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Abstract— Connected vehicles nowadays can provide a va-
riety of useful and advanced services to their owners, manu-
facturers, transportation authorities, and other mobility service
providers. Securing the complex sensing and networking proto-
cols that enable these applications is an important and difficult
problem. In this paper, we use blockchain which is traditionally
used in applications from cryptocurrencies to smart contracts,
as a potential solution to CV security. Specifically, we exploit
the immutability of blockchain to ensure safety from falsified
information and attacks. We demonstrate these properties by
developing an algorithm that uses blockchain to maintain
trusted communications between vehicles in the context of a
cooperative ramp merging application.

I. INTRODUCTION

Connected vehicles (CVs) can communicate with each
other i.e., Vehicle-to-Vehicle or V2V, with infrastructure
roadside units to control traffic signals or avoid accidents
i.e., Vehicle-to-Infrastructure or V2I , or with other mobile
devices that can be carried by certain passengers. Connected
vehicle applications can vary from infotainment, parking
assistance, roadside assistance, and remote diagnostics to
supporting essential services for self-driving vehicles, in
order to improve traffic safety, efficiency and sustainability
[1][2]. Connected vehicles rely on Dedicated Short-Range
Communication (DSRC) that offers highly stable connectiv-
ity, secure communication, and low latency for time-critical
V2V and V2I applications. Other wireless communication
prototypes have been explored such as mixtures of DSRC
with WiFi, LTE and WiMAX communication technologies
to include a reliable next-generation communication infras-
tructure for connected vehicles [3].

Security, privacy, and trust establishment can be a
necessity for vehicular cooperation and communication
networks[4],[5],[6]. Blockchain (BC), which in essence is a
distributed ledger technology, has promising properties that
help with the challenges facing CVs; these properties include
decentralization, availability, transparency, immutability, and
pseudonymity. Moreover, BC can provide a secure, scalable
and privacy-preserving environment without relying on a
trusted central authority. It is a promising technology for
designing secure and trusted services or applications in
vehicular networks at low cost. Blockchain[7] offers a new
public infrastructure for verifying credentials in a secure
manner, which is more convenient than relying upon only
a single authority.
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CV security is very critical, since a single malicious
attacker may compromise safety for a large number of
vehicles and endanger protection or disrupt the entire traffic
flow. Therefore, ensuring that all CVs have timely and
proper protections against spoofing attacks is important and
challenging [8]. The variety of CV receivers, including
infrastructure devices, vehicles, and pedestrians, in a CV
environment increases to the system’s sophistication. For
example, security testers [9] showed how they could obtain
unauthorized access to monitor or control the steering wheel,
fans, seats, and air conditioning remotely for the Nissan Leaf
vehicle. Thus, to profoundly solve this security dilemma, data
spoofing must be prevented in a timely manner.

Having only digital signatures based on public key infras-
tructure (e.g., Security Credential Management System, the
standard solution being deployed for CVs[10]) is important
for a secure credentialing solution. However, verifying digital
records through a trusted third party, to transmit or provide
verification, is critical to this scheme. If the trusted third
party is compromised, loses its records, or stops functioning,
verification is no longer possible. For example[7], in 2017,
Hurricane Maria hit Puerto Rico. Critical infrastructure was
wiped out by the hurricane, causing loss of high-stakes
records. These included vital records (birth, death, and
marriage certificates), driver’s licenses, property titles, and
address and tax records. Entrusting a single entity with the
power to protect and verify all the records creates a brittle
system with poor security and longevity. It is insufficient
for high-stake records that need to be accessed and verified
reliably for a lifetime. A better alternative is to have this
same trusted authority be decentralized: backed up numerous
times across the system, and accepted across jurisdictions,
because the data would not controlled by any single company
or government organization. This decentralization is the main
advantage of BC.

Therefore, in this paper we design a new scheme con-
sidering utilizing blockchain consensus mechanisms for CV
security against cyber spoofing attacks. At its core, our
system leverages BC to create a decentralized verification
authority, with equivalent functionality to Security Credential
Management System). In particular, we use a data-driven
methodology to maintain trusted communications between
vehicles in the context of a cooperative ramp merging
application, supported using BC. Our results show that we
are able to detect malicious vehicles in a quick manner
(less than two seconds) using a BC implementation with low
computational cost. We believe that our results demonstrate
the feasibility and effectiveness of using BC to track trust in
a CV environment.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 23,2022 at 20:42:39 UTC from IEEE Xplore. Restrictions apply.



