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To cross or not to cross: Collective swimming of Escherichia coli under two-dimensional confinement
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Bacteria suspended in fluids swim collectively and display fascinating emergent dynamics. Although bacterial
collective swimming in bulk suspensions has been well studied, its counterpart in confined two-dimensional
(2D) geometries relevant to many natural habitats of bacteria is still poorly understood. Here, through carefully
designed experiments on Escherichia coli in a Hele-Shaw geometry, we show that a small change in the degree
of confinement leads to a drastic change in bacterial collective swimming. While a long-range nematic order
emerges for bacteria that can cross over each other during encounters, a slight decrease of the confining height
that prevents the crossing leads to the formation of bacterial clusters with a short-range polar order. By tracking
the swimming kinetics of individual bacteria, we reveal the microscopic origins of the two emergent collective
phases and illustrate the effect of the collective dynamics on the swimming behaviors of single bacteria. Our
study provides insights into bacterial collective swimming under confinement and demonstrates a simple way to
control the emergent symmetry of collective phases.

DOI: 10.1103/PhysRevResearch.4.023105

I. INTRODUCTION

Collective motion of bacteria epitomizes the emergent
dynamics of active matter [1–4], which leads to unusual
transport properties of bacterial suspensions and confers
upon bacteria evolutionary advantages crucial for their sur-
vival [5,6]. The natural habitats of bacteria often consist
of confined spaces such as thin biofilms on solid sub-
strates [7], pores of the soil [8,9], and the interstitial
confines of tissues [10]. Consequently, understanding the
collective dynamics of bacteria in confined systems is vital
for deciphering various life-supporting activities of bacteria.
However, although the collective swimming of bulk bacte-
rial suspensions—the so-called “bacterial turbulence”—have
been extensively studied in recent years [11–16], our under-
standing of the collective dynamics of bacterial suspensions
under geometric confinement is still primitive.

In addition to the broad biological relevance, uncovering
the collective dynamics of bacteria in confined geometries
would provide insights into the emergent behavior and sym-
metry of active matter in reduced dimensions. While the
long-range hydrodynamic interaction plays a leading role in
inducing bacterial turbulence in bulk samples [15], both the
nature and strength of the interaction are strongly modified in
confined systems. Particularly, for bacteria confined between
two rigid walls, the far-field flow generated by a swimming
bacterium has the signature of a source dipole [17,18], qualita-
tively different from the well-known force dipole flow in a 3D
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bulk fluid. More importantly, the short-range steric interaction
that is inconsequential in 3D suspensions becomes essential
in mediating the collective dynamics of bacteria in confined
systems [19,20]. These qualitative changes of interbacterial
interactions result in novel collective phases of bacterial sus-
pensions in confined systems [21–23], which cannot persist in
3D bulk suspensions.

Inspired by different confined geometries in nature, several
different types of confinement have been experimentally
implemented. Extending early works on bacterial turbulence
in bulk samples [11–13], weak 3D confinement has been
imposed by either narrow microfluidic channels or small
droplets [24–27]. The weak confinement rectifies the
chaotic turbulent flow of collective bacterial swimming into
persistent unidirectional flow. Interbacterial interactions are
qualitatively changed when a stronger confinement is applied
to bacterial suspensions. In contrast to the long-range hydro-
dynamic interactions that govern bacterial turbulence [15],
steric and/or short-range hydrodynamic interactions dictate
the local alignment of cell bodies in a monolayer of swarming
bacteria confined to the surface of an agar plate, which lead
to various 2D phases of different swarming patterns [23,28–
30]. The agar geometry possesses a stress-free air-fluid
interface, therefore relaxing the degree of confinement from
the perspective of hydrodynamics. More recently, the strict
2D confinement has also been studied, where bacteria are
confined in a Hele-Shaw cell between two rigid walls [21,22].
Using elongated filamentous cells of Escherichia coli (E.
coli), Nishiguchi et al. reported the emergence of collective
bacterial swimming with long-range nematic order in the
Hele-Shaw geometry [21]. In contrast, Swiecicki et al.
observed the formation of bacterial clusters with local
polar order in a similar geometry [22]. Why do similar
experiments yield collective phases with qualitatively
different symmetries? How does confinement modify the
interbacterial interactions and affect the alignment of
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collectively swimming bacteria? We aim to address these
questions in our study.

Our study focuses on bacterial suspensions under strong
2D confinement in the Hele-Shaw geometry. We find that the
alignment of collectively swimming bacteria is sensitive to the
degree of confinement. A small variation in the gap thickness
between two rigid walls can trigger a drastic change of the
collective behaviors of bacteria and yield emergent phases
of qualitatively different symmetries. The finding resolves
the controversy surrounding the contradictory observations on
bacterial dynamics under confinement from previous experi-
ments. Our study further reveals that the origin of the different
collective phases is directly related to the microscopic inter-
bacterial interaction. While bacteria that can cross over each
other during close encounters form long-range nematic order,
bacteria that are strictly constrained into a single layer under
slightly tighter confinement assemble into transient clusters
with local polar order. Hence, a subtle change in the inter-
bacterial interaction has a profound effect on the emergent
collective bacterial dynamics. Lastly, we show that the binary
interaction between bacteria always favors nematic alignment,
independent of the degree of confinement. Instead, the po-
lar order of bacterial clusters arises from many-body steric
interactions enabled by the noncrossing encounters between
bacteria under strong confinement. These many-body inter-
actions result in abnormally short swimming persistence and
large velocity fluctuations of bacteria in the cluster phase.
Taken together, our experiments on confined bacterial sus-
pensions provide an excellent example illustrating the generic
relation between the local particle interaction and the global
symmetry of emergent collective phases in active matter. Our
study further demonstrates geometric confinement as an ef-
fective tool to control the collective dynamics of bacterial
suspensions, paving a way to engineer the swimming behav-
iors of bacteria in technical applications.

