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Abstract: In this paper, we propose a reaction-di↵usion viral infection model with nonlinear

incidences, cell-to-cell transmission, and a time delay. We impose the homogeneous Neumann

boundary condition. For the case where the domain is bounded, we study the well-posedness,

followed by the local stability of homogeneous steady states. We also investigate the threshold

dynamics which are shown to be completely characterized by the basic reproduction number. For

the case where the domain is the whole Euclidean space, we study the existence of traveling wave

solutions by using the cross-iteration method and Schauder’s fixed point theorem.

Keywords: reaction-di↵usion equation; cell-to-cell transmission; absorption e↵ect; time delay;

traveling wave solutions

1 Introduction

Infectious diseases such as cholera, AIDS, and malaria have posed a great threat to human health.

In order to study the spread and control of infectious diseases, a large number of mathematical

models have been developed[1, 2]. These models have been proved to be a valuable way in un-

derstanding the complex interaction between the immune response and virus infection. Spatial

di↵usion models of virus infection have also been developed. For example, Komarova constructed

a virus infection model with a di↵usion term to simulate the virus-antibody interaction in order

to study the evolutionary competition of split viruses [3]. Based on the classical virus dynamics

model (a system consisting of three ordinary di↵erential equations [4, 5]), the random movement

of the virus is considered [6]. Nonlinear reaction-di↵usion models can describe various physical

and biological phenomena. For unbounded domains, traveling wave solutions are important be-

cause they can determine the long-term behavior of other solutions, accounting for the transition
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phase between di↵erent physical system states, propagation modes and fields of invasive species

in population biology [7–9]. The existence of traveling wave solutions in delayed reaction-di↵usion

systems has attracted great interest [10–13]. Wang et al. [6] proposed an HBV infection model

with viral di↵usion and proved the existence of traveling wave solutions by the geometric singular

perturbation method.

McCluskey and Yang [14] constructed a virus infection model including di↵usion, time delay

and a general incidence. They studied the global asymptotic stability of the steady state using

Lyapunov functional. In [15], Zhang and Xu established the existence of traveling wave solutions for

a delayed HBV infection model with the Beddington-DeAngelis incidence using the cross iteration

method and the Schauder’s fixed point theorem. Viral dynamics and spatial structure have been

extensively studied [14, 16]. Considering that virus di↵usion consists of random di↵usion and

chemotactic movement, Wang and Ma [17] proposed a dynamic model of spreading virus infection

with nonlinear functional response, chemotaxis and absorption e↵ect,

@u(x, t)

@t
= D�u(x, t) + ⇠ � g(u(x, t), v(x, t))v(x, t)� du(x, t),

@!(x, t)

@t
= D�!(x, t) + g(u(x, t), v(x, t))v(x, t)� ah(!(x, t)),

@v(x, t)

@t
= D0�v(x, t) +r(v�2(!, v)r!) + kh(!(x, t))� µv(x, t)� g(u(x, t), v(x, t))v(x, t),

(1.1)

where u(x, t), !(x, t), and v(x, t) represent the densities of uninfected cells, infected cells, and

viruses at location x 2 ⌦ ✓ R
n and at time t, respectively. ⌦ is a bounded domain in R

n with a

smooth boundary @⌦. The Laplacian operator and the di↵usion coe�cient of both uninfected cells

and infected cells are denoted by� andD, respectively. D0 is the free di↵usion coe�cient of viruses.

The term g(u(x, t), v(x, t))v(x, t) represents the infection of uninfected cells by viruses. The same

term was subtracted in the third equation in view of viral absorption during infection [18, 19]. The

death rate of infected cells depends on the state of infected cells, which is given by the nonlinear

removal rate h(!(x, t)). The term v�2(!, v)r! describes the chemotactic flux of viruses, where the

function �2(!, v) represents the chemotactic response. Table 1 summarizes the biological meanings

of the other parameters. In [17], the authors mainly studied the well-posedness and linear stability

of the model. They showed the threshold dynamics in the absence of chemotaxis. In di↵usive

viral models, it is needed to consider the intracellular delays in the viral life cycle. The entry of

viruses to uninfected cells will trigger a series of events, which will eventually enable infected cells

to produce new viruses. The above system (1.1) assumes that this process occurs instantaneously.

However, time delays may a↵ect the dynamics [16, 20]. Xu et al. [21] built an HBV infection model

with time delay and saturated incidence, and studied the global stability of steady states. In order

to explore whether hyperthermia can explain the decline of CD4+ T cells during HIV infection,
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Wang et al. [22] studied a time periodic reaction-di↵usion model with spatial heterogeneity and

incubation period.

Table 1: Biological meanings of parameters in (1.1)

Parameter Biological description

⇠ The production rate of uninfected cells

d The death rate of uninfected cells

a The death rate of infected cells

k The production rate of viruses

µ The clearance rate of free viruses

Although some studies have shown that cell-to-cell transmission is e�cient in viral transmission,

many studies have only focused on the cell-free virus infection. During cell-to-cell transmission,

viral particles can be simultaneously transferred from infected cells to uninfected cells through

virological synapses. Sigal et al. [23] found that this transmission mode can reduce the e↵ectiveness

of antiretroviral therapy. Martin et al. [24] showed that the risk of cell-to-cell transmission being

a↵ected by neutralizing antibodies or cytotoxic T lymphocytes is low. Wang et al. [25] studied

the e↵ect of the infection age and infection ability of infected cells in cell-to-cell transmission. In

addition, some studies investigated within-host models that include both cell-free viral infection

and cell-to-cell transmission [26–29].

Some studies have shown that viral transmission through cell-to-cell is more e↵ective than cell-

free virus infection, because cell-to-cell transmission avoids some biophysical and kinetic obstacles

[30, 33]. In order to study the influence of cell-to-cell transmission on virus dynamics, we propose

a new mathematical model, combining nonlinear incidences and the two virus transmission modes.

Time delay is also included to account for the time for an infected cell to be productive. From

model (1.1) without considering the chemotaxis of virus, we obtain the following model

@u(x, t)

@t
=D�u(x, t) + ⇠ � f(u(x, t),!(x, t))!(x, t)� g(u(x, t), v(x, t))v(x, t)� du(x, t),

@!(x, t)

@t
=D�!(x, t) + e

�m⌧
f(u(x, t� ⌧),!(x, t� ⌧))!(x, t� ⌧)

+ e
�m⌧

g(u(x, t� ⌧), v(x, t� ⌧))v(x, t� ⌧)� ah(!(x, t)),

@v(x, t)

@t
=D0�v(x, t) + kh(!(x, t))� µv(x, t)� g(u(x, t), v(x, t))v(x, t),

(1.2)

for t > 0, x 2 ⌦, we consider the homogeneous Neumann boundary conditions as follows

@u

@~n
=
@!

@~n
=
@v

@~n
= 0, t > 0, x 2 @⌦, (1.3)
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and the initial conditions

u(x, ✓) = �1(x, ✓) � 0, !(x, ✓) = �2(x, ✓) � 0, v(x, ✓) = �3(x, ✓) � 0, x 2 ⌦, ✓ 2 [�⌧, 0], (1.4)

where @
@~n denotes the outward normal derivative on @⌦. �i(x, ✓) (i = 1, 2, 3) are bounded and

uniform continuous functions on ⌦⇥ [�⌧, 0]. The Neumann boundary condition (1.3) assumes that

uninfected cells, infected cells and virus particles cannot move across the boundary @⌦. Here, cell-

to-cell transmission is modeled by the nonlinear incidence function f(u(x, t),!(x, t))!(x, t). The

constant m � 0 stands for the death rate of infected cells before viral production and hence e
�m⌧

is the survival probability of a susceptible cell from being infected to viral production.

The functions f(u,!)! 2 C
1([0,+1) ⇥ [0,+1), R), g(u, v)v 2 C

1([0,+1) ⇥ [0,+1), R), and

h(!) 2 C
1[0,+1), are assumed to satisfy the following conditions.

(H1) f(u,!)! � 0 and g(u, v)v � 0 for u � 0, ! � 0, and v � 0, and f(u,!) = 0 and g(u, v) = 0

if and only if u = 0;

(H2)
@f(u,!)

@u > 0, @f(u,!)
@!  0 for u � 0, ! � 0;

(H3)
@f(u,!)!

@! > 0 for u > 0, ! � 0;

(H4)
@g(u,v)

@u > 0, @g(u,v)
@v  0 for u � 0, v � 0;

(H5)
@g(u,v)v

@v > 0 for u > 0, v � 0;

(H6) h(0) = 0, h
0(!) > L, h

00(!) > 0, and lim
t!+1

h(!)  +1 for ! � 0, where L is a positive

constant;

(H7) f(u,!)!  ⌘1u! and g(u, v)v  ⌘2uv for u � 0, v � 0, and ! � 0, where ⌘1 and ⌘2 are

some positive constants.

The structure of this paper is as follows. First, we assume that ⌦ is bounded. In Section

2, we study the basic attributes of system (1.2), including the well-posedness of the model and

linear stability of two homogeneous steady states. It is also proved that if the basic reproduction

number is less than 1, the infection-free steady state is globally asymptotically stable. If the basic

reproduction number is greater than 1, the infection is uniformly persistent. Next, when ⌦ = R
n,

we investigate the existence of traveling wave solutions using the cross iteration method and the

Schauder’s fixed point theorem in Section 3. Section 4 gives a brief summary.

2 A threshold dynamics of (1.2) when ⌦ is bounded

2.1 Well-posedness of (1.2)

For topological spaces A and B, C(A,B) represents the space of all continuous functions from A

to B. Let X = C(⌦, R3) be the Banach space equipped with the supremum norm k · kX . Denote
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C = C([�⌧, 0], X) to be the Banach space equipped with the norm k�k = max
✓2[�⌧,0]

k�(✓)kX . For

� > 0 and a continuous function # : [�⌧,�) ! X, #t 2 C is defined by #t(✓) = #(t + ✓) for

✓ 2 [�⌧, 0], where t 2 [0,�). Let X+ = C(⌦, R3
+) and C+ = C([�⌧, 0], X+). Then X+ induces a

partial order such that (X,X+) and (C,C+) are strongly ordered spaces.

Define T = (T1, T2, T3) : C+ ! X by

T1(�)(x) = ⇠ � f(�1(x, 0),�2(x, 0))�2(x, 0)� g(�1(x, 0),�3(x, 0))�3(x, 0)� d�1(x, 0),

T2(�)(x) = e
�m⌧

f(�1(x,�⌧),�2(x,�⌧))�2(x,�⌧)

+ e
�m⌧

g(�1(x,�⌧),�3(x,�⌧))�3(x,�⌧)� ah(�2(x, 0)),

T3(�)(x) = kh(�2(x, 0))� µ�3(x, 0)� g(�1(x, 0),�3(x, 0))�3(x, 0),

for � = (�1,�2,�3)T 2 C+ and x 2 ⌦. Obviously, T is Lipschitz continuous in any bounded subset

of C+. System (1.2) can be easily rewritten as the following abstract functional di↵erential equation

#t = A#+ T (#t), t > 0,

#(0) = � 2 C+,

where # = (u,!, v)T, � = (�1,�2,�3)T and A# = (D�u,D�!, D0�v)T.

