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Abstract
COVID-19, caused by the infection of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), has been a global pandemic and created unprecedented public health
challenges throughout the world. Despite significant progresses in understanding the
disease pathogenesis and progression, the epidemiological triad of pathogen, host, and
environment remains unclear. In this paper, we develop amultiscale model to study the
coupled within-host and between-host dynamics of COVID-19. The model includes
multiple transmission routes (both human-to-human and environment-to-human) and
connects multiple scales (both the population and individual levels). A detailed anal-
ysis on the local and global dynamics of the fast system, slow system and full system
shows that rich dynamics, including both forward and backward bifurcations, emerge
with the coupling of viral infection and epidemiological models. Model fitting to both
virological and epidemiological data facilitates the evaluation of the influence of a
few infection characteristics and antiviral treatment on the spread of the disease. Our
work underlines the potential role that the environment can play in the transmission of
COVID-19. Antiviral treatment of infected individuals can delay but cannot prevent
the emergence of disease outbreaks. These results highlight the implementation of
comprehensive intervention measures such as social distancing and wearing masks
that aim to stop airborne transmission, combined with surface disinfection and hand
hygiene that can prevent environmental transmission. The model also provides a mul-
tiscale modeling framework to study other infectious diseases when the environment
can serve as a reservoir of pathogens.
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1 Introduction

In late December 2019, highly contagious pneumonia of unknown etiology was first
reported inWuhan, China (Zhu et al. 2020). A novel strain of coronavirus was isolated
frompatients and later named severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Since then, the Coronavirus Disease 2019 (COVID-19) has spread to over 210
countries and territories, creating unprecedented public health challenges throughout
the world. As of January 12, 2021, more than 91 million cases and 1.9 million deaths
had been reported. Despite many theoretical, experimental and clinical studies, our
current knowledge on the fundamental mechanisms of COVID-19 transmission and
infection remains limited.

Mathematical modeling provides a powerful theoretical means to study COVID-
19. A large number of mathematical and statistical models have been proposed (e.g.,
Kucharski et al. 2020; He et al. 2020; Li et al. 2020; Liu et al. 2020a, c; Tang et al.
2020;Weitz et al. 2020;Wu et al. 2020a, b; Zhao and Feng 2020; Hellewell et al. 2020;
Chen et al. 2020; Olabode et al. 2021; Musa et al. 2022). Almost all these models are
concerned with the transmission and spread of the disease (i.e., the between-host
dynamics) at the population level. On the other hand, very little modeling effort has
been devoted to the within-host dynamics of SARS-CoV-2. When the coronavirus
enters the human body, there are complicated interactions between the pathogen and
host cells taking place, which directly shapes the disease risk and infection severity for
the individual hosts and which, in a collective manner, may subsequently impact the
epidemic patterns (Liu et al. 2020b;He et al. 2020). Due to the inadequate investigation
of the within-host dynamics of COVID-19 and their connection to the population-level
epidemics, there are several fundamental questions that remain unanswered or only
partially answered at present; for example, how does the viral load change inside the
human body, what are the short-term and long-term interactions between SARS-CoV-
2 and the host cells, and how does the within-host pathogen development affect the
population-level disease transmission and spread?

As a pilot study to address these questions, we develop a multiscale modeling
framework in this paper to investigate the between-host and within-host dynamics of
COVID-19 and their impact on each other. At the individual host level, our model
characterizes the virus–cell interactions and their time evolution within the human
body. At the population level, our model describes the disease transmission and
spread through multiple transmission routes. Most of the between-host COVID-19
models published thus far are based on the susceptible-exposed-infected-recovered
compartmental framework or its variants, with a focus on the direct, human-to-human
transmission pathway (Chan et al. 2020). On the other hand, a recent experimental
study found convincing evidences that SARS-CoV-2 was detectable in aerosols for up
to 3 h, on copper for up to 4 h, on cardboard for up to 24 h, and on plastic and stainless
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steel for up to 3 days (van Doremalen et al. 2020). There are also consistent and strong
evidences that the infection can spread via airborne transmission (Greenhalgh et al.
2021). All these indicate a significant risk of the indirect, environment-to-human trans-
mission pathway, particularly airborne and fomite transmission, for SARS-CoV-2.
Additionally, the novel coronavirus has been found in the stool of some infected indi-
viduals (Zhang et al. 2020), which may contaminate the aquatic environment through
the sewage water and add another possible route of environmental transmission for
COVID-19 (Yeo et al. 2020). Therefore, quantifying such indirect transmission routes
in a modeling study could help us to better understand the transmission mechanisms
of COVID-19.

Our between-host model explicitly includes the environment-to-human transmis-
sion by incorporating the concentration of SARS-CoV-2 in the environment, which
interacts with the human hosts: susceptible individuals may be infected by contract-
ing the environmental coronavirus, and infected individuals may shed the pathogen
(through coughing, sneezing, etc.) back to the environment. In addition, we introduce
the concentration of SARS-CoV-2 inside the human body as a within-host variable
that interacts with the host cells and that represents the individual viral load. We then
bridge the within-host and between-host dynamics via a two-way coupling. Since the
coronavirus may enter the human body through the environment, we assume that the
within-host viral load depends on the environmental pathogen concentration. Mean-
while, since the within-host pathogen level is directly associated with the individual
symptoms and infection severity, we assume that the human-to-human transmission
rates depend on the viral load within the human body.

Hence, our modeling framework incorporates multiple transmission routes (both
human-to-human and environment-to-human pathways) and connects multiple scales
(both the population and individual levels). The within-host interactions normally
occur on the time scale of hours to days, which is referred to as the fast dynamics. In
contrast, the between-host transmission and spread is on the scale of weeks, months to
years, referred to as the slow dynamics. To facilitate themathematical analysis, wewill
first separate the two time scales so that a thorough investigation can be conducted
to each of the fast and slow systems. Then we will combine the between-host and
within-host systems and study the coupled dynamics. Our detailed analysis on the
local and global dynamics of the fast system, the slow system and the coupled system
shows that rich dynamics, including both forward and backward bifurcations, emerge
with the coupling of the within-host and between-host models.

The remainder of the paper is organized as follows. Section 2 is devoted to the
formulation of the COVID-19 model linking within-host and between-host dynamics,
and the derivation of the basic reproduction number for the model. We analyze the
model by using the bifurcation theory and fast-slow analysis in Sect. 3, and conduct
numerical simulation and model validation in Sect. 4. Finally, we conclude the paper
in Sect. 5 with some discussions.

2 Model

Let S, E, I , R denote the number of susceptible, pre-symptomatic infected, symp-
tomatic infected and recovered host individuals. Let Z and V be the concentration of
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coronavirus in the environment and within the host, respectively. T and T ∗ denote
the concentration of target cells and infected target cells within the host, respectively.
To link the within-host and between-host interactions, we extend the population-level
model proposed inYang andWang (2020)with the inclusion of thewithin-host dynam-
ics (Wang et al. 2020), which takes the form

dS
dt

= ! − βE (V , E)SE − βI (V , I )SI − βZ (Z)SZ − µS

dE
dt

= βE (V , E)SE + βI (V , I )SI + βZ (Z)SZ − (α + µ)E

d I
dt

= αE − (ω + γ + µ)I

d R
dt

= γ I − µR

dZ
dt

= ξE E + ξI I − δZ

dT
dt

= 1
ε

(
b − κVT − d T

)

dT ∗

dt
= 1

ε

(
κVT − qT ∗

)

dV
dt

= 1
ε

(
η(Z)+ pT ∗ − cV

)
.

(1)

The symptomatic infected class has fully developed disease symptoms and can
infect others. The pre-symptomatic infected class is in the incubation period; COVID-
19 patients do not show symptoms but are still capable of infecting others. There are
some other models that include the exposed (assumed to be non-infectious), asymp-
tomatic and symptomatic groups explicitly (Zhao and Feng 2020; Ngonghala et al.
2020; Xue et al. 2020; Tang et al. 2020). Because we will couple it with within-host
models, we keep the between-host model with a minimum number of variables.

The parameter ! represents the generation rate of susceptible individuals, µ is the
natural death rate, 1/α is the period of incubation between infection and the onset
of symptoms, ω is the disease-induced death rate, γ is the rate of recovery, ξE and
ξI are the respective viral release rates to the environmental reservoir from the pre-
symptomatic infected and symptomatic infected individuals, and δ is the viral removal
rate from the environment. The functions βE (V , E) and βI (V , I ) represent the direct,
human-to-human transmission rates between pre-symptomatic infected and suscep-
tible individuals, and between symptomatic infected and susceptible individuals,
respectively. The function βZ (Z) is the indirect, environment-to-human transmission
rate. We assume that βE (V , E), βI (V , I ) and βZ (Z) are all non-increasing functions
of E , I , and Z , respectively, because higher levels of E , I and Z would motivate
stronger control measures to prevent transmission. Higher viral load can result in a
higher transmission rate. Thus, we assume that βE (V , E) and βI (V , I ) increase as
V increases. For example, in the simple case, βE (V , E), βI (V , I ) and βZ (Z) can be
constant, or they may take the nonlinear form (44) as shown in numerical simulations.
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For mathematical analysis of the multiscale model, we avoid the complexity of keep-
ing track of the dynamics within each individual and only formulate the within-host
model for a conceptual “average” individual. The within-host model will be fitted to
the average viral load of a group of patients. The parameter b is the generation rate
of target cells, κ is the viral infection rate, d is the death rate of target cells, q is the
death rate of infected cells, p is the viral production rate, and c is the viral clearance
rate. The environment can transmit virus to the individual at a rate η(Z). Below we
summarize the assumptions on the functions.