II. EXPERIMENT

In our experiments, we use genetically modified light-
powered E. coli (Appendix A 1), whose swimming velocity
V can be continuously varied by changing the intensity of
incident light [15,16]. At the maximum light intensity adopted
in our experiments, the average swimming velocity of bacteria
is V = 13.3 ± 2.5 μm/s in the dilute limit. The standard
deviation of the normalized swimming velocity of individual
bacteria over time is 0.25. The length and the width of bacte-
rial bodies are 3.4 ± 0.7 μm and 0.9 ± 0.1 μm, respectively.
The aspect ratio of the bodies is 3.8 ± 1.2. This body geome-
try is the same as that of wild-type E. coli strains. In addition
to bacterial swimming velocity, we also vary 2D bacterial
number density n between 1.1 × 106 up to 2.2 × 107 mm−2.
Above 2.2 × 107 mm−2, bacteria become immotile in our
confined system, possibly due to the intertwining of flagellar
bundles at high densities.

We confine a suspension of E. coli of controlled volume
in a Hele-Shaw chamber made of a glass slide and a cover-
slip (Appendix A 2). The lateral dimension of the chamber is
fixed at 18 mm by 18 mm, whereas the gap thickness of the
chamber is controlled by the volume of the suspension. We
test two different suspension volumes, 0.7 μL and 0.9 μL,

in our experiments. As the suspension is completely confined
underneath the coverslip by capillary forces, the gap thickness
is fixed at h ≈ 2.2 μm for the small-volume suspension and
h ≈ 2.8 μm for the large-volume suspension. Thus, the gap
thicknesses of the small-volume and large-volume chambers
are approximately twice and three times of the average bac-
terial body width, respectively. The chamber is finally sealed
on all sides by a UV-curable adhesive, which eliminates the
influence of ambient airflow on the bacterial motion. To pre-
vent bacteria from sticking on glass surfaces, glass slides and
coverslips are base washed with 1 M NaOH before use.

Bacteria in the chamber are then imaged using an in-
verted bright-field microscope at a frame rate of 30 fps for
1000 frames with a field of view of 251 μm by 225 μm
(Appendix A 3). By postprocessing the resulting images
(Appendix A 4), we identify the position r and the orientation
θ of bacterial bodies along the direction of their swimming
and the instantaneous velocity v of bacteria. For a given
bacterium i, we analyze the temporal variation of its velocity
vi(t ). The time-average velocity of the bacterium over its
trajectory is 〈vi〉 = T−1

∫ T
0 vi(t )dt , where T is the total time

duration of the trajectory within the field of view. By averag-
ing 〈vi〉 over all bacteria in a video, we obtain the ensemble
average bacterial velocity V = N−1 ∑N

i=1〈vi〉, where N is the
total number of bacteria in the video. Finally, the instanta-
neous area fraction of bacteria is defined as the ratio of the
number of pixels occupied by bacteria to the total number of
pixels in the frame of a video. The time-averaged area fraction
φ is then calculated by averaging over all the frames of the
video. φ is proportional to the number density of bacteria n via
φ = nA, where A is the average cross-section area of bacteria
in the 2D plane.

III. RESULTS

A. Collective swimming in 2D and quasi-2D geometries

With the small change of the gap thickness, we observe two
qualitatively different collective phases of bacterial suspen-
sions under confinement, which are characterized by different
orientational orders of bacteria. When the gap thickness is
large, a case we shall refer to as the quasi-2D geometry below,
bacteria show random motions at low densities φ and small
bacterial swimming velocities V . With increasing φ and V ,
bacteria tend to align nematically over a long range. At high
φ and V , the collective motion of bacteria shows a clear
long-range nematic order, where bacterial bodies align along a
preferred direction with bacteria themselves swimming either
parallel or antiparallel along the direction [Figs. 1(a) and 1(b)]
(also Movie 1 in the Supplemental Material [31]). We quan-
tify the strength of the nematic alignment using the order
parameter S = (〈cos 2θ〉2 + 〈sin 2θ〉2)1/2 [Fig. 1(c)], where
〈·〉 indicates an average over all the bacteria in the field of
view. S = 1 indicates a perfect alignment, whereas S = 0 for
random orientations. Consistent with our direct observation, S
is small at low φ and V . Bacterial dynamics are dominated by
Brownian motions at low V , which disrupt long-range orien-
tational order and result in small S. S increases with φ and V
and reaches S = 0.7 at high φ and V . The long-range nematic
phase has been reported in experiments with filamentous cells
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FIG. 1. Collective swimming of E. coli in the quasi-2D (top row) and 2D (bottom row) geometries. (a) Microscopy image of a bacterial
suspension in the quasi-2D geometry exhibiting a long-range nematic order. The gold and cyan arrows indicate the direction of bacterial
swimming, showing the two directions along which bacteria are predominantly oriented. (b) Representative trajectories of bacteria in the
quasi-2D geometry, with the starting point of each trajectory translated to a single point at the center. The preferred orientations of the
trajectories illustrate the nematic order of bacteria. (c) Phase diagram showing the dependence of the nematic order parameter S on the bacterial
swimming velocity V and area fraction φ. (d) Microscopy image of a bacterial suspension in the 2D geometry exhibiting bacterial clusters
with a short-range polar order. Arrows of different colors are used to mark different clusters. (e) Representative trajectories of bacteria in the
2D geometry, with the starting point of each trajectory translated to a single point at the center. (f) Phase diagram showing the dependence of
the number of clusters Nc in the field of view on V and φ. The gray regions in (c) and (f) correspond to slow and randomly moving bacteria
with velocities below 4 μm/s under light of low intensities. Scale bars are 10 μm.

of E. coli with a large aspect ratio of bacterial bodies ∼25 [21].
Our experiments show that under strong confinement, a long-
range nematic order can also arise in normal-size bacteria with
an aspect ratio of ∼4.