Lemma 2.1 For each initial value function � = (�1,�2,�3)T 2 C+, system (1.2)-(1.4) has

a unique mild solution #(·, t,�) = (u(·, t,�),!(·, t,�), v(·, t,�)) on [0, t�) with #0(·,�) = �, where

t�  +1. Moreover, #t(·, t,�) 2 C+ for t 2 [0, t�) and #(·, t,�) is a classical solution of (1.2) for

t � max(⌧, t�).

Proof. Note that T (�) is locally Lipschitzian. It follows from Corollary 8.1.3 in [31] that we only

need to show that

lim
&!0+

dist(�(0) + &T (�), C+) = 0 for � 2 C+. (2.1)

By (H6) and (H7), for any & � 0, we have

�(x, 0) + &T (�)(x)

=

0

BBBBBBBB@

�1(x, 0) + &[⇠ � f(�1(x, 0),�2(x, 0))�2(x, 0)

�g(�1(x, 0),�3(x, 0))�3(x, 0)� d�1(x, 0)]

�2(x, 0) + &[e�m⌧
f(�1(x,�⌧),�2(x,�⌧))�2(x,�⌧)

+e
�m⌧

g(�1(x,�⌧),�3(x,�⌧))�3(x,�⌧)� ah(�2(x, 0))]

�3(x, 0) + &[kh(�2(x, 0))� µ�3(x, 0)� g(�1(x, 0),�3(x, 0))�3(x, 0)]

1

CCCCCCCCA
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�

0

BB@

�1(x, 0)(1� &(⌘1�2(x, 0) + ⌘2�3(x, 0) + d))

�2(x, 0)(1� &ah
0(✓0)), (✓0 2 [0,!])

�3(x, 0)(1� &(µ+ ⌘2�1(x, 0)))

1

CCA

for x 2 ⌦. This shows that �(0) + &T (�) 2 C+ when & is su�ciently small. Thus, (2.1) is proved.

It follows from Corollary 4 in [32] that there exists a unique mild solution #(·, t,�) on [0, t�) with

#0(·,�) = �. Furthermore, #(·, t,�) is a classical solution of (1.2) for t � max(⌧, t�).

Lemma 2.2 For � 2 C+, the following description of solutions of system (1.2) are valid.

(i) u(·, t,�) > 0 for t > 0 and there exists a constant k0 such that lim
t!1

inf u(x, t,�) � ⇠
k0+d for

x 2 ⌦.

(ii) Assume that !(·, t0,�) 6⌘ 0 for some t0 � 0, then !(x, t,�) > 0 and v(x, t,�) > 0 for all

x 2 ⌦ and t > t0 + ⌧ .

(iii) Assume that v(·, t0,�) 6⌘ 0 for some t0 � 0, then v(x, t,�) > 0 and !(x, t + ⌧,�) > 0 for

all x 2 ⌦ and t > t0.

Proof. (i) According to (H7), the functions f(u,!)! and g(u, v)v are continuously di↵erentiable

and system (1.2) is point dissipative. Thus there is a constant k0 such that

@u(x, t)

@t
� D�u(x, t) + ⇠ � k0u(x, t)� du(x, t) for all large t. (2.2)

By (2.2), there exists small ⇣ > 0 such that u(x, t) � ⇠
k0+d � ⇣ for all large t. For any solutions

of (1.2), we have lim
t!1

inf u(x, t,�) � ⇠
k0+d by the standard parabolic comparison theorem. This

proves statement (i).

(ii) From the third equation of (1.2), we can easily see that v(·, t0,�) 6⌘ 0 if !(·, t0,�) 6⌘ 0 for

t > t0 holds. Supposing v(·, t0,�) 6⌘ 0. We first claim that v(·, t) > 0 for t > t0. It follows from

Lemma 2.1 that v(x, t) satisfies

@v(x, t)

@t
� D0�v(x, t)� µv(x, t)� g(u(x, t), v(x, t))v(x, t), x 2 ⌦, t > t0,

@v(x, t)

@~n
= 0, x 2 @⌦, t > t0.

By (H7), there exists su�ciently large ū such that g(u(x, t), v(x, t))v(x, t)  ⌘2ūv(x, t) and u(x, t) 

ū . Let ṽ(x, t) be the solution of

@ṽ(x, t)

@t
= D0�ṽ(x, t)� µṽ(x, t)� ⌘2ūṽ(x, t), x 2 ⌦, t > t0,

@ṽ(x, t)

@~n
= 0, x 2 @⌦, t > t0,

ṽ(x, t0) = v(x, t0), x 2 ⌦.
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We prove that ṽ(x, t) > 0 for t > t0 and x 2 ⌦ by contradictory methods. Otherwise, ṽ(x0, t1) = 0

for x0 2 ⌦ and t1 > t0. It follows from the strong maximum principle (Theorem 1.1.5 in [35]) that

ṽ(x, t) ⌘ 0 for all t � t0, which is a contradiction with ṽ(·, t0) 6⌘ 0. According to the parabola

comparison theorem (Theorem 7.3.4 in [36]), it can be obtained that v(x, t) > ṽ(x, t) > 0 for t > t0

and x 2 ⌦. This proves the claim. Next, suppose that !(x̄, t2) = 0 for x̄ 2 ⌦ and t2 > t0+⌧ . When

!(x, t) � 0, we obtain @!(x̄,t2)
@t2

= 0. Recall that h(!(x̄, t2)) = h(0) = 0. From the second equation

of (1.2), we can see that

@!(x̄, t2)

@t2
= e

�m⌧
g(u(x̄, t2 � ⌧), v(x̄, t2 � ⌧))v(x̄, t2 � ⌧) > 0.

This leads to a contradiction with u(x̄, t2 � ⌧) > 0 and v(x̄, t2 � ⌧) > 0 by (H1). This proves the

claim.

(iii) The proof is similar to that of (ii) and hence is omitted. This completes the proof.

Theorem 2.1 For any � = (�1,�2,�3) 2 C+, system (1.2) has a unique solution #(·, t,�) =

(u(·, t,�),!(·, t,�), v(·, t,�)) on [0,+1) with #0 = �, and the solution semiflow �(t) = #(·) : C+ !

C+ of system (1.2) has a global compact attractor in C+.

Proof. Firstly, let Z(x, t) = e
�m⌧

u(x, t� ⌧) + !(x, t) for x 2 ⌦, t 2 [0, t�). It follows from system

(1.2), (H6), and the mean value theorem that

@Z(x, t)

@t
= e

�m⌧ @u(x, t� ⌧)

@t
+
@!(x, t)

@t

= D�(e�m⌧
u(x, t� ⌧) + !(x, t)) + e

�m⌧
⇠ � de

�m⌧
u(x, t� ⌧)� ah(!(x, t))

= D�Z(x, t) + e
�m⌧

⇠ � e
�m⌧

du(x, t� ⌧)� ah
0(✓0)!(x, t) (✓0 2 [0,!])

 D�Z(x, t) + e
�m⌧

⇠ � r1Z(x, t),

where r1 = min{d, aL}. From [34], we know that e�m⌧ ⇠
r1

is the steady state of the global attractive

steady state for the scalar parabolic equation

@Z(x, t)

@t
= D�Z(x, t) + e

�m⌧
⇠ � r1Z(x, t), x 2 ⌦, t > 0,

@Z(x, t)

@~n
= 0, x 2 @⌦, t > 0.

According to the parabola comparison theorem (Theorem 7.3.4 in [36]), it can be obtained that

u(x, t)+!(x, t) is bounded. From the nonnegativity of u(x, t) and !(x, t)(Lemma 2.2), we have that

u(x, t) and !(x, t) of system (1.2) are bounded. Therefore, we assume that there exist su�ciently

large ū and !̄ such that 0  u(x, t)  ū and 0  !(x, t)  !̄.

Secondly, we let v̄ = kh(!̄)
µ . For any v(x, t), we consider the operator C as follows

Cv(x, t) = vt �D0�v � kh(!(x, t)) + µv(x, t) + g(u(x, t), v(x, t))v(x, t).
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Clearly,

Cv̄ = µv̄ + g(u, v̄)v̄ � kh(!) � µv̄ � kh(!̄) = kh(!̄)� kh(!̄) = 0 = Cv(x, t).

It is easy to see that @v̄
@~n = 0 based on the boundary @⌦. Hence, v = v̄ is an upper solution of the

third equation in system (1.2). From the comparison principle, we have 0  v(x, t)  v̄.

Finally, from the above discussion, we know that the solutions u(x, t), !(x, t), v(x, t) of system

(1.2) are bounded on ⌦̄⇥ [0, t�). By the standard theory of semilinear parabolic systems [37, 38],

we can deduce that t� = +1, otherwise which lead to a contradiction with lim
t!t��

k#tk = +1. In

addition, it can be concluded that the solution semiflow �(t) = #t(·) : C+ ! C+ defined by

(�(t)�)(x, ✓) = #(x, t+ ✓,�) for ✓ 2 [�⌧, 0], x 2 ⌦, t � 0,

is point dissipative. It follows from Lemma 2.2 in [40] that the solution semiflow �(t) is compact for

each t > ⌧ . By Theorem 3.4.8 in [39], �(t) has a global compact attractor in C+. This completes

the proof.

2.2 Linear stability of homogeneous steady states

System (1.2) always has a unique infection-free steady state E0 = (u0, 0, 0) = ( ⇠d , 0, 0). It follows

from the next generation matrix operator [41, 42] that the basic reproduction number of system

(1.2) is given by

R0 =
e
�m⌧

f(u0, 0)

ah0(0)
+

e
�m⌧

kg(u0, 0)

a(µ+ g(u0, 0))
.

It represents the expected number of the next generation of newly infected cells produced by a single

infected cell in a wholly susceptible population. The proportion of newly infected cells surviving

to viral production is e
�m⌧ . Here, e�m⌧f(u0,0)

ah0(0) represents the total number of newly infected cells

produced by a single infected cell. This is the basic reproduction number of the corresponding model

with cell-to-cell transmission. e�m⌧kg(u0,0)
a(µ+g(u0,0))

is the total number of newly infected cells generated by

infection of cells from viruses produced by a single infected cell.

Note that a homogeneous steady state E
⇤ = (u⇤,!⇤

, v
⇤) satisfies

⇠ � f(u,!)! � g(u, v)v � du = 0,

e
�m⌧

f(u,!)! + e
�m⌧

g(u, v)v � ah(!) = 0,

kh(!)� µv � g(u, v)v = 0.

(2.3)
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Through direct calculation, we obtain

u =
⇠ � ae

m⌧
h(!)

d
,

v =
f

⇣
⇠�aem⌧h(!)

d ,!

⌘
! � ae

m⌧
h(!) + kh(!)

µ
.

It is easy to see that u > 0 if and only if ! 2 (0, h�1( ⇠
aem⌧ )]. We substitute u and v into the first

equation of system (1.2) and get

g

0

@⇠ � ae
m⌧

h(!)

d
,

f

⇣
⇠�aem⌧h(!)

d ,!

⌘
! � ae

m⌧
h(!) + kh(!)