(H1) βE (V , E), βI (V , I ) and βZ (Z) are positive functions.

(H2)
∂βW (V ,W )

∂V
> 0,

∂βW (V ,W )

∂W
≤ 0 for W = E, I , and β ′

Z (Z) ≤ 0.

(H3) βE (V , E) and βI (V , I ) are both concave downward (i.e., the Hessian matrices
of βE and βI are negative semidefinite).

(H4) η(0) = 0, η′(Z) ≥ 0 and η′′(Z) ≤ 0 for Z ≥ 0, and η′(Z) > 0 for Z > 0.

The coupled dynamics have two distinct time scales. The within-host interactions
normally occur on the time scale of hours to days, referred to as the fast dynamics. In
contrast, the between-host transmission and spread is on the scale of weeks, months
to years, referred to as the slow dynamics. These two scales are coupled by a small
constant ε.

Model (1) has a disease-free equilibrium solution (DES), given by E0 =
(S0, E0, I0, R0, Z0, T0, T ∗

0 , V0) = (!/µ, 0, 0, 0, 0, b/d, 0, 0). The new infection
matrix F and transmission matrix V are

F =





βE (0, 0)S0 βI (0, 0)S0 βZ (0)S0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0
1
ε
κT0

0 0 0 0 0




(2)

and

V =





α + µ 0 0 0 0
−α ω + γ + µ 0 0 0
−ξE −ξI δ 0 0

0 0 0
q
ε

0

0 0 −η′(0)
ε

− p
ε

c
ε




. (3)

By the next-generation matrix method (van den Driessche and Watmough 2002), the
basic reproduction number R0 is defined as the spectral radius of FV−1, i.e.,

R0 = ρ(FV−1) = max
{
R0E +R0I +R0Z ,R0w

}
(4)
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where

R0E = βE (0, 0)S0
α + µ

, R0I =
αβI (0, 0)S0

(α + µ)(ω + γ + µ)
,

R0Z = βZ (0)S0
[
αξI + (ω + γ + µ)ξE

]

(α + µ)(ω + γ + µ)δ
, R0w = κ pT0

cq
.

LetR0b = R0E+R0I+R0Z . HereR0b andR0w are the between-host andwithin-host
threshold parameters, respectively. More specifically, R0b is the sum of three terms,
where R0E (resp. R0I , R0Z ) measures the contribution to the between-host basic
reproduction number from direct pre-symptomatic-infected-to-susceptible human-
to-human transmission (resp. direct symptomatic-infected-to-susceptible human-to-
human transmission, indirect environment-to-human transmission).

3 Analysis

3.1 Slow System

For the slow time scale t , our system can be studied using the full model (1) by setting
ε = 0, which is referred to as the slow system. In analyzing the slow system, the fast
system is treated at its quasi-steady state.

Since 0 < ε & 1, the within-host dynamics can be studied by

ε
dT
dt

= b − κVT − d T

ε
dT ∗

dt
= κVT − qT ∗

ε
dV
dt

= η(Z)+ pT ∗ − cV .

(5)

Letting ε = 0 in (5) leads to

T = b
κV + d

, T ∗ = bκV
q(κV + d)

, (6)

and V is determined by

a0V 2 + a1(Z)V + a2(Z) = 0, (7)

where

a0 = cκ > 0,

a1 = a1(Z) = cd − κ η(Z) − bκ p/q,

a2 = a1(Z) = −d η(Z) ≤ 0.

(8)
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If Z = 0, it leads to the virus-infection-free ES (T , T ∗, V ) = (b/d, 0, 0) or the
coexistence state of virus and infected target cells

(Te, T ∗
e , Ve) =

(b
d

1
R0w

,
cd
κ p

(R0w − 1),
d
κ
(R0w − 1)

)
when R0w = bκ p

dcq
> 1.

If Z > 0, it follows from (H4) that η(Z) > 0, and hence a2(Z) < 0 and
a21(Z) − 4a0a2(Z) > 0. In this case, equation (7) has two zeros V± = V±(Z) :=
−a1(Z)±

√
a21(Z) − 4a0a2(Z)

2a0
with V− < 0 < V+, and V = V+(Z) := f (Z) is

the only biological feasible equilibrium solution. The infected target cells and viral
loads both persist and the corresponding ES is

(Te, T ∗
e , Ve) =

(
b

κV+ + d
,

bκV+
q(κV+ + d)

, V+

)
. (9)

Differentiating (7) with respect to Z along V = f (Z) yields

2a0VV ′(Z)+ a1(Z)V ′(Z)+ a′
1(Z)V + a′

2(Z) = 0. (10)

This implies that along V = f (Z)

f ′(Z) = V ′(Z) = (κV + d)η′(Z)
2a0V + a1(Z)

> 0, (11)

asη′(Z) > 0 and f (Z) > −a1(Z)
2a0

. Inequality (11) shows thatV is a strictly increasing

function of Z . Similarly, differentiating (10) with respect to Z along V = f (Z) and
using cV − η(Z) = pT ∗ give us

f ′′(Z) = V ′′(Z) = 2κ2V ′(Z)η′(Z)(T ∗ − b/q)+ (κV + d)η′′(Z)
2a0V + a1(Z)

. (12)

It follows from (6), (11) and (H4) that T ∗ < b/q, V ′(Z) ≥ 0 and η′(Z) > 0, η′′(Z) ≤
0. This implies that f ′′(Z) < 0.

Accordingly, the slow system can be written as

dS
dt

= ! − βE ( f (Z), E)SE − βI ( f (Z), I )SI − βZ (Z)SZ − µS

dE
dt

= βE ( f (Z), E)SE + βI ( f (Z), I )SI + βZ (Z)SZ − (α + µ)E

d I
dt

= αE − (ω + γ + µ)I

d R
dt

= γ I − µR
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dZ
dt

= ξE E + ξI I − δZ . (13)

3.1.1 Equilibrium Solutions

Wewill analyze the equilibrium solutions (ESs) of the slow system (13). Note that the
associated ES satisfies

! − βE ( f (Z), E)SE − βI ( f (Z), I )SI − βZ (Z)SZ − µS = 0

βE ( f (Z), E)SE + βI ( f (Z), I )SI + βZ (Z)SZ − (α + µ)E = 0

αE − (ω + γ + µ)I = 0

γ I − µR = 0

ξE E + ξI I − δZ = 0.

(14)

Solving (14), we obtain

W = θW I , W = E, R, Z , (15)

S = S0 − mI := φ(I ), (16)

with

θE = ω + γ + µ

α
, θR = γ

µ
, θZ = 1

δα

(
αξI + (ω + γ + µ)ξE

)
,

m = (α + µ)(ω + γ + µ)

αµ
> 0.

(17)

When I = 0, it leads to the disease-free ES (S, E, I , R, Z) = (S0, 0, 0, 0).
When I > 0, substituting (15) into the second equation of (14) and solving S as a

function of I at the equilibrium, we have

S = ψ(I ) = µm
g(I )

where g(I ) = β1(I )+ β2(I )+ β3(I ) with

β1(I ) = βE
(
f (θZ I ), θE I

)
θE , β2(I ) = βI

(
f (θZ I ), I

)
, β3(I ) = βZ (θZ I )θZ .

Straightforward calculation yields

β ′
1(I ) =

(
∂βE

(
f (θZ I ), θE I

)

∂V
f ′(θZ I )θZ + ∂βE

(
f (θZ I ), θE I

)

∂E
θE

)

θE
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and

β ′′
1 (I )

=θE

{∂2βE
(
f (θZ I ), θE I

)

∂V 2 [ f ′(θZ I )θZ ]2 + 2
∂2βE

(
f (θZ I ), θE I

)

∂V ∂E
[ f ′(θZ I )θZ ](θE )

+ ∂2βE
(
f (θZ I ), θE I

)

∂E2 (θE )
2 + ∂βE

(
f (θZ I ), θE I

)

∂V
f ′′(θZ I )θ2Z

}
.

(18)

By (H3), the Hessian matrix of βE is negative semidefinite, and hence the first three
terms in the bracket of the right-hand side of (18) are non-positive. By (H2) and (12),
∂βE
∂V > 0 and f ′′(θZ I ) < 0. Thus, β ′′

1 (I ) < 0. Likewise, one can verify that β ′′
2 (I ) < 0

and β ′′
3 (I ) ≤ 0. Hence, g′′(I ) < 0, and this implies that

ψ ′′(I ) > 0. (19)

This shows that the intersections of the curves φ(I ) and ψ(I ) in (0,∞) determine the
nontrivial equilibrium solutions of the slow system (13), as the nontrivial equilibrium
solution is of the form

E s
e := (S, E, I , R, Z) = (S0 − mIe, θE Ie, Ie, θR Ie, θZ Ie). (20)

where Ie is a positive intersection of these two curves.
Since φ(0) = !/µ = S0 and ψ(0) = (α + µ)θE/[βE (0, 0)θE + βI (0, 0) +

βZ (0)θZ ], we have

φ(0) > ψ(0)(= 1,< 1) ⇐⇒ R0b > 1(= 1,< 1).

Additionally, φ(I ) is a strictly decreasing line and ψ(I ) is concave upward. To study
the existence of the nontrivial equilibrium of (13), we consider three cases.

