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Individuals infected by human immunodeficiency virus (HIV) are under oxidative stress due to
the imbalance between reactive oxygen species (ROS) production and elimination. This paper
presents a mathematical model with the cytotoxic T lymphocytes (CTL) immune response
to examine the role of ROS in the dynamics of HIV infection. We classify the equilibria of the
model and study the stability of these equilibria. Numerical simulations show that incorporating
ROS and CTL immune response into the model leads to very rich dynamics, including bistable
phenomena and periodic solutions. Although the current antiretroviral therapy can suppress
viral load to the undetectable level, it cannot eradicate the virus. A high level of ROS may be
a factor for HIV persistence in patients despite suppressive therapy. These results suggest that
oxidative damage and anti-oxidant therapy should be considered in the study of HIV infection
and treatment.
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1. Introduction

HIV, the pathogen leading to the acquired immun-
odeficiency syndrome (AIDS), is highly aggres-
sive to the human immune system. The impaired
immune system in untreated HIV patients can no
longer fight against opportunistic infections that are

normally not problematic [Nowak & May, 2000].
The most recent Global Health Observatory (GHO)
data of HIV/AIDS published by WHO estimates
that there were approximately 38.0 million people
living with HIV at the end of 2019 and around 33
million people have died of HIV since the beginning
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of the epidemic [WHO, 2020]. This emphasizes the
need for further research on HIV infection and
treatment.

Mathematical models have proven to be a use-
ful tool for studying HIV dynamics [Rong & Perel-
son, 2009; Rong et al., 2007b; Guo et al., 2020a;
Sun et al., 2018; Feng & Qiu, 2019; Feng et al.,
2019]. Over the past two decades, many modeling
studies have been conducted to investigate HIV
infection [Guo et al., 2020b; Allali et al., 2017;
Souza & Zubelli, 2011; Deng et al., 2021; Guo &
Qiu, 2019; Lv et al., 2014]. Perelson and Nelson
[1999] used a three-dimensional ordinary differential
equations (ODE) model to describe the interaction
between the viruses and the host cells. This basic
viral dynamic model includes three variables: unin-
fected CD4+ T cells, productively infected CD4+
T cells, i.e. infected CD4+ T cells that can pro-
duce new virions, and free viruses. Rong et al.
[2007c] developed a four-dimensional ODE model
including unproductively infected cells that cannot
produce new virions, i.e. infected CD4+ T cells
in the eclipse stage (the stage of an infected cell
between viral attachment and generation of new
virus). During HIV infection, cytotoxic T lympho-
cytes (CTL) are a major component of the immune
response against viral infection [Guo & Qiu, 2019].
Maziane et al. [2017] studied a class of mathe-
matical models with unproductively infected cells
and CTL immune response, and showed the crit-
ical role of CTL immune response in controlling
HIV infection.

Most of the above models do not consider the
effect of reactive oxygen species (ROS) on HIV
infection. Mounting biological studies indicate that
long-term HIV infection may result in the accumu-
lation of ROS [Pace & Leaf, 1995; Schwarz, 1996;
Tang & Smit, 2000]. ROS are the by-products of
cellular respiration, and play an important role in
cell signaling [Hildeman, 2004; Gil et al., 2003;
Yang et al., 2020]. ROS promote the aging of the
body and cause various diseases although ROS can
assist the body in resisting and killing bacteria
and other pathogens. In a healthy body, the nat-
ural defense system (e.g. enzyme system; antioxi-
dants) can eliminate the toxic effects of ROS. Thus,
the process of producing ROS and detoxication
can reach a dynamic balance. However, in HIV
patients, this balance is disturbed due to a high
serum concentration of ROS and a low antioxidant
concentration [Schwarz, 1996; Flores et al., 1993].

The resulting oxidative stress affects the progres-
sion of HIV in several ways, such as destroying the
immune response to HIV and promoting viral repli-
cation [Pace & Leaf, 1995; Stephensen et al., 2005].
Therefore, in order to control HIV infection, it is
necessary to understand the role of ROS in HIV
dynamics.

A couple of mathematical models including
ROS have also been developed to study HIV dynam-
ics. van Gaalen and Wahl [2009] constructed a
four-dimensional ODE model to evaluate the rela-
tionship between ROS and antioxidants, and to
estimate model parameters using clinical data.
Although many infected individuals exhibit sus-
tained low-level viremia on ART, a number of them
have occasional viral load measurements above
the detection limit (50 copies/mL). Such transient
episodes of detectable viremia are termed “viral
blips”. Zhang et al. [2013] reanalyzed the model in
[van Gaalen & Wahl, 2009] and proposed that con-
sidering ROS might contribute to the occurrence of
viral blips. Wang et al. [2018] investigated a within-
host model of HIV infection with impaired immune
function caused by oxidative stress. They obtained
several thresholds for virus rebound and highlighted
the importance of the CTL immune response.

Motivated by the work of Rong et al. [2007c]
and van Gaalen and Wahl [2009], we developed
an HIV infection model with the CTL immune
response and ROS. The model is shown schemati-
cally in Fig. 1 and described by the following system
of ODE





dT (t)
dt

= λ − dT − (1 − ε)β(I)TI + αE,

dE(t)
dt

= (1 − ε)β(I)TI − (dE + α + π)E,

dI(t)
dt

= πE − δI − pIZ,

dZ(t)
dt

= cIZ − bZ,

(1)

where T (t), E(t), I(t) and Z(t) denote uninfected
CD4+ T cells, infected CD4+ T cells in the eclipse
stage, productively infected CD4+ T cells, and CTL
immune response at time t, respectively. Follow-
ing the definition in [Shiri et al., 2005], the unit
of T (t), E(t), I(t), and Z(t) should be mL−1.
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Fig. 1. The schematic diagram of HIV transmission. The
wavy line is used to emphasize the killing effect of the CTL
immune response on productively infected cells.

