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Abstract: Drug-resistant HIV-1 has caused a growing concern in clinic and public health. Although
combination antiretroviral therapy can contribute massively to the suppression of viral loads in patients
with HIV-1, it cannot lead to viral eradication. Continuing viral replication during sub-optimal therapy
(due to poor adherence or other reasons) may lead to the accumulation of drug resistance mutations,
resulting in an increased risk of disease progression. Many studies also suggest that events occurring
during the early stage of HIV-1 infection (i.e., the first few hours to days following HIV exposure) may
determine whether the infection can be successfully established. However, the numbers of infected
cells and viruses during the early stage are extremely low and stochasticity may play a critical role in
dictating the fate of infection. In this paper, we use stochastic models to investigate viral infection and
the emergence of drug resistance of HIV-1. The stochastic model is formulated by a continuous-time
Markov chain (CTMC), which is derived based on an ordinary di↵erential equation model proposed
by Kitayimbwa et al. that includes both forward and backward mutations. An analytic estimate of the
probability of the clearance of HIV infection of the CTMC model near the infection-free equilibrium
is obtained by a multitype branching process approximation. The analytical predictions are validated
by numerical simulations. Unlike the deterministic dynamics where the basic reproduction number R0

serves as a sharp threshold parameter (i.e., the disease dies out if R0 < 1 and persists if R0 > 1), the
stochastic models indicate that there is always a positive probability for HIV infection to be eradicated
in patients. In the presence of antiretroviral therapy, our results show that the chance of clearance of
the infection tends to increase although drug resistance is likely to emerge.
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1. Introduction

Drug resistance (antimicrobial and anti-neoplastic) is a global concern, threatening the treatment of
infectious diseases and cancer based diseases, which results in prolonged illness, disability and death
[1]. The World Health Organization (WHO) defines antimicrobial resistance as a microorganism’s
resistance to an antimicrobial drug that was once able to treat an infection by that microorganism [2].
Microbes include protozoa, fungi, virus and bacteria. Drug resistance can be associated with cases such
as clinical misuse, natural occurrence, self medication. Antibiotics (treatment for bacterial infection)
drug resistance has been the most common and long standing form of drug resistance as far back
as in the 1950s’. Anti-neoplastic resistance (i.e., synonymous with chemotherapy resistance) is the
ability of cancer cells to survive and grow despite di↵erent anti-cancer therapies [3]. Lots of works
have been dedicated to drug resistance in antimicrobial [4–6] and in anti-neoplastic [3, 7–9]. Beyond
the studies above are some mathematical insights into drug resistance. For instance, in 1998, Blower
et al. [10] used mathematical model to suggest control measures for herpes epidemics that would
prevent the emergence of substantial levels of antiviral drug resistance. In 2009, Cohen et al. [11]
used mathematical models to o↵er insight into the acquisition and amplification of drug resistance in
patients with tuberculosis.

One of the leading causes of death in most sub saharan African countries is the acquired immune
deficiency syndrome (AIDS), a chronic, potentially life-threatening condition caused by HIV.
Currently, seven classes of drug* are used to inhibit the life cycle of HIV through the antiretroviral
therapy (ART). In the treatment of HIV, ART uses the combination of three or more drugs from two
or more of the above classes [13]. The commonly used classes of drug are the nucleoside reverse
transcriptase inhibitors (NRTIs) and the protease inhibitors (PIs). Drug combination has proved to
suppress the plasma viral loads to below the clinical detection limit. However, a complete suppression
of the viral detection is not seen due to either host or viral factors, which in essence decreases the
survival rate of the host and increases HIV infection. These factors include imperfect adherence to
drug regimen, drug resistance, poor drug absorption (e.g., see [13–17]).

Drug resistance in HIV has been a major factor for treatment failure [18]. Larder et al. [14] defined
drug resistance as the ability for the virus to replicate even in the presence of drugs. HIV drug resistance
has been found to be as a result of incomplete suppression of viral loads rather than the infection of
resistant strain from other people.

Several works have been dedicated to getting insight into the dynamics of HIV in the presence of
drug resistance. In 1992, McLean and Nowak [19] investigated the competitive interactions between
zidovudine-sensitive (an NRTI HIV drug class) and resistant strains of HIV within the context of
interaction between CD4+ T cells and HIV, using a deterministic approach. In 1997, Kirschner and
Webb [20] studied strategies in a monotherapy treatment of HIV infection in the presence of both
sensitive and resistance strains at di↵erent levels of CD4+ T cells counts. In 1997, Nowak et al. [21]
provided an analytical approximation for the rate of the emergence of resistant strain in di↵erent
compartments of the virus population. In 1998, Ribeiro et al. [22] calculated the expected frequency
of the drug-resistant strain in patients who have not received treatments. Their result indicated that it
is possible that in the onset of treatment in these patients, the resistant strain could be selected. In

*The nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease
inhibitors (PIs), fusion inhibitors, CCR5 antagonists, post-attachment inhibitors, and integrase strand transfer inhibitors (INSTIs) [12]
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1998, Kepler and Perelson [23] suggested that spatial heterogeneity can be a factor in the evolution of
drug resistance. In 2005, Murray and Perelson [24] showed the influence of quasi species on the
resistance to zidovudine monotherapy. In 2007, Rong et al. [13] analytically derived expressions that
specify the condition in which the resistant strain is selected. In 2010, Vaidya et al. [25] studied
patients with resistance to enfuvirtide (HIV-1 fusion inhibitor). Their result shows that the rapid
replacement of resistant virus during an ART interruption was attributed to the associated fitness cost
to the resistance strain. In 2012, Kitayimbwa et al. [13] used a deterministic model with both forward
and backward mutations to show the coexistence of both the sensitive and resistant strains, and they
derived the conditions for dominance of the viral strain in the presence and absence of ART.
Moreno-Gamez et al. [26] employed a simple birth-death process model to study
multidrug-resistance. Their results show that imperfect drug penetration can lead to monotherapy at
sites of bacterial residence despite treatment with several drugs.

