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Abstract: Sonification is the utilization of sounds to convey information about data or events. There
are two types of emotions associated with sounds: (1) “perceived” emotions, in which listeners
recognize the emotions expressed by the sound, and (2) “induced” emotions, in which listeners feel
emotions induced by the sound. Although listeners may widely agree on the perceived emotion for a
given sound, they often do not agree about the induced emotion of a given sound, so it is difficult
to model induced emotions. This paper describes the development of several machine and deep
learning models that predict the perceived and induced emotions associated with certain sounds, and
it analyzes and compares the accuracy of those predictions. The results revealed that models built for
predicting perceived emotions are more accurate than ones built for predicting induced emotions.
However, the gap in predictive power between such models can be narrowed substantially through
the optimization of the machine and deep learning models. This research has several applications in
automated configurations of hardware devices and their integration with software components in
the context of the Internet of Things, for which security is of utmost importance.

Keywords: sonification; security alarm; acoustic features; sound analysis; Internet of Things; emotion
prediction; IADSE; EmoSoundscape

1. Introduction

The Internet of Things (IoT) has enabled a rich landscape of interconnected ubiquitous
devices capable of offering a variety of services and applications. IoT supports a gamut of
sensors that are capable of recording and transmitting data from a wide variety of sources.
To ensure the reliability of these interconnected devices, when inter-operating together,
extensive monitoring and alarming systems are needed. Techniques and approaches such
as textual warning messages, visualization (e.g., DataDog [1]), and alarming through
sounds are the mainstream channels employed for communication purposes in different
hardware/software platforms that include IoT. For instance, Flight Guardian [2], a flight
deck warning system designed for older airplanes lacking digital warning systems, can
improve flight safety by monitoring a pilot’s situational awareness using real-time video
analysis and underlying knowledge to generate timely speech warnings. While the use of
textual data and visualizations has been explored in typical cyber—physical systems (CPSs)
and the IoT, the use of sounds in these contexts is accompanied with additional complexity
and may require some other analysis and comprehension before becoming the main avenue
for communication. An example of such complexity is whether certain types of sounds
induce certain types of emotions within the system operator. The answer to this question
is important in ensuring the effectiveness of communication in such complex systems.
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1.1. Sonification Applications in the IoT

The literature regarding the use of sonification in the IoT describes the many facets
and versatility of sonification across several application domains. One of the primary uses
of sonification in the IoT is in medical applications. IoT sensors can continuously record
and monitor data from different parts of the body. Researchers have proposed the use of
the IoT for remotely monitoring elderly patients” health [3]. Measurements such as heart
rate, blood pressure, and body temperature [4] can be collected remotely. In the event of an
accident, such as a fall, such a system can quickly alert doctors, the patient’s caretakers,
or both, and can sound an alarm that could alert anyone in the patient’s general vicinity [5].
Researchers have also proposed a sonification system for asthma patients that can inform
a patient’s emergency contacts when a sudden asthma attack occurs and can activate a
buzzer to alert nearby people who may be able to help [6].

Sonification has also been used as an alternate modality to learn about bodily move-
ments and functions. Danna and Velay [7] proposed the use of sonifications of hand
movements made while writing to help researchers understand the motor control needed
to perform that task, which may help patients with disabilities. Likewise, Turchet [8]
proposed the use of interactive sonifications to help during the therapy of patients with
limited bodily movement and control. Shoes enabled with IoT sensors can collect data
and be monitored remotely to give patients feedback on their gait and body movements.
The authors argued that the use of sonification in therapy can help patients with motor
disabilities to walk better. Researchers have also suggested sonification of electroencephalo-
gram (EEG) data as part of brain-computer interfaces and to help understand the brain’s
response to auditory stimuli as a supplement to brain imaging [9].

Sonification can also be useful in promoting overall wellbeing in IoT systems through
music. Quasim et al. [10] proposed an emotion-based music recommendation and clas-
sification framework (EMRCF) to recommend songs to individuals based on their mood
and previous listening history. The authors proposed the analysis of facial features to
predict the person’s mood, from which the system would recommend songs that were
pre-sorted into one of six categories, such as joyful, inspired, enthusiastic, emotional, silent,
and depressed.

Timoney et al. [11] presented a summary of research in the area of IoT and music
known as the Internet of Musical Things (IoMusT). The authors also proposed a framework
for utilizing IoT sensors and machine learning algorithms to help patients create music
that helps during therapy. The authors contended that such a framework could also enable
remote therapy from the comfort of the patient’s home.

In addition to these medical applications, sonification can be used in the IoT for
safety-critical applications. For example, a smart helmet can detect harmful gases in the
environment during mining operations [12] or detect gas leakage in a home [13,14]. The use
of sonification has also been proposed to alert users when someone is detected in thermal
imagery or other IoT sensors at critical border crossings, which can help counteract illegal
border crossings [15]. Sonification in combination with IoT sensors can also prove essential
in devising safety equipment for blind people. Saquib et al. [16] proposed a smart IoT
device called “BlinDar”, which uses ultrasonic sensors and global positioning systems
(GPS) to ease navigation for blind people. GPS can also allow blind personnel to share their
location with others in real time.

Sonification can also be used in combination with IoT sensors in smart city applications,
such as waste collection and monitoring [17,18]. Such systems can enable efficient waste
management by monitoring waste levels and can direct personnel to collect trash in high-
traffic areas.

1.2. Research Problem: Modeling and Predicting Perceived and Induced Emotion

Emotions play an essential role in human behavior. Music and emotions have been
studied for many years. The American Psychological Association [19] defines emotion as
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“a complex reaction pattern, involving experiential, behavioral, and physiological elements,
by which an individual attempts to deal with a personally significant matter or event”.

“Affective computing” is a multidisciplinary field comprised of computer science,
cognitive science, and psychology [20]. Using Al, affective computing can enable robots
and computers to understand and respond to humans on a much deeper level. This
intersection of Al and computer science, also called “artificial emotional intelligence”, aids
the development of tools for recognizing affective states and expressing emotions [21].

Affective computing enables emotion recognition in various types of multimedia,
such as text, pictures, audio, and video, to create and improve user-friendly interfaces
capable of parsing human emotions. Affective datasets contain lists of human annotations
concerning the emotions recognized in the stimuli, which are then used to train machine
learning models.

Humans can also experience emotions from music, speech, and audio files. Induced
emotion refers to emotions that involve introspective perception of psychophysiological
changes, whereas perceived emotion refers to listeners recognizing the emotions expressed
by the external environment [22]. It is important to distinguish between induced and
perceived emotions because a stimulus may invoke a different response compared to what
the stimuli may actually represent. For example, listening to a cheerful song may not
necessarily induce a happy emotion in the listener, despite the listener correctly perceiving
the song to be a happy one.

Audio emotion recognition (AER), a subfield of emotion recognition, involves emo-
tion recognition from music, speech, and sound events. In particular, the music industry
has extensively studied the effects of soundtracks on individuals” emotions. Convention-
ally, emotion recognition models can be categorical or dimensional. Categorical models
consider emotions with discrete labels (such as happiness, sadness, anger, fear, surprise,
and disgust [23]), whereas dimensional models characterize emotions along one or more
dimensions (such as arousal and valence [24]). The Geneva Emotional Music Scales
(GEMS) [25] model has been widely used for measuring emotions induced by music,
and the arousal-valence dimensional model has been used in studies of perceived and
induced emotions [26-28].

To our knowledge, there is no comprehensive study of the performance of the predic-
tion of perceived and induced emotions from acoustic features. In this paper, we explore
emotion recognition using two datasets, IADSE [29] and Emosoundscape [30], which each
represent emotions in a two-dimensional space (i.e., arousal and valence). Further, we
try to identify the significant acoustic features for arousal and valence, as well as for per-
ceived and induced emotions. The IADSE is a set of sounds for which induced emotions
have been measured. The Emosoundscape dataset is a set of sounds for which perceived
emotions have been measured. Analysis and modeling of these two datasets enable us to
investigate and find the best models for predicting perceived and induced emotions with
high accuracy.

1.3. Research Questions

This article primarily addresses the following research questions:

1. RQIl. How well do machine learning models perform when predicting arousal
and valence?

2. RQ2. How different are the models that are built for predicting perceived and in-

duced emotions?

RQ3. What are the significant acoustic features for predicting arousal and valence?