For the small gap thickness, a case we shall refer to as
the 2D geometry below, bacteria also show random motions
at low φ and small V , similar to those in the quasi-2D ge-
ometry. Nevertheless, with increasing φ and V , instead of the
long-range nematic order, bacteria form transient clusters with
a short-range polar order [Fig. 1(d)] (also Movie 2 in Sup-
plemental Material [31]). Such structures have been termed
as “bacterial rafts” by Swiecicki et al [22]. The trajectories
of individual bacteria in 2D are much less persistent than
those in quasi-2D, without a clear sign of nematic align-
ment [Fig. 1(e)]. To characterize the collective behavior in
the 2D geometry, we assign bacteria into clusters based on
the distance between them and the difference between their
orientations [30,32]. A pair of bacteria are adjacent neigh-
bors when the distance between the centroids of their bodies
�r ≡ |r1 − r2| < 3 μm and the difference between their body
orientation �θ < 30◦. Here, r1 and r2 are the centroids of

the bodies of the two bacteria, respectively. A cluster is then
defined as a group of bacteria where each bacterium belonging
to the group is an adjacent neighbor with at least one other
bacterium from the same group. Furthermore, a cluster must
consist of at least 4 bacteria. We quantify the extent of cluster
formation by counting the number of bacterial clusters Nc in
our field of view. Nc increases with both φ and V and reaches
Nc = 150 at high φ and V [Fig. 1(f)]. The qualitative feature
of the phase diagram in Fig. 1(f), namely, the increase in
Nc with φ, does not change when we vary the cut-off dis-
tance �r and the cut-off angle �θ within a reasonable range
(Appendix A 5).

B. Binary collisions favor weak nematic alignment
in both geometries

Why does a small change in the gap thickness lead to such
a drastic change in the collective dynamics of bacteria? To
answer this question, we first examine the pairwise interaction
between bacteria at low φ and large V in both the quasi-
2D and 2D geometries. Specifically, we analyze experiments
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FIG. 2. Nematic alignment induced by binary collisions. [(a)–(c)] The time-lapse frames of a collision of two bacteria in the 2D geometry
with an acute incoming angle βin at t = −1, 0, and 1 s. [(d)–(f)] The time-lapse frames of a collision of two bacteria in the quasi-2D geometry
with an obtuse βin at t = −1, 0, and 1 s. Bacteria overlap in (e), illustrating a crossing event during the collision. Arrows indicate the direction
of bacterial swimming. Scale bar in (f) is 5 μm. (g) The outgoing angle βout vs the incoming angle βin for the quasi-2D (blue) and 2D (gold)
geometries. A total of 1,119 collisions for quasi-2D geometry and a total of 1,287 collisions for the 2D geometry have been analyzed. The
data are binned into 15◦ intervals of βin. The blue and gold lines connect the means of βout. The error bars indicate standard deviations. The
black-dashed line represents the condition βin = βout, corresponding to collisions without any alignment. The detailed distributions of βin and
βout are shown in Appendix B 1.

in the dilute limit with φ = 0.05 and high bacterial activity
V = 13 μm/s. A collision event between a pair of bacteria
is again defined when the shortest distance between the two
bacteria �r < 3 μm. Under 2D confinement, the motion of
a bacterium is influenced by the short-range hydrodynamic
interaction with its neighbor within a distance equal to their
cell body length [33], which justifies our choice of 3 μm as
the cut-off length for a collision event. The positions of the
bacterial bodies are then tracked starting from 1 second before
the collision event to 1 second after the collision event. Bac-
teria typically swim a distance of at least one cell-body length
from their point of collision in 1 second, which is sufficient to
determine their new direction of motion after a collision. We
ensure collisions are strictly binary by excluding any collision
event where a third bacterium gets within a distance of 6
μm of either of the colliding bacteria during any instant of
the collision event. The angle subtended by the positions of
the two bacteria before the collision is termed the incoming
angle βin, whereas the angle subtended by their positions after
the collision is called the outgoing angle βout [Figs. 2(a)–2(f)].

Figure 2(g) shows βout as a function of βin for the quasi-2D
and 2D geometries. Surprisingly, even though the emergent
collective phases are qualitatively different, the binary inter-
actions between bacteria are quantitatively similar in the two
geometries. For acute incoming angles, the outgoing angle is
slightly decreased, indicating a tendency for weak polar align-
ment, whereas, for obtuse incoming angles, a slight increase in
the outgoing angle captures weak antipolar alignment. Thus,
the binary interactions of bacteria in both the quasi-2D and
2D geometries favor a weak nematic symmetry [21,34–36],
without any discernible bias towards polar alignment [37].
At high densities in the quasi-2D geometry at which the
nematic order is observed, a bacterium undergoes multiple

successive binary collisions with its neighbors. Even though
a single collision imparts only weak nematic alignment, the
alignment resulting from multiple collisions is sufficient to
induce long-range nematic order. However, the difference in
the collective behaviors in the two geometries, particularly,
the rise of bacterial clusters with the local polar order in 2D,
cannot be explained by binary collisions.

C. To cross or not to cross

A detailed examination of bacterial dynamics at both low
and high φ reveals a key difference in bacterial interactions
in the quasi-2D and 2D geometries. While bacteria can cross
over each other during a collision in the quasi-2D geome-
try [Fig. 2(e)], we do not observe bacterial crossing in the
2D geometry [Fig. 2(b)]. The tighter confinement of the 2D
geometry strictly constrains bacteria to a single layer. The
observation thus suggests that decreasing the thickness of the
Hele-Shaw chamber, thereby switching off the ability of bac-
teria to cross over, drastically alters their emergent collective
swimming behaviors.

While 0.7 μL drops form the 2D chamber and 0.9 μL drops
give the quasi-2D chamber, using an intermediate drop size
between 0.7 and 0.9 μL results in either a quasi-2D chamber
or a 2D chamber. If the gap thickness of the chamber is
sufficient for a pair of bacteria to cross during a collision,
the resulting chamber is quasi-2D, which gives rise to the
long-range nematic order. Otherwise, bacteria are confined to
a monolayer and the chamber is 2D, which results in transient
bacterial clusters with the local polar order. No intermediate
cases are observed in our experiments. The ability of bacteria
to cross is fixed globally by the gap thickness of confined
geometries in our experiments. At a given gap thickness, the
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collective swimming behavior of bacteria does not switch be-
tween nematic and polar states either spatially or temporally.
Furthermore, the ability of bacteria to cross over each other
is governed solely by the thickness of the chamber and is
independent of the total number of bacteria in the chamber.