The parameter λ is the generation rate of uninfected
CD4+ T cells and d is the death rate. The effec-
tiveness of drug therapy is ε. Infected cells in the
eclipse stage can revert to the uninfected state at a
rate α. They become productive at the rate π and
die at the rate dE . Productively infected cells die
naturally at a rate δ and are removed by the CTL
immune response at a rate p. The term cIZ is the
generation rate of CTLs in response to antigenic
stimulation and b is the clearance rate of CTLs.

As stated in the document [Gloire et al., 2006],
ROS can enhance HIV replication through the
activation of transcription factor NF-kB. During
HIV infection, productively infected cells indirectly

produce a high level of ROS [Pace & Leaf, 1995;
Schwarz, 1996], which in turn increases virus pro-
duction and promotes HIV infection. Thus, we use
productively infected cells to affect the infection
rate to capture ROS-activated transcription in our
model. Based on the above discussion, the infection
rate β(I) should have the following properties for I:
(1) β(I) > 0; (2) dβ(I)

dI > 0. Specifically, we take

β(I) = b0 +
I(b1 − b0)

I + b2
. (2)

Obviously, β(I) satisfies the properties (1) and (2).
In fact, such saturation function can effectively limit
the infection rate to the maximum value (b1) at the
high level of I, which is more realistic. Here, b0 rep-
resents the infection rate in the absence of ROS,
while b1 denotes the maximum infection rate, and
b2 is the density of productively infected cells when
the infectivity takes its median value. We regard b1

as an oxidant parameter in the numerical investi-
gations performed later. This infectivity has been
introduced in [Zhang et al., 2014; van Gaalen &
Wahl, 2009]. The detailed description and values of
the parameters are listed in Table 1.

It is noted that model (1) did not include the
dynamics of free viruses explicitly. The turnover of
free viruses is much faster than that of produc-
tively infected cells [Bartholdy et al., 2000]. This

Table 1. Parameter descriptions and sources for their values.

Parameter Value Description Reference

λ 104 mL−1 day−1 Production rate of uninfected cells [Rong et al., 2007c]
d 0.01 day−1 Death rate of uninfected cells [Perelson et al., 1993]
α 0.01 day−1 Rate of infected cells in the eclipse stage [Rong et al., 2007c]

reverting to the uninfected state
dE 0.7 day−1 Death rate of infected cells in the eclipse stage [Rong et al., 2007c]
π 1.1 day−1 Rate of infected cells in the eclipse stage [Rong et al., 2007c]

progressing to the productive stage
δ 1 day−1 Death rate of infected cells [Rong et al., 2007a]
b0 2.5 × 10−8 − 5 × 10−4 mL day−1 Infection rate in the ROS-absent case [Wang et al., 2009]
b1 2.5 × 10−6 − 5 × 10−2 mL day−1 Maximum infection rate or the See text

oxidant parameter
b2 0.0001 − 0.1 mL−1 Infected cell concentration when the See text

infectivity takes its median value
p 0.002 day−1 Clearance rate of infected cells [Shiri et al., 2005]

by CTL killing
c 0.00001 − 0.1 mL−1 day−1 Generation rate of CTL [Wang et al., 2012;

Wodarz & Lloyd, 2004]
b 0.1 day−1 Death rate of CTL [Shiri et al., 2005;

Wodarz & Lloyd, 2004]
ε 0-1 Efficacy of drug therapy See text
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allows us to make a quasi steady-state assump-
tion, i.e. the concentration of free viruses is simply
proportional to the concentration of productively
infected cells [Wodarz et al., 2002]. As stated in bio-
logical documents [Pace & Leaf, 1995; Stephensen
et al., 2005], a high concentration of ROS is benefi-
cial to HIV disease by promoting the replication of
viruses, decreasing the proliferation of immune cells
and increasing the sensitivity to drug toxicities, etc.
However, it is challenging to include all biological
details in a modeling work. In this paper, we want to
establish a mathematical model to study the com-
bined effects of ROS and CTL immune response on
HIV dynamics. To simplify the model analysis, our
model only considers the role of oxidative stress in
promoting viral infection and ignores the impair-
ment of immune response. We leave that for further
investigation.

The rest of the paper is organized as follows.
In the next section, reproduction numbers and the
existence of possible equilibria are derived. In Sec. 3,
we prove the local and global asymptotic stability of
the equilibria. In Sec. 4, we perform numerical sim-
ulations to illustrate the results derived analytically
(such as bistability and periodic solutions) and also
explore the role of ROS and CTL immune response
in HIV dynamics. Results and a brief discussion are
given in Sec. 5.

2. Reproduction Numbers and
Equilibria

In this section, we will derive the reproduction num-
bers and classify the equilibria for system (1). It is
clear that the system (1) always has the disease-free
equilibrium (DFE) E0(λ

d , 0, 0, 0). Using the next-
generation method [Van den Driessche & Wat-
mough, 2002], the matrices for the new infection
and the transfer, F and V, are given by

F =




0 (1 − ε)b0

λ

d

0 0



, V =

(
dE + α + π 0

−π δ

)

.