µ

1

A

·

0

@
f

⇣
⇠�aem⌧h(!)

d ,!

⌘
! � ae

m⌧
h(!) + kh(!)

µ

1

A+ f

✓
⇠ � ae

m⌧
h(!)

d
,!

◆
! � ae

m⌧
h(!) = 0.

Define

F (!) =g

0

@⇠ � ae
m⌧

h(!)

d
,

f

⇣
⇠�aem⌧h(!)

d ,!

⌘
! � ae

m⌧
h(!) + kh(!)

µ

1

A

·

0

@
f

⇣
⇠�aem⌧h(!)

d ,!

⌘
! � ae

m⌧
h(!) + kh(!)

µ

1

A

+ f

✓
⇠ � ae

m⌧
h(!)

d
,!

◆
! � ae

m⌧
h(!).

Clearly,

(i) F (0) = 0;

(ii) F
0(0) = f(u0, 0) +

1
µ(f(u0, 0)g(u0, 0)� ae

m⌧
h
0(0)g(u0, 0) + kh

0(0)g(u0, 0))� ae
m⌧

h
0(0)

= aem⌧h0(0)(µ+g(u0,0))
µ (R0 � 1);

(iii) F (h�1( ⇠
aem⌧ )) = �⇠ < 0.

It follows from the Intermediate Value Theorem that there exists !⇤ 2 (0, ⇠
h�1(aem⌧ )) such that

F (!⇤) = 0 if R0 > 1. Next, we prove that there is only a unique homogeneous infection steady state

E
⇤ = (u⇤, v⇤,!⇤). In fact, this follows from the fact that F

0(!⇤) < 0 proved below. By (H6) and

the second and third equations of (2.3), we obtain !⇤
h
0(!⇤) > h(!⇤), aem⌧ = f(u⇤,!⇤)!⇤+g(u⇤,v⇤)v⇤

h(!⇤) ,

and k = v⇤(µ+g(u⇤,v⇤))
h(!⇤) . Then

F
0(!⇤) =

✓
�ae

m⌧

d
h
0(!⇤)

@g(u⇤, v⇤)

@u
+
@g(u⇤, v⇤)

@v

@v

@!

◆
v
⇤ +

@v

@!
g(u⇤, v⇤)

9



+

✓
�ae

m⌧

d
h
0(!⇤)

@f(u⇤,!⇤)

@u
+
@f(u⇤,!⇤)

@!

◆
!
⇤ + f(u⇤,!⇤)� ae

m⌧
h
0(!⇤)

=� ae
m⌧

d
h
0(!⇤)

@g(u⇤, v⇤)

@u
v
⇤ +

✓
@g(u⇤, v⇤)

@v
v
⇤ + g(u⇤, v⇤)

◆
@v

@!

+

✓
�ae

m⌧

d
h
0(!⇤)

@f(u⇤,!⇤)

@u
+
@f(u⇤,!⇤)

@!

◆
!
⇤ + f(u⇤,!⇤)� ae

m⌧
h
0(!⇤)

=� ae
m⌧

d
h
0(!⇤)

@g(u⇤, v⇤)

@u
v
⇤

+
1

µ

@(g(u⇤, v⇤)v⇤)

@v

✓
�ae

m⌧

d
h
0(!⇤)

@f(u⇤,!⇤)

@u
+
@f(u⇤,!⇤)

@!

◆
!
⇤

+
1

µ

@(g(u⇤, v⇤)v⇤)

@v
(f(u⇤,!⇤)� ae

m⌧
h
0(!⇤) + kh

0(!⇤))

+

✓
�ae

m⌧

d
h
0(!⇤)

@f(u⇤,!⇤)

@u
+
@f(u⇤,!⇤)

@!

◆
!
⇤ + f(u⇤,!⇤)� ae

m⌧
h
0(!⇤)

=� ae
m⌧

d
h
0(!⇤)

@g(u⇤, v⇤)

@u
v
⇤

+

✓
1

µ

@(g(u⇤, v⇤)v⇤)

@v
+ 1

◆✓
�ae

m⌧

d
h
0(!⇤)

@f(u⇤,!⇤)

@u
+
@f(u⇤,!⇤)

@!

◆
!
⇤

+
1

µ

@(g(u⇤, v⇤)v⇤)

@v
(f(u⇤,!⇤)� ae

m⌧
h
0(!⇤) + kh

0(!⇤)) + f(u⇤,!⇤)� ae
m⌧

h
0(!⇤)

=� ae
m⌧

d
h
0(!⇤)

@g(u⇤, v⇤)

@u
v
⇤

+

✓
1

µ

@(g(u⇤, v⇤)v⇤)

@v
+ 1

◆✓
�ae

m⌧

d
h
0(!⇤)

@f(u⇤,!⇤)

@u
+
@f(u⇤,!⇤)

@!

◆
!
⇤

+
1

µ

@(g(u⇤, v⇤)v⇤)

@v

✓
f(u⇤,!⇤)� f(u⇤,!⇤)!⇤ + g(u⇤, v⇤)v⇤

h(!⇤)
h
0(!⇤)

◆

+
1

µ

@(g(u⇤, v⇤)v⇤)

@v

v
⇤(µ+ g(u⇤, v⇤))

h(!⇤)
h
0(!⇤) + f(u⇤,!⇤)� f(u⇤,!⇤)!⇤ + g(u⇤, v⇤)v⇤

h(!⇤)
h
0(!⇤)

=� ae
m⌧

d
h
0(!⇤)

@g(u⇤, v⇤)

@u
v
⇤

+

✓
1

µ

@(g(u⇤, v⇤)v⇤)

@v
+ 1

◆✓
�ae

m⌧

d
h
0(!⇤)

@f(u⇤,!⇤)

@u
+
@f(u⇤,!⇤)

@!

◆
!
⇤

+
1

µ

@(g(u⇤, v⇤)v⇤)

@v

✓
f(u⇤,!⇤)� f(u⇤,!⇤)!⇤

h
0(!⇤)

h(!⇤)
+

v
⇤
µh

0(!⇤)

h(!⇤)

◆

+ f(u⇤,!⇤)� f(u⇤,!⇤)!⇤
h
0(!⇤)

h(!⇤)
� g(u⇤, v⇤)v⇤h0(!⇤)

h(!⇤)

=� ae
m⌧

d
h
0(!⇤)

@g(u⇤, v⇤)

@u
v
⇤

+

✓
1

µ

@(g(u⇤, v⇤)v⇤)

@v
+ 1

◆✓
�ae

m⌧

d
h
0(!⇤)

@f(u⇤,!⇤)

@u
+
@f(u⇤,!⇤)

@!

◆
!
⇤

+

✓
1

µ

@(g(u⇤, v⇤)v⇤)

@v
+ 1

◆✓
f(u⇤,!⇤)� f(u⇤,!⇤)!⇤

h
0(!⇤)

h(!⇤)

◆

+ v
⇤
✓
@g(u⇤, v⇤)

@v
v
⇤ + g(u⇤, v⇤)

◆
h
0(!⇤)

h(!⇤)
� g(u⇤, v⇤)v⇤h0(!⇤)

h(!⇤)
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=� ae
m⌧

d
h
0(!⇤)

@g(u⇤, v⇤)

@u
v
⇤

+

✓
1

µ

@(g(u⇤, v⇤)v⇤)

@v
+ 1

◆✓
�ae

m⌧

d
h
0(!⇤)

@f(u⇤,!⇤)

@u
+
@f(u⇤,!⇤)

@!

◆
!
⇤

+

✓
1

µ

@(g(u⇤, v⇤)v⇤)

@v
+ 1

◆✓
f(u⇤,!⇤)� f(u⇤,!⇤)!⇤

h
0(!⇤)

h(!⇤)

◆

+
@g(u⇤, v⇤)

@v
v
⇤2h

0(!⇤)

h(!⇤)

<0.

This proves the fact. Next, we prove that system (1.2) has no homogeneous infected steady state

when R0  1. If R0 < 1, it is obvious that F
0(0) < 0. Note that F (0) = 0 and there exists a

su�ciently small !1 > 0 such that F (!1) < 0 for !1 2 (0, h�1( ⇠
aem⌧ )]. From the above mentioned

fact, we can easily see that there is no homogeneous infected steady state when R0 < 1. When

R0 = 1, the contradiction method is used to prove that there is no homogeneous infected steady

state. Otherwise, we assume that F (!1) has a positive zero say !⇤
1. From F

0(!⇤
1) < 0, we conclude

that F (!1) > 0 for !1 < !
⇤
1 close enough to !⇤

1. Thus, F (!1) < 0 for !1 2 (0, h�1( ⇠
aem⌧ )] when

R0 < 1. We fix !1 2 (0,!⇤
1) and select a series of parameters such that R0 < 1 but converges to 1.

Clearly, F (!1) converges to F (!⇤
1) > 0, which is a contradiction.

To summarize, we have proved the following result on the existence of homogeneous steady

states.

Theorem 2.2 (1) If R0  1, then the only homogeneous steady state of system (1.2) is the

infection-free steady state E0.

(2) If R0 > 1, then besides E0, system (1.2) also has a unique homogeneous infected steady state

E
⇤.

Next, we investigate the linear stability of the homogeneous steady states.

Theorem 2.3 If R0 < 1, then the infection-free steady state E0 = (u0, 0, 0) is locally asymp-

totically stable. If R0 > 1, then E0 is unstable.

Proof. Denote N = (u,!, v), N⌧ = (u⌧ ,!⌧ , v⌧ ), D1 = diag(D,D,D0). Taking the linearization of

system (1.2) at E0, we obtain

@N

@t
= D1�N +A1N +A2N⌧ ,

where

A1 =

0

BB@

�d �f(u0, 0) �g(u0, 0)

0 �ah
0(0) 0

0 kh
0(0) �µ� g(u0, 0)

1

CCA , A2 =

0

BB@

0 0 0

0 e
�m⌧

f(u0, 0) e
�m⌧

g(u0, 0)

0 0 0

1

CCA .
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The corresponding characteristic equation is obtained as follows

|�E +D1l
2 �A1 � e

��⌧
A2| = 0, (2.4)

where l � 0 belongs to the set of wave numbers and � is the characteristic value that determines

temporal growth (Theorem 2.3 in [43]). Substituting the matrices A1, A2 and D1 into (2.4) yields

(�+Dl
2 + d)g1(�, l) = 0,

where

g1(�, l) = (�+Dl
2 + ah

0(0))(�+D0l
2 + µ+ g(u0, 0))

� ((�+D0l
2 + µ+ g(u0, 0))f(u0, 0) + kh

0(0)g(u0, 0))e
�(m+�)⌧

.

The stability of E0 is determined by the roots of g1(�, l) = 0. For the case R0 > 1, noting

l = 0 is a wave number, with l = 0, we have g1(0, 0) = ah
0(0)(µ + g(u0, 0))(1 � R0) < 0 and

lim
�!+1

g1(�, 0) ! +1. Thus, there exists �0 > 0 such that g1(�0, 0) = 0. Therefore, g1(�, 0) = 0

admits at least one positive real root, which implies that E0 is unstable when R0 > 1.