1. R0b > 1. In this case, φ(0) > ψ(0), these two curves have a unique intersection
in (0,∞), denoted as Ie.

2. R0b = 1. In this case, φ(0) = ψ(0). In view of (16), φ′(0) = −m. When ψ ′(0) ≥
−m, these two curves do not intersect; when ψ ′(0) < −m, there exists a unique
intersection Ie ∈ (0,∞).

3. R0b < 1. In this case, φ(0) < ψ(0) and there are three possibilities for the
intersection of these two curves in (0,∞). (i) There is no intersection if φ(I ) <
ψ(I ) for I ≥ 0; (ii) They have one intersection in (0,∞) if there exists I c > 0
such that φ(I c) = ψ(I c) and φ′(I c) = ψ ′(I c) = −m; (c) Otherwise, there are
two intersections in (0,∞).

This result implies that system (13) has at most three biologically feasible equilibria,
i.e., if R0b > 1, this system has two equilibria: disease-free equilibrium (DFE) and
endemic equilibrium (EE); If R0b ≤ 1, it can have one, two or three equilibria (and
one of them is the DFE) depending on the parameter values. This indicates that the
system (13) may undergo a backward bifurcation.
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3.1.2 Existence of Forward and Backward Bifurcations

In this section, we study the bifurcation in terms of I with R0b as a bifurcation
parameter. Note thatR0b is a multiple of S0 (i.e.,R0b = kS0 with k = [βE (0, 0)θE +
βI (0, 0)+ βZ (0)θZ ]/[(α +µ)θE ]). We treat S0 as an independent parameter and the
rest parameters fixed. It suffices to analyze the bifurcation diagram of I with S0 as a
bifurcation parameter. If S0 = Sb0 = 1/k = ψ(0), then the corresponding R0b = 1.
At the equilibrium of system (13), when I = 0, it leads to the disease-free equilibrium
(DFE) and it follows from van den Driessche and Watmough (2002)[Theorem 2] that
the DFE is locally asymptotically stable (resp. unstable) whenR0b < 1, i.e., S0 < Sb0
(resp.R0b > 1, i.e., S0 > Sb0 ).

In the remainder of this section, we assume that φ(I ) and ψ(I ) intersect in the
first quadrant (i.e., system (13) has equilibrium solutions with I > 0). Thus, at the
equilibrium,

φ(I ) = S0 − mI = ψ(I ). (21)

To compute d I/dS0, we calculate dS0/d I . Differentiating (21)with respect to I yields

dS0
d I

= m + ψ ′(I ). (22)

By the implicit function theorem, d I
dS0

= 1
/ dS0

d I if dS0/d I += 0. Assume that I → 0+

as S0 → Sb0 = ψ(0). Integrating (22) yields

S0 = h(I ) = mI + ψ(I ). (23)

In view of (19), we know S0 = h(I ) as a function of I is positive and strictly concave
upward.

Case I: If h′(0) ≥ 0 (i.e., ψ ′(0) ≥ −m), then dS0/d I = h′(I ) > 0 and hence
d I/dS0 > 0 and I = h−1(S0) is a positive and strictly concave downward function
for I > 0. In this case, system (13) exhibits a transcritical bifurcation at S0 = Sb0 (i.e.,
R0b = 1).

Case II: If h′(0) < 0 (i.e., ψ ′(0) < −m), there exists a unique I c > 0 such
that h′(I c) = 0, h′(I ) < 0 when 0 < I < I c and h′(I ) > 0 when I > I c.
Denote Sc0 = h(I c) and the corresponding R0b by Rc

0b. Clearly, 0 < Sc0 < Sb0 and
Rc

0b < 1. Moreover, I = h−1(S0) has two branches, denote by 01(S0) and 02(S0)
when S0 ∈ (Sc0, S

b
0 ) (i.e., R0b ∈ (Rc

0b, 1)), where (a) 0 < 01(S0) < 02(S0), (b)
0′

1(S0) < 0 and 0′
2(S0) > 0, (c) 0′′

1(S0) < 0 and 0′′
2(S0) < 0 for S0 ∈ (Sc0, S

b
0 ),

and (d) 01(Sc0) = 02(Sc0). Specifically, 01(S0) is a strictly decreasing and concave
downward function, whereas 02(S0) is a strictly increasing and concave downward
function as S0 ∈ (Sc0, S

b
0 ). On the other hand, I = h−1(S0) has only one branch

and is well-defined, denote as 03(S0), when S0 ∈ [Sb0 ,∞) (i.e., R0b > 1). Besides,
0′

3(S0) > 0, 0′′
3(S0) < 0 when S0 ∈ [Sb0 ,∞) and 0

(n)
2 (Sb0−) = 0

(n)
3 (Sb0+) for
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I

1

(a) ψ′(0) < −m

I

1

(b) ψ′(0) ≥ −m

Fig. 1 Illustration of bifurcation diagram of I as a function of R0b

n = 0, 1, 2. So we rename 03 by 02. In this case, system (13) exhibits a backward
bifurcation.

The result for the occurrence of transcritical and backward bifurcations is summa-
rized in the following lemma and illustrated in Fig. 1.

Lemma 1 System (13) undergoes a transcritical bifurcation at S0 = Sb0 (i.e., R0b =
1), which further induces a backward bifurcation if ψ ′(0) < −m, and a forward
bifurcation if ψ ′(0) ≥ −m.

3.1.3 Stability Analysis for Forward Bifurcation

Suppose S(0)+ E(0)+ I (0)+ R(0) ≤ S0. As S, E, I , R ≥ 0, S+ E + I + R ≤ S0,
and 0 ≤ Z ≤ Zmax := (ξE + ξI )S0/δ, this yields a biologically feasible domain of
system (13), which is given by

1s := {(S, E, I , R, Z) ∈ R5
+ : S + E + I + R ≤ S0, Z ≤ Zmax }.

It is easy to see that 1s is positively invariant for system (13).
Assume thatψ ′(0) ≥ −m. ByLemma 1, system (13) exhibits a forward bifurcation.

Together with the result in Sect. 3.1.1 leads to the following:

(1) If R0b ≤ 1, system (13) admits a unique equilibrium solution, the DFE E s
0 =

(!/µ, 0, 0, 0, 0), that is locally asymptomatically stable whenR0b < 1.
(2) IfR0b > 1, system (13) has two equilibria: the DFE E s

0 and the endemic equilib-
rium (EE) E s

e . Moreover, the DFE is unstable.

In what follows, a global stability analysis is performed to study the forward bifurca-
tion. The associated result is established in the following two theorems.

Theorem 1 Suppose that ψ ′(0) ≥ −m.

1. Assume that either η′(0) = 0 or ∂
∂V βE (0, 0) = ∂

∂V βI (0, 0) = 0 is satisfied. If
R0b < 1 , then the DFE of system (13) is globally asymptomatically stable in 1s .
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2. If R0b > 1, the disease is uniformly persistent in the interior of 1s .

Proof Whenψ ′(0) ≥ −m andR0b < 1, the DFE is the unique equilibrium of (13) and
it is locally asymptotically stable. If eitherη′(0) = 0 or ∂

∂V βE (0, 0) = ∂
∂V βI (0, 0) = 0

holds, by (H1), (H3) and (12), we have

dE
dt

≤ βE (0, 0)S0E + βI (0, 0)S0 I + βZ (0)S0Z − (α + µ)E

d I
dt

= αE − (ω + γ + µ)I

d Z
dt

= ξE E + ξI I − δZ

where f ′(0) = 0 when η′(0) = 0, which is obtained from (11). Let Y = (E, I , Z)T .
This implies that

dY/dt ≤ (Fb − Vb)Y

where

Fb =




βE (0, 0)S0 βI (0, 0)S0 βZ (0)S0

0 0 0
0 0 0



 , Vb =




α + µ 0 0
−α ω + γ + µ 0
−ξE −ξI δ



 .

One can verify that u(Vb)
−1Fb = uR0b and R0b = ρ

(
(Vb)

−1Fb
)
= ρ

(
Fb(Vb)

−1),
where u = (βE (0, 0),βI (0, 0),βZ (0)). Consider a Lyapunov function

L = u(Vb)
−1Y.

Differentiating L along solutions of system (13) leads to

L ′ := dL
dt

= u(Vb)
−1 dY

dt
≤ u(Vb)

−1(Fb − Vb)Y = (R0b − 1)uY. (24)

If R0b < 1, L ′ ≤ 0. and L ′ = 0 if and only if uY = 0.1 This implies E = I =
Z = 0. Using the first and the fourth equations of (13) yields S = S0 and R = 0.
Thus, the largest invariant set where L ′ = 0 contains only one point, i.e., the DFE
E s
0 = (S0, 0, 0, 0, 0). In view of LaSalle’s Invariant Principle (Salle 1976), the DFE

is globally asymptotically stable in 1s when R0b < 1.

1 If uY = 0, then Y = 0 and hence L ′ = 0. Conversely, suppose that L ′ = 0. Then 0 = L ′ ≤ (R0b −1)uY
yields (R0b − 1)uY ≥ 0. Meanwhile, it follows from R0b < 1 that (R0b − 1)uY ≤ 0. Thus,

(R0b − 1)uY = 0.

By the hypothesis, R0b − 1 < 0 and this implies uY = 0. We show that L ′ = 0 if and only if uY = 0.