The basic reproduction number can be derived by

R0 = ρ(FV−1) =
(1 − ε)b0λπ

dδ(dE + α + π)
,

where ρ(FV−1) is the spectral radius of the non-
negative matrix FV−1. Note that the basic repro-
duction number R0 does not involve the effect of

ROS. This is because R0 is obtained by lineariz-
ing system (1) at DFE E0(λ

d , 0, 0, 0) and using the
next generation matrix method. In our model, we
hypothesized that ROS indirectly affects the infec-
tion rate β(I) through the productively infected
cells I. At the DFE, there are no productively
infected cells (I = 0), which leads to the fact that
the ROS parameter does not appear in R0.

We investigate the existence of equilibria
besides the DFE E0. Any equilibrium of system (1)
must satisfy the following equations:





λ − dT − (1 − ε)β(I)TI + αE = 0,

(1 − ε)β(I)TI − (dE + α + π)E = 0,

πE − δI − pIZ = 0,

cIZ − bZ = 0.

(3)

We calculate the boundary equilibria besides
the DFE E0. The boundary (CTL-free) equilibria
are located in the hyperplane Z = 0. Setting Z = 0,
it follows from the third equation in (3) that

E =
δ

π
I. (4)

Substituting (4) into the second equation in (3)
yields

T =
(dE + α + π)δ
(1 − ε)β(I)π

. (5)

Substituting (4) and (5) into the first equation
in (3), we obtain

G(I) = A1I
2 + A2I + A3 = 0, (6)

where

A1 = (1 − ε)b1(dE + π)δ,

A2 = (1 − ε)[b0b2δ(dE + π) − λπb1]

+ (dE + π + α)δd,

A3 = (dE + π + α)δdb2(1 − R0).

If any CTL-free equilibria exist, the I variable is the
positive root of the quadratic equation G(I) = 0.
Let ∆ = A2

2 − 4A1A3. We consider two cases:

Case 1. R0 > 1. Equation (6) has a unique solu-
tion Ic. This implies that system (1) has a unique
CTL-free equilibrium, denoted by

Ec = (Tc, Ec, Ic, 0),
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where

Tc =
(dE + α + π)δ
(1 − ε)β(Ic)π

, Ec =
δ

π
Ic,

Ic =
−A2 +

√
∆

2A1
.

Case 2. R0 < 1. In this case, Eq. (6) admits two
positive solutions I1 and I2 [i.e. system (1) has two
CTL-free equilibria] if ∆ > 0 and A2 < 0. Let
E1 = (T1, E1, I1, 0) and E2 = (T2, E2, I2, 0) denote
two CTL-free equilibria with

T1 =
(dE + α + π)δ
(1 − ε)β(I1)π

, E1 =
δ

π
I1,

I1 =
−A2 −

√
∆

2A1
;

T2 =
(dE + α + π)δ
(1 − ε)β(I2)π

, E2 =
δ

π
I2,

I2 =
−A2 +

√
∆

2A1
.

These two solutions coincide when ∆ = 0 and
A2 < 0. For all other values of ∆ or A2, there is
no positive solution for Eq. (6).

In addition to R0, we define the CTL immune
response reproduction number of system (1)
[Van den Driessche & Watmough, 2002; Jiang &
Wang, 2014]:

Rc =
c

b
Ic,

where 1
b denotes the average life expectancy of the

CTL, and Ic are productively infected cells at Ec.
Hence, Rc represents the average number of CTL
activated by productively infected cells when R0 >
1. Similar to Rc, we define two other CTL immune
response reproduction numbers when R0 < 1:

R1 =
c

b
I1, R2 =

c

b
I2,

where I1 and I2 are productively infected cells at
E1 and E2, respectively.

In the following, we consider the positive equi-
librium of model (1), denoted by E∗ = (T ∗, E∗,
I∗, Z∗). Let Z #= 0. It follows from the fourth
equation in (3) that

I∗ =
b

c
. (7)

Substituting (7) into the first to third equations of
Eq. (3), and after some algebraic manipulations, we
obtain

T ∗ =
λ

d
− dE + π

d
E∗,

Z∗ =
cπ

pb
E∗ − δ

p

(8)

and

F (E∗) = λ −
(

d(dE + α + π)
(1 − ε)β(I∗)I∗

+ dE + π

)
E∗

= 0. (9)

From (9), we have E∗ < λ
dE+π and F ′(E∗) < 0.

It follows from the expression of Z∗ that the exis-
tence of the positive equilibrium E∗ is equivalent
to E∗ ∈ ( bδ

cπ , λ
dE+π ). Noticing F ( λ

dE+π ) < 0, we
know that the existence of the positive equilibrium
E∗ is equivalent to F ( bδ

cπ ) > 0. We also consider
two cases:

Case 1. R0 > 1. If Rc < 1, then Ec < bδ
cπ and

F

(
bδ

cπ

)
= λ − d(dE + α + π)

(1 − ε)β(I∗)I∗
bδ

cπ
− (dE + π)

bδ

cπ
,

< λ − d(dE + α + π)

(1 − ε)β(Ic)
π

δ

− (dE + π)Ec

= 0, (10)

which means F ( bδ
cπ ) < 0 if Rc < 1. Then there is no

equilibrium when Rc < 1. If Rc > 1, then Ec > bδ
cπ

and F ( bδ
cπ ) > 0. Therefore, there exists a positive

equilibrium E∗ = (T ∗, E∗, I∗, Z∗) when R0 > 1 and
Rc > 1.