Now, assume R0 < 1. Note that, g1(�, l) = 0 can be rewritten as

1 =


f(u0, 0)

�+Dl2 + ah0(0)
+

kh
0(0)g(u0, 0)

(�+Dl2 + ah0(0))(�+D0l
2 + µ+ g(u0, 0))

�
e
�(m+�)⌧

. (2.5)

We claim that all roots of g1(�, l) have negative real parts. Otherwise, there exists l0 such that

there exists �0 with Re(�0) � 0 satisfying (2.5) with l = l0. Then

1 =

����


f(u0, 0)

(�0 +Dl
2
0 + ah0(0))

+
kh

0(0)g(u0, 0)

(�0 +Dl
2
0 + ah0(0))(�0 +D0l

2
0 + µ+ g(u0, 0))

�
e
�(m+�0)⌧

����


����

f(u0, 0)e�m⌧

(�0 +Dl
2
0 + ah0(0))

e
��0⌧

����+
����

kh
0(0)g(u0, 0)e�m⌧

(�0 +Dl
2
0 + ah0(0))(�0 +D0l

2
0 + µ+ g(u0, 0))

e
��0⌧

����

 f(u0, 0)e�m⌧

ah0(0)
+

kg(u0, 0)e�m⌧

a(µ+ g(u0, 0))

= R0,

which leads to a contradiction. Therefore, E0 is locally asymptotically stable when R0 < 1.

Theorem 2.4 If R0 > 1, then the homogeneous infected steady state E
⇤ = (u⇤,!⇤

, v
⇤) is

locally asymptotically stable.

Proof. Let N, N⌧ , and D be the same as those in the proof of Theorem 2.3. Denote f
⇤ =

f(u⇤,!⇤), f
⇤
u = @f(u⇤,!⇤)

@u , f
⇤
! = @f(u⇤,!⇤)

@! , g
⇤ = g(u⇤, v⇤), g

⇤
u = @g(u⇤,!⇤)

@u , and g
⇤
v = @g(u⇤,v⇤)

@v . The

linearized system of (1.2) at E⇤ is

@N

@t
= D1�N +B1N +B2N⌧ ,

12



where

B1 =

0

BB@

�f
⇤
u!

⇤ � g
⇤
uv

⇤ � d �f
⇤
!!

⇤ � f
⇤ �g

⇤
vv

⇤ � g
⇤

0 �ah
0(!⇤) 0

�g
⇤
uv

⇤
kh

0(!⇤) �µ� g
⇤
vv

⇤ � g
⇤

1

CCA ,

and

B2 =

0

BB@

0 0 0

e
�m⌧ (f⇤

u!
⇤ + g

⇤
uv

⇤) e
�m⌧ (f⇤

!!
⇤ + f

⇤) e
�m⌧ (g⇤vv

⇤ + g
⇤)

0 0 0

1

CCA .

The characteristic equation is

|�E +D1l
2 �B1 � e

��⌧
B2| = 0,

or

(�+Dl
2 + ah

0(!⇤))[(�+Dl
2 + f

⇤
u!

⇤ + d)(�+D0l
2 + µ+ g

⇤
vv

⇤ + g
⇤) + (�+D0l

2 + µ)g⇤uv
⇤] =

(�+Dl
2 + d)[kh0(!⇤)(g⇤vv

⇤ + g
⇤) + (f⇤

!!
⇤ + f

⇤)(�+D0l
2 + µ+ g

⇤
vv

⇤ + g
⇤)]e�(m+�)⌧

,

(2.6)

where as before, l belongs to the set of wavenumbers. Now, we use the method of contradiction to

prove that all roots of (2.6) have negative real parts which implies that E⇤ is locally asymptotically

stable. Otherwise, there is one root �0 with Re(�0) � 0 for some l0. Then

1 =

����
(�0 +Dl

2
0 + d)

(�0 +Dl
2
0 + f⇤

u!
⇤ + d)(�0 +D0l

2
0 + µ+ g⇤vv

⇤ + g⇤) + (�0 +D0l
2
0 + µ)g⇤uv

⇤

����

·

�����
kh

0(!⇤)(g⇤vv
⇤ + g

⇤)e�(m+�0)⌧

�0 +Dl
2
0 + ah0(!⇤)

+
(f⇤

!!
⇤ + f

⇤)(�0 +D0l
2
0 + µ+ g

⇤
vv

⇤ + g
⇤)e�(m+�0)⌧

�0 +Dl
2
0 + ah0(!⇤)

�����


����

(�0 +Dl
2
0 + d)

(�0 +Dl
2
0 + f⇤

u!
⇤ + d)(�0 +D0l

2
0 + µ+ g⇤vv

⇤ + g⇤) + (�0 +D0l
2
0 + µ)g⇤uv

⇤

����

·
✓
k(g⇤vv

⇤ + g
⇤)e�m⌧

a
+

����
(f⇤

!!
⇤ + f

⇤)(�0 +D0l
2
0 + µ+ g

⇤
vv

⇤ + g
⇤)e�m⌧

ah0(!⇤)

����

◆

=

����
(�0 +Dl

2
0 + d)(�0 +D0l

2
0 + µ+ g

⇤
vv

⇤ + g
⇤)

(�0 +Dl
2
0 + f⇤

u!
⇤ + d)(�0 +D0l

2
0 + µ+ g⇤vv

⇤ + g⇤) + (�0 +D0l
2
0 + µ)g⇤uv

⇤

����

·
✓����

k(g⇤vv
⇤ + g

⇤)e�m⌧

a(�0 +D0l
2
0 + µ+ g⇤vv

⇤ + g⇤)

����+
(f⇤

!!
⇤ + f

⇤)e�m⌧

ah0(!⇤)

◆


����

(�0 +Dl
2
0 + d)(�0 +D0l

2
0 + µ+ g

⇤
vv

⇤ + g
⇤)

(�0 +Dl
2
0 + f⇤

u!
⇤ + d)(�0 +D0l

2
0 + µ+ g⇤vv

⇤ + g⇤) + (�0 +D0l
2
0 + µ)g⇤uv

⇤

����

·
✓
k(g⇤vv

⇤ + g
⇤)e�m⌧

a(µ+ g⇤vv
⇤ + g⇤)

+
(f⇤

!!
⇤ + f

⇤)e�m⌧

ah0(!⇤)

◆
.

This is impossible as shown below.
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On the one hand, note that

f
⇤
e
�m⌧

!
⇤

ah(!⇤)
+

kg
⇤
e
�m⌧

a(µ+ g⇤)
= 1.

This, combined with

f
⇤
!!

⇤ + f
⇤

h0(!⇤)
<

f
⇤
!
⇤

h(!⇤)
,

g
⇤
vv

⇤ + g
⇤

µ+ g⇤vv
⇤ + g⇤

<
g
⇤

µ+ g⇤
, h(!⇤) < h

0(!⇤)!⇤
,

from (H1)� (H6), gives us

(f⇤
!!

⇤ + f
⇤)e�m⌧

ah0(!⇤)
+

k(g⇤vv
⇤ + g

⇤)e�m⌧

a(µ+ g⇤vv
⇤ + g⇤)

< 1.

On the other hand, we can check that |(�0 +Dl
2
0 + f

⇤
u!

⇤ + d)(�0 +D0l
2
0 + µ+ g

⇤
vv

⇤ + g
⇤) + (�0 +

D0l
2
0 + µ)g⇤uv

⇤| > |(�0 +Dl
2
0 + d)(�0 +D0l

2
0 + µ+ g

⇤
vv

⇤ + g
⇤)|. In fact, denote

⇤1 = (�0 +Dl
2
0 + f

⇤
u!

⇤ + d)(�0 +D0l
2
0 + µ+ g

⇤
vv

⇤ + g
⇤) + (�0 +D0l

2
0 + µ)g⇤uv

⇤
,

⇤2 = (�0 +Dl
2
0 + d)(�0 +D0l

2
0 + µ+ g

⇤
vv

⇤ + g
⇤).

Let �0 = x0 + iy0. Then

|⇤1|2 = ((x0 +Dl
2
0 + f

⇤
u!

⇤ + d)(x0 +D0l
2
0 + µ+ g

⇤
vv

⇤ + g
⇤) + (x0 +D0l

2
0 + µ)g⇤uv

⇤ � y
2
0)

2

+ (2x0 + (D +D0)l
2
0 + f

⇤
u!

⇤ + d+ µ+ g
⇤
vv

⇤ + g
⇤ + g

⇤
uv

⇤)2y20

and

|⇤2|2 = ((x0 +Dl
2
0 + d)(x0 +D0l

2
0 + µ+ g

⇤
vv

⇤ + g
⇤)� y

2
0)

2

+ (2x0 + (D +D0)l
2
0 + d+ µ+ g

⇤
vv

⇤ + g
⇤)2y20.

Thus,

|⇤1|2 � |⇤2|2 = [(x0 +Dl
2
0 + f

⇤
u!

⇤ + d)(x0 +D0l
2
0 + µ+ g

⇤
vv

⇤ + g
⇤) + (x0 +D0l

2
0 + µ)g⇤uv

⇤]2

� [(x0 +Dl
2
0 + d)(x0 +D0l

2
0 + µ+ g

⇤
vv

⇤ + g
⇤)]2

+ y
2
0[(f

⇤
u!

⇤ + g
⇤
uv

⇤)2 + 2g⇤uv
⇤(x0 +Dl

2
0 + d+ g

⇤
vv

⇤ + g
⇤) + 2f⇤

u!
⇤(x0 +Dl

2
0 + d)]

> 0

as f⇤
u > 0, g

⇤
u > 0, and g

⇤
vv

⇤ + g
⇤
> 0, which implies that |⇤1| > |⇤2|. This completes the proof.

2.3 A threshold dynamics

For convenience, besides X and X+, we denote Y := C(⌦, R) and Y+ = C(⌦, R+).

14



Theorem 2.5 When R0 < 1, the infection-free steady state E0 = (u0, 0, 0) of system (1.2) is

globally asymptotically stable.

Proof. We construct the following Lyapunov functional,

L(t) =

Z

⌦

✓
e
m⌧
!(x, t) +

a

k
e
m⌧

v(x, t) +

Z +1

t�⌧
f(u(x, s),!(x, s))!(x, s)ds

+

Z +1

t�⌧
g(u(x, s), v(x, s))v(x, s)ds

◆
dx.

For convenience, we denote z = z(x, t) and z⌧ = z(x, t � ⌧) for z = u,!, v. Calculating the

directional derivative of L(t) along the solutions of system (1.2), we obtain

dL(t)

dt
=

Z

⌦

✓
e
m⌧ @!

@t
+

a

k
e
m⌧ @v

@t
� f(u⌧ ,!⌧ )!⌧ � g(u⌧ , v⌧ )v⌧

◆
dx

= De
m⌧

Z

⌦
�!dx+D0e

m⌧ a

k

Z

⌦
�vdx�

Z

⌦
ve

m⌧ a

k
(µ+ g(u, v))dx.

According to the Divergence Theorem and homogeneous Neumann boundary conditions, we get

Z

⌦
�!dx =

Z

@⌦

@!

@~n
dx = 0,

Z

⌦
�vdx =

Z

@⌦

@v

@~n
dx = 0.