Most of the above works are built upon deterministic models. Only a very few of them has been
done via a stochastic approach to study the emergence of HIV-1 drug resistance [26, 27]. It is worthy
mentioning that there is a body of mathematical models using stochastic formulations to investigate
within-host viral HIV dynamics (e.g., [27–36] and the references therein). For instance, Perelson et
al. [37] developed a stochastic model of the early HIV-1 infection to probe the earliest virus-host
events following virus inoculation. Hill et al. [31] focused on the latent infected cells to predict delays
in viral rebound via a stochastic formulation. Conway and her collaborators studied how prophylaxis
with antiretroviral drugs can reduce the risk of infection [29] and why some HIV-infected patients
experienced post-treatment control [30]. A recent paper combined stochastic and deterministic within-
host models to estimate the time of infection [38]. But these models did not consider the emergence of
drug resistance during therapy.

The primary goal of this paper is to investigate HIV-1 infection and the emergence of drug
resistance. The early stage of the infection (i.e., the first few hours to days following HIV exposure)
may determine whether the infection can be successfully established. However, the numbers of
infected cells and viruses during the early stage are extremely low and stochasticity may play a
critical role in dictating the fate of infection. To that end, we use stochastic modeling to study the
probability of the clearance of HIV infection, time to the clearance of HIV infection, and time to the
establishment of infection.

The remainder of the article is organized as follows. Section 2 describes the deterministic model
proposed in [13,15] and summarizes their results. In Section 3, we develop a continuous-time Markov
chain (CTMC) model and employ a multitype branching process theory to approximate the dynamics
of the CTMC model near the infection-free equilibrium. Numerical simulations are performed in
Section 4. Finally, the paper is concluded with some discussion.

2. Deterministic model and analysis

We consider an ordinary di↵erential equation model that has been described and analyzed in [15].
An extreme case of this model without backward mutation was studied in an earlier work [13]. The
system is given as follows:
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dT
dt
= � � dT � (1 � ✏ s

RT )ksVsT � (1 � ✏rRT )krVrT

dTs

dt
= (1 � u)(1 � ✏ s

RT )ksVsT + z(1 � ✏rRT )krVrT � �Ts

dVs

dt
= (1 � ✏ s

PI)Ns�Ts � cVs

dTr

dt
= u(1 � ✏ s

RT )ksVsT + (1 � z)(1 � ✏rRT )krVrT � �Tr

dVr

dt
= (1 � ✏rPI)Nr�Tr � cVr

(2.1)

where t is the time variable, T (t) is the concentration of susceptible T-cells at time t, Ts(t) is the
concentration of productively infected cells by the drug-sensitive virus. Vs(t) denotes the
concentration of drug-sensitive virus. ks is the constant rate at which the uninfected cells are infected
by the drug-sensitive strain. Tr(t), Vr(t) and kr are the the concentration of productively infected cells,
the concentration of virus and the infection rate associated with resistant strain, respectively. The
proportions u and z depict the forward mutation (sensitive strain to resistant strain) and the backward
mutation (resistant strain to sensitive strain), respectively, with 0 < u  1, 0  z  1. The ✏ ij’s (i = s, r
and j = RT, PI) are constant drug e�cacies corresponding to the reverse transcriptase (RT) and the
protease inhibitor (PI) for the sensitive or resistant strain with 0  ✏ s

RT , ✏
r
RT , ✏

s
PI , ✏

r
PI < 1. The definition

and the baseline values of the rest of the parameters are given in Table 1. In the absence of treatment
(i.e. all the drug e�cacies are 0), the model can be used to study whether the infection can be
successfully established and whether the mutant virus, due to mutations, preexists before therapy.
During treatment (with positive drug e�cacies), the model investigates how the drug-resistant virus
develops and competes with the wild-type virus.

