/10.1080/13658816.2021.2005795

View supplementary material 

Published online: 26 Nov 2021.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tgis20
https://www.tandfonline.com/loi/tgis20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/13658816.2021.2005795
https://doi.org/10.1080/13658816.2021.2005795
https://www.tandfonline.com/doi/suppl/10.1080/13658816.2021.2005795
https://www.tandfonline.com/doi/suppl/10.1080/13658816.2021.2005795
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/13658816.2021.2005795
https://www.tandfonline.com/doi/mlt/10.1080/13658816.2021.2005795
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2021.2005795&domain=pdf&date_stamp=2021-11-26
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2021.2005795&domain=pdf&date_stamp=2021-11-26


RESEARCH ARTICLE

GIS-KG: building a large-scale hierarchical knowledge graph 
for geographic information science
Jiaxin Dua, Shaohua Wangb, Xinyue Ye a, Diana S. Sinton c,d and Karen Kempe

aDepartment of Landscape Architecture and Urban Planning, Texas A&M University, College Station, X, USA; 
bYing Wu College of Computing, New Jersey Institute of Technology, Newark, NJ, USA; cUniversity 
Consortium for Geographic Information Science, USA; dCollege of Agriculture and Life Sciences, Cornell 
University, Ithaca, NY, USA; eDornsife College of Letters, Arts and Sciences, University of Southern California, 
Los Angles, CA, USA

ABSTRACT
An organized knowledge base can facilitate the exploration of 
existing knowledge and the detection of emerging topics in a 
domain. Knowledge about and around Geographic Information 
Science and its associated system technologies (GIS) is complex, 
extensive and emerging rapidly. Taking the challenge, we built a 
GIS knowledge graph (GIS-KG) by (1) merging existing GIS bodies of 
knowledge to create a hierarchical ontology and then (2) applying 
deep-learning methods to map GIS publications to the ontology. 
We conducted several experiments on information retrieval to 
evaluate the novelty and effectiveness of the GIS-KG. Results 
showed the robust support of GIS-KG for knowledge search of 
existing GIS topics and potential to explore emerging research 
themes.
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1. Introduction

Geographic Information Science and its associated system technologies (GIS) comprise an 
extensive field of knowledge, making it challenging to organize the content in a compre
hensive digital manner. Diverse research from this cross-domain discipline includes 
geovisualization, cartography, spatial cognition, and spatial analytical methods within 
the physical, environmental, and social sciences, and extends to spatial approaches within 
computer science. The inter- and multi-disciplinary nature of the research involves not 
only the fundamentals of spatial science but also its applications in other domains. 
Aspects of GIScience, its related mapping technologies, and its diverse applications are 
taught widely across higher education institutions, and the rapid development of the 
technologies and new application areas contribute to the challenges of keeping curricula 
current.

A ‘body of knowledge’ consists of concepts, terms, approaches, and activities asso
ciated with a discipline, most often defined by professional practitioners of the domain 
(Bourque and Fairley et al. 2014). Maintaining a discipline’s body of knowledge in a form 
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that facilitates open access and review allows its fundamental scientific questions and 
answers to be transparent and accessible. A clearly defined body of knowledge supports a 
research community as it explores the ways in which new knowledge evolves, and 
provides for practical applications in education and workforce development.

In the realm of GIS, the first formal compilation of a Body of Knowledge was an effort 
led by the University Consortium for Geographic Information Science (UCGIS) and pub
lished as a 160-page paperback book in 2006 by the Association of American Geographers 
(DiBiase et al. 2006). Defining and organizing the content began with multiple iterative 
knowledge-gathering and brainstorming sessions across a broad higher education com
munity, though it was ultimately completed by the small set of individuals listed as 
editors. At that time, no systematic plans existed for how the content would be main
tained, curated, or updated. In 2016, the content was shifted to a digital platform to 
facilitate access and revisions (gistbok.ucgis.org). Its continued development is now 
modeled after the online Stanford Encyclopedia of Philosophy (Zalta et al. 1995), in which 
an editorial board oversees the production of entries authored by individual scholars who 
are typically academic experts in the topic.

Given the highly specialized and rapidly evolving nature of GIS, students of the science 
and its technologies are challenged to acquire holistic exposure to the breadth of the 
discipline. Indeed, this domain cannot be comprehensively described or analyzed through 
traditional analog efforts, especially when knowledge collections exist only on platforms 
that lack exploratory visualization functions, with little capacity for regular updates and 
revisions. Building on the original UCGIS Body of Knowledge framework, other organiza
tions have developed specialized or expanded versions. These include the US Geospatial 
Intelligence Foundation’s (USGIF) Essential Body of Knowledge, compiled by and for the 
intelligence and military community (Wang et al. 2020), and the recently released 
European body of knowledge for earth observation and geographic information 
(EO4GEO). Each of these are described in more detail later.

Our research aim is to improve domain-specific information retrieval systems for the 
broad discipline of geographic information science and its technologies. Tools such as 
Google Scholar (Martín-Martín et al. 2018, Gusenbauer 2018), Semantic Scholar (Fricke 
2018) and Microsoft Academics (Harzing and Alakangas 2017) scan the entire population 
of published research during their searches. While these tools function as powerful 
document retrieval services, they do not provide focused insights nor facilitate under
standing about how new knowledge is incorporated into an existing framework. This 
motivated us to pursue a new approach to knowledge organization and dissemination 
that still leverages the breadth of existing collections. First, we merged several collections 
of GIS-focused knowledge into a single ontology to support more extensive knowledge 
building informed by artificial intelligence (AI) and knowledge graphs.

Knowledge graphs are both an emerging paradigm and a technology stack that allows 
re-visioning of how knowledge is represented by highlighting the connections between 
concepts and properties. These graphs combine AI technologies and semantics data to 
represent densely interconnected statements derived from heterogeneous sources across 
domains in a manner that is readable by humans and machines (Janowicz 2021). A 
knowledge-graph consists of two parts: entities and the relationships between those 
entities. Because knowledge graphs address connections among arbitrary entities and 
their properties, they support complex and seamless crosswalks that can be conceptually 
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defined and explicitly represent identity and equivalence relationships between indivi
duals and classes. These schemata are called ontologies, and their rich axiomatization 
supports semantic interoperability and machine reasoning. The ability of knowledge 
graphs to handle diverse and even contradictory ontologies is one of their core strengths. 
Moreover, having our GIS ontology derived from multiple complementary sources will 
produce a knowledge graph optimized for further input of emerging topics across the 
dynamic, evolving extent of GIScience, GIS, spatial science, and their diverse applications.