Therefore,

dL(t)

dt
= �e

m⌧ a

k

Z

⌦
v(µ+ g(u, v))dx.

Hence, dL(t)
dt  0 for all u(x, t), !(x, t), v(x, t) � 0. Moreover, dL(t)

dt = 0 if and only if v = 0.

This, together with system (1.2), implies that the Largest invariant set M0 ✓ M = {(u,!, v) 2

C+|dL(t)dt = 0} is the singleton {E0}. According to LaSalle’s Invariance Principle, the infection-free

steady state E0 is globally asymptotically stable when R0 < 1. This completes the proof.

Recall that the linearized system of (1.2) at the infection-free steady state E0 is

@u1

@t
= D�u1 � du1 � f(u0, 0)u2 � g(u0, 0)u3,

@u2

@t
= D�u2 � ah

0(0)u2 + e
�m⌧

f(u0, 0)u2 + e
�m⌧

g(u0, 0)u3,

@u3

@t
= D0�u3 + kh

0(0)u2 � (µ+ g(u0, 0))u3,

(2.7)

with the boundary conditions

@u1

@~n
=
@u2

@~n
=
@u3

@~n
= 0 for x 2 @⌦, t > 0.

It follows from system (2.7) that we can combine the last two equations into a cooperative sys-

tem. Substituting u2(x, t) = e
�t
�1(x) and u3(x, t) = e

�t
�2(x) into u2, u3, we get the following
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characteristic problem

8
>>>>><

>>>>>:

��1(x) = D��1(x) + (e�m⌧
f(u0, 0)� ah

0(0))�1(x) + e
�m⌧

g(u0, 0)�2(x),

��2(x) = D0��2(x) + kh
0(0)�1(x)� (µ+ g(u0, 0))�2(x),

@�1(x)
@~n = @�2(x)

@~n = 0 for x 2 @⌦, t > 0.

(2.8)

The uniform persistence of system (1.2) is elicited by applying the following results.

Lemma 2.3 The eigenvalue problem of (2.8) has a principal eigenvalue �0(D,D0, u0) associ-

ated with a strongly positive eigenvector.

Lemma 2.4 R0 � 1 has the same sign as �0.

Lemma 2.5 If R0 > 1, then there exists "0 > 0 such that for any � 2 C+ with �2 6= 0, the

solution u(t, x,�) of system (1.2) satisfies

lim sup
t!+1

ku(t, ·,�)� (u0, 0, 0)kC+ � "0.

Proof. It follows from the second equation of system (1.2) and (H6) that

@!

@t
� D�! � ah(!) � D�! � ah

0(!̄)!.

By the parabola maximum principle, we obtain

!(x, t) > 0, t > 0, x 2 ⌦. (2.9)

Since R0 > 1, we have �0 > 0 by Lemma 2.4. Given " 2 (0, u0], we let �0(") be the principal

eigenvalue of the following elliptic eigenvalue problem

8
>>>>><

>>>>>:

��1(x) = D��1(x) + (e�m⌧
f(u0 � ", ")� ah

0("))�1(x) + e
�m⌧

g(u0 � ", ")�2(x),

��2(x) = D0��2(x) + kh
0(0)�1(x)� (µ+ g(u0 + ", 0))�2(x),

@�1(x)
@~n = @�2(x)

@~n = 0 for x 2 @⌦, t > 0.

Clearly, we have lim
"!0+

�0(") = �0. Therefore, there exists a su�ciently small number "0 2 (0, u0]

such that �0("0) > 0. Now, we prove the result with contradictive arguments. Assume that there

exists � 2 X+ with �2 6= 0 such that

lim sup
t!+1

ku(t, ·,�)� (u0, 0, 0)kX+ < "0.
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Then there is T1 � 0 such that

u0 � "0 < u(x, t) < "0 + u0, !(x, t) < "0, v(x, t) < "0 for t > T1 � ⌧, x 2 ⌦.

It follows that for t � T1,

@!

@t
� D�! +

�
e
�m⌧

f(u0 � "0, "0)� ah
0("0)

�
! + e

�m⌧
g(u0 � "0, "0)v,

@v

@t
� D0�v + kh

0(0)! � [µ+ g(u0 + "0, 0)]v.

We consider

@⌫1

@t
= D�⌫1 +

�
e
�m⌧

f(u0 � "0, "0)� ah
0("0)

�
⌫1 + e

�m⌧
g(u0 � "0, "0)⌫2,

@⌫2

@t
= D0�⌫2 + kh

0(0)⌫1 � [µ+ g(u0 + "0, 0)]⌫2.

It follows from (2.9) with (⌫1(x, ✓), ⌫2(x, ✓)) = (!(x, ✓), v(x, ✓)) for (x, ✓) 2 ⌦ ⇥ [T1 � ⌧, T1] and
@⌫1
@~n = @⌫2

@~n = 0 and �0("0) > 0 that

lim
t!+1

⌫1(x, t) = lim
t!+1

⌫2(x, t) = +1.

By the Comparison Theorem, we have

(!(x, t), v(x, t)) � (⌫1(x, t), ⌫2(x, t)) for t � T1.

This leads to a contradiction.

Next, we are ready to establish the uniform persistence of system (1.2).

Theorem 2.6 If R0 > 1, then there exists � > 0 such that for any nonnegative solution

u(t, x,�) with �2 6= 0,

lim
t!+1

inf !(x, t) � �, lim
t!+1

inf v(x, t) � �

uniformly for x 2 ⌦.

Proof. Define

W = {� = (�1,�2,�3) 2 C+ : �2 6⌘ 0 and �3 6⌘ 0}

and

@W := C+ \W = {� 2 C+ : �2 ⌘ 0 or �3 ⌘ 0}.
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It follows from Lemma 2.1 that W is a positive invariant set. Next, we define

M@ := {� 2 C+ : �(t)� 2 @W, t � 0}.

Let !(�) be the omega-limit set of the orbit of �(t) through � 2 C+ and M1 := {(u0, 0, 0)}. Then

we show [�2M@
!(�) ⇢ M1. In fact, for any � 2 M@ , we have ut(�) 2 @W . For t � 0, we have that

either !(t,�) ⌘ 0 or v(t,�) ⌘ 0. We claim that !(t,�) ⌘ 0 for all t � 0. Otherwise, !(t,�) 6⌘ 0

for some t1 � 0. Then by Lemma 2.2 (ii) that !(t,�) > 0 and v(t,�) > 0 for t > t1 + ⌧ , a

contradiction to !(t,�) ⌘ 0 or v(t,�) ⌘ 0 for all t � 0. This proves the claim. The claim, together

with the second equation of (1.2) and Lemma 2.2 (iii), gives v(t,�) ⌘ 0 for t > 0. Then it follows

from the first equation of (1.2) that lim
t!1

u(t, x) = u0 uniformly for x 2 ⌦. Therefore, we have

[�2M@
!(�) ⇢ M1.

Define a continuous function p : C+ ! [0,1) by

p(�) = min{min
x2⌦

�2(x, 0), min
x2⌦

�3(x, 0)} for � 2 C+.

One can easily see that p�1(0,+1) ⇢ W . If p(�) = 0 where � 2 W or p(�) > 0, then p(�(t)(�)) > 0

for all t > 0 . Thus, p is a generalized distance function for the semiflow �(t). Note that �(t)(�)

converges to E0 in M@ and {E0} is an isolated invariant set in C+, and W
s(E0) \W = ;, where

W
s(E0) is the stable set of E0. Moreover, there is no cycle in M@ from E0 to E0. By Theorem 3

in [46], there is a � > 0 such that min{p( )} > � for any � 2 W . This completes the proof.

3 Existence of travelling wave solutions when ⌦ = Rn

Spatial e↵ect plays an important role in studying the propagation speed of infectious diseases. For

cooperative systems, some researchers have proved that the spreading speed is equal to the minimum

wave speed [44]. For some non-cooperative systems, it has been shown that the spreading speed is

also equal to the minimum wave speed [45]. However, it is still unknown if there is a similar result

for other non-cooperative systems, including virus infection models. It was found through numerical

simulations that the virus propagation speed may be greater than its minimum propagation speed

[43]. Under such circumstances, it is extremely di�cult to calculate the spread speed of the virus.

However, one can study the traveling wave solutions, which can be used as a function of measurable

parameters for quantitative prediction. In this section, we study the existence of traveling wave

solutions of (1.2) when ⌦ = R
n.
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3.1 Preliminaries

We adopt some notations for the standard ordering in R
3. For u = (u1, u2, u3)T and v =

(v1, v2, v3)T, we denote u  v if ui  vi, i = 1, 2, 3; u < v if u  v but u 6= v; and u ⌧ v

if u  v but ui 6= vi, i = 1, 2, 3. If u  v, we also denote (u, v] = {! 2 R
3 : u < !  v},

[u, v) = {! 2 R
3 : u  ! < v} and [u, v] = {! 2 R

3 : u  !  v}. We represent the Euclidean

norm in terms of | · | in R
3 and the supremum norm in terms of k · k in C([�⌧, 0], R3).

For convenience, we assume that uninfected cells, infected cells and viruses have the same

di↵usion coe�cient D0. We also assume that f(u,!)! = �u!, g(u, v)v = ↵uv, and h(!) = !.

Thus, the model becomes

@u

@t
= D0�u+ ⇠ � �u(x, t)!(x, t)� ↵u(x, t)v(x, t)� du(x, t),

@!

@t
= D0�! + e

�m⌧
�u(x, t� ⌧)!(x, t� ⌧) + e

�m⌧
↵u(x, t� ⌧)v(x, t� ⌧)� a!(x, t),

@v

@t
= D0�v + k!(x, t)� µv(x, t)� ↵u(x, t)v(x, t).

To facilitate the calculation, we introduce the dimensionless variables by letting

ū =
d

⇠
u, v̄ =

d

⇠
v, !̄ =

d

⇠
!, t̄ = dt, �̄ =

�⇠

d2
, ↵̄ =

↵⇠

d2
,

ā =
a

d
, k̄ =

k

d
, µ̄ =

µ

d
, D̄0 =

D0

d
, d̄m =

m

d
, ⌧̄ = d⌧.

After dropping the bars on u, v, !, t, �, ↵, a, k, µ, D0 and ⌧ , we get

@u

@t
= D0�u+ 1� �u(x, t)!(x, t)� ↵u(x, t)v(x, t)� u(x, t),

@!

@t
= D0�! + e

�dm⌧
�u(x, t� ⌧)!(x, t� ⌧) + e

�dm⌧
↵u(x, t� ⌧)v(x, t� ⌧)� a!(x, t),

@v

@t
= D0�v + k!(x, t)� µv(x, t)� ↵u(x, t)v(x, t).