Case 2. R0 < 1. In this case, it is challenging to
analytically determine the existence condition for
the positive equilibrium of system (1). Thus, we
illustrate it by numerical investigations using dif-
ferent parameter values (Fig. 3).

We summarize the above results in the follow-
ing theorem.

Theorem 1. For the system of ODEs (1)

(a) The DFE E0 = (λ
d , 0, 0, 0) always exists.
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(b) If R0 > 1, there exists a unique CTL-free
equilibrium

Ec =





(dE + α + π)δ

(1 − ε)β

(
−A2 +

√
∆

2A1

)
π

,

δ

π

−A2 +
√

∆
2A1

,
−A2 +

√
∆

2A1
, 0



.

(c) If R0 < 1, then system (1) has two CTL-free
equilibria

E1 =





(dE + α + π)δ

(1 − ε)β

(
−A2 −

√
∆

2A1

)
π

,

δ

π

−A2 −
√

∆
2A1

,
−A2 −

√
∆

2A1
, 0





and

E2 =





(dE + α + π)δ

(1 − ε)β

(
−A2 +

√
∆

2A1

)
π

,

δ

π

−A2 +
√

∆
2A1

,
−A2 +

√
∆

2A1
, 0





if ∆ > 0 and A2 < 0. These two equilibria coin-
cide when ∆ = 0 and A2 < 0. In other cases,
there is no positive CTL-free equilibrium.

(d) If R0 > 1 and Rc > 1, the system (1) has a
positive equilibrium of the form E∗ = (T ∗, E∗,
I∗, Z∗) with E∗ ∈ ( bδ

cπ , λ
dE+π ), T ∗ = λ

d −
dE+π

d E∗, I∗ = b
c , and Z∗ = cπ

pb E∗ − δ
p .

3. Stability Analysis

In this section, we study the local and global sta-
bilities of equilibria E0, Ec, E1 and E2.

3.1. Local stability of DFE E0

Theorem 2. The DFE E0 is locally asymptotically
stable (L.A.S ) if R0 < 1, and unstable if R0 > 1.

Proof. The Jacobian matrix at E0 has two nega-
tive eigenvalues −d,−b, and the other two roots are
determined by the following matrix

Q =

(
−(dE + α + π) −(1 − ε)b0λπ

−π −δ

)
. (11)

It is easy to check that all eigenvalues of Q are neg-
ative if and only if R0 < 1, i.e. E0 is L.A.S if R0 < 1
and unstable if R0 > 1. !

3.2. Local stability of CTL-free
equilibria Ec, E1 and E2

Let Ê = (T̂ , Ê, Î , 0) represent any CTL-free equilib-
rium of system (1). Then the characteristic equation
at Ê can be expressed as

∣∣∣∣∣∣∣∣∣∣∣∣∣

−d − (1 − ε)β(Î) − ξ α −(1 − ε)β′(Î)T̂ Î − (1 − ε)β(Î)T̂ 0

(1 − ε)β(Î) −(dE + α + π) − ξ (1 − ε)β′(Î)T̂ Î + (1 − ε)β(Î)T̂ 0

0 π −δ − ξ −pÎ

0 0 0 cÎ − b − ξ

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (12)

where ξ denotes the eigenvalue. Equation (12) can
be simplified to

(cÎ − b − ξ)(ξ3 + a1ξ
2 + a2ξ + a3) = 0, (13)

where

a1 = d + (1 − ε)β(Î)Î + dE + π + δ + α > 0,

a2 = (d + (1 − ε)β(Î)Î)(dE + π + δ)

+ (dE + π)δ + α(d + δ) − π((1 − ε)β′(Î)T̂ Î

+ (1 − ε)β(Î)T̂ ),

a3 =
Î

(b2 + Î)
(2A1Î + A2),

in which A1 and A2 are given in (6).
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Let W s(Ê), W u(Ê) and W c(Ê) be the stable
manifold, unstable manifold and center manifold of
Ê, respectively. We have the following local stability
results for the CTL-free equilibria Ec, E1 and E2.

Theorem 3

(a) Assume that R0 > 1.

(i) If Rc < 1 and H > 0, then dim[W s(Ec)] =
4, i.e. the unique CTL-free equilibrium Ec is
L.A.S.;

(ii) If Rc < 1 and H < 0, then dim[W s(Ec)] = 2,
dim[W u(Ec)] = 2, i.e. the unique CTL-free
equilibrium Ec is unstable;

(iii) If Rc < 1 and H = 0, then dim[W s(Ec)] = 2,
dim[W c(Ec)] = 2.

(b) Assume that R0 < 1 and both E1 and E2

exist.

(i) dim[W s(E1)] = 3, dim[W u(E1)] = 1, i.e. the
CTL-free equilibrium E1 is unstable;

(ii) If R2 < 1 and H > 0, then dim[W s(E2)] = 4,
i.e. the CTL-free equilibrium E2 is L.A.S.;

(iii) If R2 < 1 and H < 0, then dim[W s(E2)] = 2,
dim[W u(E2)] = 2, i.e. the CTL-free equilib-
rium E2 is unstable;

(iv) If R2 < 1 and H = 0, then dim[W s(E2)] = 2,
dim[W c(E2)] = 2.