Our key contributions in this study are:

o« We develop a prototype of V2X security mitigation
scheme based on BC technology and a data driven
solution for malicious trajectory information.

+ We show how BC consensus can be designed to avoid
various spoofing attacks with the help of different
vehicular units that act together to validate information
coming from any suspicious actor.

o« We perform extensive simulation to show efficiency
and effectiveness of our scheme using an open source
simulation framework.

The remainder of this paper is organized as follows:
Section II conducts a literature review of two major topics:
BC technology and BC applications in connected vehicles.
Section IV introduces the design of the proposed scheme
with detailed description of its components and associated
algorithms. Results of our simulations are presented in
Section VI. Lastly, Section VII presents some concluding
remarks and outlines possible future work.

II. BACKGROUND

Blockchain (BC) technology is a distributed ledger tech-
nology, enabling participants of the system to agree on a
transaction and log it in an unforgeable shared ledger that
can be used as a record of the agreement. We propose to
leverage BC to support managing and maintaining historical
transactions in a Connected Vehicle (CV) environment. This
allows any node in the system (i.e., vehicle or roadside infras-
tructure) to access past event list and its related information
in the blockchain, and use that for example, to establish trust
in vehicles based on past behavior. In our scheme, we use
BC to ensure data immutability and automated information
exchanges between different trusted nodes in a safe manner.
Moreover, we rely on a credit based consensus protocol
which can be seen as a credit score system to estimate the
trust level in a vehicle: the higher the node’s credit score
is, the higher the trust level of this node would be. Using
these credit scores, it is possible to separate trusted from
untrusted nodes, and take that information into account in
critical maneuvers in the system. This ability is important for
cooperative CV applications such as ramp merging [11] and
intersection management [12], since they are time critical
maneuvers for road safety and traffic efficiency where a
malicious participant can substantially interfere with the
system.

A. Consensus Protocols

BC [13] is a distributed ledger spreading across nodes
which can be used to verify transactions on a P2P network.
This is the key feature of BC that enables its unique decen-
tralized property. It is important for BC to ensure agreement
on which information is added or discarded. These processes
or rules, are essentially known as a consensus protocols in
the distributed computing community which ensure that a
group of participants can reach consensus on a value even
in the presence of malicious participants. Consensus is used
to verify transactions and help keep the network safe.
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A consensus protocol needs to be set up before the
blockchain is created and it is the heart of a BC network.
It provides a method of reviewing and confirming what data
should be added to the blockchain’s record. Because a BC
network typically has no centralized authority to oversee
consensus, all nodes on a BC must agree on the state of the
network, following the predefined rules or protocols. Many
consensus protocols have been introduced in BC technology,
such as Proof of Work, Proof of Stake, Proof of Time, Proof
of Authority, etc. However, we will focus on the two most
widely used protocols in this paper, i.e., Proof of Work, and
Proof of Stake.

Proof of Work (PoW): First consensus protocol in
BlockChain (BC) was proposed by [14] to help participants
to agree on a Bitcoin consensus. The consensus protocol
relies on a time-consuming calculation involving Hashing
(SHA-256), P2P networking, and Merkle Tree algorithm
for generating, broadcasting, and checking blocks in the
network [14]. PoW introduces the concept of mining which
involves validation of a set of transactions (block) in the
network PoW incorporates the idea of mining, which entails
presenting cryptographic validation of a sequence of transac-
tions (block) in the network through proving the capability
of implementing the computational proof of the giving tasks
. Once a transaction started, all of the network’s miners
compete to be the first to solve a cryptographic puzzle
to initiate and build the block. The miner who solves the
puzzle successfully will broadcast his or her solution (in
the form of a block) to other peers over the network. The
new block will be formed and approved on the chain after
the solution has been checked. Proof of work is a protocol
with a primary goal of preventing cyber threats such as
DDoS or distributed denial-of-service attacks that aim to
drain a computer system’s resources by submitting several
false requests because each request has a cost i.e., via mining.