(3.1)

Recall that system (3.1) always has a unique infection-free steady state E0 = (1, 0, 0). In addition,

when R0 > 1, where R0 = �e�dm⌧

a + ↵ke�dm⌧

a(µ+↵) , it also has a unique homogeneous infected steady

state E
⇤ = (u⇤, !⇤

, v
⇤), where

u
⇤ =

�(µ� + k↵� ↵ae
dm⌧ ) +

p
(µ� + k↵� ↵aedm⌧ )2 + 4↵�µaedm⌧

2↵�
,

!
⇤ =

2↵� + µ� + k↵� ↵ae
dm⌧ �

p
(µ� + k↵� ↵aedm⌧ )2 + 4↵�µaedm⌧

2↵�aedm⌧
,

v
⇤ =

k(2↵� + µ� + k↵� ↵ae
dm⌧ �

p
(µ� + k↵� ↵aedm⌧ )2 + 4↵�µaedm⌧ )

↵aedm⌧ (µ� � k↵+ ↵aedm⌧ +
p
(µ� + k↵� ↵aedm⌧ )2 + 4↵�µaedm⌧ )

.

The objective of this section is to find traveling wave solutions connecting the infection-free steady

state E0 and the infection steady state E
⇤. In order to simplify the mathematical analysis, the
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following changes are made to the variables û(x, t) = 1�u(x, t), !̂(x, t) = !(x, t), v̂(x, t) = v(x, t).

We remove the hats and get

@u

@t
=D0�u� u(x, t) + �(1� u(x, t))!(x, t) + ↵(1� u(x, t))v(x, t),

@!

@t
=D0�! + e

�dm⌧
�(1� u(x, t� ⌧))!(x, t� ⌧)

+ e
�dm⌧

↵(1� u(x, t� ⌧))v(x, t� ⌧)� a!(x, t),

@v

@t
=D0�v + k!(x, t)� µv(x, t)� ↵(1� u(x, t))v(x, t).

(3.2)

System (3.2) always has a unique infection-free steady state E0(0, 0, 0). When R0 > 1, it also has

a unique homogeneous infected steady state E
⇤(1� u

⇤
,!

⇤
, v

⇤).

To prove the existence of traveling wave solutions of system (3.2), we study the following general

reaction-di↵usion system with time delay

@u

@t
= D0�u+ f1(ut(x),!t(x), vt(x)),

@!

@t
= D0�! + f2(ut(x),!t(x), vt(x)),

@v

@t
= D0�v + f3(ut(x),!t(x), vt(x)),

(3.3)

where t 2 R, x 2 ⌦ = R
3
, D0 > 0, fi 2 C([�⌧, 0], R3) ! R (i = 1, 2, 3) is continuous and

ut(x) 2 C([�⌧, 0], R) is given by ut(x)(s) = u(t+s, x), s 2 [�⌧, 0], where for any fixed x 2 ⌦, !t(x)

and vt(x) are defined similarly. We also assume that the reaction term of system (3.3) satisfies the

following the partial quasi-monotonicity (PQM) conditions [49, 50].

(PQM) There are three positive constants �i > 0 (i = 1, 2, 3) such that

fc1(�1,'1, 1)� fc1(�2,'2, 2) + �1(�1(0)� �2(0)) � 0,

fc2(�1,'1, 1)� fc2(�1,'2, 2) + �2('1(0)� '2(0)) � 0,

fc2(�1,'1, 1)� fc2(�2,'1, 1)  0,

fc3(�1,'1, 1)� fc3(�2,'2, 2) + �3( 1(0)�  2(0)) � 0,

where �i, 'i,  i 2 C([�⌧, 0], R), i = 1, 2, with 0  �2(s)  �1(s)  M1, 0  '2(s)  '1(s)  M2,

0   2(s)   1(s)  M3, s 2 [�⌧, 0].

A traveling wave solution of system (3.3) is of the form u(x, t) = �(x · e + ct), !(x, t) =

'(x · e + ct), v(x, t) =  (x · e + ct), where �, ',  2 C
2(R,R), c > 0 is the wave speed, and e

is a unit vector in R
n. Substituting these expressions of u, !, and v into (3.3) and denoting the
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traveling wave coordinate x · e+ ct by t, we get the corresponding wave equation

D0�
00(t)� c�

0(t) + fc1(�t,'t, t) = 0,

D0'
00(t)� c'

0(t) + fc2(�t,'t, t) = 0,

D0 
00(t)� c 

0(t) + fc3(�t,'t, t) = 0,

(3.4)

where �t(⇣) = �(⇣ + t), 't(⇣) = '(⇣ + t),  t(⇣) =  (⇣ + t), the functions fci(�,', ) : Xc =

C([�c⌧, 0], R3) ! R (i = 1, 2, 3) are defined by fci(�,', ) = fi(�c,'c
, 

c), and

�
c(s) = �(cs), 'c(s) = '(cs),  c(s) =  (cs), s 2 [�⌧, 0], i = 1, 2, 3.

Based on [47, 48], we propose the following assumptions

(A1) fi(0, 0, 0) = fi(k1, k2, k3) = 0, i = 1, 2, 3.

(A2) There are three positive constants Li > 0 (i = 1, 2, 3) such that

|fi(�)� fi( )|  Lik�� k

for � = (�1,'1, 1),  = (�2,'2, 2) 2 C([�⌧, 0], R3) with 0  �i(s)  M1, 0  'i(s)  M2, 0 

 i(s)  M3, s 2 [�⌧, 0], Mj � kj (i = 1, 2. j = 1, 2, 3) are positive constants.

(A1) implies that (0, 0, 0) and (k1, k2, k3) are two steady states of (3.3). Without loss of gener-

ality, we assume the boundary conditions for traveling wave solutions,

lim
t!�1

(�(t),'(t), (t)) = (��,'�, �) = (0, 0, 0),

lim
t!+1

(�(t),'(t), (t)) = (�+,'+, +) = (k1, k2, k3),
(3.5)

and seeking for traveling wave solutions to connect the two steady states.

In order to apply the Schauder’s fixed point theorem, we consider the continuity of operators.

For this purpose, a topology is introduced in C(R,R
3). Let µ0 > 0 and equipped C(R,R

3) with

the exponential decay norm given by

|�|µ0 = sup
t2R

e
�µ0|t||�(t)|R3 .

Define

Bµ0(R,R
3) = {� 2 C(R,R

3) : |�|µ0 < 1}.

It is easy to show that (Bµ0(R,R
3), | · |µ0) is a Banach space.

For system (3.3), we give the definitions of upper and lower solutions as follows.
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Definition 3.1 A pair of continuous functions ⇢̄ = (�̄, '̄,  ̄) and ⇢ = (�,', ) are called a

pair of upper and lower solutions of system (3.3) if there is a finite set of multiple points ⇤ =

{t1, t2, · · · , tm} such that ⇢̄ and ⇢ are twice continuously di↵erentiable in R \⇤, they are essentially

bounded on R \ ⇤, and

D0�̄
00(t)� c�̄

0(t) + fc1(�̄t, '̄t,  ̄t)  0, a.e. in R,

D0'̄
00(t)� c'̄

0(t) + fc2(�t, '̄t,  ̄t)  0, a.e. in R,

D0 ̄
00(t)� c ̄

0(t) + fc3(�̄t, '̄t,  ̄t)  0, a.e. in R,

and

D0�
00(t)� c�

0(t) + fc1(�t,'t, t) � 0, a.e. in R,

D0'
00(t)� c'

0(t) + fc2(�̄t,'t, t) � 0, a.e. in R,

D0 
00(t)� c 

0(t) + fc3(�t,'t, t) � 0, a.e. in R.

3.2 The existence of traveling wave solutions for system (3.3)

In this subsection, we study the nonlinear reaction term of system (3.3) that satisfies (PQM).

In addition to this, we also assume that a pair of upper and lower solutions satisfy the following

properties

(P1) (0, 0, 0)  (�(t), '(t),  (t))  (�̄(t), '̄(t),  ̄(t))  (M1,M2,M3), t 2 R.

(P2) lim
t!�1

(�(t),'(t), (t)) = (0, 0, 0), lim
t!+1

(�̄(t), '̄(t),  ̄(t)) = (k1, k2, k3).

Let CK(R,R
3) = {(�,', ) 2 C(R,R

3) : (0, 0, 0)  (�(s),'(s), (s))  (M1,M2,M3), s 2 R}.

For the constants �1, �2, �3 > 0 in (PQM), define H : CK(R,R
3) ! C(R,R

3) by

H1(�,', )(t) = fc1(�t,'t, t) + �1�(t),

H2(�,', )(t) = fc2(�t,'t, t) + �2'(t),

H3(�,', )(t) = fc3(�t,'t, t) + �3 (t).

The operators H1, H2 and H3 have the following properties.

Lemma 3.1 Assume that (A1) and (PQM) hold. Then

H2(�1,'2, 2)(t)  H2(�1,'1, 1)(t), H2(�1,'1, 1)(t)  H2(�2,'1, 1)(t),

H2(�1,'1, 1)(t) � H2(�1,'2, 1)(t)

for (�i,'i, i) 2 CK(R,R
3) with 0  �2(s)  �1(s)  M1, 0  '2(s)  '1(s)  M2, 0   2(s) 

 1(s)  M3, s 2 R, i = 1, 2.
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Proof. By (PQM), we calculate

H2(�1,'1, 1)(t)�H2(�1,'2, 2)(t) = fc2(�1,'1, 1)� fc2(�1,'2, 2) + �2(�1(0)� �2(0)) � 0,

H2(�2,'1, 1)(t)�H2(�1,'1, 1)(t) = fc2(�2,'1, 1)� fc2(�1,'1, 1) � 0,

H2(�1,'1, 1)(t)�H2(�1,'2, 1)(t) = fc2(�1,'1, 1)� fc2(�1,'2, 1) + �2('1(0)� '2(0)) � 0.

This completes the proof.

Lemma 3.2 Assume that (A1) and (PQM) hold. Then for any (0, 0, 0)  (�,', )  (k1, k2, k3),

we can obtain

(i) H1(�,', )(t) � 0, H3(�,', )(t) � 0, t 2 R.

(ii) H1(�2,'2, 2)(t)  H1(�1,'1, 1)(t), H3(�2,'2, 2)(t)  H3(�1,'1, 1)(t) for t 2 R with

0  �2(s)  �1(s)  M1, 0  '2(s)  '1(s)  M2, 0   2(s)   1(s)  M3.

From the definitions of H1, H2 and H3, system (3.4) can be rewritten as follows.

D0�
00(t)� c�

0(t)� �1�(t) +H1(�,', )(t) = 0,

D0'
00(t)� c'

0(t)� �2'(t) +H2(�,', )(t) = 0,

D0 
00(t)� c 

0(t)� �3 (t) +H3(�,', )(t) = 0.

Let

�1 =
c�

p
c2 + 4�1D0

2D0
, �2 =

c+
p
c2 + 4�1D0

2D0
,

�3 =
c�

p
c2 + 4�2D0

2D0
, �4 =

c+
p
c2 + 4�2D0

2D0
,

�5 =
c�

p
c2 + 4�3D0

2D0
, �6 =

c+
p
c2 + 4�3D0

2D0
.