Proof. Equation (13) has a solution ξ1 = cÎ − b.
Let ξ2, ξ3 and ξ4 be the remaining eigenvalues and
we assume that the real part satisfies %(ξ2) <
%(ξ3) < %(ξ4).

(1) Assume R0 > 1. The system (1) has a unique
CTL-free equilibrium Ec = (Tc, Ec, Ic, 0), where
Ic is a root of (6) and satisfies G′(Ic) = 2A1Ic +
A2 > 0. We know that ξ1 = cIc−b < 0 is equivalent
to Rc < 1. The remaining eigenvalues, ξ2, ξ3 and ξ4,
are determined by the following equation

ξ3 + a1ξ
2 + a2ξ + a3 = 0, (14)

where a1, a2, a3 are defined as above (13). From the
relations between roots and coefficients, it can be
obtained that

ξ2 + ξ3 + ξ4 = −a1 < 0,

ξ2ξ3ξ4 = −a3 = − Ic

(b2 + Ic)
(2A1Ic + A2) < 0.

This means either %(ξ2) < %(ξ3) < %(ξ4) < 0 or
%(ξ2) < 0 < %(ξ3) < %(ξ4). Thus, the stability

of Ec completely depends on the sign of a1a2 − a3.
For simplicity, let H = a1a2 − a3.

If H > 0, then the Routh–Hurwitz criterion
implies that %(ξ2) < %(ξ3) < %(ξ4) < 0. By the
center manifold theorem, we have dim[W s(Ec)] = 4,
i.e. the unique CTL-free equilibrium Ec is L.A.S.
If H = 0, then substituting a1a2 = a3 into the
left-hand side of Equ. (14) yields two roots ±√

a2i,
which means %(ξ2) < 0. By the center manifold the-
orem, we have dim[W s(Ec)] = 2, dim[W c(Ec)] = 2.
If H < 0, then the Routh–Hurwitz criterion implies
that %(ξ2) < 0 < %(ξ3) < %(ξ4). By the cen-
ter manifold theorem, we have dim[W s(Ec)] = 2,
dim[W u(Ec)] = 2, i.e. the unique CTL-free equilib-
rium Ec is unstable.

(2) Assume that R0 < 1 and both E1 = (T1, E1,
I1, 0) and E2 = (T2, E2, I2, 0) exist, where I1 and
I2 are the roots of Eq. (6). Furthermore, I1 and I2

satisfy

G′(I1) = 2A1I1 + A2 < 0,

G′(I2) = 2A1I2 + A2 > 0,

respectively. Similarly, we can obtain the stability of
E2 by using the same analysis method as Ec. There-
fore, we focus on the stability of E1. It is clear that
ξ1 = cI1 − b < 0 is equivalent to R1 < 1. It fol-
lows from the relations between roots and coeffi-
cients that

ξ2 + ξ3 + ξ4 = −a1 < 0,

ξ2ξ3ξ4 = −a3 = − I1

(b2 + I1)
(2A1I1 + A2) > 0.

This means %(ξ2) < 0, and %(ξ3) and %(ξ4) have
different signs. Thus, we have

dim[W s(E1)] = 3, dim[W u(E1)] = 1,

that is, E1 is a saddle point. This completes the
proof of Theorem 3. !

3.3. Global stability of the
CTL-free equilibrium Ec

For the equilibrium Ec to be feasible, we always
assume that R0 > 1 in this subsection. In the follow-
ing, we examine the global stability of the CTL-free
equilibrium Ec.

Theorem 4. The CTL-free equilibrium Ec of sys-
tem (1) is globally asymptotically stable if Rc < 1 <
R0 and dTc − αEc > 0.
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Proof. Define

V (T,E, I, Z)

= T − Tc −
∫ T

Tc

Hc(b2 + Ic)
(1 − ε)(b0b2 + b1Ic)Ics

ds

+
α

2(d + dE + π)Tc
(T − Tc + E − Ec)2

+
Hc

πEc

(
I − Ic − Ic ln

I

Ic

)
+ E − Ec

−Ec ln
E

Ec
+

pHc

cπEc
Z, (15)

where

Hc = (1 − ε)
b0b2 + b1Ic

b2 + Ic
IcTc.

Calculating the derivative of V (T,E, I, Z)
along the positive solutions of system (1), we

obtain
dV

dt

∣∣∣∣
(1)

=
(

1 − Hc(b2 + Ic)
(1 − ε)(b0b2 + b1Ic)IcT

)
dT

dt

+
α

(d + dE + π)Tc
(T − Tc + E − Ec)

×
(

dT

dt
+

dE

dt

)
+

Hc

πEc

(
1 − Ic

I

)
dI

dt

+
(

1 − Ec

E

)
dE

dt
+

pHc

cπEc

dZ

dt
. (16)

Noting that

λ = dTc + Hc − αEc, πEc = δIc,

Hc = (dE + α + π)Ec

and
T − Tc

T
= −(T − Tc)2

TTc
+

T − Tc

Tc
,

we have

dV

dt

∣∣∣∣
(1)

=
(

1 − Tc

T

)
(dTc + Hc − αEc − dT − (1 − ε)β(I)IT + αE)

+
α

(d + dE + π)Tc
(T − Tc + E − Ec)(dTc + Hc − αEc − dT + αE − (dE + α + π)E)