Our GIS-focused knowledge graph differs from other ontology-based bodies of knowl
edge in its use of state-of-the-art natural language processing technologies to map the 
semantic similarities among and between concepts and research activities. This mitigates 
one major concern with knowledge graphs applied to existing systems: how they accom
modate heterogeneous concepts within a common space. We also developed computa
tional techniques that support contextualization of domain concepts and research 
publications. This was particularly important because we aimed to capture GIS knowledge 
as completely as possible, by integrating knowledge from multiple primary sources. The 
result will accelerate the exploration of knowledge about GIScience, GIS, and its current 
and future applications, to benefit the higher education community and its critical 
connections with practitioners, employers, and clients. By having academic research 
more readily accessible and appropriately linked with relevant work competencies and 
skills, it makes it easier for practitioners to search for knowledge in their domain.

The contributions of this paper are:

(1) Expansion of GIS Knowledge. Through a knowledge fusion approach, we defined 
a GIS knowledge graph (GIS-KG) that reveals heterogeneous relationships between 
GIS concepts and diverse source materials (including existing collections of GIS 
knowledge and competencies, as well as a vast number of scientific publications). 
The fusion itself was based both on semantic similarity and domain expert knowl
edge. This type of semi-automatic fusion is used for identifying related entities 
when merging multiple bodies of knowledge. The structure and semantic mean
ings of the merged ontology supports the organization of the input materials, 
resulting in a broader capture of knowledge across the fields of GIS.

(2) Novel approaches. We designed a novel deep learning-based approach to support 
the knowledge fusion framework. Our approach took advantage of advanced deep 
learning models to measure and understand the semantic similarities between the 
ontology and published research papers. We further extended this approach to 
create the novel GIS knowledge search system.

(3) Extensive evaluation and benchmark data. We evaluated the robustness of the 
GIS-KG by using specific information retrieval methods for GIS knowledge. By using 
the GIS-KG for information searches, we returned results that were almost 20 times 
more accurate and relevant than other internet-based searches. Such advances will 
become new benchmarks for retrieval of GIS knowledge.

Organization of this paper. Section 2 presents related work, Section 3 is the overall 
structure of the project, Section 4 introduces how we created the new GIS ontology by 
merging existing knowledge graphs, Section 5 introduces how we collected knowledge 
materials and the preliminary study on the data, Section 6 presents the ontology and 
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knowledge material fusion methodology for the final GIS-KG, Section 7 uses an informa
tion retrieval application to evaluate the knowledge graph we built in this research, 
Section 8 discusses the limitations and future direction of this work, and Section 9 is the 
conclusion.

2. Related work

There have been several efforts to systematically organize and study GIS knowledge, 
including bibliographic studies and the production of knowledge graphs from scratch by 
experts.

2.1. Bibliometric analysis in GIS

Conducting a bibliometric analysis involves studying a vast collection of research papers 
about a scientific topic in order to develop an overview of it. Without the aid of AI, such 
efforts are limited to young scientific fields with a limited number of published research 
papers. In 1991, Professor Duane Marble began to build a GIS Master Bibliography, aiming 
to improve the accessibility of GIS literature to the public (Marble 2000). Esri later became 
the curator of the bibliography and incorporated it into an online GIS Bibliography 
(Marble 2001). In the early 1990 s, Al-Taha et al. (1994) produced a bibliography on 
spatiotemporal databases and a collection of basic statistics for the data.

More recently, Biljecki (2016) analyzed the publications in GIS related journals from 
2000 to 2014 based on output volume, citations, national output and efficiency. Siabato et 
al. (2014) studied publications relating to temporal GIS and built a topic-based visualiza
tion. Such research paper knowledge bases have been used in studying the intellectual 
domain of GIS (Skupin 2014) and its global impact (Zhan et al. 2014). GIS publications in 
applied domains have also been collected, including public health (Marble 2000), social 
justice (Cochrane et al. 2017), web mapping (Haklay et al. 2008), and human geography 
(Zhong et al. 2015). While these reviews are helpful, they are necessarily dated and limited 
in scope. Our collection aims for more comprehensive coverage of GIS, and in a manner 
that can be readily updated.

Systematically monitoring emerging topics as they appear in the GIS literature is also 
daunting to accomplish without the aid of AI. Research tends to focus on trends or new 
techniques in one area alone, such as spatial multicriteria analysis (Malczewski and 
Jankowski 2020), or susceptibility mapping (Ghorbanzadeh et al. 2020). Thus, it is a 
persistent challenge for GIS curricula in higher education to be comprehensive or current 
(Wikle and Sinton 2020). Only through AI-enhanced techniques can the already-large and 
expanding field of GIS and its applications be monitored. Even the Open Geospatial 
Consortium (OGC) has begun to use AI to inform its observations of technology trends 
(https://www.ogc.org/OGCtechExplorer).

2.2. GIS bodies of knowledge and ontological work

The 2006 UCGIS GIS&T Body of Knowledge (BoK) has served as the foundation or model 
for several other bodies of knowledge, including the Essential Body of Knowledge of the 
US Geospatial Intelligence Foundation (USGIF), compiled by and for the intelligence and 
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military community (Wang et al. 2020), and the recently released European body of 
knowledge for earth observation and geographic information (EO4GEO). Additional 
efforts at organizing GIS knowledge have focused on GIS workforce development. In 
the US, several groups have produced enumerations of competencies and tasks that GIS 
professionals (e.g. technicians, analysts, and managers) would be required to maintain or 
complete for their work. Two examples are the Department of Labor’s Geospatial 
Technology Competency Model (DiBiase et al. 2010) as well as the Geospatial 
Management Competency Model (Babinski 2012, Johnson 2019). In both cases, their 
content was developed by soliciting and documenting the practices and activities of 
current professionals in the field.

Less frequently has there been an explicit reliance on or production of a GIS ontology. 
The 2006 GIS&T BoK was transformed by Ahearn et al. (2013) to a semantic network 
relying on an ontology to enable semantic referencing and other applications, but this has 
now been absorbed into proprietary, commercial research activities (bigknowledge.net). 
Tomaszewski and Holden (2012) used the same original BoK content to explore ontolo
gical connections between GIS and IT for curricular pursuits. The EO4GEO project started 
with the UCGIS BoK and the Ahearn et al. (2013) ontology to create a BoK that focuses on 
applied skill sets (Vandenbroucke and Vancauwenberghe 2016). The result has since been 
further expanded to include additional emerging topics in GIS and connect with the field 
of Earth Observation (EO), hence its name as the EO4GEO BoK (Hofer et al. 2020).