Define F = (F1, F2, F3) : CK(R,R
3) ! C(R,R

3) by

F1(�,', )(t) =
1

D0(�2 � �1)

Z t

�1
e
�1(t�s)

H1(�,', )(s)ds+

Z 1

t
e
�2(t�s)

H1(�,', )(s)ds

�
,

F2(�,', )(t) =
1

D0(�4 � �3)

Z t

�1
e
�3(t�s)

H2(�,', )(s)ds+

Z 1

t
e
�4(t�s)

H2(�,', )(s)ds

�
,

F3(�,', )(t) =
1

D0(�6 � �5)

Z t

�1
e
�5(t�s)

H3(�,', )(s)ds+

Z 1

t
e
�6(t�s)

H3(�,', )(s)ds

�

for (�,', ) 2 CK(R,R
3). It is easy to conclude that F1(�,', ), F2(�,', ) and F3(�,', ) satisfy

D0F
00
1 (�,', )� cF

0
1(�,', )� �1F1(�,', ) +H1(�,', ) = 0,

D0F
00
2 (�,', )� cF

0
2(�,', )� �2F2(�,', ) +H2(�,', ) = 0,

D0F
00
3 (�,', )� cF

0
3(�,', )� �3F3(�,', ) +H3(�,', ) = 0.

Similar to Lemma 3.1 and Lemma 3.2, we have the following lemma to explain some properties of

F .
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Lemma 3.3 Assume that (A1) and (PQM) hold. For any (0, 0, 0)  (�,', )  (M1,M2,M3),

we obtain

F1(�2,'2, 2)(t)  F1(�1,'1, 1)(t), F2(�1,'2, 2)(t)  F2(�1,'1, 1)(t),

F2(�1,'1, 1)(t)  F2(�2,'1, 1)(t), F3(�2,'2, 2)(t)  F3(�1,'1, 1)(t)

for (�,', ) 2 CK(R,R
3) with 0  �2(s)  �1(s)  M1, 0  '2(s)  '1(s)  M2, 0   2(s) 

 1(s)  M3.

Now, we put forward the following profile set to seek the traveling wave solutions of system

(3.3).

�((�,', ), (�̄, '̄,  ̄)) =

8
><

>:

(i) (�(t),'(t), (t)) 2 C(R,R
3);

(ii) �(t)  �(t)  �̄(t), '(t)  '(t)  '̄(t),  (t)   (t)   ̄(t).

Obviously, �((�,', ), (�̄, '̄,  ̄)) is non-empty, convex, closed and bounded.

Lemma 3.4 Assume that (A2) holds. Then F = (F1, F2, F3) : CK(R,R
3) ! C(R,R) is

continuous in point of the norm | · |µ0 in Bµ0(R,R
3).

Proof. We pick µ0 > 0 such that µ0 < min{��1,�2,��3,�4,��5,�6}. For any ✏1 > 0, we let

�1 <
✏1

L1eµ0c⌧+�1
. Let � = (�1,'1, 1) and  = (�2,'2, 2) 2 CK(R,R

3) with

|�� |µ0 = sup
t2R

|�(t)� (t)|e�µ0|t| < �1.

Direct calculations yield

|H1(�1,'1, 1)�H1(�2,'2, 2)|e�µ0|t|

 |f1(�1t,'1t, 1t)� f1(�2t,'2t, 2t)|e�µ0|t| + �1|�1 � �2|µ0

 L1k�t � tkXce
�µ0|t| + �1|�1 � �2|µ0

 L1 sup
s2[�c⌧,0]

|�(s+ t)� (s+ t)|e�µ0|t+s| sup
s2[�⌧,0]

e
µ0|t+s|

e
�µ0|t| + �1|�1 � �2|µ0

 L1|�� |µ0e
�µ0|t|eµ0|t|eµ0c⌧ + �1|�� |µ0

 (L1e
µ0c⌧ + �1)|�� |µ0

 ✏1.

Next, we claim that F1 : CK(R,R
3) ! C(R,R) is continuous with respect to the norm | · |µ0 .

If t > 0, then we have

|F1(�1,'1, 1)� F1(�2,'2, 2)|e�µ0|t|
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=
1

D0(�2 � �1)

Z t

�1
e
�1(t�s)|H1(�1,'1, 1)(s)�H1(�2,'2, 2)(s)|ds

�
e
�µ0t

+
1

D0(�2 � �1)

Z 1

t
e
�2(t�s)|H1(�1,'1, 1)(s)�H1(�2,'2, 2)(s)|ds

�
e
�µ0t

 ✏1

D0(�2 � �1)


e
�1t

Z 0

�1
e
�(�1+µ0)sds+ e

�1t
Z t

0
e
(µ0��1)sds+ e

�2t
Z 1

t
e
(µ0��2)sds

�
e
�µ0t

=
✏1

D0(�2 � �1)


2µ0

�
2
1 � µ0

2
e
(�1�µ0)t +

�2 � �1

(µ0 � �1)(�2 � µ0)

�

 ✏1

D0(�2 � �1)


2µ0

�
2
1 � µ0

2
+

�2 � �1

(µ0 � �1)(�2 � µ0)

�
.

If t < 0, we obtain

|F1(�1,'1, 1)� F1(�2,'2, 2)|e�µ0|t|

=
1

D0(�2 � �1)

Z t

�1
e
�1(t�s)|H1(�1,'1, 1)(s)�H1(�2,'2, 2)(s)|ds

�
e
µ0t

+
1

D0(�2 � �1)

Z 1

t
e
�2(t�s)|H1(�1,'1, 1)(s)�H1(�2,'2, 2)(s)|ds

�
e
µ0t

 ✏1

D0(�2 � �1)


e
�1t

Z t

�1
e
�(�1+µ0)sds+ e

�2t
Z 0

t
e
�(�2+µ0)sds+ e

�2t
Z 1

0
e
(µ0��2)sds

�
e
µ0t

=
✏1

D0(�2 � �1)


2µ0

�
2
2 � µ0

2
e
(µ0+�2)t +

�1 � �2

(µ0 + �1)(�2 + µ0)

�

 ✏1

D0(�2 � �1)


2µ0

�
2
2 � µ0

2
+

�1 � �2

(µ0 + �1)(�2 + µ0)

�
.

In summary, F1 is continuous. Similarly, we can prove that F2, F3 : CK(R,R
3) ! C(R,R) are

continuous. Thus, we see that F = (F1, F2, F3) is continuous with respect to the norm | · |µ0 in

Bµ0(R,R
3). This completes the proof.

Lemma 3.5 Assume that (A1) and (PQM) hold. Then

F (�((�,', ), (�̄, '̄,  ̄))) ⇢ �((�,', ), (�̄, '̄,  ̄)).

Proof. For any (�,', ) with (�,', )  (�,', )  (�̄, '̄,  ̄), it follows from Lemma 3.3 that

F1(�,', )  F1(�,', )  F1(�̄, '̄,  ̄),

F2(�̄,', )  F2(�,', )  F2(�, '̄,  ̄),

F3(�,', )  F3(�,', )  F3(�̄, '̄,  ̄).

By the definition of the upper and lower solution, we obtain

D0�̄
00(t)� c�̄

0(t)� �1�̄(t) +H1(�̄, '̄,  ̄)(t)  0. (3.6)
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From Lemma 3.2, we select (�,', ) = (�̄, '̄,  ̄), and denote �̄1(t) = F1(�̄, '̄,  ̄)(t) such that

D0�̄
00
1(t)� c�̄

0
1(t)� �1�̄1(t) +H1(�̄, '̄,  ̄)(t) = 0. (3.7)

Letting y(t) = �̄1(t)� �̄(t) and combining (3.6) and (3.7), we get the following inequality

D0(�̄
00
1(t)� �̄

00(t))� c(�̄01(t)� �̄
0(t))� �1(�̄1(t)� �̄(t)) � 0,

D0y
00(t)� cy

0(t)� �1y(t) � 0.

From Lemma 3.3 in [12], it can be concluded that y(t)  0, which implies that F1(�̄, '̄,  ̄)  �̄.

Similarly, we can obtain F1(�,', ) � �, F2(�̄,', ) � ', F2(�, '̄,  ̄)  '̄, F3(�,', ) �  , and

F3(�̄, '̄,  ̄)   ̄. This completes the proof.

Lemma 3.6 Assume that (PQM) holds. Then F : �((�,', ), (�̄, '̄,  ̄)) ! �((�,', ), (�̄, '̄,  ̄))

is compact.

Proof. By Lemma 4.6 in [47], we can get the proof of this lemma.

Theorem 3.1 Assume that (A1), (A2) and (PQM) hold. If there is a pair of upper and lower

solutions ⇢̄(t) = (�̄(t), '̄(t),  ̄(t)) and ⇢(t) = (�(t),'(t), (t)) satisfying the conditions (P1) and

(P2), then system (3.3) has a traveling wave solution satisfying (3.5).

Proof. It follows from Lemma 3.4-3.6 that we claim F (�((�,', ), (�̄, '̄,  ̄))) ⇢ �((�,', ), (�̄, '̄,  ̄))

and F are compact. There exists a fixed point (�⇤(t),'⇤(t), ⇤(t)) 2 �((�,', ), (�̄, '̄,  ̄)) by

Schauder’s fixed point theorem, which gives a solution of (3.3). Next, in order to prove that the

solution is a traveling wave solution, it is necessary to verify the asymptotic boundary conditions

(3.5).

By (P2) and the obvious fact

(0, 0, 0)  (�,', )  (�⇤(t),'⇤(t), ⇤(t))  (�̄, '̄,  ̄)  (M1,M2,M3),

we obtain

lim
t!�1

(�⇤(t),'⇤(t), ⇤(t)) = (0, 0, 0),

lim
t!+1

(�⇤(t),'⇤(t), ⇤(t)) = (k1, k2, k3).

Therefore, the fixed point (�⇤(t),'⇤(t), ⇤(t)) satisfies the asymptotic boundary conditions. This

completes the proof.
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3.3 The existence of traveling wave solutions for system (3.2)

In this subsection, we will use the results in subsection 3.2 to prove the existence of the traveling

wave solutions of (3.2). From (3.4), we have

D0�
00(t)� c�

0(t) + fc1(�t,'t, t) = 0,

D0'
00(t)� c'

0(t) + fc2(�t,'t, t) = 0,

D0 
00(t)� c 

0(t) + fc3(�t,'t, t) = 0,

where

fc1(�t,'t, t) = ��(t) + �(1� �(t))'(t) + ↵(1� �(t)) (t),

fc2(�t,'t, t) = e
�dm⌧

�(1� �(t� c⌧))'(t� c⌧) + e
�dm⌧

↵(1� �(t� c⌧)) (t� c⌧)� a'(t),

fc3(�t,'t, t) = k'(t)� µ (t)� ↵(1� �(t)) (t).

The following asymptotic boundary conditions are satisfied.

lim
t!�1

(�(t),'(t), (t)) = (0, 0, 0), lim
t!+1

(�̄(t), '̄(t),  ̄(t)) = (1� k1, k2, k3),

where k1 = u
⇤
, k2 = !

⇤
, k3 = v

⇤.

Lemma 3.7 The nonlinear reaction term of system (3.2) satisfies (A1), (A2), and (PQM).