The relation between the emergent order of collective
phases and the ability of individual active particles to cross
during collisions has also been observed in other 2D active
matter systems. In numerical simulations of active rods, the
crossover between two particles can be controlled by the
strength of the repulsive interparticle potential and the self-
propulsion speed of active particles [38]. For soft potentials
at high speeds, a condition where particles can overlap and
cross over each other, the symmetry of the emergent collec-
tive phase is nematic [36,39–41]. In contrast, slower speeds
and stiffer repulsive potentials lead to noncrossing interpar-
ticle interaction and give rise to polar clusters [36,40,42]
and bands [43,44]. A recent experiment with a 2D motility
assay of microtubules has also shown that a nematic order
emerges when the microtubules are able to cross over each
other, whereas polar clusters form when they are unable to
cross [34]. In this experiment, the ability of microtubules to
cross was controlled by the density of motor proteins fixed on
substrates. A low motor-protein density gives more flexibility
to the tip of a microtubule and allows it to climb over other
microtubules during a collision. In combination with these
previous numerical and experimental findings, our experi-
ments with swimming bacteria—a premier example of active
matter—provide strong evidence illustrating a universal fea-
ture of 2D active matter: the ability of active particles to cross
dictates the symmetry of emergent collective phases. Rather
than modifying the properties of individual active particles,
our study further demonstrates that geometric confinement
can be used as a simple and effective tool to control the cross-
ing ability of active particles and manipulate the collective
dynamics of 2D active matter.

D. The rise and fall of bacterial clusters

While the long-range nematic order of bacteria in the
quasi-2D geometry stems from the binary collision of bacteria
in the dilute limit [Fig. 2(g)], bacterial clusters with the local
polar order in the 2D geometry must arise from the many-
body interactions enabled by the noncrossing collision at high
densities [35,45].

To understand the origin of bacterial clusters, we image
the dynamics of cluster formation in the 2D geometry. Specif-
ically, we analyze 17 representative bacterial clusters from 3
independent experimental runs, each having a time-averaged
bacterial area fraction φ = 0.15. Each cluster contains 4–9
bacteria, giving a total of 117 bacteria across all of the clus-
ters. The time instant when the members of a bacterial cluster
are spatially closest to each other, quantified by a minimiza-
tion of the sum of their pairwise distances, is assigned as
the reference time t = 0. The positions and orientations of
bacteria in these clusters are then tracked from t = −3 to
3 s at 0.1 s intervals. At each time step, we calculate the
difference between the angles of adjacent neighbors �θi j ,
as well as the pairwise distances between all the members
of a bacterial cluster �ri j [see the schematic in the inset of

Fig. 3(a)]. Figures 3(a) and 3(b) show �ri j of all bacterial
pairs and �θi j of all adjacent pairs of bacteria in the 17
bacterial clusters as a function of time. From t = −3 to 0 s,
both the extents of �ri j and �θi j decrease, indicating bacteria
coming together and aligning to form a cluster. Subsequently,
�ri j and �θi j increase with time from t = 0 to 3 s, showing
the gradual dissolution of the clusters over time and revealing
the transient nature of bacterial clusters in the 2D geometry.
Qualitatively similar dynamic features are also observed at
other area fractions (Appendix B 2).

Along with �ri j and �θi j , we also measure the normal-
ized velocity of individual bacteria in the process of cluster
formation and dissolution, v/〈v〉. Here, v is the instantaneous
velocity of a given bacterium and 〈v〉 is the time-averaged
velocity of that particular bacterium. Figure 3(c) shows the
time evolution of v/〈v〉 averaged over all the bacteria in
clusters. Around t = 0, v/〈v〉 decreases substantially about
15% below its temporal average, suggesting an instantaneous
slowing down at the instant of cluster formation. The forward
motion of a bacterium can be partially blocked by neighboring
bacteria that act as obstacles [32,35]. If multiple bacteria
encounter the same obstacle, their velocities slow down si-
multaneously, which leads to the formation of a bacterial
cluster. Each bacterium in the cluster further aligns with its
neighbors, giving rise to local polar order [35,36]. If the
bacterium aligned antiparallel with its neighbors, it would
simply slide away without joining the cluster. Since a bac-
terium can cross past its neighbors in the third dimension, the
collision-induced slowdown—the key feature underlying the
cluster formation—does not occur in the quasi-2D geometry.
As the mechanism of collision-induced slowdown requires the
presence of multiple neighbors, the clustering does not occur
at low φ either. Even though the two bacteria undergoing a
collision slow down temporarily, there are few neighboring
bacteria at low φ that can join the pair before they separate.

The increase in pairwise distances [Fig. 3(a)] and in adja-
cent angle differences [Fig. 3(b)] after t = 0 suggest that the
bacterial clusters in the 2D geometry are transient. Due to their
short lifetimes, clusters are unable to grow and remain small in
size. We verify this by measuring the size sc of the observed
clusters at different densities for a high bacterial velocity of
V = 13 μm/s. Figure 3(d) shows the probability distribution
functions of sc, P(sc). Bacteria are more probable to form
large clusters at high φ, resulting in the slow decay of the tail
of P(sc). However, even at high φ, the maximum cluster size is
only ∼O(10), while the number of bacteria in the field of view
is on the order of 103. Thus, unlike the long-range nematic
order that is formed by all bacteria in the field of view, the
polar clusters are short-range and spatially localized.