4.  RQ4. How do the significant features vary for predicting perceived and induced
emotions?

@

1.4. Contributions of This Work

Th purpose of this paper is to compare and contrast induced and perceived emotions
from sounds with the help of various machine learning and deep learning models. We study



Electronics 2021, 10, 2519

40f22

these two types of emotions through features that characterize different aspects of emotions.
More specifically, given a set of acoustic features of sounds, the authors would like to
model emotional characteristics, such as “arousal” and “valence”. To build such models,
the authors use two datasets, IADSE [29] and Emosoundscape [30], which are already
tagged with arousal and valence. IADSE concerns induced emotions, and Emosoundscape
concerns perceived emotions. We believe that the results of this research can help us further
understand emotions in a better way and, thus, help in improving current IoT systems to
reduce cognitive load. The key contributions of this paper are as follows:

—  We present a small-scale survey of the literature related to emotion recognition, along
with the features and datasets used.

—  We build machine learning models to predict perceived and induced emotions.

—  We compare and contrast the features used to build the best prediction models for
different emotional dimensions (i.e., arousal, valence, and dominance).

—  Wereport the significant acoustic features identified when building the best prediction
models for both perceived and induced emotions.

Our results show that the machine learning models built for predicting perceived (i.e.,
intended) emotions are more accurate than the models built for estimating induced (i.e., felt)
emotions. We also report that the accuracy of the models can be improved through acoustic
feature selection, as well as by engineering and hyper-parameter tuning. Regarding the
latter, machine learning techniques based on ensemble learning (e.g., Random Forests)
outperform some other machine and deep learning algorithms.

This paper is organized as follows: Section 2 reviews the literature. The methodology
and materials of the study are presented in Sections 3 and 4, respectively. Section 5
presents the results and analysis. Section 6 concludes the paper and highlights future
research directions.

2. Related Work

The state of the art of machine learning techniques in automatic audio emotion
recognition relies on characteristics of the input, output, and problem domains (types of
techniques and research questions):

e Input
- Dataset (number of samples; types of samples, e.g., sound event/music/songs/etc.)
—  Features (number of features; types of features, e.g., psycho-acoustic features,
dimensions, e.g., 1D/2D)
¢ Output
-  Output (categorical model, e.g., sad/happy/angry/etc; dimensional model, e.g.,
arousal /valence/dominance)
- Perceived or induced emotion

e  Problem

Classification, clustering, or prediction problems

Evaluation metrics, e.g., RMSE/MSE/accuracy/explained variance/etc.)
Feature selection/reduction

Feature analysis (significant features, smallest number of features, and so on)

Acoustic sounds, such as music, natural, and non-speech sounds, can both elicit and
convey emotions. Research concerning emotion induction has received comparatively less
attention than emotion perception [22,31,32]. Perceived emotion is the emotion that the
sound stimulus is intended to convey. Induced emotion is the emotion felt by the listener
after introspection and processing of the sound [22,30]. Thus, perceived and induced
emotions may not be the same. Table 1 shows a summary of music and audio emotion
recognition in the literature.

Machine learning algorithms that perform audio emotion recognition require appro-
priate features to recognize emotions. Speech audio recognition using Hidden Markov
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(HMM), Gaussian Mixture (GMM), and Support Vector Machine (SVM) models have cate-
gorized speech acoustic features with a high degree of accuracy [33-35]. Table 2 lists the
features used for emotion recognitions in the literature.

Automatic emotion recognition in music has been a topic of interest for many re-
searchers. The aim is to easily categorize music with similar emotions without labor-
intensive human annotation. Music emotion recognition research has been conducted
using regression, classification, and deep learning models.

2.1. Music Emotion Recognition

Yang et al. [36] used regression analysis to predict arousal and valence ratings found
in 195 music samples that were composed of popular songs from English, Chinese, and
Japanese albums. The authors reported R? values of 58.3% for arousal and 28.1% for valence
using an SVM with 114 acoustic features, such as loudness, sharpness, and other features.

Yang and H. Chen [37] carried out an experiment to recognize emotions in music
signals so that similar music could be retrieved and classified. The authors developed
a custom ranking algorithm—RBF-Listnet—to optimize the retrieval of similar music
samples based on the underlying emotion. The authors argued that automated retrieval
reduced human annotation efforts for fetching similar music samples. The authors reported
a gamma statistic of 0.326 for valence recognition.

Eerola et al. [38] proposed a model for predicting perceived emotions in a music dataset
called Soundtrack110 that contained 110 samples. The authors used a set of 29 features
extracted using MIRToolbox to predict arousal and valence ratings. The authors reported
an explained variance of 58% to 85% using linear regression models. The authors also
reported R statistics for the prediction of various categorical emotions (angry, scary, happy,
sad, and tender).

Seo and Huh [39] used machine learning and deep neural networks to recognize in-
duced emotions, with the ultimate goal being to classify similar music samples. The authors
used 100 music samples from Korean pop music. The authors reported a best match rating
of 73.96% via an SVM, which was slightly greater than that of the deep neural network,
ie., 72.90%.

Liu et al. [40] classified the emotions in music samples by using their spectrograms
as features in a deep learning model. Spectrograms contain both time and frequency
information, and the authors used them to classify similar music samples using convo-
lutional neural networks (CNNs). The authors used a publicly available dataset called
1000-Song [41] to test the proposed model. The authors reported an average accuracy of
72.4% using the CNN model.

Fan et al. [42] proposed the use of a ranking algorithm called smoothed RankSVM
(SRSVM) for ranking music with similar emotions. The authors created a corpus of
100 music clips from different musical genres. The authors utilized 56 features gener-
ated via the MIRToolbox and reported gamma statistics of of 0.801 and 0.795 for arousal
and valence, respectively.

2.2. Sound Emotion Recognition

In addition to music, researchers have looked into emotion recognition with other
sound stimuli, such as emotion recognition for audio samples (non-speech) that are also
called sound events or soundscapes. Schafer [43] categorized soundscapes into six categories
(natural sounds, human sounds, sounds and society, mechanical sounds, quiet and silence,
and sounds as indicators). The categories are based on the origin of the sound source
and the context in which the sound is heard [30]. Similarly to music emotion recognition,
machine learning algorithms require labels to train the model to establish ground truth.
Audio emotion recognition thus combines human annotation and machine learning to
recognize emotions.

Schuller et al. [44] compared human annotations of emotions to those of regression
with a sound dataset that contained 390 audio samples of different sounds, such as nature,
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animal, and musical instrument sounds. The authors reported correlation values of 0.61 for
arousal and 0.49 for valence between regression and human annotations.

Drossos et al. [45] investigated the use of rhythmic sound features for arousal pre-
diction. The authors utilized 26 rhythm features, which were derived by applying the
MIRToolbox to the IADS dataset [46]. They reported the highest accuracy of 88.37% in
arousal recognition. Furthermore, feature fluctuation was found to be the best individual
feature for predicting arousal values.

Fan et al. [30] created a dataset called EmoSoundscape, which contains 1213 six-second-
long sounds, for soundscape emotion recognition. The authors compared the results
of emotion ratings from 1182 human annotators against regression. The authors used
39 features extracted by using MIRToolbox, as well as YA AFe [47]. The authors reported
the results as two protocols: A and B. Protocol A involved shuffling the sound database
10 times and then selecting sounds for training and testing (80% and 20%, respectively).
Protocol B used the leave-one-out method, wherein one sound at a time was selected for
training, and the remaining were used for testing during each iteration. For Protocol A,
the RZ and MSE are 0.853 and 0.049 for arousal and 0.623 and 0.128 for valence, respectively.
However, for Protocol B, the RZ and MSE were 0.855 and 0.048 for arousal and 0.629 and
0.124 for valence, respectively.

Sundaram and R. Schleicher [48] developed an audio-based retrieval system to retrieve
similar sounds by querying the system. The authors selected sounds from the BBC sound
effects library (http:/ /bbcsfx.acropolis.org.uk (accessed on 1 July 2021)) and the IADS
dataset to build the system. The authors also collected human annotations for these sounds
to compare them against the emotional ratings of the sounds retrieved by the system.
For each query, the system retrieved the top five similar sounds by using MFCC features
with similar features in the latent space. The average RMSE between the queried and
retrieved sounds was found to be between 1.2 to 2.6.