Proof of Stake (PoS): Another consensus algorithm is
[14], which selects the validator to mine the next block based
on its number of coins he/she owns or its stake in the network
and the stake age. PoS is implemented with a variety of
flavors, ranging from minor to significant modifications to
the basic protocol. The most significant distinction between
each version of PoS is the strategy each employs to address
the protocol’s double-spending and centralization issues. To
carry out a 51% attack under PoS, the attacker must gain 51%
of the participating nodes. In contrast to PoW, an intruder in
a PoS scheme is strongly prohibited from initiating a 51%
attack because the malicious node fears losing its entire stake
if a malicious behavior was repoerted for this node. Both
PoS validators (equivalent to miners in PoW) and their stake
(cryptocurrency) in the network are tracked by the PoS-based
ledger. In a Proof-of-Stake (PoS) scheme, all validators invest
stake in the system in order to win the right to mine the
next block. If the stake is higher than most of the other
stakes, then, the opertunity to be a validator is higher but
not guaranteed. The validator for block formation is chosen
stochastically by a lottery algorithm that considers validators
with higher stakes to have a high probability of winning. If a
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node participant wants to cheat the scheme, they will forfeit
their share in it. In our work, we use PoS because it does not
require any significant computational power and provides a
safer network due to the overwhelming attack costs (since
the attacker has to acquire 51% of a network’s stake tokens).

B. Blockchain Application for Connected Vehicles

Blockchain (BC) is an exciting and versatile technology
that has been studied in different application domains. How-
ever, few studies have explored using BC in a Connected
Vehicle (CV) environment. In this section, we highlight some
studies on the deployment of efficient incentive mechanisms
and privacy-preservation based on BC technology for CVs.
Li et al. [15] introduced CreditCoin, which is an incentive
strategy aimed to enhance crowd-sourcing robustness while
protecting the privacy of users. When a vehicle notices an un-
expected or malicious event, it asks nearby vehicles to check
and send back information regarding this irregular event.
Once validation, this information is sent to incoming vehicles
to warn them to change or modify their trajectories or driving
behaviors depending on the existing road conditions. If a
vehicle intended to collect traffic data in a certain region, it
will provide an incentive or reward on any data transmitted
by vehicles in that area. The announcement policy, reward
mechanism, and privacy protection were the main three key
components of their proposed scheme. They also considered
designing a new BC ledger to deal with information verifi-
cation if needed. However, the implementation complexity,
overheads, and security properties of this system are unclear.
Singh and Kim [16], [17] use BC to investigate creating of
trust and incentive mechanisms for CV. The aim is to provide
a framework that allows for safe communication in the CV
context without the need for a central authority. They provide
a scheme that is based on a BC ledger that allows each
vehicle to create a Bit Trust which is considered as a unique
identifier for each vehicle. Furthermore, BC was utilized to
store each vehicle’s communication history. A vehicle should
contribute to the network’s proper functioning in order to
receive an incentive and increase its Bit Trust. For example,
if a vehicle is engaged with an intersection manager, it will be
rewarded and its Trust Bit will be increased by calculating the
intersection’s crossing order. However, it was not thoroughly
investigated if their framework could guarantee the security
of knowledge exchanges using BC technologies.

Our work addresses challenges in applying BC consensus
mechanisms, such as PoS protocol, to sustain and securely
distribute trustworthy scores of CVs. We use a novel design
that utilizes a data-driven methodology to detect malicious
behavior with decentralized secure infrastructure to track it.

III. THREAT MODEL

The threat model describes our assumptions on the attacker
and their capabilities. We consider malicious vehicles that
can generate falsified messages and broadcast them to other
vehicles. These vehicles are insider attackers with previously
obtained valid authentication from the Security Credential
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Fig. 1: Flowchart of the proposed system.

Distributed ledger

Management System (SCMS)[10]. SCMS is a vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) messag-
ing security solution. To promote trustworthy communica-
tion, it implements a Public Key Infrastructure (PKI)-based
scheme that uses highly advanced methods of encryption
and certificate management. To minimize trackability, SCMS
uses pseudonyms, which are short-term security credentials
created and modified by each vehicle so that it is difficult
for eavesdroppers to tell whether BSMs transmitted at the
two distinct locations are originated from the same vehicle).
According to our attack model, an insider can have access
to the on-board unit (OBU) of a vehicle. This malicious
vehicle is thought to have the necessary credentials to behave
as a legal node, regularly engaging and transmitting false
data [18]. Furthermore, the intruder has the capability of
changing any field in the BSM components but not to spoof
the identities in the messages since this is prevented by
the SCMS certificates. In a message spoofing attack, the
attacker can send out falsified position and velocity data of
itself, which may induce the victim vehicles to accelerate
or decelerate. This may degrade the traffic efficiency and
even put vehicles near the on-ramp at risk of collisions [18].
The intruder can use a malicious hardware unit or a piece
of software to manipulate the transmission rate of its OBU.
Furthermore, since it can handle its own OBU, the attacker
should be able to use related pseudonyms certificates. We
consider only these network based attacks; we do not con-
sider other attacks such as sensor manipulation attacks or
physical attacks.