Table 1. Parameter values and definitions.
Parameter Definition Value Reference

T0 Initial target cell count 106 mL�1 [39]
d Death rate of uninfected cells 0.01 day�1 [40]
� Recruitment rate of uninfected cells 104 mL�1day�1 [41]

ks
Infection rate of

target cells by wild-type virus 2.4 ⇥ 10�8 mL day�1 [41]

kr
Infection rate of

target cells by drug-resistance virus 2.0 ⇥ 10�8 mL day�1 [13]

u Forward mutation rate 2.24 ⇥ 10�5 [25]
z Backward mutation rate 1.73 ⇥ 10�5 [25]
� Death rate of infected cells 1 day�1 [42]

Ns Burst size of drug-sensitive strain 3000 [13]
Nr Burst size of drug resistance strain 2000 [13]
c Clearance rate of free virus 23 day�1 [43]
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2.1. Basic reproduction number

The dynamics of the system were studied by Kitayimbwa et al. in [15]. The basic reproduction
number R0 is defined as the expected number of secondary cases produced by one primary case in an
otherwise susceptible population. Using the next generation method [44], it follows from the analysis
in [15] that R0 associated with system (2.1) is

R0 =
�

2cd

�
(1 � u)ksNs(1 � ✏ s) + (1 � z)krNr(1 � ✏r)

+

s
✓
(u � 1)ksNs(1 � ✏ s) + (z � 1)krNr(1 � ✏r)

◆2
� 4(1 � u � z)krksNrNs(1 � ✏ s)(1 � ✏r)

� (2.2)

Here (1 � ✏ s) = (1 � ✏ s
RT )(1 � ✏ s

PI) and (1 � ✏r) = (1 � ✏rRT )(1 � ✏rPI). For completeness, the derivation
of R0 is provided in the Appendix.

2.1.1. Case 1: Forward mutation (z = 0 and 0 < u < 1)

Suppose z = 0, 0 < u < 1, and no implementation of the ART (i.e., all ✏ ij = 0) for j = RT ,
PI and i = s, r in model (2.1). In this case, only the forward mutation is allowed and the associated
deterministic dynamics have been analyzed in [13]. In what follows, we summarize their results. There
are at most three biologically feasible steady states of the form Ē =

�
T̄ , T̄s, V̄s, T̄r, V̄r

�
. The first one is

the infection-free equilibrium (IFE) that always exists, and it is given by

E0 =
⇣�
d
, 0, 0, 0, 0

⌘
.

The second one is a boundary steady state

Er =
✓ c
krNr
, 0, 0, (Rr � 1)

dc
krNr�

, (Rr � 1)
d
kr

◆

which captures that the survival strain is the drug-resistant strain. The third one is an interior steady
state, which represents the coexistence of both viral strains and is given by

Ec =
✓ c
(1 � u)ksNs

, T̃s,
Ns�

c
T̃s, T̃r,

Nr�

c
T̃r

◆

where
T̃s =

[(1 � u)� � 1][(1 � u)Rs � 1]�
(� � 1)(1 � u)Rs�

, T̃r =
[(1 � u)Rs � 1]u��
(� � 1)(1 � u)Rs�

, � =
Rs

Rr
.

Here
Rs =

ksNs�

dc
, Rr =

krNr�

dc
are the reproduction numbers of the wild-type and the drug-resistant strain, respectively, by assuming
that the system is decoupled.

It is obvious that if z = 0 in model (2.2) (i.e., the case of the forward mutation), then the basic
reproduction number R0 is given by

R0 = max
n
(1 � u)Rs,Rr

o
.

The stability result of the forward mutation obtained in [13] is summarized as follows.
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Theorem 2.1 ( [13, Propositions 1 and 2]).
a. The IFE E0 is locally asymptotically stable if R0 < 1, and it is unstable if R0 > 1.
b. The boundary steady state with only drug-resistant virus Er exists if and only if Rr > 1. It is

locally asymptotically stable if Rr > (1 � u)Rs and unstable if Rr < (1 � u)Rs.
c. The coexistence steady state Ec exists and is locally asymptotically stable if and only if

Rs > max
(

1
1 � u

,
Rr

1 � u

)
.

2.1.2. Case 2: Forward and backward mutation (0 < u, z < 1)

Suppose that 0 < u < 1, 0 < z < 1, and ✏ ij = 0 in model (2.1), then both forward and backward
mutations are allowed. The dynamical result obtained in [15] is presented below. In this case, we
have up to two steady states. One is the IFE E0 and another one is the endemic equilibrium (EE),
E1 = (T ⇤,T ⇤s ,V⇤s ,T ⇤r ,V⇤r ), where

T ⇤ =
�

d(1 � u � z)RsRr

⇥
(1 � u)Rs + (1 � z)Rr � R0

⇤
,

T ⇤s =
�

�⌧


R0 � Rr +

z⌧ � R0

Rs(1 � u � z)
+

1
�(1 � u � z)

�
,

V⇤s =
Ns�

c
T ⇤s ,

T ⇤r =
�

⌧�

 R0

Rr(1 � u � z)
+ (Rs � R0) � �(1 � u) + u

(1 � u � z)

�
,

V⇤r =
Nr�

c
T ⇤r ,

(2.3)

with

� =
Rs

Rr
, and ⌧ = Rs � Rr.

The stability result [15, Theorem 1 & Theorem 3] for system (2.1) with the forward and backward
mutations is summarized as follows.

Theorem 2.2 ( [15, Theorems 1, 3]).

(1) (Global stability) If R0 < 1 in model (2.2), then the IFE E0 is the unique equilibrium solution and
it is globally asymptotically stable in R5

+.
(2) (Local stability) If R0 > 1, system (2.1) has equilibrium solutions: the IFE E0 and the EE E1.

Moreover, the IFE E0 is unstable and the EE E1 is locally asymptotically stable.