123



A Multiscale Model of COVID-19 Dynamics Page 13 of 41 99

If R0b > 1, we know that E0 is unstable. It follows from the persistence theory
(Thieme 1993) and a similar argument as in the proof of Gao and Ruan (2011)[Propo-
sition 3.3] that instability of E s

0 implies uniform persistence of system (13) in the
interior of 1s . -.

LetE s
e = (S∗, E∗, I ∗, R∗, Z∗)denote the unique endemic equilibriumwhenR0b >

1. To establish the global stability of system (13) in this case, we need to make some
assumptions:

(C1)
(
1 − βE ( f (Z),E)E

βE ( f (Z∗),E∗)E∗

) (
1 − βE ( f (Z∗),E∗)

βE ( f (Z),E)

)
≥ 0;

(C2)
(
1 − βI ( f (Z),I )I

βI ( f (Z∗),I ∗)I ∗

) (
1 − βI ( f (Z∗),I ∗)

βI ( f (Z),I )

)
≥ 0;

(C3) d
dZ (βZ (Z)Z) ≥ 0

for E, I , Z > 0. By the similar argument as that in Yang and Wang (2020)[Theorem
2.2], we obtain the following result. A poof is given in Appendix A for completeness.

Theorem 2 Suppose that ψ ′(0) ≥ −m and (C1)-(C3) holds. IfR0b > 1, the endemic
equilibrium is globally asymptotically stable in the interior of 1s .

3.1.4 Stability Analysis for Backward Bifurcation

In this section, we assume that ψ ′(0) < −m. In this case, slow system (13) may
exhibit a backward bifurcation according to Lemma 1. By the similar argument as that
in Sect. 3.1.3, we have the following result.

(1) If R0b < 1 and Rc
0b exists, system (13) admits up to three equilibria. The DFE

E s
0 always exists and it is locally asymptomatically stable. Two EEs, E s

t and E s
m ,

coexist when Rc
0b < R0b < 1, and they merge into one when R0b = Rc

0b. There
is no positive EE whenR0b < Rc

0b.
(2) IfR0b > 1, system (13) has two equilibria: the DFE E s

0 and the EE E s
e . Moreover,

theDFE is unstable and theEE is globally as asymptomatically stable in the interior
of 1s whenR0b > 1 and (C1)− (C3) holds, where the global stability of the EE
is established by the same method as that in Theorem 2.

As shown in Fig. 1(a), the bifurcation diagram of I as a function of R0b consists of
three branches: the top, middle and bottom branches, where the bottom (resp. middle,
top) branch is composed of the DFE E s

0 (resp. the EE E s
m , the EE E s

t ). Thus, it remains
to investigate the stability of the middle and top branches in the case whereR0b > 1.

Denote

Ψ = Ψ (E, I , Z) = βE ( f (Z), E)E + βI ( f (Z), I )I + βZ (Z)Z .

Theorem 3 The middle branch of the equilibrium solutions of system (13) in the back-
ward bifurcation diagram is unstable.

Proof As the fourth equation (i.e., the equation for R) is decoupled from the rest of
system (13), it suffices to use the following system to prove the instability of the EE
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E s
m = (S, E, I , R, Z)

dS
dt

= ! − Ψ (E, I , Z)S − µS

dE
dt

= Ψ (E, I , Z)S − (α + µ)E

d I
dt

= αE − (ω + γ + µ)I

d Z
dt

= ξE E + ξI I − δZ .

(25)

Linearizing system (25) at E s
m = (S, E, I , R, Z) leads to the corresponding Jacobian

matrix

J = (Ji j ) =





−Ψ − µ − ∂Ψ
∂E S − ∂Ψ

∂ I S − ∂Ψ
∂Z S

Ψ ∂Ψ
∂E S − (α + µ) ∂Ψ

∂ I S
∂Ψ
∂Z S

0 α −(ω + γ + µ) 0
0 ξE ξI −δ



 . (26)

It follows from the direct calculation that

det(J ) = αµδS
[
(Ψ + µ)m − S

(
∂Ψ

∂ I
+ θE

∂Ψ

∂E
+ θZ

∂Ψ

∂Z

)]
(27)

where m, θE and θZ are defined in (17). Note that, at E s
m , W = θW I for W = E, Z

and

Ψ (E, I , Z) = g(I )I =: G(I ). (28)

Differentiating (28) with respect to I yields

G ′(I ) = ∂Ψ

∂ I
+ θE

∂Ψ

∂E
+ θZ

∂Ψ

∂Z
. (29)

By (28), (29) and (16), det(J ) can be written as

det(J ) = αµδS
[
(G(I )+ µ)m − (S0 − mI )G ′(I )

]
. (30)

Clearly the sign of det(J ) is determined by the sign of

F(I ) = (G(I )+ µ)m − (S0 − mI )G ′(I ). (31)

On the other hand, at the EE, φ(I ) = ψ(I ), i.e.,

S0 − mI = µm/g(I )
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which implies that

(S0 − mI )G(I ) = µmI . (32)

Differentiating both sides of (32) in terms of S0 and doing a simple algebraic manip-
ulation, we find

F(I )
d I
dS0

= G(I ).

Since G(I ) > 0 and
d I
dS0

< 0 at E s
m , F(I ) < 0. In view of (30) and (31), det(J ) =

αµδSF(I ) < 0 at E s
m . This shows that E s

m is unstable. -.

Theorem 4 Suppose (i) α > 0 is sufficiently small, and (ii)
∂Ψ

∂Z
≤ 0 at Et . Then the

top branch of the equilibrium solutions of system (13) in the backward bifurcation is
locally asymptotically stable.

Proof First, we assume thatα = 0. In this case, it is easy to verify that the characteristic
equation for eigenvalues of the linearized system of (25) at E s

t = (S, E, I , R, Z) (i.e.,
an equilibrium solution on the top branch) is

det(λI4 − J ) = (λ + (ω + γ + µ))
(
λ3 + aλ2 + bλ + c

)
= 0

where I4 is the 4 × 4 identity matrix, J = (Ji j ) is defined in (26) and

a = −(J11 + J22 + J44)

b = J11 J22 − J12 J21 − J24 J42 + (J11 + J22)J44
c = J11 J24 J42 − J14 J21 J42 − J44(J11 J22 − J12 J21).

(33)

One eigenvalue is −(ω+ γ +µ) < 0. To prove the remaining three eigenvalues have
negative real parts, by the Routh–Hurwitz criterion, it suffices to show that

a > 0, b > 0, c > 0, ab − c > 0.

It is obvious that J11 < 0 and J44 < 0. Additionally, note that ∂
∂E βE ( f (V ), E) ≤ 0,

and

Ψ (E, I , Z)S =
[
βE ( f (Z), E)E + βI ( f (Z), I )I + βZ (Z)Z

]
S = µE, at E s

t .

Thus, at E s
t

µ − ∂Ψ

∂E
S = µ − βE ( f (Z), E) − ∂

∂E
βE ( f (Z), E)

=
[
βI ( f (Z), I )I + βZ (Z)Z

]
S

E
− ∂

∂E
βE ( f (V ), E) > 0.

(34)
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Hence J22 < 0. This implies a > 0.
Along the top branch of the equilibrium solutions of system (13), d I/dS0 > 0.

Using the same argument as in the proof of Theorem 3, one can verify that det(J ) > 0
at E s

t . By det(J ) = c(ω + γ + µ), we have c > 0.
On the other hand, it follows from direct calculation that

ab − c =
(
µ+ δ + Ψ − ∂Ψ

∂E
S
) [

(µ+ δ)

(
2µ+ Ψ − ∂Ψ

∂E
S
)

− ξE
∂Ψ

∂Z
S
]
.

In view of ∂Ψ
∂Z ≤ 0, equation (34) and the positiveness of all the model parameters

involved, we have ab − c > 0, which implies that b > 0 as a > 0, c > 0. This shows
that E s

t is locally asymptotically stable when α = 0.
By the continuous dependence of the spectrum on the model parameters, the local

stability of the top branch of the equilibrium solutions of system (13) remains to be
true when α > 0 is sufficiently small. -.

3.2 Fast System

In the fast time scale s = t/ε, the full system (1) can be written as

dS
ds

= ε
(
! − βE (V , E)SE − βI (V , I )SI − βZ (Z)SZ − µS

)

dE
ds

= ε
(
βE (V , E)SE + βI (V , I )SI + βZ (Z)SZ − (α + µ)E

)

d I
ds

= ε
(
αE − (ω + γ + µ)I

)

dR
ds

= ε (γ I − µR)

dZ
ds

= ε (ξE E + ξI I − δZ)

dT
ds

= b − κVT − d T

dT ∗

ds
= κVT − qT ∗

dV
ds

= η(Z)+ pT ∗ − cV .

(35)

Letting ε = 0 yields

dS
ds

= dE
ds

= d I
ds

= dR
ds

= dZ
ds

= 0

dT
ds

= b − κVT − d T

dT ∗

ds
= κVT − qT ∗
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dV
ds

= η(Z)+ pT ∗ − cV (36)

which is referred to the fast system.
If Z = 0, the fast system (36) exhibits a forward bifurcation (Smith and Leenheer

2003). It admits at most two biologically feasible equilibria. The virus-infection-free
equilibrium E f

00 = (b/d, 0, 0) always exists, and the coexistence of virus and infected

target cells E f
ee =

(b
d

1
R0w

,
cd
κ p

(R0w−1),
d
κ
(R0w−1)

)
is determined by a threshold

parameter R0w. More specifically,

(1) ifR0w < 1, there is no coexistence state, and the virus-infection-free equilibrium
E f
00 is globally asymptotically stable in R3

+.
(2) if R0w > 1, the coexistence state E f

ee is globally asymptotically stable in R3
+.