Researchers have also used neural networks and deep neural networks for predicting
emotions in sounds. Fan et al. [49] evaluated the use of deep learning models, such
as CNNs and Long Short-Term Recurrent Neural Networks (LSTM-RNNS), for sound
emotion recognition using the EmoSoundscapes [30] dataset. The authors compared the
performance of five deep learning architectures in predicting arousal and valence ratings.
The authors used two sets of techniques to extract features. The first method used a pre-
trained deep neural network created by S. Hershey et al. [50], whereas the second method
involved 54 features extracted using MIRToolbox and YAAFE. The best performance for
arousal was reported with the CNN with an R? and MSE of 0.832 and 0.035, respectively,
whereas the best performance for valence was reported to have an R? of 0.759 and MSE
of 0.078 via VGGish (a deep CNN model). The authors also investigated the arousal and
valence prediction for various sounds using Schafer’s categories.

Ntalampiras and Potamitis [51] used a deep learning model called the echo state
network to study the similarities between music and sound datasets in eliciting emo-
tions. The authors used three feature sets—Mel-Spectrum (MFCC), temporal modulation,
and Perceptual Wavelet Packets (PWP)—and each was extracted from the IADS and
10,000 song datasets. The authors first trained the network on the music dataset and then
used that trained network for sounds in the IADS dataset to determine if the arousal-
valence prediction would improve. The best performance was achieved using the temporal
modulation features with a mean square error of 3.13 for arousal and 3.10 for valence when
using GMM clustering as the regressor.

Ntalampiras [52] compared emotion prediction using two CNNs that were designed
to individually predict arousal and valence. The authors used the EmoSoundscapes data.
They extracted features by employing a sample window of the audio files and then applying
Fourier transformation to yield 23 features that were similar to the MFCC obtained from
MIRToolbox. The authors reported an MSE value of 0.0168 for arousal and 0.0107 for
valence. The authors also predicted arousal-valence ratings for sound categories as per
Schafer’s taxonomy.
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Cunningham et al. [53,54] used shallow neural networks and regression to predict
emotion using the IADS dataset. The authors employed 76 MFCC features using the
MIRToolbox. The authors reported an RMSE of 0.989 and an R? of 0.28 for arousal, as well
as an RMSE of 1.645 and R? of 0.12 for valence by using regression. However, an arousal
with an RMSE of 0.987 and R? 0.345 and valence with an RMSE of 0.514 and R? of 0.269
were achieved by using a neural network.

Researchers have also studied the effect of manipulation of sound on arousal-valence
emotion prediction. Drossos et al. [55,56] created a sound dataset called BEADS, which
contained binaural sound clips. The dataset is publicly available and consists of 32 sounds
annotated with emotion labels. These sounds have been adjusted across five spatial
positions (0, 45, 90, 135, and 180 degrees). The authors also reported a comparison of
BEADS with the IADS dataset. The authors observed maximum arousal differences of 2.47
and 2.07 for arousal and valence between IADS and BEADS, respectively. Additionally,
sounds at a 0 degree spatial angle elicited a higher arousal rating and a lower valence
rating than those at other angles. Asutay et al. [57] conducted an experimental study to
understand whether distorting the sound to reduce its identifiability caused any changes
in the perceived emotions. Three different studies with participants were undertaken.
Participants in each study rated both the distorted and original sound recordings from the
IADS dataset using the Self-Assessment Manikin (SAM) scale; the recordings were either
introduced one after the other or in a random order [58]. The third group (i.e., the control
group) was presented with the original sounds and their textual descriptions before being
asked to rate them. The authors contended that the processed sounds were emotionally
neutral, but the participants were still able to identify them with the help of priming. Thus,
the authors argued that sound designers should focus not just on the physical properties of
the sounds, but also on psycho-acoustical features in order to evoke the desired emotions.

Table 1. Summary of emotion recognition in the literature.

Ref. Problem Formulation Emotion Results
Cat./Dim. /P

[36] Regression analysis Dim. (Ar.—Val.) P R2 stats.: 58.3% Ar., 28.1% Val.

[37] Ranking Dim. (Ar—Val.) P Gamma stats.: 0.326 val.

[38] - Dim. and Cat. (5 emot.) P R stats.: 77% Ar., 70% Val.

[39] - Dim. and Cat. (4 quadrants) I Acc.: 73.96% (SVM)

[40] Classification Dim. (Ar.—Val.) P Acc.: 72.4% (CNN)

[42] Ranking Dim. (Ar.—Val.) P Gamma stats.: 0.801 Ar., 0.795 Val.

[44] Regression Dim. (Ar—Val.) P Corr. Coeff. 0.61 Ar., 0.49 Val.

[45] Classification and Ranking Dim. (Ar.) P Acc.: 81.44% Ar. (Log. regr.)
[55,56] Annotator Ratings Dim. (Ar.—Val.) P &g; r;rll\geg}rzl:];é&l& Mean Val.: 0.38

[30] Regression Dim. (Ar.-Val.) P R2:0.853 Ar., 0.623 Val.

[49] Classification and Regression gch}I:a f(::.S;Val.) and Cat. P R?%: 0.892 Ar., 0.759 Val.

[51] Regression, Clustering Dim. (Ar.—Val.) P MSE: 3.13 Ar., 3.10 Val.

[52] Prediction gicr;‘é f(gf'sgval') and Cat, P MSE: 0.0107 Ar., 0.0168 Val.
[53,54] Regression Dim. (Ar—Val.) P R2:0.345 Ar., 0.269 Val.

[577  Annotator Ratings e Annoyance -

[48] Latent Analysis and Retrieval =~ Dim. (Ar—Val.-Domn.) P RMSE for top-5 clips b.w. 1.6 to 2.6

Abbreviations: Ar—Arousal, Val.—Valence, I—Induced, P—Perceived, Cat.—Categorical, Dim.—Dimensional.
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Table 2. Summary of features used for emotion recognition in the literature.

Features
Ref. Dataset
No. of Features Type
PsySound, Spectral Contrast, Daubechies wavelets
[36] 195 Pop Songs 114 coefficient histogram (DWCH)
7] 60K-popand 1240 Chinese pop music 157 10 Melody, 142 timbre, 5 thythm
samples
[38] SoundTrack110-110 song samples 29 dynamics, timbre, harmony, register, rhythm,
articulation
[39] 100 K-pop songs Avg. height, peak avg., HfW, avg. width, BPM
[40] 1000 song dataset [41] 30,498 Spectrograms
[42] 100 Emusicclips 56 features of MIR Toolbox [59]
31 low-level descriptors (energy, spectral,
motional Soun atabase sounds and voicing) an unctional (statistical,
[44] Emotional Sound Datab 390 d: 73 d voicing) and 42 f ional istical
regression, and local minima/maxima)
beat spectrum, onsets, tempo, fluctuation, even
[45] IADS dataset (167 sounds) [46] 26 density, and pulse clarity
[55,56 Elg;zgfnﬁ’;“d corpus—BEADS 5 Angular adjustments (45°, 90°, 135°, and 180°)
[30] EmoSoundscapes—1213 soundscape files 39 features of MIRToolbox and YAAFE
[49] EmoSoundscapes [30] 54 loudness, MFCC, energy, spectral
[51] IADS [46] and 1000 songs [41] MFCC and Perceptual Wavelet Packets (PWP)
[52] EmoSoundscapes [30] 23 MFCC-like
[53,54 TIADS [46] 76 Features of MIRToolbox
[57] 18 envir. sounds from IADS [46] Fourier-time transformation (FTT)
[48] 2491 audio clips from the BBC Sound Effects 1 MECC

Library

3. Experimental Setup
3.1. Datasets and Psychoacoustic Features

To conduct our experiment, we utilized two datasets: IADSE [29] and EmoSound-
scape [30]. These datasets contain sound samples with their annotated emotions.
EmoSoundscape contains ratings for perceived emotions and uses a two-dimensional
space (arousal/valence). IADSE contains ratings for induced emotions and uses a three-
dimensional space (arousal/valence/dominance). Therefore, we chose these two datasets
to compare induced and perceived emotion predictions.

To extract the features from these datasets, we used the MIRToolbox [59], which
extracts (psycho)acoustic and musically related features from databases of audio files
for statistical analysis [59]. Following Lange and Frieler [60], a total of 68 features were
extracted from each stimulus to represent either the arithmetic mean or the sample standard
deviation of the frame-based features computed over default window sizes (typically 50 ms
for low-level features and 2-3 s for medium-level features) and a 50% overlap. The selected
features represent the following families:

-  Dynamics—intensity of the signal, such as the root mean square (RMS) of the ampli-
tude;

- Rhythm—articulation, density, and temporal periodicity of events, such as the number
of events per second (event density);

- Timbre/Spectrum—>brightness, noisiness, dissonance, and shape of the frequency spec-
trum, such as the spectral center of mass (centroid);
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—  Pitch—presence of harmonic sounds, such as the proportion of frequencies that are
not multiples of the fundamental frequency (inharmonicity);

—  Tonality—presence of harmonic sounds that collectively imply a major or minor key,
such as the strength of a tonal center (key clarity).