IV. PROPOSED SYSTEM ARCHITECTURE

Our proposed scheme includes three phases: system initial-
ization, trust value calculation, and distributed ledger con-
struction and maintenance, as shown in Figure 1. The first
phase represents the stage that the connected vehicles gets
enrolled and obtains certificates from the Security Credential
Management System (SCMS). The second phase is the trust
value calculation for each vehicle to measure its reliability.
And the last phase refers to the distributed ledger which
is shared and consistent via consensus and synchronized to
show the recorded vehicular transaction data. The details of
all phases are presented in the remainder of this section.

A. System Initialization

A connected vehicle has to obtain a valid certificate
before participating in the system. The certificate binds the
owner’s identity to a pair of encryption keys (i.e., public
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Fig. 2: Flowchart of vehicle trust value calculation.

and private) which are used to encrypt and sign information.
Only nodes with valid security certificates and credentials
are able to send authenticated messages that will be trusted
by the receiving nodes, and participate and contribute to any
platform used by the CV system. To obtain certificates, a
vehicle has to get enrolled into SCMS by submitting an
enrollment request to U.S. Department of Transportation.
Once a vehicle is authenticated, it can obtain information
such as Vehicle Trust Values about other vehicles in the same
region through the distributed ledger. Vehicle trust value of
the requesting vehicle is updated continuously and can be
shared among authenticated entities within the system.

B. Vehicle Trust Value Calculation

This phase is needed to create the vehicle trust estimates
based on a data-driven approach to identifying falsified
vehicular data. The overview of this phase is shown in
Fig.2. This method includes trajectory acquisition, feature
extraction, and abnormal behavior determination which is
based on an artificial neural network (ANN) model and
hierarchical clustering. The details of each step are presented
next.

1) Trajectory collection: CV applications mainly rely
on basic safety messages (BSMs) which contain dynamic
information such as vehicle position, speed, time stamp, ac-
celeration, and other state variables. A trajectory is composed
of multiple data instant that reveal information about path
behavior over time. Different trajectories are reported by CVs
through vehicle-to-vehicle (V2V) or vehicle-to-infrastructure
(V2I) communications, to provide richer spatial and temporal
information for better traffic management assessment. Each
trajectory data contains BSM data such as location and speed
of the vehicle. The selected validator is responsible for using
these trajectories to process the Vehicle Trust Value calcu-
lation for each vehicle later on. If a vehicle manipulates its
information, the Vehicle Trust Value Calculation algorithm
will label it with a low trust score which leads to disallowing
it from participating in maneuvers.

2) Feature Extraction: Feature extraction is used here to
obtain key information from the collected trajectory data
for identifying certain patterns that indicate abnormality. In
this study, we use three parameters or features that can
differentiate various trajectories and help putting them into
distinct clusters. These parameters are: a) acceleration rate, b)
location index, and c) deferential range. The acceleration rate
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Algorithm 1 Creating Features Extraction Table for ANN
Model
Input:

> We digitize the following parameters for each trajectory
into discrete values:
acceleration_rate or(A) ={0,5,10,...}
location_value or(L)=1{1,2,3,...}
range_dif ference or (R)=1{0,1,2,...}
Anomaly valueor (AV)={0,1,2,...,10}
Qutput:
training _set

Create_Training_Table Function (S, L, R)
Features + []

Index + 0

N1 < length(S)

N2 « length(L)

N3 < length(R)

for s; < 0 o N1 do

for [; < 1 to N2 do
for r; < 0 to N3 do
Features(Index| <— s; +[; + r; + AV [Index]
Index <+ Index—+1

return training_set <— Features

is a change in velocity for a vehicle through two consecutive
time instances and is calculated by dividing vehicle locations
by a time difference of two time instances. The location index
includes any static position information such as road number,
lane number, etc. Finally, deferential range is the space gap
between a vehicle and its front vehicle minus the distance
measured by the radar sensor. These parameters are inferred
using BSMs data to represent each trajectory to be used later
on.