If Z > 0, recalling (9) and the analysis in Sect. 3.1, the fast system (36) has a
unique endemic equilibrium

E f
e = (Te, T ∗

e , Ve) =
(

b
κV+ + d

,
bκV+

q(κV+ + d)
, V+

)
.

Accordingly, the global stability of the endemic equilibrium E f
e is summarized as

follows.

Theorem 5 For each Z > 0, the endemic equilibrium E f
e of the fast system (36) is

globally asymptotically stable in R3
+.

Proof Consider a Lyapunov function

L f =
(
T − Te − Te ln

T
Te

)
+

(
T ∗ − T ∗

e − T ∗
e ln

T ∗

T ∗
e

)

+m
(
V − Ve − Ve ln

V
Ve

)
(37)

where the constant m > 0 is to be determined. It is easy to verify that L f ≥ 0 for
(T , T ∗, V ) ∈ R3

+ and L f = 0 if and only if (T , T ∗, V ) = (Te, T ∗
e , Ve).

For simplicity, we write η(Z) by η. Differentiating L f along the solution of the
fast system (36) gives

dL f

ds
=

(
1 − Te

T

)
dT
ds

+
(
1 − T ∗

e

T ∗

)
dT ∗

ds
+ m

(
1 − Ve

V

)
dV
ds

= b − κVT − dT − b
T
Te

+ κVTe + dTe

+ κVT − qT ∗ − κVT
T ∗
e

T
+ qT ∗

e

+ m
(

η + pT ∗ − cV − η
Ve
V

− pT ∗ Ve
V

+ cVe

)
.

(38)
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Use the equilibrium equations of (36) , b = κVeTe + dTe and c = η + pT ∗
e

Ve
.

Equation (38) can be simplified as

dL f

ds
= dTe

(
2 − T

Te
− Te

T

)
+ m η

(
2 − V

Ve
− Ve

V

)
+ κVeT ∗

e

(
1 − Te

T
− VT T ∗

e

VeTeT ∗

)

+ mpT ∗
e
V
Ve

(
κTeVe
mpT ∗

e
− 1

)
+ (mp − q)T ∗ + qT ∗

e + mpT ∗
e

(
1 − T ∗Ve

T ∗
e V

)
.

(39)

Setting m = q/p and using qT ∗
e = κVeTe yield

dL f

ds
= dTe

(
2 − T

Te
− Te

T

)
+ m η

(
2 − V

Ve
− Ve

V

)

+ qT ∗
e

(
3 − Te

T
− T ∗Ve

T ∗
e V

− VT T ∗
e

VeTeT ∗

)
.

It follows immediately from the arithmetic-geometric mean inequality that
dL f

ds
≤

0 and
dL f

ds
= 0 if and only if (T , T∗, V ) = (Te, T ∗

e , Ve). Thus, E
f
e is globally

asymptotically stable. -.

3.3 The Full System

The time scale separation allows us to conduct a fast-slow analysis to analyze the
dynamics of the slow and fast system,which is useful to gain insights into the dynamics
of the full system.

It is easy to see from the results in Sects. 3.1 and 3.2 that the full system (1) admits at
most four biologically reasonable solutions. Let E0 = (!/µ, 0, 0, 0, 0, b/d, 0, 0) =
(S0, 0, 0, 0, 0, T0, 0, 0) denote the DFE, which always exists. Let

Eb =
(
!/µ, 0, 0, 0, 0,

b
d

1
R0w

,
cd
κ p

(R0w − 1),
d
κ
(R0w − 1)

)

denote the boundary equilibrium solutions (bES).
In the case of ψ ′(0) ≥ −m (i.e., the slow system exhibits a forward bifurcation),

the slow system has a unique EE (S0 − mIe, θE Ie, Ie, θR Ie, θZ Ie). Hence, the full
system admits the bES Eb and the endemic equilibrium (EE)

Ee =
(
S0 − mIe, θE Ie, Ie, θR Ie, θZ Ie,

b
κV+ + d

,
bκV+

q(κV+ + d)
, V+

)
,

with V+ = f (θZ Ie).
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Table 1 Steady-state stability classification of the full system when ψ ′(0) ≥ −m

Region DFE E0 bES Eb EE Ee

R0 = max{R0w,R0b} < 1 l.a.s. DNE DNE

R0b < 1 < R0w Unstable l.a.s. DNE

R0w < 1 < R0b Unstable DNE g.a.s.∗

min{R0w,R0b} > 1 Unstable Unstable g.a.s.∗

Table 2 Steady-state stability classification of the full system when ψ ′(0) < −m

Region DFE E0 bES Eb EE Eem EE Eet

R0b < Rc
0b, R0w < 1 l.a.s. DNE DNE DNE

Rc
0b < R0b < 1, R0w < 1 l.a.s. DNE Unstable l.a.s.n

R0w < 1 < R0b Unstable DNE DNE g.a.s.∗

R0b < Rc
0b, R0w > 1 Unstable l.a.s. DNE DNE

Rc
0b < R0b < 1, R0w > 1 Unstable l.a.s. Unstable l.a.s.∗

min{R0w,R0b} > 1 Unstable Unstable DNE g.a.s.∗

In the case of ψ ′(0) < −m (i.e., the slow system exhibits a backward bifurcation),
the slow system (13) allows up to two EEs, denoted as

(S0 − mIex , θE Iex , Iex , θR Iex , θZ Iex )

with x = m and t representing the middle and top branches of equilibrium solutions
of the slow system, respectively. Thus, the full system admits the bES Eb and at most
two EEs

Eex =
(
S0 − mIex , θE Iex , Iex , θR Iex , θZ Iex ,

b
κV+ + d

,
bκV+

q(κV+ + d)
, V+

)
,

for x = m, t .
The local stability of the DFE and bES is an immediate consequence of the results

from Sects. 3.1 and 3.2, as the full system would be decoupled in those cases. The
global stability of the DFE and EE is established in Theorems 6 and 7. The associated
existence and stability of equilibrium solutions are summarized in Tables 1 and 2, for
which DNE means “does not exist,” l.a.s. and g.a.s. are locally asymptotically stable
and globally asymptotically stable, respectively, and superscript asterisk means that
the result holds under certain condition and superscript n indicates that the result is
verified numerically.

Let ηmax = maxZ≥0{η(Z)} which exists by (H4), T̂max = b/min{d, q} and
Vmax = (ηmax + pTmax )/c. It is easy to verify that1 = {(S, E, I , R, Z , T , T ∗, V ) ∈
R8
+ : S + E + I + R ≤ S0, Z ≤ Zmax , T + T ∗ ≤ T̂max , V ≤ Vmax } is a positive

invariant region for the full system (1). The global stability of the DFE E0 of our full
system is established in the following result.
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Theorem 6 Suppose that ∂βE
∂V (0, 0) = ∂βI

∂V (0, 0) = 0. If R0 < 1, then the DFE E0 of
the full system (1) is globally asymptotically stable in 1.

Proof Note that, for all V ≥ 0 and E ≥ 0, βE (V , E) ≤ βE (V , 0) ≤ βE (0, 0) +
∂βE
∂V (0, 0)V = βE (0, 0), where the first and second inequalities are obtained from
(H2) and (H3), respectively, and the last equality follows from our assumption
∂βE
∂V (0, 0) = 0. Similarly, one can verify that βI (V , I ) ≤ βI (0, 0) for V ≥ 0 and
I ≥ 0. Additionally, using β ′

Z (Z) ≤ 0, we have βZ (Z) ≤ βZ (0) for Z ≥ 0.
Denote X = (E, I , Z , T ∗, V )T . It follows from direct calculation that, for all

X ∈ 1,

dX
dt

=





dE
dt
d I
dt
d Z
dt
dT ∗
dt
dV
dt




≤





βE (0, 0)S0E + βI (0, 0)S0 I + βZ (0)S0Z − (α + µ)E
αE − (ω + γ + µ)I
ξE E + ξI I − δZ
(κT0V − qT ∗)/ε
(η′(0)Z + pT ∗ − cV )/ε





= (F − V)X, (40)

where F and V are defined in (2) and (3), respectively. Since both F and V are
nonnegative, it follows from the Perron–Frobenius Theorem that the non-negative
matrix V−1F has a non-negative left eigenvector w = (w1, w2, w3, w4, w5) ∈ R5

+
associated with the eigenvalue R0 = ρ(V−1F) = ρ(FV−1).

Let us consider the Lyapunov function L = w(V)−1X. Differentiate L along solu-
tions of system (1), we have

L′ = dL
dt

= w V−1 dX
dt

≤ wV−1(F − V)X = (R0 − 1)wX. (41)

ByR0 < 1, L′ ≤ 0. Moreover, L′ = 0 if and only if wX = 0. Since at least one entry
of w is positive, if w1 > 0, then E = 0. The second equation in (40) implies that
I = 0. Using the third equation in (40), we have Z = 0. ByR0 = max{R0b,R0w} <
1, R0w < 1 and hence the fourth and fifth equations imply the only solution to
κT0V − qT ∗ = pT ∗ − cV = 0 is T ∗ = V = 0. In view of the first, fourth and sixth
equations of the full system (1), S = S0 = !/µ, R = 0 and T = T0 = b/d. Similarly,
if wk > 0 for some 2 ≤ k ≤ 5, one can verify that L′ = 0 implies S = S0, T = T0
and E = I = Z = T ∗ = V = 0. This shows that the largest invariant set where
L′ = 0 is the singleton E0. By LaSalle Invariance Principle, the DFE E0 is globally
asymptotically stable in 1 when R0 < 1. -.