+
Hc

πEc

(
1 − Ic

I

)
(πE − δI − pIZ) +

(
1 − Ec

E

)
((1 − ε)β(I)IT − (dE + α + π)E)

+
pHc

cπEc
(cIZ − bZ)

=
−d(T − Tc)2

T
+

α(E − Ec)(T − Tc)
T

+ Hc −
H2

c (b2 + Ic)
(1 − ε)(b0b2 + b1Ic)IcT

+
HcI(b0b2 + b1I)(b2 + Ic)
Ic(b0b2 + b1Ic)(b2 + I)

+
Hc(b0b2 + b1Ic)(b2 + I)
(b0b2 + b1I)(b2 + Ic)

− Hc(b0b2 + b1Ic)(b2 + I)
(b0b2 + b1I)(b2 + Ic)

+
α(E − Ec)(Tc − T )

Tc
− αd(T − Tc)2

(dE + π + d)Tc

− α(dE + π)(E − Ec)2

(dE + π + d)Tc
− H1δI

πEc
− IcHcE

EcI
+

HcIcδ

πE1
+

HcIcpZ

πEc
− (1 − ε)

Ec

E

b0b2 + b1I

b2 + I
IT

+ (dE + α + π)Ec −
pHc

cπEc
bZ

= −
(

dTc − αEc + αE +
αdT

dE + π + d

)
(T − Tc)2

TTc
− α(dE + π)(E − Ec)2

(dE + π + d)Tc
+

bHcp

cπEc
(Rc − 1)Z

− Hc(b1b2 − b0b2)(b1IcI + b0b2
2 + b1b2)(I − Ic)2

(b0b2 + b1Ic)(b2 + I)(b0b2 + b1I)(b2 + Ic)Ic

+ Hc

(
4 − Tc

T
− EIc

EcI
− (b2 + Ic)(b0b2 + b1I)ITEc

(b2 + I)(b0b2 + b1Ic)IcTcE
− (b0b2 + b1Ic)(b2 + I)

(b0b2 + b1I)(b2 + Ic)

)
. (17)
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According to Inequality of arithmetic and geometric means (the arithmetic mean is greater than or
equal to the geometric mean, i.e. x1+x2+···+xn

n ≥ n
√

x1x2 · · · xn), it follows that

1
4

(
Tc

T
+

EIc

EcI
+

(b2 + Ic)(b0b2 + b1I)ITEc

(b2 + I)(b0b2 + b1Ic)IcTcE
+

(b0b2 + b1Ic)(b2 + I)
(b0b2 + b1I)(b2 + Ic)

)

≥ 4

√
Tc

T
× EIc

EcI
× (b2 + Ic)(b0b2 + b1I)ITEc

(b2 + I)(b0b2 + b1Ic)IcTcE
× (b0b2 + b1Ic)(b2 + I)

(b0b2 + b1I)(b2 + Ic)
= 1.

Then

4 − Tc

T
− EIc

EcI
− (b2 + Ic)(b0b2 + b1I)ITEc

(b2 + I)(b0b2 + b1Ic)IcTcE
− (b0b2 + b1Ic)(b2 + I)

(b0b2 + b1I)(b2 + Ic)
≤ 0.

Hence, when Rc < 1 and dTc−αEc > 0, the inequal-
ity dV

dt |(1) ≤ 0 holds. We note that dV
dt |(1) = 0 if and

only if T = Tc, E = Ec and I = Ic for all t. Thus, by
LaSalle’s invariance principle, the CTL-free equilib-
rium Ec is globally asymptotically stable. !

4. Numerical Results

In this section, we perform numerical simulations
to further investigate the dynamical behavior of
the model solutions and also explore the effect of
ROS and CTL immune response on HIV dynamics.
Most of the parameter values are chosen from exper-
imental data and modeling literature [Rong et al.,
2007c; Perelson et al., 1993; Rong et al., 2007a; Shiri
et al., 2005; Wodarz & Lloyd, 2004; Wang et al.,
2012]. Because ROS can promote viral infection, we
assume that the maximum infection rate may be
100 times higher than that in the absence of ROS.
The infection rate in the absence of ROS (b0) is

assumed to be in the interval (2.5×10−8 mL day−1,
5 × 10−4 mL day−1) [Wang et al., 2009]. Thus, the
maximum infection rate (b1) is in the interval
(2.5 × 10−6 mLday−1, 5 × 10−2 mL day−1). The
constant b2 is assumed to be in the interval
(0.0001 mL−1, 0.1 mL−1). All parameter values used
are summarized in Table 1.

In Figs. 2 and 3, we aim to show the dynamics
behavior of the system when R0 > 1 and R0 < 1,
respectively. Thus, the parameter values used in
the simulations are chosen for illustration purposes.
The parameter values also have biological mean-
ing as most of them are from experimental data
and modeling literature. Figure 2 shows the dynam-
ics of the solutions of system (1) when R0 > 1.
In Fig. 2(a), the parameters in Table 1 are used
and ε = 0.6, b0 = 2.4 × 10−5, b1 = 3 × 10−4,
b2 = 0.001, c = 0.00001. With these parameter val-
ues, we have R0 = 5.8343 > 1, Rc = 0.6034 < 1,
H = 9.9918 > 0 and dTc − αEc = 72.3319 > 0.