Bacteria in the 2D geometry form clusters as their forward
motion is being partially blocked by a common obstacle,
which can be easily identified in most of the clusters in
Fig. 1(c). When this obstacle moves away, the velocities of
the bacteria in the cluster increase, as shown in Fig. 3(c) after
t = 0. Figure 3(a) further shows that the pairwise distances
between the bacteria in a cluster increase after t = 0, implying
that the members of the cluster are moving apart. Such a
phenomenon is possible when the swimming speed of a bac-
terium in a cluster depends on its relative position in the
cluster. For example, if a bacterium that did not have any
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FIG. 3. Transient dynamics of bacterial clusters in the 2D geometry. (a) and (b) The time evolution of the pairwise distance �ri j and the
adjacent angles �θi j of bacterial clusters. The definition of �ri j and �θi j between three neighboring bacteria are shown in the inset of (a).
Disks are the data. To avoid crowding, we only show the data at the integer time of t = −3, −2, −1, 0, 1, 2, and 3 s. The real measurements
are conducted with the time resolution of �t = 0.1 s. The dashed line represents the mean of the data, whereas the shaded region indicates
one standard deviation around the mean. Bacterial area fraction φ = 0.15. �ri j (t ) and �θi j (t ) at other φs are shown in Appendix B 2. (c) The
time evolution of the normalized velocity of bacteria v/〈v〉 averaged over all the bacteria in clusters. The error bars represents the standard
errors. The black-dashed line corresponds to the temporal average v/〈v〉 = 1. (d) The probability distribution of the size of clusters sc in the
2D geometry, P(sc ), at φ = 0.02 (gray squares), φ = 0.12 (purple circles), and φ = 0.17 (gold triangles).

neighbors ahead of it swam faster than its neighbors, it could
quickly move away from the cluster. The difference in the
relative velocities of the bacteria in a cluster promotes the
disintegration of the cluster and is ultimately responsible for
the transient nature and the small size of bacterial clusters.

To probe the dependence of the swimming velocity of bac-
teria on their relative positions with respect to their neighbors,
we measure the velocity of bacteria as a function of the dis-
tances of the bacteria to their closest neighbors. Specifically,
at each time step, we identify the positions of the nearest
Voronoi neighbors of the bacterium under consideration and
calculate the distances between the bacterium and its nearest
neighbors. We distinguish two types of neighbors. Neighbors
lying within 45◦ of the swimming direction of the bacterium
are identified as forward neighbors, whereas neighbors lying

within 45◦ of the opposite direction of the swimming are
identified as backward neighbors [Fig. 4(a)]. The distance be-
tween the tracked bacterium and its forward nearest neighbor
is termed r f and the distance to its backward nearest neighbor
is termed rb. We examine the dependence of the normalized
velocity of the bacterium v/〈v〉 on r f and rb. To avoid the
influence of the intrinsic variation of the swimming speed
of bacteria, we consider only the cases with large velocity
fluctuations, where bacterial velocity v is at least 30% above
or below the mean.

Figures 4(b) and 4(c) show the joint plot of v/〈v〉 < 0.7
and v/〈v〉 > 1.3 as a function of r f and rb, respectively.
For the slowdown events with v/〈v〉 < 0.7, most data clus-
ter around lower values of r f , where the forward nearest
neighbors are at close distances [Fig. 4(b)]. The observation

rb

rf

(a) (b) (c)

FIG. 4. Dependence of bacterial velocity on the relative positions of their neighbors in the 2D geometry. (a) The positions of the nearest
neighbors of the reference bacterium marked by the blue arrow. The black, green and red dots denote the Voronoi nearest neighbors of the
reference bacterium. Nearest neighbors are searched in the forward (pink shaded) region and the backward (green shaded) region, where each
region lies within ±45◦ of the direction parallel or antiparallel to the swimming direction of the reference bacterium. The distance to the closest
nearest neighbor in the forward region (a red dot) is r f and the distance to the closest nearest neighbor in the backward region (a green dot) is
rb. (b) The distribution of r f and rb when bacterial velocity v/〈v〉 < 0.7. (c) The distribution of r f and rb when bacterial velocity v/〈v〉 > 1.3.
The color bars represent the extent of deviation of the normalized velocity from the mean, quantified by 1 − v/〈v〉 in (b) and by v/〈v〉 − 1 in
(c). A darker shade of color corresponds to a greater deviation from the mean velocity. The dashed black lines denote the 75th percentile of r f
in (b) and the 75th percentile of rb in (c).

023105-6



TO CROSS OR NOT TO CROSS: COLLECTIVE SWIMMING … PHYSICAL REVIEW RESEARCH 4, 023105 (2022)

again confirms the collision-induced slowdown, essential for
the formation of bacterial clusters. Quantitatively, we use the
75th percentiles of the distributions of r f and rb as representa-
tive measures of the forward nearest neighbor and backward
nearest neighbor distances. The 75th percentiles of r f and rb
for the slowdown events are r−

f = 4.1 μm and r−
b = 6.3 μm,

respectively. r−
f < r−

b , showing that a bacterium with the
forward nearest neighbor closer than the backward nearest
neighbor is more likely to experience a slowdown.

More interestingly, for the speedup events with v/〈v〉 >

1.3, most data congregate around lower values of rb with the
75th percentile being at r+

b = 5.1 μm [Fig. 4(c)]. In compar-
ison, the 75th percentile of r f is larger at r+

f = 5.6 μm, a
trend that is opposite to that of the slowdown events. Hence,
a bacterium with the backward nearest neighbor closer than
the forward nearest neighbor is more likely to experience a
speedup. Moreover, r+

b < r−
b , showing that the distance to the

backward nearest neighbor in a speedup event is smaller than
that in a slowdown event on average. Both of these results
suggest that the presence of a backward neighbor at a short
distance behind a bacterium enhances its swimming speed.
Such an enhancement facilitates the quick dissolution of bac-
terial clusters after the removal of blockage, where bacteria
in the front of a cluster accelerate to leave the cluster. The
velocity enhancement due to backward neighbors is unique to
swimming bacteria under Hele-Shaw confinement and has not
been observed in swarming bacteria on agar surface [30] or in
clustering microtubules [34] and actin filaments [35].

Why does a backward neighbor enhance the swimming
speed of bacteria? E. coli cells swim due to the thrust force
generated by the rotation of a flagellar bundle trailing behind
the cell body [46,47]. We hypothesize that the presence of a
neighboring cell body in a tightly confined geometry close to
the flagella increases the thrust force [48], which causes an
increase in the swimming speed. Thus, the interactions with
its forward and backward neighbors strongly affect the swim-
ming velocity of the bacterium in the 2D geometry, which in
turn affects the structure of bacterial clusters. Each bacterium
in a cluster has a different distribution of forward and back-
ward nearest neighbors, resulting in a large variation of the
swimming velocities of bacteria in the cluster. Thus, bacteria
from the same cluster swim at different speeds, leading to the
quick dissolution of the cluster.