To establish the global stability of the EE Ee, denoted by (S̃, Ẽ, Ĩ , R̃, Z̃ , T̃ , T̃ ∗, Ṽ ),
we further assume that, for E, I , Z , V > 0,

(A1)
(
1 − βE (V ,E)E

βE (Ṽ ,Ẽ)Ẽ

) (
1 − βE (Ṽ ,Ẽ)ẼV

βE (V ,E)EṼ

)
≥ 0;

(A2)
(
1 − βI (V ,I )I

βI (Ṽ , Ĩ ) Ĩ

) (
1 − βI (Ṽ , Ĩ ) Ĩ V

βI (V ,I )I Ṽ

)
≥ 0;

(A3) d
dZ (βZ (Z)Z) ≥ 0, which is the same as (C3);
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(A4)
(
1 − η(Z)

η(Z̃)

) (
1 − η(Z̃)Z

η(Z)Z̃

)
≥ 0.

Theorem 7 Let
◦
1 denote the interior of 1. and suppose that assumptions (A1)-(A4)

hold. If R0 > 1, then the EE Ee of the full system is globally asymptotically stable in
◦
1.

Proof For simplicity, we denote β̃E = βE (Ṽ , Ẽ), β̃I = βI (Ṽ , Ĩ ), β̃Z = βZ (Z̃), and
η̃ = η(Z̃). Consider the following Lyapunov function

L =
∑

x∈{S,E,I ,Z ,T ,T ∗,V }
kx x̃

( x
x̃

− ln
x
x̃

− 1
)

(42)

with kS = kE = c1, kI = c2, kZ = c3, kT = kT ∗ = ε and kV = εm, where ci
(1 ≤ i ≤ 3) are positive constants to be be determined later and m = q/p. It is easy
to see that L ≥ 0 and L = 0 if and only if x = x̃ for x = S, E, I , Z , T , T ∗, V .

Differentiating (42) along the solution of the full system (1) yields

L′ = dL
dt

=
∑

x∈{S,E,I ,Z ,T ,T ∗,V }
kx

(
x − x̃
x

)
dx
dt

.

Let 4(x, x̃) = x
x̃
+ ln

x
x̃
for x > 0 and x̃ > 0. By the similar arguments as that in the

proof of Theorems 2 and 5, we find that

L′ ≤
{

c1β̃E Ẽ S̃

[(
βE E

β̃E Ẽ
− 1

) (

1 − β̃E ẼV

βE EṼ

)

+ 4(V , Ṽ ) − 4(E, Ẽ)

]

+c1β̃I Ĩ S̃

[(
βI I

β̃I Ĩ
− 1

) (

1 − β̃I Ĩ V

βI I Ṽ

)

+ 4(V , Ṽ ) − 4(E, Ẽ)

]

+β̃Z Z̃ S̃

[(
βZ Z

β̃Z Z̃
− 1

) (

1 − β̃Z

βZ

)

+ 4(Z , Z̃) − 4(E, Ẽ)

]

+c2α Ẽ
(
4(E, Ẽ) − 4(I , Ĩ )

)
+ c3ξE Ẽ

(
4(E, Ẽ) − 4(Z , Z̃)

)

+c3ξI Ĩ
(
4(I , Ĩ ) − 4(Z , Z̃)

)}

+
{

dT̃

(

2 − T

T̃
− T̃

T

)

+ qT̃ ∗
(

3 − T̃
T

− T ∗Ṽ

T̃ ∗V
− VT T̃ ∗

Ṽ T̃ T ∗

)

+m η̃

[(
1 − η(Z)

η(Z̃)

) (
η(Z̃)Z − 1

η(Z)Z̃

)

+ 4(Z , Z̃) − 4(V , Ṽ )

]}

.

By (A1)-(A4), (H2) and the arithmetic-geometric mean inequality,

L′ ≤
[
− c1(β̃E Ẽ + β̃I Ĩ + β̃Z Z̃

)
S̃ + c2α Ẽ + c3ξE Ẽ

]
4(E, Ẽ)
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+
(
− c2α Ẽ + c3ξI Ĩ )4(I , Ĩ )+ (c1β̃Z Z̃ S̃ − c3ξE Ẽ − c3ξI Ĩ + m η̃

)
4(Z , Z̃)

+x
[
c1(β̃E Ẽ + β̃I Ĩ )S̃ − m η̃

]
4(V , Ṽ ). (43)

Set

c1 = mη̃

(β̃E Ẽ + β̃I Ĩ )S̃
,

c2 = mη̃[β̃Z Z̃/(β̃E Ẽ + β̃I Ĩ )+ 1]ξI Ĩ
(ξE Ẽ + ξI Ĩ )α Ẽ

,

c3 = mη̃[β̃Z Z̃/(β̃E Ẽ + β̃I Ĩ )+ 1]
ξE Ẽ + ξI Ĩ

.

it follows from (11) that with the chosen c1, c2 and c3, the right-hand side of (43) is

zero. This shows that L′ ≤ 0 in
◦
1. Additionally, it is easy to verify that L′ = 0 if and

only if x = x̃ for x = S, E, I , R, T , T ∗, V , which implies that the largest invariant
set where L′ = 0 is the singleton Ee. It follows from the LaSalle Invariance Principle

(Salle 1976) that Ee is globally asymptotically stable in
◦
1. -.

4 Model Validation and Simulation

In this section, we fit the multiscale model (1) to both the within-host and between-
host data of COVID-19. On the basis of the fitting and parameter estimation, we
evaluate the influence of a few infection characteristics and treatment on the disease
dynamics. The viral load data we used to fit are the mean viral load measured by
reverse transcription quantitative polymerase chain reaction (RT-qPCR) from samples
of posterior oropharyngeal saliva of 23 patients admitted to the Princess Margaret
hospital and Queen Mary hospital in Hong Kong between Jan 22 and Feb 12, 2020
(To et al. 2020). The data of COVID-19 cases are from the Johns Hopkins University
Coronavirus Resource Center, which tracks COVID-19 cases through a map-based
dashboard and is updated multiple times per day. We used the data of confirmed cases
in Florida between March 13th and August 17th, 2020 (https://coronavirus.jhu.edu/
region/us/florida).

4.1 Data Fitting

In model (1), we chose the functions βE (V , E), βI (V , I ), βZ (Z) and η(Z) as below.
The choice of these functionswas inspired byYang andWang (2020).We assumed that
they have a base transmission rate, increase as the viral load increases, and decrease
as the level of infection increases.

βE (V , E) = βE0 + C0V
1+ C1E

, βI (V , I ) = βI0 + C0V
1+ C2 I

,

βZ (Z) =
βZ0

1+ C3Z
, η(Z) = η0Z .

(44)
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Fig. 2 Best fit of the multiscale model to the mean viral load data (left panel) of Hong Kong patients (To
et al. 2020) and COVID-19 cases in Florida (right panel) between Mar 13th and August 17th, 2020 (https://
coronavirus.jhu.edu/region/us/florida) (color figure online)

The initial conditions of the variables are set to S(0)=2×107, E(0) = 0, I (0) = 52,
R = (0), Z(0) = 0, T (0) = 6 × 104 cells/ml (Wang et al. 2020), T ∗(0) = 0,
V (0) = 105 copies/ml. We estimated parameters C0, C1, C2, η0, κ , p, c, ε by fitting
the model to the viral load data and COVID-19 case data simultaneously. The other
parameters are fixed according to either the literature or our best estimates. The viral
shedding rate by pre-symptomatic infected persons was estimated to be ξE = 2.3 per
day (Yang andWang 2020). The viral load is higher during the early stage of infection
(Wang et al. 2020). Thus, we assumed the viral shedding rate by symptomatic infected
persons to be smaller and chose ξI = 1.5 per day. The values of βE0 ,βI0 and βZ0 are
small (Yang and Wang 2020) and chosen to be on the order of 10−7 to 10−6. Because
the turnover of the target cells of SARS-CoV-2 infection is slow (Wang et al. 2020),
we assumed that both the generation and death rate of target cells (b and d) are 0.01 per
day. The constant C3 in the transmission function βZ is fixed to 103 and the influence
of its variation on the dynamics will be investigated later.

We fit the model to both the viral load and confirmed case data simultaneously
using the R programming language. The root mean square (RMS) between the model
prediction and the data is calculated and parameter estimates are based on the best
fitting that achieves the minimum RMS. Figure 2 shows that the model provides a
good fit to both the within-host and between-host data. The fitted parameters and
other fixed parameters are listed in Table 3. It should be noted that the estimate of the
scale-adjusting parameter ε might be different for variants such as delta and omicron,
compared with the wild type. However, the difference in the time scales between
viral strains should be much smaller than that between the within-host and between-
host scales. We also note that some non-pharmaceutical control measures have been
implemented during the period of data collection. These measures were not explicitly
included in the model but their effect may have been reflected in the transmission rate
between hosts.