In our scheme, the three features are then mapped into
discrete ranges, such that defining these trajectories is less
computationally demanding and easier to categorize, as
shown in algorithm. 1. The trajectory features are fed into
the neural network model. The output of the neural network
model is a value that will be used in the clustering algorithm
to represent a cluster later on.

3) Artificial Neural Network Model: Arttificial neural net-
work (ANN) works by having the information from the input
neurons multiplied by each weight and then fed into the body
layers of the artificial neurons, where these weighted inputs
are summed with biases, and transferred through the transfer
function to output a final decision. Each artificial neuron can
be mathematically modeled as follows:

y(k) = £(Y, wilk) = xi(k) + b;)
n=0
where x;(k) is the input value in the discrete time k and i

ranging from 0 to m; w;(k) is the weight value in the discrete
time k; b; is the bias; f is the transfer function; and y(k) is
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the output value in the discrete time k. Our goal is to train the
ANN model by having the suitable weights for the hidden
layers, so that it can generate the right output based on the
right trajectory features.

We use an ANN model with one input layer (three neurons
one for each trajectory feature), two hidden layers (64
neurons each) and an output layer that includes 10 neurons
for probability distribution of 10 trust credit score values. In
our evaluation, we use 80% of the data for training, 10% for
testing, and the remaining 10% for cross validation.

4) Trajectory Clustering: In this phase, we apply hierar-
chical clustering that is an unsupervised learning algorithm
that groups similar objects into clusters with similar objects.
Each trajectory is treated as an element that is defined by
a group of features. These features are used to compute a
distance metric to identify the closest cluster to a given ele-
ment. The falsified trajectory identification can be recognized
through having a larger distance from existing clusters of
normal trajectories. We use K-means clustering because it
is a popular clustering algorithms [19]. K-means works by
dividing the data collection into K distinct non-overlapping
clusters or subgroups clusters, each of which contains only
one data point. The sum of the squared distance between the
data points and the cluster’s centroid i.e., arithmetic mean
of all the data points that belong to that cluster, should be
minimal when using K-means to add data points to a cluster.

Within clusters, the less difference there is, the more
homogeneous or similar the data points are. The steps to
apply the k-means algorithm are as follows (as shown in
Fig. 3): (1) The number of clusters, K, is defined. (2) We
initialize the centroids by shuffling the dataset first and then
choosing K data points at random for the centroids without
replacing them; (3) We continue iterating until the centroids
do not change; (4) We sum the squared distances between
data points and all centroids; (5) we allocate each data point
to the nearest cluster (centroid); and (6) We calculate the
centroids for the clusters by averaging all the data points
that belong to each cluster.

Algorithm 2 Proof of History Algorithm
Input: senderID, regionlD, position
Output: Distributed block to next regions

while A CV in a regoin do
PoH (senderID,regionl D, position)
if position = region_boarder, then
A change of region event is created including the

updated destination trajectories for the CVs.
RSU creates and transfers PoH block to the next
active regions.

L return

C. Distributed Ledger

To increase the trustworthy of the vehicles, we propose
adding long term credibility metric for the connected vehicle
over time. Thus, we rely on a Proof-of-history (PoH) for veri-
fying vehicles reliability of time between regions. The Proof-
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|
Initialize centroids by first shuffling the
dataset and then randomly selecting K data
points for the centroids without replacement

|

Keep iterating until there is no change
to the centroids. i.e assignment of
data points to clusters isn’t changing

|

Compute the sum of the squared distance
between data points and all centroids

|

Assign each data point to
the closest cluster (centroid)

|
Compute the centroids for the clusters
by taking the average of the all data
points that belong to each cluster

Fig. 3: K-means clustering algorithm.

of-history credit is mainly responsible of recording vehicles’
accumulated spatial and temporal contributions into a ledger.
When a vehicle moves across different regions, it is required
to update its current active region. This way, the vehicles
within the same active region can communicate efficiently.
The proof-of-history credit for vehicle i is computed by:

12
HS; =Y ax HS(; 1

t=t1

(D

Where HSézzle
(12 —t1) period; o is a discount factor; and HS! is the ac-
cumulated proof-of-history credit during the 12 period. This
process is shown in Algorithm 2. Note that the credit point of
this vehicle in the original region should be set to zero. Once
vehicles’ trust values are calculated, a distributed ledger can
be utilized to identify and expose any abnormal behavior.
This distributed ledger provides vehicle trust awareness to
other surrounding vehicles, so that the vehicle can use this
information before deciding to get enrolled in a certain
maneuver or application. The distributed ledger is gener-
ated by selected validators that produce BC blocks. Each
distributed ledger records vehicles’ transaction information
such as transaction ID(TID), transaction type(TT), sender ID,
credit range, and region ID. In addition, timestamp will be
added automatically for each record in the header, which
makes it traceable. Then, the distributed ledger validation
sender encrypts it with its private key and broadcasts it. To

) is the proof-of-history credit during the
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distribute ledger to other vehicular nodes, validator’s election
for block generation has to be performed, whose process is
shown in Fig.4. Firstly, a vehicle credit is calculated through
the equation:

vehicle_credit = HS' + TS +V§' 2)

where HS' or PoH credit is calculated based on previous
credits for the vehicle and can be shared by all the RSU
nodes; T'S' or trust score is calculated by the Vehicle Trust
Value Calculation algorithm; and VSt or validation score is
estimated by measuring the vehicle through different sensors.
Then, each vehicle gets a credit range based on its credit
value. For example, if the vehicle has a high credit, it gets
a range value of 10. If the vehicle has a low credit, it
gets a range value as 0. Then, the credit range values of
some random vehicles will be collected together in a group
or pool. However, this pool includes more vehicles with a
high credit range value and less number of vehicles with a
lower credit range values which is similar to the concept of
POS validator election process. Moreover, a pseudo-random
election process will be used to select a validator based on
a combination of factors such as the staking age, random-
ization, and the node’s credit range value. Next, the process
continues updating validator pool and selecting a validator. A
validator has to be elected periodically to manage updating
the blockchain due to the decentralized structure of BC
technology. The election of a validator ensures the update of
data in BC in a timely manner. Finally, the selected validator
will be responsible for creating the distributed ledger and
broadcasting it.

( St )
!
[ Update each vehicle credit ]<—
.
Mark each vehicle
based on its credit
[ Update validator pool J
!
[ Select a validator :|
|
[ Create a new block or ledger ]
!
[ Wait for the next cycle J_

Fig. 4: Validator election process.

V. COOPERATIVE RAMP MERGING ALGORITHM

In this study, we use a cooperative ramp merging ap-
plication (see Fig. 5) to illustrate the proposed blockchain
(BC) technology. In this application, a target connected
vehicle (CV) can merge with other CVs from the main-
line safely and smoothly through V2X communications. A
feedforward/feedback motion control algorithm is developed
to obtain the recommended longitudinal acceleration, ayf,
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[20], which takes into account the target vehicle length [,
longitudinal position r, longitudinal speed v, longitudinal
acceleration a, and dynamic states from the involved remote
vehicles.

Clref(l—‘y-St) = —0tjjki; - [(Vi(t) — rj(t — Tij(l)) +lj+v,-(t)
-(z;;(t)+fij(t)))+yi-(v,»(r)—vj(;—cij(t)))] 3)

where o; represents the adjacency matrix value; k;; and ¥
are control gains, respectively; The time-varying commu-
nication delay between two vehicles is denoted by t;;(t)
; and tigj(t) is the time-varying desired time gap between
two vehicles. Therefore, the recommended speed can be
computed as:

Vit + 8t) = vit) +ayes (t + 8t) - 8t @)

where v;(r + 8t) is the suggested speed; v;(¢) is the current
speed of the vehicle; and 6t is the length of each time step.
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Fig. 5: Cooperative ramp merging scenario