E. Single bacterial dynamics in 2D and quasi-2D geometries

The qualitative difference in the emergent collective phases
in the 2D and quasi-2D geometries also leads to a drastic
difference in the swimming behavior of individual bacteria in
these two geometries even at the same concentration. To high-
light these differences, we compare the swimming trajectories
at a high density of φ = 0.15 and a high swimming velocity
of V = 13 μm/s in the 2D and quasi-2D geometries.

First, we compute the persistence of the swimming di-
rection of individual bacteria in the two geometries. The
persistence of the swimming direction of bacteria is quantified
by the autocorrelation C(t ) = 〈cos (α(t0)) cos (α(t0 + t )) 〉t0 ,
where the angle α(t ) indicates the direction of the bacterial
swimming at time t with respect to the x axis in the lab-
oratory frame. C(t ) decays faster in the 2D geometry than

(a)

(b)

FIG. 5. Comparison of the swimming behaviors of bacteria in
the 2D and quasi-2D geometries at the same bacterial area fraction
of φ = 0.15. (a) The autocorrelation of the swimming direction of
bacteria,C(t ), for the 2D (gold) and quasi-2D (blue) geometries. The
thick lines are the means calculated over 100 bacteria in the quasi-2D
geometry and over 117 bacteria in the 2D geometry, whereas the
shaded region represents one standard deviation around the means.
The horizontal-dashed-black line corresponds to C(t ) = 1/e. The
dashed gold- and blue-vertical lines indicate the persistence time of
bacterial swimming τ = 0.9 s for the 2D geometry and τ = 2.4 s for
the quasi-2D geometry, respectively. (b) The temporal evolution of
the normalized velocity of individual bacteria, v(t )/〈v〉, for the 2D
(gold) and quasi-2D (blue) geometries. The inset shows the prob-
ability distributions of the standard deviation of v/〈v〉 of different
bacterial trajectories, P(σv/〈v〉).

that in the quasi-2D geometry, implying a shorter persistence
of the swimming bacteria in 2D [Fig. 5(a)]. The persistence
time of bacterial swimming τ can be defined as the time at
whichC(t ) decays to 1/e, where e ≈ 2.718 is Euler’s number.
τ = 2.4 ± 1.4 s in quasi-2D, whereas it decreases by 60% in
2D at τ = 0.9 ± 0.6 s. The short persistence in 2D is a direct
consequence of the noncrossing collisions and the many-body
steric interactions. As bacteria are unable to cross over dur-
ing collision, they must change their swimming directions
frequently at high φ. In contrast, a bacterium in quasi-2D is
able to cross over during collisions and maintain its swimming
direction.

Second, we also examine the temporal fluctuations of the
velocity of individual bacteria in both geometries. Figure 5(b)
shows the temporal variation of the normalized bacterial
velocity v(t )/〈v〉 in the 2D and quasi-2D geometries. The
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velocity fluctuations in the 2D geometry are considerably
stronger than those in the quasi-2D geometry. The velocity
fluctuation of each bacteria can be quantified by the standard
deviation of its normalized velocity, σv/〈v〉, around the mean.
Figure 5(b) inset shows the probability distributions of σv/〈v〉
of all bacteria in the two different geometries. The average
standard deviation of velocities is about 50% of the mean
velocity in the 2D geometry, whereas it is only 25% of the
mean in the quasi-2D geometry. This difference in velocity
fluctuations can again be inferred from the strong many-body
steric and near-field hydrodynamic interactions between the
bacteria in the 2D geometry. A bacterium in 2D slows down
instantaneously upon encountering a forward neighbor in its
path and speeds up due to the presence of a backward neighbor
close to it. At high densities, collisions between bacteria result
in frequent speedups and slowdowns, contributing to the en-
hanced velocity fluctuations in the 2D geometry. In contrast,
a bacterium in the quasi-2D geometry is able to slide past
a neighbor in its path without significantly slowing down or
speeding up, resulting in weak velocity fluctuations.

IV. DISCUSSION

Our experimental findings with confined swimming bac-
teria share a striking resemblance with recent experiments
on the collective dynamics of molecular-motor-driven micro-
tubules [34]. In the microtubule system, a long-range nematic
order also emerges when individual microtubules are able to
cross over each other during a collision, while a short-range
polar order is observed when microtubules cannot cross over
during a collision. This similarity suggests a universality of
the collective behaviors in the two arguably most important
examples of biological active matter [2]. Moreover, our ex-
perimental observations also complement recent numerical
simulations of self-propelled rod-like particles where a ne-
matic phase emerges when the particles are able to cross over
each other [36,39–41], whereas the prevention of crossing
over leads to the emergence of polar order [36,40,42–44].

It is worth noting that the propulsion mechanism of E.
coli gives rise to complicated hydrodynamic effects, which
are unique to our bacterial system and absent in the mi-
crotubule experiments and numerical simulations without
hydrodynamic interactions. These nontrivial near-field hydro-
dynamic effects, when modified by geometric confinement,
result in the enhanced velocity fluctuations and transient na-
ture of bacterial clusters. Due to the absence of destabilizing
hydrodynamic interactions, microtubule clusters at high den-
sities are stable and long lived [49], and can dynamically
merge together or split into smaller clusters [34,35,49]. Such
dynamic processes are not observed in our experiments due to
the short lifetimes of bacterial clusters.

Lastly, experiments on actomyosin motility assays showed
qualitatively different trends in emergent collective dynamics.
By increasing the bonding strength between actin filaments
and substrates covered with myosin motors, which suppresses
the ability of actin filaments in crossing over each other during
a collision, Huber and coauthors observed a transition from a
polar phase to a nematic phase [50], opposite to the trends
of the confined bacterial and the microtubule systems. Such
a different phase behavior may arise due to the different me-

chanical properties of active particles. Actin filaments have
much higher aspect ratios than bacteria and are more flexible
compared to either bacterial bodies or microtubules. It is an
open question as to how the mechanical properties of active
particles modify local interparticle interactions and determine
the symmetry of collective dynamics.