4.2 The Influence of Environment, Incubation and Treatment

On the basis of the data fitting and parameter estimates, we performed numerical
simulations to investigate the influence of a few factors, including the environment,
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Fig. 3 Simulation of the coupled model with different values of η0/ε. The other parameters are from Table
3. In the right bottom figure of the viral load V , the blue dash line represents the detection limit (color figure
online)

incubation, and potential antiviral treatment, on the infection dynamics within indi-
viduals and the spread of the disease at the population level. Recall that η(Z) = η0Z
represents the contribution to the viral load within symptomatic infected individuals
from the environment. We simulated the model with different values of η0/ε. The
predicted dynamics are very sensitive to the change of η0/ε (Fig. 3). For example,
when η0/ε increases slightly from 0.01 to 0.012, the peaks of symptomatic infected
I , pre-symptomatic infected E and environmental virus Z increase significantly and
the time to reach the peaks is largely shortened (Fig. 3). In all the cases, the disease
persists at the population level and the viral load within symptomatic infected indi-
viduals declines to a very low level (i.e.,R0w < 1) but does not go to zero due to the
contribution from environmental transmission. Without environmental transmission
(i.e., η0 = 0), the viral load will decline to zero quickly ( Fig. 7).

It should be noted that the final states shown in Fig. 3 are not the steady states. The
simulation over a longer time interval reaching the steady state is shown in Appendix
Fig. 8. We further simulated the model with different values of C3 (the constant in the
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environmental transmission function βZ (Z)). As C3 increases to 103 (i.e., the value
we fixed in the data fitting Fig. 2 and simulation in Fig. 3), the time for the system to
stabilize increases (Appendix Fig. 9). This explains why under the parameter estimates
from data fitting it takes a long time for the variables to reach the steady states after
some oscillations, as shown in Appendix Fig. 8.

The duration of incubation is an important clinical characteristic in symptomatic
infected disease surveillance, prevention and control (Lessler et al. 2009). Some studies
showed that the incubation duration ranges from 1.8 to 12.8 days for COVID-19
(Leung 2020; Ki 2020; Jiang et al. 2020). In Fig. 4, we simulated model (1) using
different values of α to investigate how the incubation duration (i.e., 1/α) influences
the dynamics of COVID-19. As the duration of incubation increases, more infections
are observed and the time to reach the epidemic peak is also shortened. This is not
surprising as COVID-19 patients can transmit SARS-CoV-2 during the incubation
period. This result highlights the need of identifying infected but still asymptomatic
people in the early stage of infection.

Several drugs that target different aspects of COVID-19 pathogenesis have been
proposed. Somehave been approved by the FDAwhile others are currently being tested
in clinical trials of different stages (Sanders et al. 2020). In ourmodel, we assumed that
when COVID-19 patients are treated with antiviral therapies, the viral production rate
p is reduced to (1 − εt )p, where εt is the treatment efficacy. The simulation in Fig. 5
shows that antiviral treatment can significantly delay the spread of the disease among
population. However, it does not change the final steady state. This is because the viral
load declines to a very low level (see Appendix Fig. 8) even without treatment (i.e., the
within-host basic reproduction number R0w < 1 with the parameter values obtained
from data fitting). “Perfect” therapy that can completely block viral replication cannot
reduce the duration of viral persistence within symptomatic infected individuals or
diminish the time to recovery (see εt = 1 in Appendix Fig. 10). This is different
from the prediction by a model that only considered the within-host dynamics (Wang
et al. 2020). The discrepancy is due to the viral transfer from the environment to the
host in the multiscale model. If the symptomatic infected individual is isolated after
infection, then the individual does not have a chance to contract environmental virus.
In this scenario, antiviral treatment will accelerate viral eradication and diminish the
recovery time in the symptomatic infected individual (Wang et al. 2020). In summary,
our simulation shows that antiviral treatment only delays the occurrence of the disease
outbreak. It would not control the disease if the environmental transmission to hosts
cannot be prevented.

4.3 Bistability

Table 2 shows that the model has two steady states, E0 and Eet , whenRc
0b < R0b < 1,

R0w < 1 andψ ′(0) < −m. Although it is challenging to perform a formal mathemati-
cal analysis on the stability of the steady stateEet in this case, numerical simulationwith
different initial conditions suggests that Eet is locally asymptotically stable (Appendix
Fig. 11). Furthermore, using initial conditions of the susceptible and symptomatic
infected as an example, we identified the region in which the model converges to the
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Fig. 4 Model simulation with different duration of incubation (i.e., 1/α). The other parameters are from
Table 3 (color figure online)

disease-free steady state E0 or the endemic steady state Eet (Fig. 6). This shows that
the multiscale model exhibits a phenomenon of bistability. With lower levels of initial
susceptible and symptomatic infected people, the disease is predicted to die out; when
either the number of susceptible or symptomatic infected people exceeds a threshold
value, the disease will persist.

5 Discussion

A large number of mathematical models have been developed to study the dynamics
of COVID-19 (for example, see Kucharski et al. 2020; Li et al. 2020; Liu et al. 2020c;
Tang et al. 2020; Weitz et al. 2020; Wu et al. 2020a; Zhao and Feng 2020). However,
most of the models are focused on the disease transmission at the population level.
Several models have been used to study the within-host virus dynamics (Wang et al.
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Fig. 5 Simulation with different drug efficacy that blocks viral production within symptomatic infected
individuals. The other parameters are from Table 3 (color figure online)

2020; Hernandez-Vargas and Velasco-Hernandez 2020; Gonçalves et al. 2020; Sanche
et al. 2020; Goyal et al. 2020). We have not seen any models developed to investi-
gate the coupled dynamics of COVID-19. In this paper, we developed a multiscale
model to study the dynamics of COVID-19 at both the within-host and between-host
levels. In addition to the assumption that the transmission rate between hosts depends
on the viral load within symptomatic infected individuals in some coupled models
for other infectious diseases (Tuncer et al. 2016; Childs et al. 2019; Martcheva et al.
2015; Barfield et al. 2018; Nikin-Beers et al. 2018; Dorratoltaj et al. 2017; Numfor
et al. 2014; Feng et al. 2015, 2012, 2013; Cen et al. 2014), we introduce a function
η(Z) into the equation of viral load to represent the inhalation/ingestion rate of the
coronavirus from the environment into the human body. This represents the contribu-
tion of the environmental reservoirs to the growth of the viral load within individual
hosts. Therefore, our model provides a two-way connection between the individual
viral kinetics and the population-level disease transmission. In comparison with the
above-mentioned coupled models, the transmission rate between hosts in this model
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Fig. 6 Bistability region of the initial susceptible and symptomatic infected in which the model converges
to either the steady state E0 or Eet . The parameters are from Table 3 (color figure online)

was assumed to also depend on the level of infection because a higher level of infection
would lead to stronger controlmeasures and consequently reduce the transmission rate.
The model is also different from that in Feng et al. (2015, 2013), in which the authors
studied a coupled model specifically for an environmentally-driven infectious disease.
There was no infection between infected and susceptible individuals considered in that
model.

Our analysis approach for the subsystem (i.e., slow or fast subsystem) is similar
to that in previous papers including (Yang and Wang 2020). Mathematical analysis
of the coupled model is more challenging. We have analyzed the model using the
bifurcation theory and a fast-slow analysis, where the latter approach is built upon
the time scale separation for the dynamical processes associated with the individual
host and the environment and human population. Our detailed analysis on the local
and global dynamics of the fast system, the slow system and the coupled system
shows that rich dynamics, including both forward and backward bifurcations, emerge
with the coupling of the within-host and between-host models. Numerical simulation
illustrated the bifurcations (Fig. 1). We have also numerically identified a region in
which the disease either persists or dies out (Fig. 6). The emergence of bistability
further suggests that the initial populations of susceptible or symptomatic infected
can dictate the fate of disease transmission. These bifurcation and bistability results
indicate the significance of the proposed coupled modeling approach and highlights
the challenges in the prevention and control of the ongoing pandemic.

Both mathematical analysis and the simulation in Fig. 3 suggest that the envi-
ronmental transmission can contribute to the COVID-19 outbreak and persistence.
Potential antiviral treatment can delay the disease outbreak but cannot prevent its
emergence. Even when treatment significantly suppresses the viral production within
the infected individual, the virus can persist in the host (Fig. 5). Thismay sound bizarre
for a specific individual but it actually makes sense for the conceptual “average” indi-
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vidual considered in the model. If the disease persists at the population level, then the
virus will also persist within the average individual due to environmental transmis-
sion. Although environmental transmission can contribute to viral persistence within
the average host when the disease persists at the population level, it does not mean that
environmental transmission plays a dominant role in the disease spread. It depends
on the relative magnitude of the transmission terms βE SE , βI S I , and βZ SZ . Most
spread ofCOVID-19might go through airborne human-to-human transmission (Zhang
et al. 2020). Therefore, comprehensive intervention measures such as social distanc-
ing and wearing masks, combined with surface disinfection and hand hygiene that can
prevent environmental transmission, should be implemented to mitigate the spread
of COVID-19 (Pradhan et al. 2020). Our study provides a modeling framework that
can be used to evaluate the potential influence of environmental transmission on the
disease dynamics.