This result indicates that R0 serves as an infection threshold; i.e., if R0 < 1, the infection will be
cleared, whereas if R0 > 1, the infection will become established. It is worthy mentioning that it is
straightforward to extend the analysis of the deterministic dynamics to the case where drug treatment
is included, and a similar result remains to be valid; i.e., the corresponding basic reproduction number
is a threshold parameter of the HIV infection by using the deterministic model (2.1).

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1174–1194.



1180

2.2. Sensitivity Analysis

To determine the e↵ect that model parameters onR0, we perform a sensitivity analysis by computing
the normalized sensitivity index S which is introduced in [45] and defined as follows:

S = dR0

dp
· p
R0

�����
p=p0

where p is the parameter of interest and p0 is the base value of this parameter.

Table 2. Relative sensitivity analysis of parameters in the absence of ART with the wild-
type strain dominating the viral dynamics. Here ✏ s

RT = ✏
r
RT = ✏

s
PI = ✏

r
PI = 0 and the rest of

parameter values are provided in Table 1.
Parameter S
� 1
ks 1
Ns 1
d �1
c �1
u �2.24 ⇥ 10�5

Nr 1.088 ⇥ 10�9

kr 1.076 ⇥ 10�9

z 4.844 ⇥ 10�10

Table 3. Relative sensitivity analysis of parameters under ART with the resistant strain
dominating the viral dynamics. Here ✏ s

RT = 0.5, ✏rRT = 0.02, ✏ s
PI = 0.1, and ✏rPI = 0.01 and the

rest of parameter values are the same as in Table 1.
Parameter S
� 1
kr 1
Nr 1
d �1
c �1
z �1.73 ⇥ 10�5

Ns 1.203 ⇥ 10�8

ks 1.173 ⇥ 10�8

u 1.959 ⇥ 10�9

Our results of the sensitivity analysis for the case without and with drug treatment, ART, are
summarized in Tables 2 and 3, respectively. The obtained normalized sensitivity indices are ranked
from the largest to the smallest by using the corresponding magnitudes. The sign of the sensitive
index indicates the direction of the change in R0. More specifically, the positive (negative) sign
represents that R0 will increase (decrease) as the parameter increases. The sensitivity analysis
displayed in Table 2 shows that the parameters �, ks, Ns, c, and d are the most influential parameters
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in terms of the relative change in R0. This suggests that the basic reproduction number is most
sensitive to the wild-type strain parameters rather than the mutant strain parameters in the absence of
ART. Thus, the contribution to the basic reproduction number from de novo mutation is minor. This is
reasonable as the mutation rate is very small and drug treatment has not been considered in this basic
reproduction number. In contrast, with the presence of drug treatment, Table 3 shows that �, kr, Nr, c,
and d are the most influential parameters for R0. This indicates that the drug-resistant strain is likely
to emerge and dominate the virus population when it is selected by the drug pressure (i.e. drug
treatment is more e↵ective in inhibiting the wild-type strain). The dynamics of the resistant strain will
be illustrated later in a numerical simulation.

3. Stochastic models

ODE models typically assume that the sizes of the compartments are large enough that the
members are homogeneously mixed, or at least that there is homogeneous mixing in each subgroup if
the population is stratified by activity levels. However, at the beginning of an infection, there is a very
small number of infected cells or virions and the infection is indeed a stochastic event depending on
heterogeneity among cells/virions and patterns of contacts between them. Hence it suggests that the
homogeneous mixing at the beginning of an infection may not be a good assumption and the ODE
models may be inappropriate when the initial infection is small. In particular, it has been showed that
stochasticity may play a significant role when the viral load is low [28, 46].

Therefore, we use a continuous-time Markov chain (CTMC) model to study the variability of the
disease dynamic, and then we apply the theory of the multitype branching process (e.g., see [47–52]
and references therein) to approximate the dynamics of the CTMC model near the IFE.

3.1. Continuous-time Markov Chain (CTMC)

The continuous-time Markov chain (CTMC) is a stochastic process that is continuous in time and
discrete in state space. The ODE model (2.1) serves as a framework for formulation of the CTMC
model. For simplicity, the same notation is used for the variables as in the ODE model. Let X(t) =
(T (t),Ts(t),Vs(t),Tr(t),Vr(t)) denote the discrete random vector for the states, where for each t 2 [0,1),

T (t),Ts(t),Vs(t),Tr(t),Vr(t) 2
�
0, 1, 2, 3, · · ·  .

Let �X(t) = X(t+�t)�X(t). In the CTMC model, there are twelve independent Poisson processes and
the corresponding infinitesimal transition probabilities are defined in Table 4.
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Table 4. State transitions and associated rates for the CTMC model.
Event Description Transition �X(t) Transition rate, ri

1 Recruitment of T (1, 0, 0, 0, 0) �
2 Death of T (�1, 0, 0, 0, 0) dT
3 Infection due to sensitive strain (�1, 1, 0, 0, 0) (1 � u)(1 � ✏ s

RT )ksVsT
4 Forward mutation (�1, 0, 0, 1, 0) u(1 � ✏ s

RT )ksVsT
5 Backward mutation (�1, 1, 0, 0, 0) z(1 � ✏rRT )krVrT
6 Infection caused by resistant strain (�1, 0, 0, 1, 0) (1 � z)(1 � ✏rRT )krVrT
7 Death of Ts (0,�1, 0, 0, 0) �Ts