In conclusion, our experiments reveal that a small change
in the degree of confinement can qualitatively alter the col-
lective swimming behaviors of bacteria. The critical gap
thickness of the Hele-Shaw chamber, hc, where the transition
between the nematic and the cluster phase occurs, should be
around twice the width of bacteria wd at 2wd ≈ 2 μm. The
precise value of hc is hard to assess a priori due to the natu-
ral variation in bacterial shapes and the complex interaction
between bacteria and solid boundaries [7]. Furthermore, as
the gap thickness at such a small scale is hard to control
accurately, experiments with seemingly similar geometries
may result in completely different emergent phases. Thus, our
results help to resolve the contradictory findings of previous
experiments [21,22]. Future work should be aimed at the
construction of microfluidic devices of precisely controlled
thicknesses to determine the critical gap thickness hc. As
the thickness of the Hele-Shaw chamber is increased further
from the quasi-2D geometry to the bulk limit, we would
expect the emergence of bacterial turbulence in bulk sus-
pensions, where the long-range hydrodynamic interaction
overcomes the steric interaction and dictates the collective
swimming of bacteria [15]. The nature of the transition be-
tween the long-range nematic phase to bacterial turbulence
upon increasing the gap thickness is an interesting direc-
tion for a future study. More broadly, the ability to control
the emergent behaviors of active matter via geometric con-
finement provides not only a powerful method to probe the
intrinsic dynamics of active matter in different dimensions but
also a practical tool to tailor the behaviors of active systems in
potential engineering applications.
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APPENDIX A: METHODS

1. Bacterial strain and culturing

Wild-type E. coli (BW25113) are genetically modified
to express the transmembrane proton pump proteorhodopsin
(PR), using the plasmid pZE-PR encoding the SAR86
γ -proteobacterial PR-variant [51]. As the activity of PR is
correlated with the intensity of incident light, we are able to
control the swimming velocity of bacteria with light.
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To prepare a suspension of motile bacteria, we inoculate a
small amount of bacterial frozen stock in 2 mL Terrific Broth
[tryptone 1.2% (w/v), yeast extract 2.4% (w/v) and glycerol
0.4% (w/v)]. Bacteria are then incubated at 37 ◦C for 15
hours in an orbital shaker operating at 250 rpm. This bacterial
culture is then diluted 1 : 100 with fresh Terrific Broth and
grown at 30 ◦C for 6.5 hours. We add 1 mM isopropyl β-d-1-
thiogalactopyranoside and 10 μM methanolic all-trans-retinal
in the mid-log phase of bacterial growth, to trigger the expres-
sion of PR. Finally, in the late log phase, bacteria are harvested
by gentle centrifugation. The supernatant is discarded, and
the bacteria are then resuspended in deionized water. The
suspension is further washed twice and adjusted by adding
water to reach the desired concentration.

2. Hele-Shaw chamber

To create a Hele-Shaw chamber, we first deposit a droplet
of E. coli suspension of controlled volume on a glass slide.
The droplet is then confined by gently pressing a glass cov-
erslip of dimensions 18 mm by 18 mm onto it, ensuring
the complete absence of air bubbles in the confined droplet.
The edges of the coverslip are then sealed with UV-curable
adhesive. We have confirmed that the short exposure of low-
dose UV radiation for curing does not affect the motility
of bacteria. Note that the motility of the light-control bac-
teria is driven by the incident light and does not require
oxygen in the confined chamber. The swimming speeds of
bacteria do not decline during the course of a typical ex-
periment over 10 minutes. The thickness of the Hele-Shaw
chamber is controlled by changing the volume of the con-
fined droplet. 0.7 μL droplets are used for the 2D geometry,
which give a gap thickness about 2.2 μm. 0.9 μL droplets are
used for the quasi-2D geometry, which give a gap thickness
about 2.8 μm.

3. Video microscopy

The dynamics of bacteria in Hele-Shaw chambers are
imaged through an inverted bright-field microscope (Nikon
Ti-Eclipse) using a 60× objective lens with a numerical
aperture of 1.25. The field of view is set at 2320 pixels by
2080 pixels, which corresponds to a physical dimension of
251 μm by 225 μm. The swimming velocity of bacteria is
controlled by changing the light intensity of the illumina-
tion lamp of the bright-field microscope. We first prepare
Hele-Shaw chambers containing different concentrations of
bacteria. The light intensity is then varied to adjust the swim-
ming speed of bacteria. The resultant emergent phase behavior
is finally imaged. Videos are recorded at a frame rate of 30
frames per second (fps) for a total of 1000 frames using a sci-
entific complementary metal-oxide-semiconductor (sCMOS)
camera (Andor Zyla 4.2).

4. Image processing and analysis

The acquired videos are first preprocessed using custom-
written MATLAB and Python scripts to remove background
noise. The images are then binarized using Otsu’s method,
where bacterial cells appear as white blobs in the image. The
software package developed by Be’er et al. [23] is used to
segment the bacterial cells. The area fraction occupied by

(a) (b)

FIG. 6. Method of optical flow for bacterial velocity measure-
ments. (a) The directions of the velocity field vopt for 3 different
bacteria. The scale bar is 1 μm. Only one out of every 16 velocity
vectors has been shown for clarity. (b) Probability density of the mag-
nitude of vopt for a single bacterium. The red dashed lines represent
the 75th and 90th percentiles of the distribution.

bacteria in an image is defined as the ratio of the number
of white pixels to the total number of pixels. The positions
r and the orientations θ of these white blobs in the image,
representing bacteria, are then extracted.