Although most features represent relatively low-level acoustic or auditory attributes
(e.g., RMS), some are based on perceptual models (e.g., roughness), and yet others are
based on cognitive models that presume long-term exposure to the stimulus domain (e.g.,
key clarity). A summary of the features is shown in Table 3.

Table 3. Number of acoustic features captured by the MIRToolbox.

Selected MIR Features
Feature Count
Dynamics 2
Pitch 1
Rhythm 6
Spectral 23
Spectral MFCC 26
Timbre 4
Tonal 6
Total 68

We computed the pairwise correlation for the 68 features in each dataset. The seven
pairs of features shown in Table 4 are the features in the EmoSoundscape dataset with
correlations greater than 90%. In addition, the four pairs of features shown in Table 5 are
the features in the IADSE dataset with correlations greater than 90%.

Table 4. Highly correlated features in the EmoSoundscape dataset.

Feature 1 Feature 2 Correlation
timbre spectralflux (std) dynamics rms (std) 0.954
spectral spread (mean) spectral rolloff95 (mean) 0.949
timbre spectralflux (mean) dynamics rms (mean) 0.946
spectral rolloff85 (mean) spectral centroid (mean) 0.94
spectral skewness (mean) spectral kurtosis (mean) 0.93
spectral mfcc 12 (std) spectral mfcc 11 (std) 0.905
spectral rolloff85 (mean) spectral flatness (mean) 0.902

Table 5. Highly correlated features in the IADSE dataset.

Feature 1 Feature 2 Correlation
spectral kurtosis (mean) spectral skewness (mean) 0.968
spectral rolloff85 (mean) spectral centroid (mean) 0.951
spectral rolloff95 (mean) spectral spread (mean) 0.927
spectral rolloff85 (mean) spectral rolloff95 (mean) 0.923

3.1.1. EmoSoundscape Dataset: A Dataset for “Perceived” Emotion

We used the EmoSoundscape dataset [30], which consists of two subsets. The first sub-
set contains 600 audio samples categorized into 6 groups of 100 samples each according to
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Schafer’s soundscape taxonomy; these groups are natural sounds, human sounds, sounds
and society, mechanical sounds, quiet and silence, and sounds as indicators. The second
subset contains 613 samples; each is a mix of soundscapes from two or three of the first
subset’s classes. All of these soundscapes are annotated with their perceived emotion,
including arousal and valence. The first subset of this dataset was used for our experiment.

Because the EmoSoundscape dataset contains arousal and valence for each sound
sample, the scatter plot of valence versus arousal for the EmoSoundscape dataset is shown
in Figure 1a. Note that both variables are z-normalized.
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Figure 1. Visualization of EmoSoundscape and IADSE data sets. (a) Scatter plot of the normalized

data points of EmoSoundscape in the AV space. (b) Scatter plot of normalized data points of IADSE
in the AVD space.

3.1.2. IADSE Dataset: A Dataset for “Induced” Emotion

We also used the IADSE dataset, which contains 935 sounds, with each sound rated
by at least 100 listeners on 9-point Likert scales for the dimensions of felt arousal, valence,

and dominance (induced emotions). In addition, a scatter plot of the data points in the
IADSE dataset is shown in Figure 1b.

3.2. Evaluation Metrics for Analysis

To measure the performance of the regression models, different common metrics can be
utilized, including the mean absolute error (M AE), mean squared error (MSE), root mean
square error (RMSE), R-squared (R?), median absolute error, max error, and explained
variance. These evaluation metrics have been heavily utilized in the machine learning
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literature and they are the main evaluation metrics in the context of evaluating machine
learning models. RMSE, MSE, and R? were chosen to evaluate the performance of each
regression model. It is important to note that the prime objective of this study was to
compare the performance of various machine learning models in predicting emotion
dimensions (i.e., valence, arousal, dominance) and not to conduct controlled experiments
and perform statistical significance tests.

The mean square error (MSE) is the average of the square of the errors; the larger the
value is, the larger the error will be.

.52
MSE — Z(yln ]/z)

The root mean square error (RMSE) can be considered as the standard deviation of
the prediction errors. Because it applies a high penalty for large errors, it is beneficial when
large errors are undesirable.

. 17:)2

Finally, R? represents the ratio of the total sum of squares of the prediction error to the
total sum of squares of error with the mean; the closer the value of RZis to 1, the better the
regression model will be.

2, Ewi—u)
Re=1- S/, o\
Z(yi — i)

It should be mentioned that R? is a less commonly used metric for assessing non-linear

models [61].

4. Methodology

In our previous work with the IADS and the EmoSoundscape datasets [62], we
reported that Random Forest outperformed other models in A/V prediction using a 1D
psycho(acoustic) feature set, while other models mostly suffered from overfitting. This
result is somewhat expected because ensemble models reduce the risk of overfitting.
Ensemble models combine the prediction results of several base models. In addition,
among ensemble models, Random Forest is preferable for overfitting problems [63]. Unlike
other ensemble methods, adding more trees in a Random Forest model does not increase
the risk of overfitting. Therefore, we chose Random Forest as one of the prediction models
for these datasets in this article. Random Forest (RF) is an ensemble method that averages
the prediction results of several decision trees. To compare the prediction results from the
ensemble model (RF) with deep models, we developed a multilayer perceptron model
and a 1D convolutional neural network model. For all of the models, we used 30% of the
data as the test data and also applied 5-fold cross validation (CV). In order to compute the
training and testing errors, we averaged the RMSE values over these 5 folds.

4.1. Feature Selection

Feature selection techniques can be divided into two main types. The filter methods
are usually performed as a preprocessing step by using the underlying properties of
the features measured with different univariate statistics. The other method uses an
estimator to perform feature selection, so it is considered as a wrapper method. It selects the
features based on the performance of a model. The filter-based methods are faster, whereas,
the wrapper methods are more computationally expensive.

In our previous work [62], we used a filter-based method called the “univariate linear
regression test” (KBest) for selecting the k best features. In contrast, in this work, we used a
wrapper method called Recursive Feature Elimination (RFE) [64]. Using RFE, we applied
Random Forest as the estimator to be fitted to the datasets. Then, the features were ranked
based on their weights, and the features with the lowest weight were removed. This process
was repeated until a desirable number of features remained. Because we did not have prior
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knowledge about the number of best features, we tried the number of features as a value
ranging from 1 to 68 in the hyper-parameter tuning phase, along with selecting the best
parameters for each Random Forest regressor.

4.2. Hyper-Parameter Tuning

Hyper-parameter tuning is the process of selecting the best parameters for a model to
obtain the optimal results. Grid search is a technique that can be employed to find the opti-
mal parameters of the model through which all combinations of the determined values for
parameters are examined. We performed an exhaustive search for hyper-parameter tuning
on 90 parameters overall, including 22 Random Forest parameters and 68 RFE parameters,
in order to find the optimal values. Here is the list of parameters that were tuned:

- n_estimators : (50,100,150, 200, 250, 300), number of trees in the forests;

- max_depth : (5,10, 20,30,50), maximum number of levels in each decision tree;

- min_samples_split : (2,3,4,5,6,7), minimum number of data points placed in a node
before the node is split;

- min_samples_leaf : (1,2,3,5), minimum number of data points allowed in a leaf node;

k : range(1,68), number of features selected using RFE with the RF estimator.

5. Results and Analysis

This section reports the performance and the results of the analysis by comparing
predictions for both perceived and induced emotions.

5.1. Performance of Prediction Models

The arousal, valence, and dominance predictions on the IADSE dataset and the arousal
and valence predictions on the EmoSoundscape dataset using the tuned Random Forest
models are shown in Table 6.

Table 6. The results of our previous and current work.

Arousal Valence
Our Previous Work
EmoSoundscape IADS IADSE EmoSoundscape IADS IADSE
DS No. of Samples 600 167 927 600 167 927
KBest No. of Features 26/68 28/313 27/68 29/68 27/313 27/68
No. of Estimators 200 200 30 100 150 150
Random Forest Max Depth 20 10 20 30 5 20
Hyper-parameters i Samples Split 3 5 4 2 2 2
Min Samples Leaf 1 2 1 1 2 1
Evaluation Train RMSE 0.09 0.36 0.30 0.013 0.41 0.41
Metrics Test RMSE 0.25 0.88 078 0.37 0.98 113
Arousal Valence Dominance
Our Current Work
EmoSoundscape IADSE EmoSoundscape IADSE IADSE
DS No. of Samples 600 927 600 927 927
RFE No. of Features 15/68 25/68 14/68 9/68 7/68
No. of Estimators 50 300 50 250 150
Random Forest Max Depth 20 20 10 30 5
Hyper-parameters  \g;y gamples Split 5 3 5 2 2
Min Samples Leaf 2 1 2 1 5
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Table 6. Cont.