8 Production of Vs (0, 0, 1, 0, 0) (1 � ✏ s
PI)Ns�Ts

9 Clearance of Vs (0, 0,�1, 0, 0) cVs

10 Death of Ts (0, 0, 0,�1, 0) �Tr

11 Production of Vr (0, 0, 0, 0, 1) (1 � ✏rPI)Nr�Tr

12 Clearance of Vr (0, 0, 0, 0,�1) cVr

3.2. Branching process approximation

A multi-type branching process approximation is applied to the four infectious classes, i.e.,
Ts,Vs,Tr,Vr, in the CTMC model at the IFE, where T = �/d. The multi-type branching process is
linear (in terms of infectious classes) and time homogeneous with independent births and deaths.
Thus, we are able to define the probability generating function (pgfs) for the birth and death of each
infected class. As a result, we can use this to calculate the probability of the establishment of
infection.

In general, let {Z(t) : t 2 [0,1)} be a collection of discrete valued vector of random variables where
Z(t) = (Z1(t),Z2(t), · · · ,Zn(t))T represents the disease classes. We assume that the birth of an o↵spring
and the number of the o↵spring that is produced by a certain type are independent. We also assume that
the individuals of type j follows an identical o↵spring pgf, i.e., they are independent and identically
distributed. Let Xj(0) = � jk, where � jk = 1 if i = j and zero otherwise, for 1  j, k  n. The o↵spring
pgf for the infectious class of type j is a function f j : [0, 1]n ! [0, 1] with

Table 5. Transition probabilities r̂i�t + o(�t) for branching process (BP) approximation.
Event Description �Z(t) BP rate r̂i

1 Infection caused by sensitive strain (1, 0, 0, 0) (1 � u)(1 � ✏ s
RT )ksVs(t)�d

2 Forward mutation (0, 0, 1, 0) u(1 � ✏ s
RT )ksVs(t)�d

3 Backward mutation (1, 0, 0, 0) z(1 � ✏rRT )krVr(t)�d
4 Infection caused by resistant strain (0, 0, 1, 0) (1 � z)(1 � ✏rRT )krVr(t)�d
5 Death of Ts (�1, 0, 0, 0) �Ts(t)
6 Production of Vs (0, 1, 0, 0) (1 � ✏ s

PI)Ns�Ts(t)
7 Clearance of Vs (0,�1, 0, 0) cVs(t)
8 Death of Tr (0, 0,�1, 0) �Tr(t)
9 Production of Vr (0, 0, 0, 1) (1 � ✏rPI)Nr�Tr(t)

10 Clearance of Vr (0, 0, 0,�1) cVr(t)
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f j(s1, · · · , sn) =
1X

kn=0

· · ·
1X

k1=0

pj(k1, · · · , kn)sk1
1 · · · skn

n

where pj(k1, k2, · · · , kn) is the probability that parent of type j has ki o↵springs of type i for
i = 1, 2, · · · , n.

In the case of our model, there are four disease components n = 4 and

Z = (Z1,Z2,Z3,Z4) = (TS ,Vs,Tr,Vr).

The associated multitype branching process consists of ten independent events and the corresponding
transition rates are obtained directly from the rates in the linearized system of the ODE model (2.1) at
the IFE, which is summarized in Table 5. Using this, we derive the o↵spring pgf in terms of
TS ,Vs,Tr,Vr and they are given by

f1(s1, s2, s3, s4) =
(1 � ✏ s

PI)Ns�s1s2 + �

(1 � ✏ s
PI)Ns� + �

,

f2(s1, s2, s3, s4) =

(1 � u)(1 � ✏ s
RT )ks�

d
s1s2 + c + u(1 � ✏ s

RT )ks
�
d s2s3

(1 � ✏ s
RT )ks

�
d + c

,

f3(s1, s2, s3, s4) =
(1 � ✏rPI)Nr�s3s4 + �

(1 � ✏rPI)Nr� + �
,

f4(s1, s2, s3, s4) =

(1 � z)(1 � ✏rRT )kr�

d
s3s4 + c + z(1 � ✏rRT )kr

�
d s1s4

(1 � ✏rRT )kr
�
d + c

.

By the theory of branching process [59, Theorem 1.2] , the probability of the clearance of HIV
infection of the above system can be determined by solving the fixed points
fi(q1, q2, q3, q4) = qi (1  i  4) on [0, 1]4. We know that there is always going to be a fixed point at
(1, 1, 1, 1). We are interested in the minimal fixed point (q1, q2, q3, q4) in which qi 2 [0, 1] for
1  i  4. In general, there is no closed-form expression for the minimal fixed point. So we have to
numerically solve qi (1  i  4).

Stochastic threshold:
Let M = (mk j) be the expectation matrix of the o↵spring pgfs. M is a nonnegative 4⇥4 matrix whose

entry mk j gives the expected number of o↵springs in type k produced by an infectious individual in type
j; that is,

mk j =
@ fk

@s j

������
(s1,s2,s3,s4)=(1,1,1,1)

.
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Then

M = (mk j) =

2
6666666666666666666666664

(1�✏ s
PI )Ns�

(1�✏ s
PI )Ns�+�

(1�✏ s
PI )Ns�

(1�✏ s
PI )Ns�+�

0 0
(1�u)(1�✏sRT )ks�

d
(1�✏sRT )ks�

d +c

(1�✏ s
RT )ks

�
d

(1�✏sRT )ks�
d +c

u(1�✏sRT )ks�
d

(1�✏sRT )ks�
d +c

0

0 0 (1�✏rPI )Nr�

(1�✏rPI )Nr�+�

(1�✏rPI )Nr�

(1�✏rPI )Nr�+�
z(1�✏rRT )kr

�
d

(1�✏rRT )kr
�
d+c 0 (1�z)(1�✏rRT )kr

�
d

(1�✏rRT )kr
�
d+c

(1�✏rRT )kr
�
d

(1�✏rRT )kr
�
d+c

3
7777777777777777777777775

.