Most of these earlier efforts relied extensively – if not exclusively – on domain experts 
to designate content. Such an approach can be valid and produce robust results, which is 
why our GIS-KG merged these existing expert-knowledge collections as its first step. We 
then went further by having the content merged to produce a Knowledge Graph that 
supports targeted GIS information searches.

2.3. Information retrieval systems

Behind the curtain of information retrieval tools is a necessary process called embedding 
that maps words or phrases with vectors of real numbers so that the text can be 
recognized by a computer. The similarity between queries and documents can then be 
calculated using a cosine distance or more sophisticated measurements that speed the 
retrieval process. Different types of embedding processes affect the quality of information 
systems implementation. The traditional method for information retrieval from text 
documents is called the bag-of-words approach (Manning et al. 2008), in which only 
exact keyword matches are considered correct. The embedding-of-words method takes 
word co-appearance into consideration (Bojanowski et al. 2017) and it allows similar 
words (e.g. synonyms) to qualify as correct matches. The embedding-of-sentences 
method produces more contextual information about the text (Devlin et al. 2018) and 
can even represent semantic meanings. Embedding-of-sentences is usually calculated by 
pre-trained language models (Devlin et al. 2018, Dai and Callan 2019). For example, the 
BERT model uses the attention mechanism (Vaswani et al. 2017) to aggregate semantic 
information in sentences to a numerical vector. With a few modifications, embedding-of- 
sentence models have achieved the state-of-the-art results in semantic matching tasks 
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(Adhikari et al. 2019) and perform even better when trained on domain-specific texts 
(Wang et al. 2019). This motivated us to modify the embedding models and adapt the 
general models to the GIS domain to improve search performances.

2.4. Research with knowledge graphs

Research with and about knowledge graphs is becoming more common. The process of 
merging separate bodies of knowledge, defined as entity resolution or graph alignment, 
has been well documented (Trisedya et al. 2019). Graph embedding techniques have been 
developed to deal with the sparsity of information in knowledge graphs, by resolving 
vagueness and uncertainty at the conceptual level (Mai et al. 2020bb), and inferring new 
entities in the Knowledge Graph embedding space based on existing ones (Mai et al. 
2020a). Those emphasized using knowledge graphs to retrieve spatial information, while 
our work focuses on the knowledge about geographic information science and its 
technologies more broadly.

By creating a robust and broad knowledge graph, effective and successful searches for 
additional information and recommendations for related resources can be supported. 
Knowledge search systems can be built directly on knowledge graphs to find related 
topics using 3D visualization (Li et al. 2019). Such systems benefit from massive pre- 
trained language models such as deep bidirectional transformers (Devlin et al. 2018) and 
auto-regressive language models (Brown et al. 2020) that take advantage of feature 
embedding. Besides text data, the language models can also improve semi-structured 
data search results (Herzig et al. 2020).

Knowledge graphs are heavily used in question and answering (QA) systems (Mai et al. 
2020a, Ye et al. 2021). The question answering process can be seen as an effort to 
minimize the entropy of user intention, so that the QA system can better anticipate 
what the user wanted and reduce uncertainty in the answers (Wang et al. 2021). 
Questionnaire is a general approach to alleviate the cold start problem for information 
retrieval and recommendation systems (Fan et al. 2019). Other processes including 
collecting extra user information and asking follow-up questions serve as query expansion 
(MacAvaney et al. 2018). The extra information in the embedding helps lower the entropy 
of user intention, resulting in more reliable search outcomes.

3. Overview of this research

Forging a common comprehensive knowledge graph for a field as young and dynamic as 
GIS is a complicated task but the result is powerfully useful. Our goal was to create a large- 
scale hierarchical knowledge graph in which the core of research, education and profes
sional activities within the GIS domain can be discovered and explored. This will serve as a 
timely and foundational scientific knowledge base for the field.

Building this knowledge graph required completion of the following steps shown in 
Figure 1:

● Step 1. Forming a unified ontology for GIS. The ontology built in this step is the 
backbone of the knowledge graph. We first identified existing bodies of knowledge 
and competency models and merged them into a single hierarchical structure. We 
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utilized text similarity and structural information for automatic entity resolution and 
alignment. A manual check was performed after the merge to refine the ontology. 
Details of this step can be found in Section 4

● Step 2. Enriching the GIS knowledge. We then collected a vast number of GIS-related 
research papers and related information from open sources (Tang et al. 2008, Sinha 
et al. 2015). The ontology we had developed in the first step provided sufficient 
information for us to separate out and organize the GIS-focused research publica
tions. Besides a paper’s title and abstract, we also captured citation and venue 
features as additional information. We used parallel computing technologies to 
process this large amount of text-based, unstructured data, and ran basic analyses 
on the resulting data set. The result was a novel deep-learning-based approach that 
matched papers to the ontology and formed the final GIS-KG. Details of this step can 
be found in Sections 5 and 6.

● Step 3. Evaluation and application. To evaluate the utility of the GIS-KG, we built 
several applications to illustrate its benefits. We conducted a series of experiments 
on information retrieval tasks in which publications were returned based on user 
queries. The GIS-KG enhanced both traditional and advanced search methods. 
Finally, a web-based system was developed for users to further explore the GIS-KG, 
which is presented in Section 7.

Figure 1. Overall structure of this paper. Step 1 is to merge different bodies of knowledge and build a 
unified ontology for GIS. Step 2 is to fuse the GIS knowledge materials with the ontology and form a 
comprehensive GIS-KG. Then, we can build applications and evaluate the GIS-KG.
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4. Building a unified ontology for GIS

As mentioned earlier, several bodies of knowledge and other comprehensive collections 
of GIS-specific competencies exist in the field of geographic information science and 
technology, but each was created for different purposes by different organizations, and 
therefore has different elements within its content. Fortunately, the one type of informa
tional knowledge that exists across these collections are learning objectives or stated 
competencies, so linkages could be ontologically constructed from these. While learning 
objectives and competencies are not always identical in format or intent, both are text 
statements and typically start with a verb whose activity can be quantitatively or qualita
tively measured for assessment purposes. Each describes what a student or practitioner 
should be able to know or do. For example, one of the learning objectives for the UCGIS 
GIS&T BoK topic of ‘Overlay’ is ‘Demonstrate why the geo registration of datasets is critical 
to the success of any map overlay operation’.