(a) (b)

Fig. 2. Dynamics of the solutions of system (1) when R0 > 1. (a) Solution trajectories of the system converge to the CTL-
free equilibrium Ec when Rc < 1. The parameters given in Table 1 are used and ε = 0.6, b0 = 2.4 × 10−5, b1 = 3 × 10−4,
b2 = 0.001, c = 0.00001. In this case, R0 = 5.8343 > 1, Rc = 0.6034 < 1, H = 9.9918 > 0 and dTc − αEc = 72.3319 > 0 and
(b) emergence of bistability. It shows that solutions will converge to either the positive equilibrium E∗ (red orbit) or the stable
limit cycle (blue orbit) depending on initial conditions when Rc > 1. The parameters given in Table 1 are used and ε = 0.6,
b0 = 2.4 × 10−5, b1 = 3 × 10−5, b2 = 0.001, c = 0.1. In this case, R0 = 5.8343 > 1 and Rc = 5.6456 × 103 > 1.

2150203-9
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In this case, all the solutions converge to the CTL-
free equilibrium Ec. This agrees with Theorem 4 of
Part 3. With the parameter values used in Fig. 2(b)
(the same as (a) expect b1 = 3× 10−5, c = 0.1), the
basic reproduction number is R0 = 5.8343 > 1 and
the CTL immune response reproduction number is
Rc = 5.6456×103 > 1. In this case, we see the occur-
rence of bistability, where a stable positive equi-
librium coexists with a stable limit cycle. Specifi-
cally, solutions starting from near E∗ will converge
to E∗, while solutions with initial conditions not
close to E∗ will converge to a stable periodic solu-
tion [Fig. 2(b)]. The solutions in Fig. 2(a) converge
to the CTL-free equilibrium Ec, implying that the

HIV infection becomes chronic but CTL immune
response is absent in such a situation. While in
Fig. 2(b), the bistability of positive equilibrium and
limit cycle means that both CTL immune response
and viral infection have been successfully estab-
lished in this case. This is because we assume that
the generation rate of CTL in Fig. 2(b) (c = 0.1) is
much stronger than that in Fig. 2(a) (c = 0.00001).

In Fig. 3, with the chosen parameters we have
R0 < 1. We chose b1 and c as bifurcation param-
eters to simulate the dynamics of the solutions for
system (1). The values are (b1, c) = (10−6, 0.00003),
(b1, c) = (3 × 10−6, 0.00003), (b1, c) = (3 ×
10−4, 0.0003) and (b1, c) = (3 × 10−6, 0.0003) in

(a) (b)

(c) (d)

Fig. 3. Dynamics of the solutions of system (1) when R0 < 1. Parameters from Table 1 are used and ε = 0.6, b0 = 2.4×10−6,
b2 = 0.0001. The parameters b1 and c are chosen as bifurcation parameters. (a) For b1 = 10−6 and c = 0.00003, solutions
will converge to the DFE E0, (b) for b1 = 3 × 10−6 and c = 0.00003, we have R2 = 0.4367 < 1, H = 5.1806 > 0. Depending
on initial conditions, solutions will converge to either the CTL-free equilibrium E2 or the DFE E0, (c) for b1 = 3 × 10−4 and
c = 0.0003, we obtain R2 = 18.0839. Solutions will converge to either a stable periodic solution, the positive equilibrium E∗,
or the DFE E0 depending on initial conditions and (d) for b1 = 3 × 10−6 and c = 0.0003, we have R2 = 4.3673. Solutions
converge to either the stable positive equilibrium E∗ or the DFE E0, depending on initial conditions.
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Figs. 3(a)–3(d), respectively. All other parame-
ter values are listed in Table 1 and ε = 0.6,
b0 = 2.4 × 10−6, b2 = 0.0001. Figure 3(a) shows
that the unique DFE E0 is L.A.S when (b1, c) =
(10−6, 0.00003).

Figures 3(b)–3(d) shows the emergence of
bistable phenomena, which are different from
Fig. 3(a). In Fig. 3(b), (b1, c) = (3× 10−6, 0.00003).
This leads to R2 = 0.4367 < 1 and H = 5.1806 > 0.
The solutions converge to either the CTL-free equi-
librium E2 or the DFE E0, depending on the ini-
tial condition. With (b1, c) = (3 × 10−4, 0.0003),
R2 = 18.0839 > 1, Fig. 3(c) displays the phase
portraits which show the convergence of the solu-
tions to either a stable periodic solution, the pos-
itive equilibrium E∗, or the DFE E0, depending

on the initial condition. In Fig. 3(d), the choice of
parameter values (b1, c) = (3 × 10−6, 0.0003) leads
to R2 = 4.3673. The blue orbit illustrates the dis-
appearance of the stable limit cycle and the conver-
gence of the solution to the stable positive equi-
librium E∗. The red orbit, whose initial value is
located in the basin of attraction for the DFE, con-
verges to the DFE E0. It is worth mentioning that a
Hopf bifurcation is only possible from E2. In addi-
tion, E1 is quite close to E0 when it exists. Specif-
ically, E1 = (106, 1.2111 × 10−4, 1.3322 × 10−4, 0)
in Figs. 3(b) and 3(d), and E1 = (106, 5.2227 ×
10−7, 5.7449×10−7 , 0) in Fig. 3(c). This may explain
the HIV persistence during treatment. We perform
the following simulations to further study the fac-
tors underlying this phenomenon.