VI. EVALUATION

For our experiments, we use VEhicular NeTwork Open
Simulator (VENTOS)[21], that is a closed-loop VANET
simulator that incorporates communication network and ve-
hicular traffic simulators with a lot of capabilities. It is a
free open-source C++ simulator that can create and analyse
different traffic flow and intelligent traffic schems, collabo-
rative automated systems, etc. Vehicle-to-everything (V2X)
communication can be easly implemented with VENTOS
through dedicated short-range communication (DSRC) and
other methods. In the simulation, vehicles are generated
with Poisson distribution and spawn into a 3-mile network
consisting of a 3-lane mainline segment and a single lane
on-ramp. We run CVs equipped with DSRC at a maximum
speed of 70 mph. The communication range for each vehicle
is 300 meters and the roadside units (RSU) is located at the
lane merging area. We develop our blockchain (BC) scheme
including Transactions to Proof of Stake Consensus in a P2P
Network of Nodes in Python as shown in Fig.6.
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In our BC scheme, nodes/vehicles use representational
state transfer(REST) API to programmatically query and
invoke transactions, and to manage BC network. Our scheme
has an Account Balance Model to keep track of the balance
of each account as a global state. Fig.7 shows the responding
block size based on the number of vehicles in a CV region.
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Fig. 7: Block size vs. the number of vehicles.
To show the effects of our attacks, we apply different
spoofing attacks to influence the mainline traffic. We measure

the total traffic flow for the mainline as shown in Fig.8.
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Fig. 8: Attack impact on cooperative ramp merging.

While developing our mitigation scheme, we need to
determine the optimal values of system parameters such as
cluster number. Thus, we sweep the values of k from 1 to 30.
For each k, we compute total within-cluster sum of square
(WSS). Then, based on the number of clusters, k, we plot
the WSS curve. The position of a bend (knee) in the plot
is used to determine the appropriate number of clusters as
shown in Fig.9.

Then, we use our simulation to generate normal trajec-
tories based on Newell’s car-following model and falsified
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Fig. 9: Elbow method.

trajectories to achieve the attacker’s goal. Figure 10 shows
that the distance between the cluster of falsified trajectory
and clusters of other normal trajectories is so significant.
This indicates that the proposed clustering method can well
identify the falsified trajectory.
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Fig. 10: Clusters’ representation for 15 trajectories.

To evaluate efficiency, we measure the execution time
for the Vehicle Trust Value Calculation method in our
Cooperative Ramp Merging scheme. The results show that
this method does not exceed 0.025 seconds as shown in
Figure. 11, which indicates the real-time applicability of the
proposed method.
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Fig. 11: Time evaluation for vehicle trust evaluation calcu-
lation method.

Figure 12 shows the scenario where traffic in the on-
ramp margin is under attack. Around the time instant of 30
seconds, the attacker starts its spoofing attacks. If we assume
that the forger is selected to start creating the transaction
block within the region after one second, then this block will
be produced and distributed in less than 2 seconds. To our
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best knowledge, this is by far the quickest process compared
to other purposed BC technology in intelligent transportation
system applications. Therefore, the design of our framework
ensures that the attack can be detected immediately and the
system can return to the normal condition shortly.
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Fig. 12: Effectiveness of our framework against injected
attack in the cooperative ramp merging application.

Comparatively, in the scenario of message spoofing attack
without the proposed framework, the merging vehicle on
ramp will be fooled to speed up so that it creates congestion
causing other mainline vehicles to decelerate. This results in
degradation of over traffic performance as shown in Table I.
We compare both average speed and CO emissions of the
merging vehicles under three different cases, i.e., without
attack, under attack, and with our framework. The results
show that without the protection from our framework, the
attack can lead to a 45.3% decrease in average speed and
an 21.3% increase in CO emission. Our proposed scheme is
able to significantly improve resilience of the system.

[1]

[2

—

[4]

[5]
[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

Performance without attacks ~ with attacks

[

with Our scheme

average speed (m/s) 6.91 3.78 6.05

CO (mg) 43.66 52.94 43.0

TABLE I. Economic evaluation of our framework against
spoofing attacks.

VII. CONCLUSIONS AND FUTURE WORK

In this study, a new architecture for securing connected
vehicles is proposed to verify the integrity of other vehicles’
messages. Moreover, we propose a solution to addressing the
validity of vehicle trajectories using a data-driven approach.
Regarding future work, more comprehensive tests (e.g., with
hardware-in-the-loop simulation or even in a small scale real
world environment) will be performed to verify the proposed
blockchain-based security scheme. In addition, we will apply
the proposed system to other typical CV applications such
as intelligent traffic management and truck platooning, for
further evaluation.
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