The expectation matrix M is irreducible since the corresponding digraph is strongly connected. It
is easy to verify that F and V defined in the appendix are non-negative and non-singular M-matrices
(see [53]). By the threshold theorem [54], we obtain the following relationship between the
deterministic threshold and the stochastic threshold.

R0 < 1 (= 1, > 1) if and only if ⇢(M) < 1 (= 1, > 1). (3.1)

In the subcritical and critical cases where ⇢(M)  1 (i.e., R0  1), the probability of the ultimate
clearance of HIV infection is 1; i.e.,

Pext = lim
t!1

Prob{X
¯

(t) = ~0} = 1

In the supercritical case where ⇢(M) > 1 (i.e., R0 > 1), the corresponding clearance of HIV infection
probability is determined by the minimal fixed point of fi(q1, q2, q3, q4) = qi (1  i  4), and

Pext = lim
t!1

Prob{X
¯

(t) = ~0} = qk1
1 qk2

2 qk3
3 qk4

4

where ki = Xi(0) for 1  i  4.
Consequently, the probability of the establishment of infection is

Pout = 1 � Pext =

8>><
>>:

0, if R0  1,
1 � qk1

1 qk2
2 qk3

3 qk4
4 , if R0 > 1.

In Section 4, we estimate the clearance of HIV infection probability by computing q1, q2, q3 and q4

numerically. Our result shows that the linear branching process provides a very good approximation
for the nonlinear CTMC near the IFE. In particular, the estimate for the clearance of HIV infection
agrees closely with simulations of the CTMC model.

4. Numerical simulations

In this section, we numerically solve our CTMC model (defined in Table 4) with the based values
of model parameter given in Table 1.

4.1. Viral dynamics without the presence of drug

First, we study the clearance of HIV infection probability in the absence of drugs (i.e., ✏ s
RT = ✏

r
RT =

✏ s
PI = ✏

r
PI = 0). Here the clearance of HIV infection is attained when Ts = Vs = Tr = Vr = 0. In the

simulation for the CTMC model, we estimate the probability of the clearance of HIV infection using
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the frequency of the clearance of infection from a total of 10, 000 sample paths, where each sample
path is generated by using the Gillespie algorithm [55]. We also compare this estimate from the CTMC
model to the corresponding analytical approximation computed from the multitype branching process
theory. Figure 1(a),(b) displayed the clearance of HIV infection probability as a function of the viral
clearance rate c when the infection is initiated by a productively infected T cell in the drug-sensitive
and resistant strain (i.e., Ts(0) = 1 and Tr(0) = 1), respectively. This result shows that there is a strong
agreement between the result of the CTMC model (obtained from Gillespie algorithm) and theoretical
estimate (obtained from the multitype branching process approximation), and indeed the di↵erence of
these results is in the third decimal place. In Figure 2, we plot the deterministic threshold parameter
R0 and the probability of the establishment of infection Pout as c is varied, where the criterion for the
establishment of infection is when the cumulative sum of Ts,Vs,Tr and Vr reaches 5, 000. Figure 2(a)
(resp. Figure 2(b)) displays the associated result for Ts(0) = 1 (resp. Tr(0) = 1). One can see from
this figure that Pout is proportional to R0. The smaller the R0 value, the lower the probability of the
establishment of infection. More specifically, when R0  1, Pout = 0, which implies that Pext = 1 as
we have seen in Eq (3.1). Furthermore, even in the severity of the disease (i.e., R0 � 1), Pout appears
to be still strictly below the unity. For instance, one can see from Figure 2(a) that, in our baseline case
where c = 23, R0 = 3.13 and Pout = 0.69, and hence Pext = 1�Pout = 0.31; namely, there is about 31%
of the chance for the clearance of HIV infection when R0 = 3.13. This shows that there is a positive
chance for the clearance of HIV infection even if R0 > 1. Additionally, Figure 2 shows that there is a
higher chance for the establishment of infection with infection initiated with one infected T cell in the
sensitive strain as compared that in the resistant strain.

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Branching process

CTMC

(a) Ts(0) = 1

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Branching process

CTMC

(b) Tr(0) = 1

Figure 1. Probability of the clearance of HIV infection in the absence of drugs when the
disease is initiated by (a) one Ts cell (b) one Tr cell. The green line corresponds to the analytic
estimate from branching process approximation, and the red stars represent the result from
the CTMC model. The estimates of the clearance probability are obtained based on 10,000
sample paths of the CTMC model. Here ✏ s

RT = ✏
r
RT = ✏

s
PI = ✏

r
PI = 0 and the rest of parameter

values are provided in Table 1.