(a) (b)

(c) (d)

Fig. 4. Dynamics of productively infected cells predicted by the model in different scenarios. The green line is in the presence
of ROS (b1 = 3 × 10−4), while the red line is without ROS (b1 = b0). The initial drug efficacy is 100% during the period 200
to 1000 days and then reduces on t = 1000 days. In (a) and (b), the drug efficacy decreases to 0.5 at t = 1000, and in (a) the
parameter values are chosen from Table 1 and b0 = 2.4 × 10−6, b2 = 0.0001, c = 0.0001. In (b), the parameter values are the
same as those in (a) except c = 0.003. In (c) and (d), the drug efficacy decreases to 0.75 at t = 1000 and in (c) the parameter
values are the same as those in (a). In (d) the parameter values are the same as those in (a) except c = 0.003.
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The dynamics of productively infected cells
during treatment are shown in Fig. 4. When t =
200 days, the treatment is started and the drug effi-
cacy is reduced when t = 1000 days. The green
dashed line represents the dynamics in the presence
of ROS, while the red solid line represents that with-
out ROS. In Fig. 4(a) and 4(b), the drug treatment
is assumed to be 100% effective during the period
200 to 1000 days and after that the drug efficacy
is reduced to 0.5 due to certain factors (e.g. drug-
resistant mutation or drug adherence). We observe
from the green dashed line in Fig. 4(a) that pro-
ductively infected cells are largely inhibited dur-
ing the initial treatment. When the drug efficacy
decreases, the number of productively infected cells
immediately increases and then slightly decreases
to the equilibrium level. From the red solid line, we
find that productively infected cells are expected to
remain suppressed for the whole duration of treat-
ment. This indicates that ROS contributes to HIV
infection. In order to show the role of CTL immune
response, we choose the generation rate of CTL(c)
in Fig. 4(b) (c = 0.003) is higher than that in
Fig. 4(a) (c = 0.0001). In the absence of ROS [red
solid line in Fig. 4(b)], the dynamics of productively
infected cells are similar to that in Fig. 4(a), but in
the presence of ROS [green dashed line in Fig. 4(b)],
the enhanced CTL immune response causes sus-
tained oscillations. This indicates the significant
role of both CTL immune response and ROS in HIV
replication.

In Figs. 4(c) and 4(d), we also assume that the
drug treatment is 100% effective from 200 to 1000
days but the drug efficacy is reduced to 0.75 after
that period. The CTL immune response in Fig. 4(d)
is stronger than that in Fig. 4(c). Compared with
Fig. 4(a), productively infected cells with and with-
out ROS in Fig. 4(c) are both inhibited during ther-
apy. These results suggest that to completely sup-
press HIV replication the drug efficacy should be
maintained at a level greater than 0.75 [the dynam-
ics of productively infected cells with the drug effi-
cacy less than 0.75 are similar to that in Fig. 4(a)
and are omitted here]. A study estimated that the
overall drug efficacy was as low as 68% for some
combination therapies [Louie et al., 2003]. Thus,
HIV continue to persist despite current drug ther-
apy possibly due to the existence of ROS. From
Fig. 4(d), we observe that a stronger CTL immune
response gives rise to sustained oscillations before
treatment (green dashed line), while the dynamics

after treatment are similar to Fig. 4(c) (both red
solid and green dashed lines).

5. Results and Discussion

ROS can enhance HIV replication by activating
transcription factors such as NF-kB. Several bio-
logical studies have shown that ROS have played
an essential role in the development of HIV infec-
tion [Israel & Gougerot-Pocidalo, 1997; Romero-
Alvira & Roche, 1998]. In this paper, we propose
a mathematical model to study the effect of ROS
and CTL immune response on HIV dynamics.

Our study shows that including the effect of
ROS and CTLs in an HIV infection model leads
to very rich dynamics. We obtain four reproduc-
tive numbers and prove the local or global asymp-
totic stability for the DFE (E0) and CTL-free equi-
libria (Ec, E1 and E2). Actually, the stability of
CTL-free equilibria implies that the HIV infection
becomes chronic, but the CTL immune response
has not been established. We also study the exis-
tence of the positive equilibrium (E∗) when R0 > 1,
and provide numerical examples to illustrate the
dynamics of system (1). By numerical investigation,
we extend our theoretical results by showing var-
ious bistable scenarios and sustained oscillations,
which indicate the existence of a Hopf bifurca-
tion (Figs. 2 and 3). Additionally, by comparing
the green dashed line in Figs. 4(a) and 4(b), we
observe that ROS and CTLs give rise to the occur-
rence of sustained oscillations. Interestingly, these
oscillations are also found in other delay mod-
els with a biologically meaningful parameter space
[Ciupe et al., 2006; Wang et al., 2009; Wang et al.,
2014].

Antiretroviral drug development has largely
suppressed viral replication and prevented trans-
mission and progression to AIDS. However, current
treatment cannot achieve a cure of infection. Many
mathematical models have been developed to inves-
tigate the possible factors that may lead to HIV
persistence. As shown in Figs. 4(a) and 4(b), com-
paring model (1) to the model without ROS, the
ROS can cause an increase in the number of infected
cells once the drug efficacy is below a certain level.
These results suggest that the presence of ROS in
HIV patients may be a factor that prevents viral
eradication by the current treatment. This solicits
more research on the detrimental influence of ROS
in HIV infection.
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