In the 2D geometry, bacteria cannot overlap or cross over
each other. Hence, all the bacteria in the field of view can be
accurately tracked. To determine the instantaneous velocities
of bacteria in the 2D geometry, the FAST module developed
by Meacock et al. is used [52]. The velocities thus obtained
lie within 10% of that measured by direct manual tracking.
In the quasi-2D geometry, bacteria can cross over each other,
making it difficult to track them from one frame to the next.
To determine their instantaneous velocities in the quasi-2D
geometry, we use the principle of optical flow [53,54]. After
smoothing the images with a Gaussian filter, the Farnebäck
dense optical flow method [55] is used to calculate the velocity
field of all pixels between two consecutive frames of a video.
Next, we consider the velocity vectors vopt of white pixels in
the binary image representing bacterial bodies. The directions
of vopt obtained for 3 different bacterial cells are illustrated in
Fig. 6(a). The distribution of the magnitudes of vopt is shown
in Fig. 6(b). As the contrast gradient between the pixels denot-
ing a cell body and those denoting the background is highest
at the edge of the cell, vopt obtained from the pixels close to
the edge of the cell most accurately reflects the speed of the
cell. Thus, the tail of the distribution of vopt can be averaged
to estimate the true swimming velocity of a bacterial cell [54].
We find that the mean of vopt calculated between the 75th and
90th percentile range [red dotted lines in Fig. 6(b)] lies within
10% of the velocity obtained using direct manual tracking in
our experiments. Thus, the method of optical flow provides a
reliable estimate of the swimming velocity of bacteria in the
quasi-2D geometry, circumventing the challenges faced with
respect to bacteria going out of the plane in standard particle
tracking velocimetry.

For each frame in the videos, we determine the area frac-
tion, the velocity of bacteria and the nematic order parameter
in case of the quasi-2D geometry, and the number of clusters
in case of the 2D geometry. These values are then averaged
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FIG. 7. Number of bacterial clusters as a function of area fraction
φ for different cut-off angles �θ and cut-off distances �r. The
ensemble average velocities of bacteria V are fixed between 8 μm/s
and 10 μm/s.

over the 1000 frames of a video to give φ, V , S, and Nc

reported in the main text.
To obtain long-time statistics of trajectories and calibrate

our tracking algorithms, we also manually track bacteria for
both the 2D and quasi-2D geometries at φ = 0.15 and V =
13 μm/s at a frame rate of 10 frames per second for 6 seconds.
For the nematic phase, we track the motion of a total of 100
bacteria, whose trajectories are shown in Fig. 1(b). For the
cluster phase, we first identify 17 different bacterial clusters
and then track a total of 117 bacteria in these clusters. The
bacterial trajectories are shown in Fig. 1(e). The trajectories of
the bacteria in 2D are used to calculate the time dependence of
the adjacent angles and pairwise distances in clusters (Fig. 3),
and the neighbor dependence of bacterial velocities (Fig. 4).
Trajectories from both geometries are used to calculate the
directional persistence [Fig. 5(a)] and the velocity fluctuations
[Fig. 5(b)].

5. Cluster identification

Following the convention of previous studies [30,32], we
define bacterial clusters using a cut-off distance �r = 3 μm

(a) (b)

FIG. 9. Dynamics of bacterial clusters at different area fractions
φ. (a) �ri j and (b) �θi j for φ = 0.09 (green triangles), φ = 0.15
(gold circles), and φ = 0.19 (purple squares). The data have been
obtained for 17 different clusters for φ = 0.15, and 5 different clus-
ters each for φ = 0.09 and φ = 0.19.

and a cut-off angle �θ = 30◦. Nevertheless, the qualitative
features of the 2D phase diagram in Fig. 1(f) do not change
when we vary �r and �θ around the chosen values within a
reasonable range. Figure 7 shows the number of clusters Nc

versus φ for different choices of �r and �θ around �r =
3 μm and �θ = 30◦ with the ensemble average velocity of
bacteria V between 8 μm/s and 10 μm/s.

APPENDIX B: SUPPORTING DATA

1. Incoming and outgoing angles

Figure 8(a) shows the scatter plot of the incoming angle
βin versus the outgoing angle βout used for the construc-
tion of Fig. 2(g). Each data point in Fig. 8(a) represents an
experimentally observed collision event. The total number
of collisions analyzed for the quasi-2D geometry is 1,119,
whereas the total number of collisions analyzed for the 2D
geometry is 1,287. The statistics adopted here are comparable
to previous measurements on the same quantities [21,45,50].
The large standard deviations of βout shown in Fig. 2(g) and
Fig. 8(a) arise from the natural variation of the outgoing
swimming directions of bacteria, suggesting the weak nematic
alignment induced by individual binary collisions.

(a) (b) (c)

FIG. 8. Statistics of binary collisions. (a) Scatter plot showing the distributions of incoming angle βin and outgoing angle βout for the
quasi-2D (blue triangles) and 2D (gold circles) geometries. The black-dashed line represents the condition βin = βout, corresponding to
collisions without any alignment. (b) The probability distributions of βin (green) and βout (purple) in the quasi-2D geometry. (c) The probability
distributions of βin (green) and βout (purple) in the 2D geometry.
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Figures 8(b) and 8(c) further show the probability distri-
butions of βin and βout for the quasi-2D and 2D geometries,
respectively. The number of collisions with βin > 90◦ is larger
than that with βin < 90◦. This is consistent with the observa-
tion of Nishiguchi et al. [21], who reasoned that a collision
between a pair of bacteria with an acute βin lasts longer due to
similar outgoing directions. Such a configuration increases the
probability of encountering a third bacterium, which prevents
the collision from being binary. Furthermore, under 2D con-
finement, a pair of bacteria are hydrodynamically bound and
swim parallel with their bodies side by side [33], which may
explain the abundance of coswimming bacteria with βin ≈ 0◦.

2. Density dependence of clustering dynamics

To examine the effect of bacterial density on the dynamics
of clustering, we measure the temporal variation of the pair-
wise distances �ri j and the difference in adjacent angles �θi j
of bacteria in clusters at φ = 0.09 and φ = 0.19 and compare
the results with those at φ = 0.15 shown in Fig. 3. For each
of these two additional area fractions, five different clusters
are sampled from two independent experimental runs. Each
of the clusters contains 4–7 bacteria. The clustering dynamics
at different area fractions show quantitatively similar trends
(Fig. 9).
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