4.1. Sources for the GIS ontology

We used the following bodies of knowledge and competency models to build our 
hierarchical ontology (see Table 1):

● UCGIS GIS&T BoK (DiBiase et al. 2006) The aims of the 2006 BoK were to document 
the domain of Geographic Information Science and its associated technologies, but 
its original 2006 content consisted only of topic titles and learning objectives, 
grouped and hierarchically arranged within knowledge areas. The current GIS&T 
BoK continues to be developed and expanded so that each Topic consists of a 
much lengthier and detailed descriptive narrative in addition to learning objectives, 
but only about 40% of the Topics had been completed in the March 2020 version 
that we extracted to utilize in this study. Thus, our input included Topics that had 
been expanded as well as Topics from 2006 having only learning objectives. The 
context we extracted included 10 Knowledge Areas (first level), 96 Units (second 
level), 401 topics (third level) and 1467 learning objectives (fourth level). This is 
shown in Table 1.

Table 1. Key information about the bodies of knowledge that we used to create the new ontology.
Source Caretaker Content Version

GIS&T body of knowledge 
(BoK)

University Consortium for 
GIScience

Knowledge Areas, Units, Topics, 
Learning Objectives, Narratives

online accessed in 
March 2020

Essential Body of 
Knowledge (EBK)

US Geospatial Intelligence 
Foundation

Competencies, Topics, Subtopics, 
Learning Objectives

March 2020

Geospatial Technology 
Competency Model 
(GTCM)

GeoTech Center Competencies, Occupations, Job 
descriptions (including Learning 
Objectives)

March 2018

Geospatial Management 
Competency Model 
(GMCM)

Urban and Regional 
Information Systems 
Association

Critical work functions, Competency 
areas, Learning Objectives

June 2012

Developing A Curriculum 
(DACUM)

GeoTech Center Learning Objectives October 2019

8 J. DU ET AL.



● The Essential Body of Knowledge (EBK) came from the USGIF (Johnson 2019). Its 
content is limited only to topic titles and learning objectives, but it differentiates its 
learning objectives to hierarchical proficiency levels. It has five competencies (first 
level), 80 topics (second level), 946 subtopics (third level), 1285 learning objectives 
(fourth level). Subtopics in EBK are also classified as four different proficiency levels 
(Prerequisites, Foundational, Application, and Mastery).

● The Geospatial Technology Competency Model (GTCM) (DiBiase et al. 2010). The 
GTCM’s general academic and workplace competencies (e.g the ability to think 
critically or to plan and organize) are outside the scope of our GIS-focused research, 
but its ‘Industry-Wide Technical Competencies’ and ‘Industry-Sector Technical 
Competencies’ are learning objectives specifically related to GIS. It has five compe
tencies at the first level, and then competencies are associated with single or multi
ple occupations (second level). The detailed page for each occupation contains the 
learning objective (third level) of that occupation.

● The Geospatial Management Competency Model (GMCM) (Babinski 2012) is a deri
vative of the Geospatial Technology Competency Model. It exists in a matrix form 
including 74 rows corresponding to the critical work functions that most geospatial 
managers need to be able to perform and 18 columns that correspond to compe
tency areas. This matrix indicates the associations between competencies and work 
functions.

● The Developing A Curriculum (DACUM) Job Analysis (Johnson 2010). During this 
process organized by the GeoTech Center, electronic surveys and in-person panel 
sessions were conducted to query a large number of GIS professionals about their 
daily work activities and practices. The results became the learning objectives that 
form the basis of a curriculum for future GIS professionals. Recently, the results from 
individual DACUM panels spanning the years 2008–2018 were collated and then 
mathematically ranked using regression analysis to arrive at a final DACUM.

While not explicitly labelled as such, these competency collections from the GTCM, 
GMCM and DACUM are similar to a ‘body of knowledge’ for professionals working in the 
GIS domain. Learning objectives and competencies or tasks are not identical in form or 
intent, but their generally similar purpose was adequate for inclusion in this ontology, 
particularly because we were aiming to cover both academic and professional GIS knowl
edge across the broad domain.

4.2. Reconciling the sources

Considering these sources as knowledge collections that could be integrated or merged 
was fundamental for our ontological work. Building a worthwhile ontology from scratch is 
laborious work that can be accomplished successfully with contributions from domain 
experts. In this situation, the knowledge already existed within these collections, pro
duced via the earlier collaborative efforts by GIS experts. The sources are well defined and 
known to the GIS community. We were able to carefully compare these collections and 
identify the components that the sources had in common, such as learning objectives and 
competencies (Table 1). Their existence across our sources allowed them to become 
appropriate anchor points for our ontology engineering and facilitated our ranking of 
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the relatedness of the collections as we conducted the merging. Finally, a manual check 
was performed to ensure our ontology is complete and consistent. This workflow is 
presented in Figure 3. To organize our ontology systematically, we used a 4-level hier
archical tree structure based on the UCGIS GIS&T BoK. The top (root) level is the ten 
current knowledge areas: Foundational Concepts, Knowledge Economy, Computing 
Platforms, Programming and Development, Data Capture, Data Management, Analytics 
and Modeling, Cartography and Visualization, and Domain Applications. Every knowledge 
area has a short description. The second level is unit and the third level is topic. We denote 
the learning objective as the fourth level, because learning objectives exist in every topic 
and indicate the topic’s focus. See Figure 2 for examples.

Figure 2. Our ontology examples. This graph shows an example path from knowledge area (root) to 
learning objectives (leaves).

Figure 3. Workflow of ontology merging.
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4.3. Relatedness ranking

To merge these collections, we found their similar entities, and inferred related entities 
that need to be added or deleted in our new ontology.

We first defined simple representing text (or SRT) and extended representing text (or 
ERT). SRT is the text used to describe the ontology entity itself. ERT is an extension of SRT 
that contains the graph structural information for adding the related entity of SRT.

Using UCGIS GIS&T BoK as an example, the simple representation for a knowledge area 
is its name and short description. For the other levels, the text identifying the unit, topic 
and learning objectives are their SRTs. The ERT is composed of a set of synonyms of the 
SRT based on Wordnet (Miller 1998) plus the SRTs of adjacent levels. For a fourth-level 
node (learning objective), the ERT is the entirety of the SRT in the path from the first level 
(knowledge area) down to the learning objective. A single topic may include several 
learning objectives, so we define the ERT for a topic as the SRT of all its learning objectives.