This is the first attempt to link within-host and between-host dynamics of COVID-
19. The validation of multiscale models is usually very challenging as it requires
data from all the scales for the same individual or the same region. In this paper, we
used the mean viral load of the patients from Hong Kong to represent the within-
host dynamics of symptomatic infected individuals and the accumulated cases from
Florida to represent the between-host dynamics. Although patients in Florida may
have different within-host dynamics, we can use the above as an example to study
the mutual impact of the dynamics at one level on the other. Another limitation of
our multiscale model is that it assumes individual hosts have the same internal states
at a time (i.e., the within-host model is for a conceptual “average” individual). To
overcome this limitation, one can couple the within-host and between-host dynamics
via the infection age of individuals using the nested modeling approach (Gilchrist and
Sasaki 2002;Martcheva et al. 2015),which allows incorporating the stagedprogression
nature of the disease at the population level. There are also some other potential
ways to account for the individual within-host heterogeneity in the model, such as
adding a subscript i on the within-host variables T , T ∗, and V for each individual i
or discretizing the population with the level of the viral load as in a recent study (Lin
et al. 2021). Amore complex model incorporating all the individual heterogeneity will
be extremely challenging, if not impossible, for mathematical analysis of the model.
Lastly, we used a simple model at each scale to make it analytically more trackable.
Immune response was shown to play a significant role in controlling viral replication
within infected individuals (Wang et al. 2020; Goyal et al. 2020). The within-host
model can be extended to include immune responses but we speculate that it may not
have a significant impact on the disease spread at the population level (note that the
viral load is suppressed to a very low level in our simulations). A between-host model
including more compartments, spatial heterogeneity, stochasticity, and vaccination
status would be more realistic to study the disease spread. In a recent work (Lin et al.
2021), Lin et al. used a region-specific model to study the COVID dynamics in a
number of populous metropolitan statistical areas in the USA.

To summarize, we have developed a multiscale model to study the interaction
between within-host viral replication, the environment, and the disease spread at the
population level. The analysis has generated some insights that would not be obtained
if the model only considers within-host or between-host dynamics. This work also
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provides a modeling framework for studying other infectious diseases when the envi-
ronment can serve as a reservoir of pathogens.

Appendix

A Proof of Theorem 2

Proof Consider the Lyapunov function

Ls =
(∫ S

S∗

x − S∗

x
dx +

∫ E

E∗

x − E∗

x
dx

)
+ c1

∫ I

I ∗

x − I ∗

x
dx + c2

∫ Z

Z∗

x − Z∗

x
dx,

where c1 and c2 are positive constants to be specified later. It is clear that Ls ≥ 0
and Ls = 0 if and only if (S, E, I , Z) = (S∗, E∗, I ∗, Z∗). For simplicity, we denote
β∗
W = β( f (Z∗),W ∗) for W = E, I and β∗

Z = β(Z∗). Differentiating Ls along
solutions of system (13) in themain text and using the associated equilibrium equations
to simplify, we have

dLs

dt
=

(
S − S∗

S
dS
dt

+ E − E∗

E
dE
dt

)
+ c1

I − I ∗

I
d I
dt

+ c2
Z − Z∗

I
d Z
dt

= S − S∗

S

[
(β∗

E E
∗S∗ − βE ES)+ (β∗

I I
∗S∗ − βI I S)+ (β∗

Z Z
∗S∗ − βZ Z S)

]
− µ

S
(S − S∗)2

+ E − E∗

E

[
(βE ES − β∗

E E
∗S∗ E

E∗ )+ (βI I S − β∗
I I

∗S∗ E
E∗ )+ (βZ Z S − β∗

Z Z
∗S∗ E

E∗ )
]

+c1
I − I ∗

I
αE∗

(
E
E∗ − I

I ∗

)
+ c2

Z − Z∗

Z

(
ξE E + ξI I − ξE E∗ + ξ I I ∗

Z∗ Z
)
.

By straightforward calculation, we obtain

dLs

dt
= −µ

S
(S − S∗)2 + β∗

E E
∗S∗

(
1 − S∗

S
− βE ES

β∗
E E

∗S∗

+ βI I
β∗
I I

∗

)
+ β∗

I I
∗S∗

(
1 − S∗

S
− βI I S

β∗
I I

∗S∗ + βZ Z
β∗
Z Z

∗

)

+β∗
Z Z

∗S∗
(
1 − S∗

S
− βZ Z S

β∗
Z Z

∗S∗ + βZ Z
βZ

∗Z∗

)
+ β∗

E E
∗S∗

(
1 − E

E∗ − βE S
β∗
E S

∗

+βE SE∗

β∗
E S

∗

)

+β∗
I I

∗S∗
(
1 − E

E∗ − βI I SE∗

β∗
I I

∗S∗E

+ βI I S
β∗
I I

∗S∗

)
+ β∗

Z Z
∗S∗

(
1 − E

E∗ − βZ Z SE∗

β∗
Z Z

∗S∗E
+ βZ Z S

β∗
Z Z

∗S∗

)

+c1αE∗
(

E
E∗ − I

I ∗ − E I ∗

E∗ I
+ 1

)
+ c2ξE E∗

(
E
E∗ − Z

Z∗ − EZ∗

E∗Z
+ 1

)

123



A Multiscale Model of COVID-19 Dynamics Page 33 of 41 99

+c2ξI I ∗
(

I
I ∗ − Z

Z∗ − I Z∗

I ∗Z
+ 1

)
.

Hence,

dLs

dt
≤ β∗

E E
∗S∗

(
βE E
β∗
E E

∗ − 1
) (

1 − β∗
E

βE

)

+ β∗
I I

∗S∗
[(

βI I
β∗
I I

∗ − 1
) (

1 − β∗
I

βI

)
+ I

I ∗ − E
E∗ + ln

E
E∗ − ln

I
I ∗

]

+ β∗
Z Z
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[(

βZ Z
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Z Z

∗ − 1
) (
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Z

βZ
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+ Z
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E∗ + ln

E
E∗ − ln

Z
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(

E
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I ∗ − ln
E
E∗ + ln

I
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+ c2ξE E∗

(
E
E∗ − Z

Z∗ − ln
E
E∗ + ln

Z
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)

+ c2ξI I ∗
(

I
I ∗ − Z

Z∗ − ln
I
I ∗ + ln

Z
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)
.

In view of (C1)-(C3) and (H2),

dLs

dt
≤ (−β∗

I I
∗S∗ − β∗

Z Z
∗S∗ + c1αE∗ + c2ξE E∗)

(
E
E∗ − ln

E
E∗

)

+ (β∗
I I

∗S∗ − c1αE∗ + c2ξI I ∗)
(

I
I ∗ − ln

I
I ∗

)

+ (β∗
Z Z

∗S∗ − c2ξE E∗ − c2ξI I ∗)
(

Z
Z∗ − ln

Z
Z∗

)
.

Set c1 = β∗
I I

∗S∗+ ξI I ∗β∗
Z Z

∗S∗

β∗
E E

∗ + β∗
I I

∗ and c2 =
β∗
Z Z

∗S∗

β∗
E E

∗ + β∗
I I

∗ . As β∗
E E

∗+β∗
I I

∗ = δZ∗,

c1 = β∗
I I

∗S∗+ξI I ∗β∗
Z S

∗/δ and c2 = β∗
Z S

∗/δ. One can verify that the right-hand side
of the above inequality is zero with the chosen c1 and c2. This implies dLs/dt ≤ 0 in
the interior of 1s . Furthermore, if dLs/dt = 0, then

S = S∗, E = kE∗, I = k I ∗, Z = kZ∗

for some positive constant k. Substituting this relationship into the first two equations
of system (13) in the main text leads to

! − (α + µ)kE∗ − µS∗ = 0,

which implies k = 1. Therefore, the only invariant set on which dLs/dt = 0 con-
tains the singleton E s

e = {S∗, E∗, I ∗, R∗, Z∗}. It follows from the LaSalle Invariant
Principle that Ee is globally asymptotically stable in the interior of 1s whenR0 > 1.
Consequently, Ee is also unique in the interior of 1s . -.
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B Appendix Figures

See Figs. 7, 8, 9, 10 and 11.
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Fig. 7 Simulation of within-host viral dynamics with different values of η0/ε. When η0 = 0, there is no
environmental transmission. All the other parameters are the same as those in Fig. 3 (color figure online)
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Fig. 8 Simulation of the coupled model with different values of η0/ε over a longer time interval. The
simulation over a shorter time interval is shown in Fig. 3 (color figure online)
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Fig. 9 Model simulationwith different values ofC3 (the constant in the environmental transmission function
βZ (Z)). We fixed η0/ε at 0.01 and the other parameters are the same as those in Fig. 3 (color figure online)
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Fig. 10 Simulation of viral load dynamics with different drug efficacies εt . The other parameters are the
same as those in Fig. 5 (color figure online)
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Fig. 11 Model convergence to the endemic steady state Eet under differential initial conditions. a The
steady state of susceptible S is 565.31, consistent with the calculation S0 −mI = 565.31; b the steady state
of infected I is 2449.68; c the steady state of E is 2140.61, consistent with the calculation θE I = 2140.61;
d the steady state of R is 422.21, consistent with the calculation θR I = 422.21; e the steady state of Z
is 8383.85, consistent with the calculation θZ I = 8383.85; f the steady state of viral load is 2794.67,
consistent with the calculation V+ = f (Z) = f (θZ I ) = 2794.67; g the steady state of T is 0.31 cells/ml,

consistent with the calculation
b

κV+ + d
= 0.31; h the steady state of infected cells is 0.0035 cells/ml,

consistent with the calculation
bκV+

q(κV+ + d)
= 0.0035 (color figure online)
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