Secondly, we study the time to the clearance of HIV infection and the establishment of infection
using the CTMC model over [0, 365] days. In the numerical results shown, each histogram is generated
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Figure 2. Probability of a chronic infection in the absence of drugs when the infection is
initiated by (a) one Ts cell (b) one Tr cell. The blue (resp., red) curve illustrates R0 (resp.
Pout) as a function of c. The estimates of the clearance probability are obtained based on
10,000 sample paths of the CTMC model. The values of parameters are the same as in
Figure 1.

from 10, 000 simulations of the CTMC model. Figure 3 displays the conditional probability distribution
of time to the clearance of HIV infection, given that the clearance occurs within [0, 365] days. The left
(resp. right) panel shows the result when the infection is initiated by Ts(0) = 1 (resp. Tr(0) = 1). The
expected time to the clearance of HIV infection in the case of Ts(0) = 1 and Tr(0) = 1 are 0.62 and
1.07 days, respectively. Figure 4 shows the conditional probability distribution of the establishment
of infection given that the establishment of infection occurs during [0, 365] days. We see that the
establishment happens sooner than when the infection is initiated by Ts(0) = 1 as compared that
by Tr(0) = 1. The associated mean time to the establishment of infection are 2.08 and 5.57 days
respectively. The corresponding mean and standard derivation are summarized in Table 6.

Table 6. Statistics on time to the clearance of HIV infection and time to the establishment of
infection given that the occurrence of an the clearance of HIV infection and the establishment
of infection during [0, 365] days. The numerical estimates of these statistics are based on
10, 000 sample paths of the CTMC model. The parameter values are the same as in Figure 1.

Initiation Pout E[Text|ext] �[Text|ext] E[Tout|out] �[Tout|out]
Ts = 1,Vs = Tr = Vr = 0 0.69 0.62 0.44 2.08 0.61
Tr = 1,Ts = Vs = Vr = 0 0.44 1.07 1.07 5.57 1.78

4.2. Dynamics of drug resistance under treatment

In this subsection, we investigate the case where the treatment is on (i.e., the corresponding
e�cacy parameters ✏ st

tr > 0 for tr = RT or PI, and st = s or r). More specifically, for the example
presented below, we assume that ✏ s

RT = 0.5, ✏rRT = 0.02, ✏ s
PI = 0.1, and ✏rPI = 0.01. In this case the basic

reproduction number is R0 = 1.6873, with the reproduction number associated with the sensitive
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(a) Ts(0) = 1 (b) Tr(0) = 1

Figure 3. Conditional probability distribution of time to the clearance of HIV infection given
that the eradication of infection occurs during [0, 365] days. This histogram is generated
based on 10, 000 sample paths of the CTMC model. The parameter values are the same as in
Figure 1.

strain is Rs = 1.4087, and that of the resistant strain is Rr = 1.6873. This shows that the resistant
strain is dominating under this specific the antiretroviral therapy (ART). Since R0 > 1, the
deterministic model (2.1) predicts that the ODE solution converges to a nontrivial endemic state for
every biologically feasible initial condition that is other than the IFE (see the blue dashed curve in
Figure 5(b) for an example). Prior to convergence, a high peak of the infection is visible in the ODE
solution. However, this is not the case for the stochastic model. In the stochastic model, there is a
positive probability for the clearance of the infection to take place. Two sample paths of the CTMC
model are graphed in Figure 5, where one represents the clearance of the infection and the other
represents a successful establishment of the infection.

Based on the CTMC model, for instance if the infection is initiated with a productively infected
cell in both strains (i.e. Ts(0) = Tr(0) = 1), the probability of the clearance of HIV infection is 42.3%
in the presence of ART, whereas the corresponding clearance probability is 18.4% in the absence of
ART. This indicates that the treatment tends to increase the likelihood for clearance of the infection in
patients.

Furthermore, we study the time to the clearance and the time to the establishment of infection
by using the CTMC model. The simulated result is illustrated in Figure 6. Particularly, the left panel
displays the conditional probability distribution of the time to the clearance given the infection vanishes
during a year. The right panel shows the distribution of the time to the establishment of infection
provided the infection is successfully established during a year. Our result shows that the average time
to the clearance of the infection is about 2.0 days with a standard deviation of 1.9 days. On the other
hand, the mean time to the establishment of infection is about 6.3 days with a standard deviation of
2.6 days. Compared to the result in the absence of the ART (Section 4.1), we see that the time to the
establishment of infection is expected to take longer in the presence of the ART.
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(a) Ts(0) = 1 (b) Tr(0) = 1

Figure 4. Conditional probability distribution of time to a chronic infection given that the
establishment of infection happens during [0, 365] days. This histogram is generated based
on 10, 000 sample paths of the CTMC model. The parameter values are the same as in Figure
1.
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Figure 5. Comparison the dynamics between the ODE model and the CTMC model in the
presence of the ART. The blue dashed curve displays the ODE solution of Vr(t) and the black
solid curve is a sample path of the associated CTMC model. (a) Stochastic solution indicates
HIV infection can be cleared. (b) The displayed stochastic solution is consistent with the
ODE solution showing the establishment of infection. In the upper right corner of (b), it
zooms in the corresponding sample path of the CTMC model over [0, 8] days, where the y
axis is displayed on a log scale. Here Ts(0) = Tr(0) = 1, ✏ s

RT = 0.5, ✏rRT = 0.02, ✏ s
PI = 0.1,

✏rPI = 0.01 and the rest of the initial condition and the based values of the parameters are the
same as in Figure 1. The ODE model is simulated by using the explicit Runge–Kutta method
with the time step 0.01.
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(a) Clearance of HIV infection (b) Establishment of infection

Figure 6. Conditional probability distribution of time to (a) the clearance of HIV infection
given the eradication of infection occurs during [0, 365] days; (b) the establishment of
infection given that the infection is successfully established during [0, 365] days. The initial
condition and the parameter values are the same as in Figure 5. This histogram is generated
based on 10, 000 sample paths of the CTMC model. The parameter values are the same as in
Figure 5.