For instance, a third-level SRT is ‘Fuzzy Aggregation Operators’ plus the synonyms 
‘“fuzzed”, “fuzzy”, “bleary”, “blurred”, “blurry”, “foggy”, “hazy”, “muzzy”, “aggregation”, “accu
mulation”, “assemblage”, “collection”, “collecting”, “assembling”, “aggregation”, “manipula
tor”, “operator”’. The corresponding ERT would be the text in second and fourth level 
‘Problems of Scale and Zoning’ and ‘Compare and contrast Boolean and fuzzy logical 
operations; Compare and contrast several operators for fuzzy aggregation, including those 
for intersect and union; Exemplify one use of fuzzy aggregation operators; Describe how an 
approach to map overlay analysis might be different if region boundaries were fuzzy rather 
than crisp; Describe fuzzy aggregation operators’

We use hl
s and hl

e to denote the representation of a learning objective (l)’s simple 
representation text (SRT) and extended representation text (ERT), ht

s and ht
e for a topic(t)’s 

SRT and ERT, hu
s for unit’s SRT, hk

s for knowledge area(k)’s SRT. Equation 1 and 2 show the 
calculation of a topic ERT and learning objective ERT calculation. 

hl
e ¼ hl

s þ ht
s þ hu

s þ hk
s (1) 

ht
e ¼

X

i2T

hl
sðiÞ þ ht

s (2) 

Next, bag-of-words embedding was extracted from the SRT and ERT. Bag-of-words 
embedding builds an n-dimensional dictionary (n is the number of words) and represents 
text based on the word appearance in the dictionary. Stemming is used to remove any 
inflectional affixes in words (Manning et al. 2008). For example, ‘discover’ is the stemmed 
form of ‘discovering’, ‘discovered’ and ‘discovery’. To only capture the key information, we 
stemmed all the text. We also removed the stop words such as ‘a’, ‘the’, and ‘is’ (see (Bird et 
al. 2009) for the full list of stop words). The bag-of-words embedding h used in Equations 
1 and 2 are normalized by term frequency–inverse document frequency shown in 
Equation 3: 

tf � idfðt; dÞ ¼ tfðt; dÞ � idfðtÞ (3) 

in which term frequency (tf ) is the number of times a term (t) occurs in a given 
document (d). The inverse document frequency (idf) is computed as 
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idfðtÞ ¼ log
1 þ n

1 þ dfðtÞ
þ 1 (4) 

where n is the total number of SRT, and dfðiÞ is the number of SRT that contain term t.
The relatedness is measured by the cosine similarity between different topics’ bag-of- 

words embedding of ERT ht
e. Similarly, the learning objectives relatedness is defined as the 

cosine similarity between different bag-of-words embedding of ERT. Assuming the bag- 
of-words embedding representation of ERT is an n-dimensional vector, the cosine simi
larity between 2 ERT is defined as: 

cosðheðaÞ; heðbÞÞ ¼
ab

k a kk b k
¼

Pn
i¼1 aibi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ðaiÞ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ðbiÞ
2

q (5) 

The relatedness score can be used to measure the similarities across our source 
collections and can be used to recommend related topics or learning objectives to 
readers. It also shows the relationship between these different GIS collections of knowl
edge. After we examined all possible ERT pairs, we found that some topics and learning 
objectives demonstrated low relatedness, indicating they were independent or perhaps 
new knowledge that could be added to the ontology. The relatedness score is also useful 
in identifying when topics have similarities that might otherwise go unobserved due to 
their respective locations in the hierarchy.

Not surprisingly, the relatedness measurement revealed that these existing GIS bodies 
of knowledge and other collections overlap substantially but also have differences. We 
found 45 topics elsewhere that were not present in the UCGIS GIS&T BoK in its Q1 2020 
version. Though the relatedness ranking automatically identifies the overlap among 
different sources and indicates the independent components, it does not have the ability 
to generate a new ontology and ensure that there is logical coherence for added topics, 
so a ‘human-in-the-loop’ is necessary here. We and other GIS experts at our universities 
manually considered each of these topics to decide whether they and their learning 
objectives should be added to the ontology. We followed the subsumption principles: 
term x subsumes y if y occurs only in a subset of the documents that x occurs in (Nyerges 
et al. 2014). The low relatedness entities were added to the bottom level of the ontology 
and the parent nodes are identified by the relatedness. In the end, the semantic similarity 
process helped us identify and add 12 topics and 116 learning objectives to the derived 
ontology. Our merged hierarchical ontology has 10 knowledge areas, 96 units, 412 topics 
and 1583 learning objectives.

5. Collecting additional GIS knowledge

Knowledge sources come in a variety of formats (books, research papers, blog posts, 
videos, etc.). Among them, scientific publications are traditionally considered to be a 
primary and authoritative source of knowledge. In addition to the text itself, a paper’s 
authors, citations, and other details represents additional relevant data for researching 
collaborations, networks, and knowledge productivity. To further refine and evaluate our 
new ontology, we crawled a large collection of research papers from two very large open 
sources. In this section, we describe how we collected and processed those papers.
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We relied on Open Academic Graph and Microsoft Academic Graph as the sources for 
the research publications (Sinha et al. 2015, Wang et al. 2019). As of 27 March 2020, their 
combined collection included a total of 234,049,193 publications, with more than 200 
million individual authors and more than 50 thousand publication venues (every con
ference or journal volume counts as a venue) in the database. Words within our new 
ontology (see Section 4) became keywords to filter out only the GIS-related papers, 
resulting in 955,186 papers. Next, to ensure the quality of our collection, we filtered out 
any paper that had not already been cited at least once. English language publications 
were the major content in the original collections, though they do include other language 
publications if an English title is provided. Since we wanted to analyze more than a title 
alone, only English language papers were included in our analysis. In the end, we had 
identified 560,608 papers to be used for analysis, with 1,195,576 authors and affiliations 
(combined) and over 24,536 venues.

The data schema of the GIS knowledge collection is shown in Table 2. There are four 
major categories of information: the paper’s meta information, plus associated venue, 
author, and author affiliation. They are connected through common fields.