Train RMSE 0.1032 0.2818 0.1681 0.3970 0.70
Test RMSE 0.2351 0.7782 0.3698 1.1577 0.83
Evaluation Train MSE 0.0106 0.0794 0.0283 0.1576 0.49
Metrics Test MSE 0.0552 0.6055 0.1367 1.3402 0.70
Train R2 0.9718 0.9422 0.9137 0.9200 0.48
Test R2 0.8639 0.5631 0.5860 0.3700 0.26
The best arousal prediction for the EmoSoundscape dataset was achieved with 15 fea-
tures. The best evaluation metrics were 0.24, 0.05, and 0.86 for the test RMSE, MSE, and
R?, respectively. On the other hand, for the IADSE dataset, the best arousal prediction was
achieved with 25 features. The best evaluation metrics were 0.78, 0.61, and 0.56 for the
RMSE, MSE, and R?, respectively.
Regarding valence, the best prediction on the EmoSoundscape dataset was achieved
using 14 features. The best evaluation metrics were 0.37, 0.14, and 0.59 for the test RMSE,
MSE, and R?, respectively. On the other hand, for the IADSE dataset, the best valence
prediction was achieved with nine features. The best evaluation metrics were 1.16, 1.34,
and 0.37 for the test RMSE, MSE, and R?, respectively. For the dominance prediction,
we achieved 0.83, 0.70, and 0.26 for the test RMSE, MSE, and RZ, respectively, using
seven features.
To compare the performance of the RF model as an ensemble method with deep mod-
els, two deep neural networks were developed to predict perceived and induced emotions.
Specifically, a four-layer perceptron and a one-layer convolutional neural network followed
by a four-layer perceptron were utilized. These models fit the data using all features and
the selected features that were identified by the exhaustive search. Table 7 shows the
emotion predictions using these deep models.
Table 7. Comparing the ensemble model with deep models.
RMSE—IADSE RMSE—EmoSoundscape
Arousal Valence Dominance Arousal Valence
Model Features Train Test Train Test Train Test Train Test Train Test
all - - - - - - - - - -
Tuned RF
selected 0.28 0.77 0.39 1.15 0.70 0.83 0.10 0.23 0.16 0.36
all 0.22 0.83 0.22 1.23 0.20 0.89 0.06 0.26 0.06 0.39
4L MLP
selected 0.30 0.81 0.60 1.19 0.55 0.89 0.09 0.25 0.13 0.39
all 0.85 0.89 141 1.44 0.97 0.97 0.29 0.31 0.41 0.42
1D CNN
selected 0.83 0.87 1.27 1.37 0.97 0.97 0.24 0.26 0.38 0.39
Average all 0.645 0.860 0.925 1.335 0.585 0.93 0.175 0.285 0.235 0.405
selected 0.476 0.816 0.753 1.236 0.74 0.916 0.143 0.246 0.223 0.380

Although the performance of the deep models was close to performance of the tuned
RE RF achieved a better emotion prediction for both datasets.The best test errors using
tuned RF are shown in bold in Table 7. In addition, in most cases, the performance
of the deep models using selected features was better than their performance using all
features, which indicates the effectiveness of our selected features in predicting emotions
in each dataset.

To compare the performance of our work with that of similar works in the literature, a
few papers reporting their arousal and valence prediction results on the EmoSoudscape
dataset were found. Fan et al. [42] reported MSE values of 0.049 and 0.128 for predicting
arousal and valence, respectively. Converting their results into RMSE, they achieved 0.22
and 0.36 for arousal and valence prediction using a Support Vector Regressor (SVR), which
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were close to our results obtained using the tuned Random Forest. Furthermore, they
improved their results by augmenting the dataset and applying a tuned convolutional
neural network (CNN). Since their work was on the augmented dataset, their results are
not comparable with ours.

Part of the work performed by Ntalampiras [52] was on the EmoSoundscape dataset,
and they used CNN models. The MSE values reported for arousal and valence prediction
were around 0.049 and 0.11, respectively, which are equivalent to 0.22 and 0.33 for RMSE.
These results are close to other reported performances on the EmoSoundscape dataset,
with a slight improvement in valence prediction.

Ntalampiras [52] also applied a CNN on the data collected from both subsets of the
EmoSoundscape dataset and achieved better performance for both arousal and valence. It
must be noted that the second subset of EmoSoundscape contains sound events that are
mix of soundscapes from two or three of the sound events in the first subset. We could not
identify any work on the IADSE dataset with which to compare our results.

With respect to the research question RQ1 and according to Table 7, we observe that
the selected machine learning prediction models have similar performance, except that
the model built based on the optimized Random Forests outperforms the other models in
reducing the RMSE values for both arousal and valence. Regarding RQ?2, Table 7 indicates
that the RMSE models built for predicting perceived emotions (i.e., EmoSoundscape) are
associated with lower RMSE values in comparison with the RMSE values captured for
models predicting induced emotions (i.e., IADSE). The average RMSE values for both
the training and testing datasets computed for induced emotion dimensions (i.e., arousal
and valence) are substantially low compared to the RMSE values captured for perceived
emotion dimensions. This observation implies that modeling induced emotion is harder
than building models for predicting perceived emotion.

5.2. Significant Features

The significant features used in the tuned Random Forest models for each prediction
of emotion for both datasets are sorted in Tables 8 and 9. In addition, Table 10 provides
a better insight about the common features among different emotion predictions and
among/within the IADSE and EmoSoundscape datasets. In Table 10, significant features
for emotion prediction using the tuned Random Forest are indicated by “*” in the IADSE
dataset and by ‘+” in the EmoSoundscape dataset. Furthermore, if any of these significant
features have highly correlated features in their peer datasets, these correlated features are
marked as (*) and (+) for the IADSE and EmoSoundscape datasets, respectively.

Table 8. Sorted significant features for arousal (15 features) and valence (14 features) by using RFE
and applying the RF model on the EmoSoundscape dataset.

Arousal 15/68 Sign.
spectral roughness (mean) 0.704
timbre spectralflux (mean) 0.085
dynamics rms (mean) 0.029
spectral brightness (mean) 0.027
spectral spectentropy (mean) 0.023
spectral rolloff85 (mean) 0.018
spectral rolloff95 (mean) 0.015
rhythm fluctuationmax peakposmean 0.015
spectral mfcc 13 (std) 0.014
spectral mfcc 12 (std) 0.012

spectral irregularity (mean) 0.010




Electronics 2021, 10, 2519 15 of 22

Table 8. Cont.

spectral mfcc 5 (mean) 0.010
timbre lowenergy (std) 0.010
tonal hedf (mean) 0.010
rhythm attacktime (mean) 0.009

Valence 14/68 Sign.
spectral roughness (mean) 0.374
dynamics rms (mean) 0.155
timbre lowenergy (std) 0.105
spectral mfcc 6 (std) 0.054
spectral centroid (std) 0.043
spectral mfcc 4 (std) 0.042
rhythm pulseclarity (mean) 0.033
spectral skewness (mean) 0.032
spectral mfcc 9 (std) 0.031
spectral mfcc 8 (mean) 0.029
spectral rolloff95 (mean) 0.026
spectral flatness (std) 0.024
spectral rolloff95 (std) 0.024
timbre spectralflux (mean) 0.020

Table 9. Sorted significant features for arousal (25 features), valence (nine features), and dominance
(seven features) by using RFE and applying the RF model on the IADSE dataset.