5. Discussion

In this paper, using a two-strain mathematical model we study the accumulation of mutations that
may confer HIV-1 drug resistance before therapy (i.e. the drug e�cacies are all zero) and how the
mutant strain is selected and competes with the wild-type strain during treatment. We formulate a
continuous-time Markov chain (CTMC) model based on the ODE models proposed and analyzed
in [13, 15]. We then apply a multitype branching process to approximate the CTMC at the IFE to
obtain a theoretical estimate of the establishment of infection probability. Numerical simulations are
carried out using the CTMC model. Our result shows that when the infection is initiated with one
productively infected cell in the sensitive strain, the chance for the establishment of infection would
be about 69%. In contrast, when the infection is initiated with one productively infected cell in the
resistance strain, the establishment of infection probability will be reduced to 44%. On the other
hand, in the case of infection initiated by the virus in either strain, the clearance of HIV infection
happens almost immediately with probability 1. This is consistent in that the clearance rate is 23 per
day, which will always ensure that when the infection is initiated by virus with the density su�ciently
low, clearance is done almost immediately. However, in the case of infected cells, cell death is 1 per
day, which will give a chance for infected cells to produce virions and infect other cells. The
deterministic case shows that when R0 > 1 (deterministic threshold), there is always going to be
disease persistence. However, our stochastic results show that this is not always the case. Under ART
considered in this work, we see that the resistant strain dominates when Rs < Rr. In this case, we see
that even with R0 > 1, stochastic dynamics indicate that there is a positive probability of clearance of
the infection in patients. In addition, our stochastic investigations show that in the presence of
antiretroviral therapy, the chance of the eradication of infection tends to increase although drug
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resistance is likely to emerge.
There are limitations in the current study. Our model predicts that either the infection is cleared or

successfully established. However, current treatment cannot eradicate the virus and drug resistance
may not be a major reason for HIV persistence during long-term e↵ective therapy [56]. A major
obstacle to viral elimination is the reservoir of latently infected cells. These cells are not a↵ected by
the treatment or immune response but they can be activated to produce new virions. The latent
reservoir may also archive all the variants of HIV generated during treatment. Mathematical models
have been developed to study the latent infection, low viral persistence and viral blips during
antiretroviral therapy (e.g. see a review in [57]). The purpose of this paper is not studying HIV
persistence under treatment. Here we used a simple stochastic model with one mutation to obtain
some analytical results on the emergence of drug resistance and compare the results with the
deterministic model. In addition, our model does not include the immune responses to HIV infection,
which may play a critical role in explaining post-treatment control in some patients [27] and have
important implications for the treatment with broadly neutralizing antibodies [58]. A more
comprehensive model will be to consider cases such as cell-to-cell transmission, multiple mutations,
incorporating the latently infected cells and immune responses, and studying these in the presence of
antiretroviral therapy.
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Appendix: Derivation of R0 of Model (2.1)

To calculate the reproduction number R0 for system (2.1), we apply the next generation matrix
method [44].

It follows from direct calculation that the new infection matrix F and transmission matrix V are
given by

F =

2
6666666666666664

0 (1�u)(1�✏ s
RT )ks�

d 0 z(1�✏rRT )kr�

d
0 0 0 0
0 u(1�✏ s

RT )ks�

d 0 (1�z)(1�✏rRT )kr�

d
0 0 0 0

3
7777777777777775

V =

2
66666666666664

� 0 0 0
�(1 � ✏ s

PI)Ns� c 0 0
0 0 � 0
0 0 �(1 � ✏rPI)Nr� c

3
77777777777775
.

By definition, R0 is the spectral radius of the matrix FV�1; i.e.,

R0 = ⇢(FV�1) =

2
6666666666666664

(1�u)Ns�ks(1�✏ s)
dc

(1�u)�ks(1�✏ s
RT )

dc
zNr�kr(1�✏r)

dc
z(1�✏rRT )kr�

dc
0 0 0 0

uNs�ks(1�✏ s)
dc

u�ks(1�✏ s
RT )

dc
(1�z)Nr�kr(1�✏r)

dc
(1�z)�kr(1�✏rRT )

dc
0 0 0 0

3
7777777777777775
.

and hence we have

R0 =
�

2cd

h�
(1 � u)ksNs(1 � ✏ s) + (1 � z)krNr(1 � ✏r)

i

+
�

2cd

r✓
(u � 1)ksNs(1 � ✏ s) + (z � 1)krNr(1 � ✏r)

◆2
� 4krksNrNs(1 � ✏ s)(1 � ✏r)
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