6. Fusing the GIS knowledge

The large collection of GIS research papers (described in Section 5) was connected to our 
merged hierarchical ontology (described in Section 4) using deep learning-based meth
ods to create the final GIS knowledge graph (GIS-KG). These may seem like disparate 
items, but they are deeply connected conceptually. An ontology defines what a domain 
includes and serves to distinguish the GIS research paper collection from a general 
academic corpus. While the papers are the source of concepts, they also naturally define 
the concepts’ relations. Papers may explicitly state the relations between concepts, or 
they may simply indicate such relations through citations in their respective literature 
reviews. Once connected, presenting such linkages to users of the knowledge graph in a 
clear and unconfusing way is key. The match process was a multi-label classification task, 
which means each paper could be matched to one or more different entities in the 
ontology. Uncovering such linkages and making them discoverable and visible to the 
user community is a significant contribution to advancing the GIS knowledge domain.

6.1. Feature selection

Classifying papers requires that we know what features are available to be used for the 
task. Here, each research paper is used not for its text itself, but also its associated citation, 
references, and venues. Similar to how we represented ontology features, we constructed 

Table 2. Paper data set schema (Wang et al. 2019). Underlined fields are common field used to link 
different categories.

Category Key information

Paper PaperID, Title, Keywords, Abstract, Citations, References, VenueID, AuthorID, Mentioned locations
Venue VenueID, Name, Publisher, Webpage, CreatedDate
Author AuthorId, Name, LastKnownAffiliationId, CreatedDate
Affiliations AffiliationId, Name, OfficialPage, CreatedDate
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simple representation text (SRT) and extended representation text (ERT) for the research 
papers’ graph. For each research paper, the SRT is the text of its title, keywords, and 
abstract. A publishing venue’s full name (i.e. the journal name or the conference name) is 
its SRT. We sampled a subset of publications from a given venue and concatenated their 
SRT. This was used as this venue’s ERT. The ERT for publications included the SRT from its 
citations and references and the SRT of its linked publishing venue.

For example, the SRT of a subset of papers from the International Journal of Geographic 
Information Science (IJGIS) are used to construct the ERT for this venue. A publication’s ERT 
includes the SRT from its citations and references and the ERT of its linked publishing 
venue. Then, we have 

hp
e ¼ hp

s þ
X

i2Cit

wihp
s ðiÞ þ

X

j2Ref

wjhp
s ðjÞ þ wvhv

e (6) 

hv
e ¼

X

i2V

hp
s ðiÞ þ hv

s (7) 

The hp
s and hp

e are the symbol of a publication p’s SRT and ERT. hv
s and hv

e are a venue v’s 
SRT and ERT. 

P
i2Cit hp

s ðiÞ were the papers that p cited. 
P

j2Ref hp
s ðjÞ were the papers where 

p was referenced. 
P

i2V hp
s ðiÞ were all the publications in that venue. Weight w is used to 

discount different neighbors’ impact as appropriate. By inferring the relations between a 
paper and the ontology, all other information, like authors and venues, can be indirectly 
aggregated through the publications. Here, we use the w ¼ 1

n , (n is the number of 
citations or references, as a normalization term), so the number of citations and references 
of each paper will not have an impact on the representation.

6.2. Deep learning-based matching

To fuse the hierarchical ontology and knowledge materials together, we designed a deep 
learning-based matching rule. The matching process compared the similarity of a paper 
and the ontology. However, as both of these are unstructured text, it was difficult to 
directly compute the similarity. Thus, we used feature embedding to convert the unstruc
tured data to vectors that can be calculated. We utilized a Siamese network, an embed
ding structure that uses a deep neural network to embed two kinds of objects in a 
consistent manner, to embed the ontology and publications and compare the similarity 
across embedding approaches (Figure 4) .

In our Siamese networks, the three types of embedding vectors were extracted bag-of- 
words, embedding-of-words, and embedding-of-sentences.

● bag-of-words embedding. The bag-of-words embedding used the same dictionary 
and techniques as the ontology. We used the same dictionary built as described in 
Section 4 and normalized by term frequency–inverse document frequency. This bag- 
of-words embedding matches exact keywords. It also evaluates each keyword’s 
importance by determining how many times the word appeared in each document 
and in how many documents the keyword appeared.
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● embedding-of-words. We trained a word embedding by using the skip-gram 
(Bojanowski et al. 2017) on the GIS research articles, with titles and abstracts. The 
resulting embedding-of-words model can generate 100-dimensional vectors for 
each word in the text. We calculated the mean value for all word vectors to represent 
the ontology and publications. The embedding-of-words took synonyms into 
account, so keywords with similar meanings would be matched.

● embedding-of-sentences. We fine-tuned the BERT model (Devlin et al. 2018) with 
our GIS research papers. This means we took the deep learning model structure and 
the original parameters in BERT, and continued the model training using our GIS 
research papers. The parameters were updated after our training, so the model was 
adapted to the GIS domain. The embedding-of-sentences model considered more 
text as contextual information in GIS while preserving its knowledge in general 
languages.

The three types of embedding were normalized and concatenated to achieve the final 
embedding for the ontology and publications. By combining the multiple embedding 
approaches, we produced a comprehensive representation of the ontology and knowl
edge materials. These features were concatenated for the vector representation h used in 
Equations 6 and 7. In the last step, we matched the publications to the ontology. The 
confidence score of an ontology-publication pair is the cosine similarity between these 
vector representations, a standard approach introduced by Wang et al. (2019).

In this way, we derived the final GIS-KG (the combination of the ontology and the 
research paper collection), which we could then evaluate for its effectiveness at informa
tion retrieval.

Figure 4. Deep learning-based matching structure. Ontology and publications use the same embed
ding method. ERT stands for the extended representation text.
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7. Knowledge retrieval as an application of our GIS-KG

The GIS-KG organizes GIS knowledge in a holistic knowledge graph, which has many 
benefits for the GIS community. For example, we tested its use in ad hoc searches for GIS 
publications where, given a query, a search engine would return several candidates that 
satisfy the query. Our experiment aimed to demonstrate that the GIS-KG could improve 
the search performance for both neural and non-neural information retrieval models. In 
this section, we compare the results of searching for GIS papers via the ontologically 
informed GIS-KG with searches for papers directly from the unstructured collection of GIS 
articles (as described in Section 5).

7.1. Analysis procedure

Environment settings. All experiments were run on a server that has 16 cores, 192GB RAM 
and five GPUs.

We ran the experiments in two different sets. The first set used existing retrieval models 
on the GIS paper collection. The second set is marked with ‘+G’, which incorporated our 
GIS-KG that has the hierarchical ontology structure.