Arousal Sign.
timbre spectralflux (mean) 0.289
dynamics rms (mean) 0.091
dynamics rms (std) 0.064
spectral flatness (std) 0.044
spectral roughness (mean) 0.041
spectral spectentropy (mean) 0.036
spectral rolloff85 (mean) 0.035
spectral brightness (mean) 0.032
rhythm pulseclarity (mean) 0.031
timbre spectralflux (std) 0.029
tonal keyclarity (std) 0.024
spectral skewness (mean) 0.024
rhythm tempo (std) 0.024
pitch pitch (mean) 0.022
spectral flatness (mean) 0.021
timbre lowenergy (mean) 0.020
tonal keyclarity (mean) 0.019
spectral mfcc 6 (mean) 0.018
spectral centroid (mean) 0.018

spectral spectentropy (std) 0.018
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Table 9. Cont.

spectral brightness (std) 0.018
spectral spread (mean) 0.018
spectral irregularity (mean) 0.018
spectral mfcc 8 (mean) 0.017
spectral mfcc 2 (mean) 0.016
Valence Sign.

tonal keyclarity (mean) 0.248
spectral roughness (mean) 0.136
spectral rolloff85 (std) 0.101
dynamics rms (std) 0.092
rhythm fluctuationmax peakposmean 0.092
spectral brightness (mean) 0.092
spectral spread (mean) 0.083
spectral skewness (std) 0.082
spectral mfcc 11 (std) 0.070
Dominance Sign.

spectral roughness (mean) 0.367
dynamics rms (mean) 0.158
tonal keyclarity (mean) 0.115
tonal hedf (std) 0.111
timbre spectralflux (mean) 0.091
spectral brightness (mean) 0.089
spectral mfcc 3 (mean) 0.065

Table 10. Significant features for each prediction in the IADSE and EmoSoundscape datasets that
showed common features among them. If any of these significant features had highly correlated
features in its peer dataset, these correlated features were marked as (*) and (+) for the IADSE and
EmoSoundscape datasets, respectively.

Features IADSE EmoSoundscape
Dynamics Arousal Valence = Dominance Arousal Valence
dynamics rms (mean) * * + +
dynamics rms (std) * *
Pitch

pitch pitch (mean) *

Rythm
rhythm pulseclarity (mean) * +
rhythm tempo (std) *
rhythm fluctuationmax peakposmean * +
rhythm attacktime (mean) +

Timber
timbre spectralflux (mean) * * + +
timbre spectralflux (std) *

timbre lowenergy (mean)

timbre lowenergy (std) + +
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Table 10. Cont.
Features IADSE EmoSoundscape
Tonal

tonal keyclarity (mean) * * *
tonal keyclarity (std) *
tonal hedf (mean) +
tonal hedf (std) *

Spectral
spectral flatness (std) *
spectral roughness (mean) * * * + +
spectral spectentropy (mean) * +
spectral rolloff85 (mean) * +
spectral rolloff85 (std) *
spectral brightness (mean) * * * +
spectral brightness (std) *
spectral skewness (mean) * +
spectral skewness (std) *
spectral flatness (mean) * (+)
spectral flatness (std) +
spectral centroid (mean) * (+)
spectral centroid (std) +
spectral spectentropy (std) *
spectral spread (mean) * * (+) (+)
spectral irregularity (mean) * +
spectral rolloff95 (mean) * * + +
spectral rolloff95 (std) +
spectral kurtosis (mean) (+)

Spectral-mfcc

spectral mfcc 5 (mean) +
spectral mfcc 6 (mean) *
spectral mfcc 8 (mean) * +
spectral mfcc 2 (mean) *
spectral mfcc 3 (mean) *
spectral mfcc 4 (std) +
spectral mfcc 6 (std) +
spectral mfcc 9 (std) +
spectral mfcc 11 (std) * (+)
spectral mfcc 12 (std) +
spectral mfcc 13 (std) +

Considering the induced emotion predictions for the IADSE dataset, 25 features were
considered as the significant features for predicting induced arousal, whereas nine features
were considered for induced valence. There were five common features for predicting
induced arousal and valence: (1) dynamics rms (std), (2) tonal keyclarity (mean), (3)
spectral roughness (mean), (4) spectral brightness (mean), and (5) spectral spread (mean).
We can also consider spectral rolloff95 (mean) as the sixth common feature because it had a
high correlation with spectral spread (mean) in the IADSE dataset. Furthermore, for the
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dominance prediction, seven significant features were identified, and three of these features
were indicated as significant features for the induced arousal and valence predictions.

On the other hand, in predicting perceived emotions in the EmoSoundscape dataset,
15 features were considered as the significant features for predicting perceived arousal,
whereas 14 features were considered for perceived valence. There were five common
features for predicting induced arousal and valence: (1) dynamics rms (mean), (2) timbre
lowenergy (std), (3) timbre spectralflux (mean), (4) spectral roughness (mean), and (5)
spectral rolloff95 (mean). We can also treat spectral spread (mean) as the sixth common
feature because it has a high correlation with spectral rolloff95 (mean) in the EmoSound-
scape dataset.

Comparing the arousal and valence predictions based on these two datasets, 25 fea-
tures were considered as the significant features for predicting induced arousal (IADSE),
whereas 15 features were considered for perceived arousal (EmoSoundscape). There were
seven common features for predicting induced and perceived arousal: (1) dynamics rms
(mean), (2) timbre spectralflux (mean), (3) spectral roughness (mean), (4) spectral rolloff85
(mean), (5) spectral irregularity (mean), (6) spectral spectentropy (mean), and (7) spec-
tral brightness (mean). We can also treat spectral centroid (mean) as the eighth common
feature because it had a high correlation with spectral rolloff85 (mean) in the EmoSound-
scape dataset.

In addition, 15 features were considered as the significant features for predicting
induced valence (IADSE), whereas nine features were considered for perceived valence
(EmoSoundscape). There was only one common feature for predicting induced and per-
ceived arousal, which was spectral roughness (mean). We can also treat spectral spread
(mean) and spectral rolloff95 (mean) as the second and third common features because these
two features demonstrated a high correlation with each other in both datasets, and each of
them was selected as a significant feature for predicting induced and perceived valence.

With respect to RQ3 and according to Tables 8 and 9, we observe that the number of
significant features for predicting arousal is greater than the number of significant features
for predicting valence. This observation implies that predicting arousal-based emotions,
such as excitement, is harder than predicting valence-based emotions, such as positiveness.
Therefore, to model these two dimensions, different numbers and sets of features would be
required. With respect to RQ4 and according to Table 8 for perceived emotions and Table 9
for induced emotions, we observe that the number of significant features for predicting
arousal in induced emotion (i.e., the IADSE dataset in Table 9) is substantially greater than
the number of significant features listed for arousal prediction in perceived emotion (i.e.,
EmoSoundscape dataset in Table 9). In an analogous way, this observation indicates that
modeling induced emotions is substantially harder than building models for predicting
perceived emotions.

6. Conclusions and Future Work

It is important to monitor devices and their activities when connected to a network
and to detect possible threats or events that occur in the system. In addition to conventional
communication channels, such as textual descriptions and visualization, sonification is an
effective technique for quickly directing users’ attention to interconnected devices [65,66].
One of the major advantages of using sounds rather than textual descriptions and visual-
izations to alert users is that operators can listen to sounds and use visual displays at the
same time without significantly increasing cognitive workload.

Although informative communication through sounds (i.e., sonification) is very
promising, implementing sonification comes with its own challenges and problems. One
of the key challenges is the design of proper and representative sounds for specific events.
There are several issues when designing a sound to represent an event. The issues include
if the sound should represent the semantics and meaning of the event, it needs to point
out spatial information that is needed to trace the events, or it needs to convey the impact
of each event to the user. Furthermore, the sounds selected for sonifying these events or



Electronics 2021, 10, 2519 19 of 22

semantics need to be tested for their usability in order to find out whether they convey the
required information.

In addition to the above issues, the psychological impact of each sound is also a key
issue when designing sonifications for a large and complex system, such as the IoT. More
specifically, it is important to have a clear understanding of the impact of each sound
on users. As such, it is important to understand perceived (i.e., expressed emotion) and
induced (i.e., felt) emotions.

This paper investigates whether it is possible to build machine-learning-based models
to predict perceived and induced emotion, where emotion is defined based on three
dimensions: (1) arousal, (2) valence, and (3) dominance. To perform the research and
analysis, we utilized two datasets—one that concerns perceived emotions and another that
concerns induced emotions. The EmoSoundscape dataset measures a user’s perceived
emotion, whereas the IADSE dataset quantifies a user’s induced emotion. Our initial
assumption was that it would be more difficult to model and predict induced emotion in
comparison with perceived emotion.

Our findings confirm our assumption in that it is relatively more difficult to predict
induced emotion than perceived emotion. As highlighted in Table 7, the RMSE values
obtained for training and testing of models built for the IADSE (i.e., induced emotion) are
greater than those calculated for the EmoSoundscape dataset (i.e., perceived emotion). We
also observed that the models built for both induced and perceived emotion are of moderate
accuracy, which indicates that identifying the optimal and best models for predicting these
emotions is generally a difficult task.