In the ‘+G’ methods, we first used BERT to embed the query and simple representation 
of node for each node in the knowledge graph. Then, we computed the cosine similarity 
between the embedding of query and every node and get the top or first node for the 
query. Finally, we obtained the publications associated with the node and ran each 
methods on this subset of the publications.

● Both of the experiment sets used lexical matching methods and latent semantic 
models:

● BM25 (Robertson and Zaragoza 2009). BM25 is a classic information retrieval algo
rithm based on bag-of-words representation. It is the default algorithm in Apache 
Lucene (also in Solr and Elastic search). We calculated the BM25 using the imple
mentation based on Apache Lucene and we chose all the default parameters.

● BM25 + G. In this experiment, we first obtained the subset of publications based on 
our GIS academic graph. Then we used the same BM25 algorithm to retrieve 
publications.

● WMD(Kusner et al. 2015). Word Mover Distance (WMD) defines the similarity as the 
Wasserstein distance between word embeddings. We used the gensim implementa
tion (Pele and Werman 2008, 2009) to calculate the similarity between queries and 
documents.

● WMD+G. We used the same WMD model with the subset of publications based on 
our GIS Academic Graph.

● NWT(Guo et al. 2016). Non-linear Word Transportation (NWT) is a deep learning- 
based model for information retrieval. It uses the maximum likelihood to combine 
both the exact match method and the inexact match method. This model can 
capture the semantic meanings because of its deep learning-based nature.

● NWT+G. We used the same NWT model as described above, with the difference that 
we retrieved the publications in the subset based on our GIS-KG.
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● BERT (Devlin et al. 2018). The general pre-trained BERT model was used to embed the 
search query. The document was embedded with the same BERT model. Then, we 
calculated the cosine similarity between the embedding of search query and the 
embedding of documents.

● BERT+G. Our fine-tuned BERT model is used to embed text in this method. First, we 
compared the embedding similarity between the search query and the ontology ERT 
mentioned in Section 6, so we can get the ontology nodes that are related to the 
search query. Then, we retrieve the subset of publications from our GIS-KG based on 
the ontology. Finally, we embed the papers in the subset and compare them with 
the embedding of search query.

● One key step is to compare the similarity of queries and documents. We form this 
process as matrix multiplication:

simScoreðq; d1Þ simScoreðq; d2Þ . . . simScoreðq; dnÞ½ � ¼

EmbeddingðqÞ � Embeddingðd1Þ Embeddingðd2Þ . . . EmbeddingðdnÞ½ �m�n
(8) 

in which simScore is a scalar for the match score of a query (q) and a GIS article (d), the 
EmbeddingðqÞ and EmbeddingðdÞ are m dimensional embedding vectors, n is the number 
of GIS articles. We pre-compute the embedding of our ontology and publication graph 
EmbeddingðDÞ, so only the user query EmbeddingðqÞ needs to be computed in real time. 
Then, the retrieved results can be sorted based on simScore with little cost. This enables 
the low latency of the online service to give immediate responses to a search.

7.2. Evaluation procedures and metrics

For each model, we conducted 50 queries and presented the retrieved results to human 
testers. The queries were generated from interviews with GIS experts by asking them 
‘what query do you use when searching for scientific publications?’. The results were 
evaluated by graduate students and undergraduate students majoring in GIS at our 
universities, as well as GIS professionals through various social media platforms. We 
stopped the surveys once we had an adequate number of labelled results defined later 
in this section. The experts were asked to give scores between 0 and 4 to the retrieved 
documents using a simple ranking system.

As an example, a search for ‘Spatial Cloud Computing’ in a search engine would 
generate a list of papers in the results that could be ranked as indicated below:

● The paper “Spatial cloud computing: how can the geospatial sciences use and help 
shape cloud computing?”(Yang et al. 2011) and other papers that directly introduce 
the concept (including Spatial Grid/Parallel computing) would be highly relevant. 
These would be assigned a score of 4.

● A paper about the parallel algorithm for spatial data, or a web GIS system design 
paper, would be less directly relevant. These would be assigned a score of 3.

● A paper about an application of cloud computing with spatial data in one sentence is 
treated as borderline. This would be assigned a score of 2.

● A paper about a general cloud computing platform is not relevant. This would be 
assigned a score of 1.
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● A paper talking about a cloud in the sky is considered not related. This would be 
assigned a score of 0.

● If the reviewer was uncertain, the result was scored a − 1 to flag it.

Evaluators used a general search engines (Microsoft Academic) to search for and 
review the content so its relevance can be clearly measured.

We used the majority vote to evaluate the results, and at least two people evaluated 
each result. If a − 1 value appeared, the result was assigned to another judge until the 
evaluation value fell between 0 and 4. If the absolute difference between evaluation 
values was less than 2, we took the average of the scores. If that difference was greater 
than 2, we asked a third person to evaluate, and took the third person’s result as final.

It is not intuitive to compare all the evaluation scores directly, so four commonly used 
information retrieval algorithm evaluation metrics (Precision, Normalized Discounted 
Cumulative Gain (NDCG), Mean Average Precision (MAP), and Mean Reciprocal Rank 
(MRR)) were utilized (Järvelin and Kekäläinen 2002, Robertson et al. 2010). The 
Precision@10 shows how many relevant results are in the top 10. The MAP is a cumulative 
way to calculate the precision, which represents the average precision in top one, top two, 
top three of the results, etc. The MRR considers the rank order of the relevant results. For 
example, if the first result is relevant, then the MRR score is 1. If the first result is irrelevant 
but the second result is relevant, then the MRR score is 1/2. The NDCG shows the order 
prediction ability for different models. For different models, with a higher score indicating 
that a model is better at ranking the results. A better NDCG score assumes that the higher 
relevance results should always rank higher than those lower relevance results. We 
calculated these metrics on our human evaluation results (Table 3).

7.3. Experiment results

From the experimental results shown in Table 3, we can see that:

● GIS-KG is useful. In this information retrieval task, all baseline models (those without 
“+G”) improved from 4.2% to 73.6% with the addition of graph enhanced methods. 
Precision scores represent how many relevant or related articles are present in the 
results, and the BM25 returned only about 50% of the results relevant to the query. 
But when we used the GIS-KG, more than 80% of the results were relevant. This BM25 
+G excelled over one deep learning-based baseline method (the WMD). The NDCG 

Table 3. Evaluation results of the information retrieval task. The comparison is between the corre
sponding +G and without the G methods. The greater the number, the better the results.

Experiment Precision@10 NDCG MAP MRR

BM25 0.555 0.609 0.330 0.559
BM25 + G 0.827( " 49:0%) 0.809( " 32:8%) 0.573( " 73:6%) 0.818( " 46:3%)
WMD 0.706 0.700 0.467 0.700
WMD+G 0.790( " 11:9%) 0.831( " 18:7%) 0.550( " 17:8%) 0.810( " 15:7%)
NWT 0.882 0.849 0.610 0.932
NWT+G 0.891( " 1:0%) 0.894( " 5:9%) 0.646( " 6:0%) 1( " 7:3%)
BERT 0.908 0.858 0.635 0.935
BERT+G 0.954( " 5:0%) 0.878( " 2:3%) 0.673( " 6:0%) 0.975( " 4:2%)
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shows the order prediction ability for different models. Higher scores mean a model 
can better rank the results in the right order. Results of MAP and MRR also present 
consistent findings of other indicators.

● GIS-KG boosts traditional methods more than advanced methods. The GIS-KG 
helps substantially when compared to the most traditional methods (BM25). It also 
improved the performance for more recent baselines, though with a narrower 
margin. The BM25 model can only retrieve results that have the same keywords as 
the query. This exact match method would miss many semantically similar results 
and would also return matches having the same keywords with different meanings. 
The GIS-KG linked papers with related concepts together, enabling the model to 
discover more related papers. The GIS-KG also sets constraints so that only the 
papers with associated concepts can be matched by the algorithm. Compared 
with a general language model that can understand semantic meanings, the GIS- 
KG contains domain expert’s knowledge. This domain knowledge is the key to better 
search results even when compared to the state-of-the-art language models. 
Although the recent information retrieval models already perform relatively well, 
small improvements are still highly valuable and worthwhile.

● BERT+G is the best method in our setting. The scores in Table 3 shows NWT+G and 
BERT+G generally outperformed other methods. The NWT+G had higher NDCG and 
MAP scores than the BERT+G method. This means the NWT+G can better sort the 
relevance of the retrieved papers. The Precision and MAP scores are higher in the 
BERT+G method, which means the BERT+G method found more related documents 
than the NWT+G method. When conducting information retrieval manually, we 
would prioritize the overall number of related results, so we consider the BERT+G 
model to be optimal.

8. Discussion

The quantitative and qualitative studies have demonstrated the effectiveness of our GIS- 
KG for search queries on a GIS-focused collection. Our work can be further improved as 
follows:

● More complete source materials. The UCGIS GIS&T Body of Knowledge is under
going continuous expansion. Even since the Q1 2020 version that we used for our 
ontology, several dozen topics and their respective learning objectives have been 
added to the collection. The European’s EO4GEO has also become available as open 
source since our research was completed. Integration of these expanded sources will 
continue to refine our ontology.

● More abundant knowledge materials. This work focused on textual data, but the 
GIS-KG can be extended to other formats of knowledge materials. For example, 
images in publications usually carry rich information. Numerous texts and video- 
based tutorials exist on the Internet that are designed to teach students how to 
operate GIS software and practice fieldwork. Even the code of GIS software is a type 
of knowledge material. Using a concept similar to GIS-KG, we can identify and then 
organize access to images, videos, and software that are used in the practice of 
teaching and learning GIS.
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● Better search quality. Our experimental results already indicate that we can achieve 
better information retrieval results with more advanced information retrieval algo
rithms. It is important to note that we cannot directly compare the process and 
results from our whole system with Google Scholar because 1) the dataset we used is 
different from what Google crawls from the web; 2) the search mechanism deployed 
by Google is unknown to us, and it might change anytime as Google is constantly 
upgrading their algorithms; and 3) Google collects personal information to advance 
and refine their search results, thus undermining searches being evaluated system
atically and scientifically. That means that searches are likely to return different 
results by different people at different times on different computers. There are too 
many variables we cannot control. Instead, in this paper, we conducted a controlled 
experiment. We kept the dataset and algorithm constant and only varied whether 
GIS-KG was used or not. As a result, our results are more certain and convincing 
because the dataset and algorithm are independent. More advanced retrieval mod
els and algorithms will further improve search results. When additional knowledge 
materials exist within the collection, users will be able to find their most desired or 
appropriate type of knowledge content: research papers, video tutorials, etc. This 
could be achieved with the design of advanced algorithms and deep understanding 
of the domain practitioner’s needs.

● Stronger graph knowledge discovery. The rich graph information was utilized 
when we built the graph, but it was not used when we conducted the information 
retrieval experiments. The relationship among the entities is another type of valuable 
knowledge that remains to be explored. It contains the logical flow and develop
ment information of a knowledge domain. Constructing such links across knowledge 
sources is evidence for having mastered the knowledge itself. Graph reasoning and 
link prediction algorithms may be applied to this GIS-KG to study the structure of the 
GIS-KG and derive new knowledge from it. We leave it for further study.

9. Conclusion

The premise of this paper is that a systematically organized knowledge base is critical for 
domain experts to conduct scientific research, academic education, technical training, 
and professional practice. As demonstrated in this paper, we significantly advanced the 
vision for a comprehensive GIS&T Body of Knowledge by merging multiple collections 
into a single ontology and enhanced the tool further by linking a collection of scientific 
publications to that ontology. We built a large-scale hierarchical geographic information 
science and technology knowledge graph, GIS-KG, in which over 500 thousand publica
tions are organized within an integrated GIS topic structure based on deep learning 
methods. At the center of our contribution lies an AI-assisted ontology re-design for the 
UCGIS GIS&T BoK, one that brings together various knowledge sources in a comprehen
sive manner, using existing experts’ wisdom to organize knowledge efficiently and 
effectively. In the knowledge graph building process, we successfully migrated natural 
language processing technologies and adapted those to the GIS domain, informed by 
semantic relatedness in the GIS field.
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We demonstrated the utility of this GIS-KG by conducting GIS information retrieval 
tasks. Using our GIS-KG, we improved retrieval quality in both traditional and deep 
learning methods. We provide open access to all the data and tools used in this work to 
help the broader domain community understand the structure and content of the GIS-KG 
itself and, more importantly, to help explore the knowledge within the abundant and 
rapidly growing context of scientific publications.

Going forward, this comprehensive knowledge graph will boost knowledge discovery 
in the GIS field. We seek cooperation and input from other GIS professional groups to 
advance the GIS-KG and continue the development of its framework. We encourage the 
GIS community to further explore our GIS-KG and build more applications on it. We 
believe this new knowledge graph will become a valuable resource for the community.
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