The research reported in this paper needs further improvement and more comprehen-
sive analysis. In particular, due to the great performance of ensemble learning approaches
(more specifically, Random Forests), some other ensemble-learning-based approaches need
to be explored with the intention of optimizing the best models. We also need to conduct
additional research with perceived and induced emotion in certain contexts, such as secu-
rity and monitoring of the IoT, and to determine if certain emotions cause the operator of a
system to react in a certain and robust way. More precisely, it is important to understand
how perceived and induced emotions trigger actions that we expect when certain events
occur in the IoT.

Author Contributions: Data curation, D.R.W.S.; Formal analysis, F.A.; Funding acquisition, A.S.N.
and K.S.J.; Methodology, FA. and L.EG.; Supervision, A.S.N.; Writing—original draft, EA. and P.D.;
Writing—review and editing, D.R.W.S., A.S.N. and K.S.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported by National Science Foundation (NSF) under grant numbers
CNS-1347521 and SES-1564293.

Data Availability Statement: Data will be available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Real-Time IoT Monitoring—Visualize Device Performance. Available online: https://www.datadoghq.com/ (accessed on
1 July 2021).

2. Khan, W,; Ansell, D.; Kuru, K;; Bilal, M. Flight guardian: Autonomous flight safety improvement by monitoring aircraft cockpit
instruments. J. Aerosp. Inf. Syst. 2018, 15, 203-214.

3. Saraubon, K.; Anurugsa, K.; Kongsakpaibul, A. A Smart System for Elderly Care Using IoT and Mobile Technologies. In Proceed-
ings of the ICSEB "18—2018 2nd International Conference on Software and E-Business, Zhuhai, China, 18-20 December 2018;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 59-63. [CrossRef]

4. Sainadh, A.VM.S.; Mohanty, J.S.; Teja, G.V.; Bhogal, RK. IoT Enabled Real-Time Remote Health Monitoring System. In
Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India,
6-8 May 2021; pp. 428-433. [CrossRef]

5. Shahada, S.A.A ; Hreiji, 5.M.; Atudu, S.I.; Shamsudheen, S. Multilayer Neural Network Based Fall Alert System Using IOT. Int. |.

MC Sq. Sci. Res. 2019, 11, 1-15. [CrossRef]



Electronics 2021, 10, 2519 20 of 22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.
24.
25.
26.
27.
28.

29.

30.

31.

32.

Mwangi, A.; Ndashimye, E.; Karikumutima, B.; Ray, S.K. An IoT-alert System for Chronic Asthma Patients. In Proceedings of the
2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC,
Canada, 4-7 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 12-19.

Danna, J.; Velay, ].L. Handwriting Movement Sonification: Why and How? IEEE Trans. Hum.-Mach. Syst. 2017, 47, 299-303.
Turchet, L. Interactive sonification and the IoT: The case of smart sonic shoes for clinical applications. In Proceedings of the 14th
International Audio Mostly Conference: A Journey in Sound, Nottingham, UK, 18-20 September 2019; pp. 252-255. [CrossRef]
Rutkowski, TM. Multichannel EEG sonification with ambisonics spatial sound environment. In Proceedings of the Signal
and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, Siem Reap, Cambodia,
9-12 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1-4.

Quasim, M.T.; Alkhammash, E.H.; Khan, M.A.; Hadjouni, M. Emotion-based music recommendation and classification using
machine learning with IoT Framework. Soft Comput. 2021, 25, 12249-12260.

Timoney, ].; Yaseen, A.; Mcevoy, D. The Potential Role of Internet of Musical Things in Therapeutic Applications. In Proceedings
of the 10th Workshop on Ubiquitous Music (UbiMus 2020), g-ubimus, Porto Seguro, BA, Brazil, 5-7 August 2020. [CrossRef]
Roja, P.; Srihari, D. Iot based smart helmet for air quality used for the mining industry. Int. J. Res. Sci. Eng. Technol. 2018,
4,514-521.

Meshram, P.; Shukla, N.; Mendhekar, S.; Gadge, R.; Kanaskar, S. IoT Based LPG Gas Leakage Detector. Int. J. Sci. Res. Comput.
Sci. Eng. Inf. Technol. 2019, 5, 531-534.

Santiputri, M.; Tio, M. IoT-based Gas Leak Detection Device. In Proceedings of the 2018 International Conference on Applied
Engineering (ICAE), Batam, Indonesia, 3—4 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1-4.

ALshukri, D.; Sumesh, E.; Krishnan, P. Intelligent border security intrusion detection using iot and embedded systems. In Pro-
ceedings of the 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman, 15-16 January 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 1-3.

Saquib, Z.; Murari, V.; Bhargav, S.N. BlinDar: An invisible eye for the blind people making life easy for the blind with Internet
of Things (IoT). In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information &
Communication Technology (RTEICT), Bangalore, India, 19-20 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 71-75.

Soh, Z.H.C.; Husa, M.A.A.H.; Abdullah, S.A.C.; Shafie, M.A. Smart waste collection monitoring and alert system via IoT. In
Proceedings of the 2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Sabah, Malaysia,
27-28 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 50-54.

Paul, S.; Banerjee, S.; Biswas, S. Smart Garbage Monitoring Using IoT. In Proceedings of the 2018 IEEE 9th Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 1-3 November 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 1181-1185. [CrossRef]

Association, A.P. Emotion—APA Dictionary of Psychology. Available online: https://dictionary.apa.org/emotion (accessed on
1 July 2021).

Tao, J.; Tan, T. Affective Computing: A Review. In International Conference on Affective Computing and Intelligent Interaction;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 981-995. [CrossRef]

Picard, R.W. Affective Computing; MIT Press: Cambridge, MA, USA, 1997. [CrossRef]

Song, Y.; Dixon, S.; Pearce, M.T.; Halpern, A.R. Perceived and Induced Emotion Responses to Popular Music: Categorical and
Dimensional Models. Music Percept. Interdiscip. ]. 2016, 33, 472—492. [CrossRef]

Ekman, P. An argument for basic emotions. Cogn. Emot. 1992, 6, 169-200. [CrossRef]

Russell, ].A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161-1178. [CrossRef]

Zentner, M.; Grandjean, D.; Scherer, K. Emotions Evoked by the Sound of Music: Characterization, Classification, and
Measurement. Emotion 2008, 8, 494-521. [CrossRef]

Gomez, P.; Danuser, B. Affective and physiological responses to environmental noises and music. Int. J. Psychophysiol. 2004,
53,91-103. [CrossRef]

Gingras, B.; Marin, M.M.; Fitch, W.T. Beyond Intensity: Spectral Features Effectively Predict Music-Induced Subjective Arousal.
Q. J. Exp. Psychol. 2014, 67, 1428-1446. [CrossRef]

Egermann, H.; Fernando, N.; Chuen, L.; McAdams, S. Music induces universal emotion-related psychophysiological responses:
Comparing Canadian listeners to Congolese Pygmies. Front. Psychol. 2015, 5, 1341. [CrossRef]

Wanlu, Y.; Makita, K.; Nakao, T.; Kanayama, N.; Machizawa, M.; Sasaoka, T.; Sugata, A.; Kobayashi, R.; Ryosuke, H.;
Yamawaki, S.; et al. Affective auditory stimulus database: An expanded version of the International Affective Digitized Sounds
(IADS-E). Behav. Res. Methods 2018, 50, 1415-1429. [CrossRef]

Fan, J.; Thorogood, M.; Pasquier, P. Emo-soundscapes: A dataset for soundscape emotion recognition. In Proceedings of
the 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio, TX, USA,
23-26 October 2017; pp. 196-201.

Griffiths, D.; Cunningham, S.; Weinel, ]J. A self-report study that gauges perceived and induced emotion with music. In
Proceedings of the 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8-11 September 2015; pp. 239-244.
Constantin, FA.; Dragulin, S. Few Perspectives and Applications of Music Induced Emotion. In Proceedings of the 2019 5th
Experiment International Conference (exp.at'19), Funchal, Portugal, 12-14 June 2019; pp. 481-485. [CrossRef]



Electronics 2021, 10, 2519 21 of 22

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Liu, M.; Chen, H.; Li, Y.; Zhang, F. Emotional Tone-Based Audio Continuous Emotion Recognition. In MultiMedia Modeling; He,
X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 470-480.
Ooi, C.S,; Seng, K.P.; Ang, L.M.; Chew, L.W. A new approach of audio emotion recognition. Expert Syst. Appl. 2014, 41, 5858-5869.
[CrossRef]

Sezgin, M.C.; Giinsel, B.; Kurt, GK. A novel perceptual feature set for audio emotion recognition. In Proceedings of the Face and
Gesture 2011, Santa Barbara, CA, USA, 21-25 March 2011; pp. 780-785. [CrossRef]

Yang, Y.H.; Lin, Y.C.; Su, Y.F,; Chen, H. A Regression Approach to Music Emotion Recognition. IEEE Trans. Audio Speech Lang.
Process. 2008, 16, 448-457. [CrossRef]

Yang, Y.H.; Chen, H. Ranking-Based Emotion Recognition for Music Organization and Retrieval. IEEE Trans. Audio Speech Lang.
Process. 2011, 19, 762-774. [CrossRef]

Eerola, T.; Lartillot, O.; Toiviainen, P. Prediction of Multidimensional Emotional Ratings in Music from Audio Using Multivariate
Regression Models. In Proceedings of the 10th International Society for Music Information Retrieval Conference, Kobe, Japan,
26-30 October 2009; pp. 621-626. [CrossRef]

Seo, Y.S.; Huh, ].H. Automatic Emotion-Based Music Classification for Supporting Intelligent IoT Applications. Electronics 2019,
8,164. [CrossRef]

Liu, T.; Han, L.; Ma, L.; Guo, D. Audio-based deep music emotion recognition. In AIP Conference Proceedings; AIP Publishing
LLC: Melville, NY, USA, 2018; Volume 1967, p. 040021, [CrossRef]

Soleymani, M.; Caro, M.N.; Schmidt, E.M.; Sha, C.Y.; Yang, Y.H. 1000 Songs for Emotional Analysis of Music. In Proceedings of
the ACM International Workshop on Crowdsourcing for Multimedia, Association for Computing Machinery, Barcelona, Spain,
22 October 2013; pp. 1-6.

Fan, ].; Tatar, K.; Thorogood, M.; Pasquier, P. Ranking-Based Emotion Recognition for Experimental Music. In Proceedings of the
International Society for Music Information Retrieval Conference, Suzhou, China, 23-27 October 2017.

Schafer, R. The Soundscape: Our Sonic Environment and the Tuning of the World; Inner Traditions/Bear: Rochester, VT, USA, 1993.
Schuller, B.; Hantke, S.; Weninger, F.; Han, W.; Zhang, Z.; Narayanan, S. Automatic recognition of emotion evoked by general
sound events. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Kyoto, Japan, 25-30 March 2012; pp. 341-344.

Drossos, K.; Kotsakis, R.; Kalliris, G.; Floros, A. Sound events and emotions: Investigating the relation of rhythmic characteristics
and arousal. In Proceedings of the IISA 2013, Piraeus, Greece, 10-12 July 2013; pp. 1-6.

Bradley, M.M.; Lang, PJ. The International Affective Digitized Sounds (2nd Edition; IADS-2): Affective Ratings of Sounds and Instruction
Manual; Technical report B-3; University of Florida: Gainesville, FL, USA, 2007.

Mathieu, B.; Essid, S.; Fillon, T.; Prado, J.; Richard, G. YAAFE, an Easy to Use and Efficient Audio Feature Extraction Software. In
Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht, The Netherlands,
9-13 August 2010; pp. 441-446.

Sundaram, S.; Schleicher, R. Towards evaluation of example-based audio retrieval system using affective dimensions. In
Proceedings of the 2010 IEEE International Conference on Multimedia and Expo, Singapore, 19-23 July 2010; pp. 573-577.
[CrossRef]

Fan, J.; Tung, F; Li, W,; Pasquier, P. Soundscape emotion recognition via deep learning. In Proceedings of the Sound and Music
Computing, Limassol, Cyprus, 4-7 July 2018.

Hershey, S.; Chaudhuri, S.; Ellis, D.PW.; Gemmeke, J.F; Jansen, A.; Moore, R.C.; Plakal, M.; Platt, D.; Saurous, R.A.;
Seybold, B.; et al. CNN architectures for large-scale audio classification. In Proceedings of the 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5-9 March 2017; pp. 131-135. [CrossRef]
Ntalampiras, S.; Potamitis, I. Emotion Prediction of Sound Events Based on Transfer Learning. In Engineering Applications of
Neural Networks; Boracchi, G., Iliadis, L., Jayne, C., Likas, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017;
pp. 303-313. [CrossRef]

Ntalampiras, S. Emotional quantification of soundscapes by learning between samples. Multimed. Tools Appl. 2020, 79,
30387-30395. [CrossRef]

Cunningham, S.; Ridley, H.; Weinel, J.; Picking, R. Audio Emotion Recognition Using Machine Learning to Support Sound
Design. In Proceedings of the AM’19: 14th International Audio Mostly Conference: A Journey in Sound, Nottingham, UK,
18-20 September 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 116-123, [CrossRef]
Cunningham, S.; Ridley, H.; Weinel, J.; Picking, R. Supervised machine learning for audio emotion recognition. Pers. Ubiquitous
Comput. 2020, 25, 637-650. [CrossRef]

Drossos, K.; Floros, A.; Giannakoulopoulos, A. BEADS: A dataset of Binaural Emotionally Annotated Digital Sounds. In
Proceedings of the IISA 2014, the 5th International Conference on Information, Intelligence, Systems and Applications, Chania,
Greece, 7-9 July 2014; pp. 158-163.

Drossos, K.; Floros, A.; Giannakoulopoulos, A.; Kanellopoulos, N. Investigating the Impact of Sound Angular Position on the
Listener Affective State. IEEE Trans. Affect. Comput. 2015, 6, 27-42. [CrossRef]

Asutay, E.; Vistfjdll, D.; Tajadura-Jiménez, A.; Genell, A.; Bergman, P; Kleiner, M. Emoacoustics: A Study of the Psychoacoustical
and Psychological Dimensions of Emotional Sound Design. J. Audio Eng. Soc. 2012, 60, 21-28.



Electronics 2021, 10, 2519 22 of 22

58.

59.

60.

61.

62.

63.

64.

65.

66.

Bradley, M.M.; Lang, PJ. Measuring emotion: The self-assessment manikin and the semantic differential. |. Behav. Ther. Exp.
Psychiatry 1994, 25, 49-59. [CrossRef]

Lartillot, O.; Toiviainen, P.; Eerola, T. A Matlab Toolbox for Music Information Retrieval. In Data Analysis, Machine Learning
and Applications; Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 261-268. [CrossRef]

Lange, E.; Frieler, K. Challenges and Opportunities of Predicting Musical Emotions with Perceptual and Automatized Features.
Music Percept. 2018, 36, 217-242.

Spiess, A.; Neumeyer, N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical
research: A Monte Carlo approach. BMC Pharmacol. 2010, 10, 6. [CrossRef]

Abri, F; Gutiérrez, L.F; Siami Namin, A.; Sears, D.R.W,; Jones, K.S. Predicting Emotions Perceived from Sounds. In Proceedings
of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10-13 December 2020; pp. 2057-2064.
[CrossRef]

Altman, N.; Krzywinski, M. Points of Significance: Ensemble methods: Bagging and random forests. Nat. Methods 2017,
14,933-934. [CrossRef]

Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn.
2002, 46, 389-422.

Siami Namin, A.; Hewett, R.; Jones, K.S.; Pogrund, R. Sonifying Internet Security Threats. In Proceedings of the CHI EA "16: CHI
Conference Extended Abstracts on Human Factors in Compting Systems, San Jose, CA, USA, 7-12 May 2016; Association for
Computing Machinery: New York, NY, USA, 2016; pp. 2306-2313, [CrossRef]

Datta, P; Siami Namin, A.; Jones, K.; Hewett, R. Warning users about cyber threats through sounds. SN Appl. Sci. 2021, 3, 714,
[CrossRef]



	Introduction
	Sonification Applications in the IoT
	Research Problem: Modeling and Predicting Perceived and Induced Emotion
	Research Questions
	Contributions of This Work

	Related Work
	Music Emotion Recognition
	Sound Emotion Recognition

	Experimental Setup
	Datasets and Psychoacoustic Features
	EmoSoundscape Dataset: A Dataset for ``Perceived'' Emotion
	IADSE Dataset: A Dataset for ``Induced'' Emotion

	Evaluation Metrics for Analysis

	Methodology
	Feature Selection
	Hyper-Parameter Tuning

	Results and Analysis
	Performance of Prediction Models
	Significant Features

	Conclusions and Future Work
	References