Proof. For any �i, 'i,  i 2 C([�⌧, 0], R), i = 1, 2, with 0  �2(s)  �1(s)  M1, 0  '2(s) 

'1(s)  M2, 0   2(s)   1(s)  M3, s 2 [�⌧, 0], we obtain

fc1(�1t,'1t, 1t)� fc1(�2t,'2t, 2t)

= � �1(0) + �(1� �1(0))'1(0) + ↵(1� �1(0)) 1(0)

+ �2(0)� �(1� �2(0))'2(0)� ↵(1� �2(0)) 2(0)

� � (�1(0)� �2(0))� �'1(0)(�1(0)� �2(0))� ↵ 1(0)(�1(0)� �2(0))

= � (�1(0)� �2(0))� (�'1(0) + ↵ 1(0))(�1(0)� �2(0))

� � (1 + �M2 + ↵M3)(�1(0)� �2(0)).

Let �1 = 1 + �M2 + ↵M3 > 0. This implies that fc1(�1t,'1t, 1t)� fc1(�2t,'2t, 2t) + �1(�1(0)�

�2(0)) � 0.

For fc2(�,', ), we have

fc2(�1t,'1t, 1t)� fc2(�1t,'2t, 2t)

= e
�dm⌧

�(1� �1(�c⌧))'1(�c⌧) + e
�dm⌧

↵(1� �1(�c⌧)) 1(�c⌧)� a'1(0)

� e
�dm⌧

�(1� �1(�c⌧))'2(�c⌧)� e
�dm⌧

↵(1� �1(�c⌧)) 2(�c⌧) + a'2(0)
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� e
�dm⌧

�(1� �1(�c⌧))'2(�c⌧) + e
�dm⌧

↵(1� �1(�c⌧)) 2(�c⌧)� a('1(0)� '2(0))

� e
�dm⌧

�(1� �1(�c⌧))'2(�c⌧)� e
�dm⌧

↵(1� �1(�c⌧)) 2(�c⌧)

= � a('1(0)� '2(0)).

Let �2 = a. Then fc2(�1,'1, 1)� fc2(�1,'2, 2) + �2('1(0)� '2(0)) � 0.

Similarly, the following results are obtained

fc2(�1t,'1t, 1t)� fc2(�2t,'1t, 1t)

= e
�dm⌧

�(1� �1(�c⌧))'1(�c⌧) + e
�dm⌧

↵(1� �1(�c⌧)) 1(�c⌧)� a'1(0)

� e
�dm⌧

�(1� �2(�c⌧))'1(�c⌧)� e
�dm⌧

↵(1� �2(�c⌧)) 1(�c⌧) + a'1(0)

= e
�dm⌧

�(�2(�c⌧)� �1(�c⌧))'1(�c⌧) + e
�dm⌧

↵(�2(�c⌧)� �1(�c⌧)) 1(�c⌧)

 0.

Note that

fc3(�1t,'1t, 1t)� fc3(�2t,'2t, 2t)

= k'1(0)� µ 1(0)� ↵(1� �1(0)) 1(0)� k'2(0) + µ 2(0) + ↵(1� �2(0)) 2(0)

= k('1(0)� '2(0))� µ( 1(0)�  2(0))� ↵( 1(0)�  2(0)) + ↵(�1(0) 1(0)� �2(0) 2(0))

� � (µ+ ↵)( 1(0)�  2(0)).

Let �3 = µ+ ↵ > 0. We derive that fc3(�1,'1, 1)� fc3(�2,'2, 2) + �3( 1(0)�  2(0)) � 0. This

completes the proof.

Next, we construct a pair of upper and lower solutions of system (3.2). Let c
⇤ = 2

p
D0K0,

where

K0 = max

⇢
�k2 + ↵k3 � 1 + k1

1� k1
,
k2(� � a) + ↵k3

k2
,
kk2

k3

�
.

If R0 > 1 and c > c
⇤, then there exists �0 2 [��,�+] such that

D0�
2
0 � c�0 +K0  0,

where

�� =
c�

p
c2 � 4D0K0

2D0
, �+ =

c+
p
c2 � 4D0K0

2D0
.

We select appropriate "i > 0 (i = 1, 2, 3) that satisfy the following inequalities,

(� � a)(k2 + "1) + ↵M3 < 0,

k"1 � µ"2 � ↵k1"2 +
↵(k3 + "3)

1� k1
< 0.
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Then, for � > 0 we define continuous functions ⇢̄(t) = (�̄(t), '̄(t),  ̄(t)) and ⇢(t) = (�(t),'(t), (t))

as follows,

�̄(t) = min{(1� k1)e
�0t, 1, 1� k1 +

1

1� k1
e
��t}, '̄(t) = min{k2e�0t, k2 + "1e

��t},

 ̄(t) = min{k3e�0t, k3 + "2e
��t}, �(t) = max{0, 1� k1 �

2� k1

k1
e
��t},

'(t) = max{0, k2 �
2k2
k1

e
��t},  (t) = max{0, k3 �

2k3
k1

e
��t}.

We see that M1 = sup
t2R

�̄ > 1 � k1, M2 = sup
t2R

'̄ > k2, M3 = sup
t2R

 ̄ > k3, ⇢̄(t) = (�̄(t), '̄(t),  ̄(t))

and ⇢(t) = (�(t),'(t), (t)) satisfy (P1) and (P2).

Lemma 3.8 There exists �̄⇤ > 0 such that, for any � 2 (0, �̄⇤), ⇢̄(t) = (�̄(t), '̄(t),  ̄(t)) is an

upper solution of system (3.2).

Proof. For �̄(t), let us consider three cases.

Case 1. (1 � k1)e�0t  min{1, 1 � k1 + 1
1�k1

e
��t}. Then �̄(t) = (1 � k1)e�0t and '̄(t) =

k2e
�0t,  ̄(t) = k3e

�0t. It follows that

D0�̄
00(t)� c�̄

0(t)� �̄(t) + �(1� �̄(t))'̄(t) + ↵(1� �̄(t)) ̄(t)

 D0�
2
0(1� k1)e

�0t � c�0(1� k1)e
�0t + �k2e

�0t + ↵k3e
�0t � (1� k1)e

�0t

= (1� k1)e
�0t

✓
D0�

2
0 � c�0 +

�k2 + ↵k3 � 1 + k1

1� k1

◆

 0.

Case 2. 1  min{(1� k1)e�0t, 1� k1 +
1

1�k1
e
��t}. Then �̄(t) = 1. We have

D0�̄
00(t)� c�̄

0(t)� �̄(t) + �(1� �̄(t))'̄(t) + ↵(1� �̄(t)) ̄(t) = �1 < 0.

Case 3. 1� k1 +
1

1�k1
e
��t  min{(1� k1)e�0t, 1}. Then �̄(t) = 1� k1 +

1
1�k1

e
��t

.

D0�̄
00(t)� c�̄

0(t)� �̄(t) + �(1� �̄(t))'̄(t) + ↵(1� �̄(t)) ̄(t)

 D0�
2

1� k1
e
��t +

c�

1� k1
e
��t � (1� k1)�

1

1� k1
e
��t

+ �M2

✓
k1 �

1

1� k1
e
��t

◆
+ ↵M3

✓
k1 �

1

1� k1
e
��t

◆

 e
��t


D0�

2

1� k1
+

c�

1� k1
+ k1e

�t � 1

1� k1

+�M2e
�t

✓
k1 �

1

1� k1
e
��t

◆
+ ↵M3e

�t(k1 �
1

1� k1
e
��t)

�

= I1(�).
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Note that I1(0) = k1 � 1
1�k1

+ �M2

⇣
k1 � 1

1�k1

⌘
+ ↵M3

⇣
k1 � 1

1�k1

⌘
=

⇣
k1 � 1

1�k1

⌘
(1 + �M2 +

↵M3) < 0. From the continuity of I1(�), there exists �⇤1 > 0 such that I1(�1) < 0 for � 2 (0,�⇤1).

Hence,

D0�̄
00(t)� c�̄

0(t)� �̄(t) + �(1� �̄(t))'̄(t) + ↵(1� �̄(t)) ̄(t)  0, � 2 (0,�⇤1).

For '̄(t), we consider the following two cases.

Case 4. k2e�0t  k2+ "1e��t. Then '̄(t) = k2e
�0t, '̄(t� c⌧) = k2e

�0(t�c⌧)  k2e
�0t,  ̄(t� c⌧) =

k3e
�0(t�c⌧)  k3e

�0t. It is seen that

D0'̄
00(t)� c'̄

0(t) + e
�dm⌧

�(1� �(t� c⌧))'̄(t� c⌧) + e
�dm⌧

↵(1� �(t� c⌧)) ̄(t� c⌧)� a'̄(t)

 D0k2�
2
0e

�0t � c�0k2e
�0t + �k2e

�0t + ↵k3e
�0t � ak2e

�0t

= k2e
�0t

✓
D0�

2
0 � c�0 +

k2(� � a) + ↵k3

k2

◆

 0.

Case 5. k2 + "1e
��t  k2e

�0t. Then '̄(t) = k2 + "1e
��t. It follows that

D0'̄
00(t)� c'̄

0(t) + e
�dm⌧

�(1� �(t� c⌧))'̄(t� c⌧) + e
�dm⌧

↵(1� �(t� c⌧)) ̄(t� c⌧)� a'̄(t)

 D0�
2
"1e

��t + c�"1e
��t + �(k2 + "1e

��(t�c⌧)) + ↵M3 � a(k2 + "1e
��t)

 D0�
2
"1e

��t + c�"1e
��t + �(k2 + "1e

�c⌧ ) + ↵M3 � a(k2 + "1e
��t)

= I2(�).

As I2(0) = (� � a)(k2 + "1) + ↵M3 < 0, there exists �⇤2 > 0 such that I2(0) < 0 for all � 2 (0,�⇤2).

For  ̄(t), we distinguish two cases again.

Case 6. k3e�0t  k3 + "2e
��t. Then  ̄(t) = k3e

�0t, '̄(t)  k2e
�0t, �̄(t) = 1. We obtain that

D0 ̄
00(t)� c ̄

0(t) + k'̄(t)� µ ̄(t)� ↵(1� �̄(t)) ̄(t)

 D0�
2
0k3e

�0t � c�0k3e
�0t + kk2e

�0t

= k3e
�0t

✓
D0�

2
0 � c�0 +

kk2

k3

◆

 0.

Case 7. k3 + "2e
��t  k3e

�0t. Then  ̄(t) = k3 + "2e
��t

, �̄(t) = 1 � k1 +
1

1�k1
e
��t

, '̄(t) =

k2 + "1e
��t. We have

D0 ̄
00(t)� c ̄

0(t) + k'̄(t)� µ ̄(t)� ↵(1� �̄(t)) ̄(t)

 D0�
2
"2e

��t + c�"2e
��t + k(k2 + "1e

��t)
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� µ(k3 + "2e
��t)� ↵

✓
k1 �

1

1� k1
e
��t

◆
(k3 + "2e

��t)

= D0�
2
"2e

��t + c�"2e
��t + kk2 + k"1e

��t

� µk3 � µ"2e
��t � ↵k1k3 � ↵k1"2e

��t +
↵k3e

��t

1� k1
+
↵"2e

��t

1� k1
e
��t

= D0�
2
"2e

��t + c�"2e
��t + k"1e

��t � µ"2e
��t � ↵k1"2e

��t +
↵k3e

��t

1� k1
+
↵"2e

��t

1� k1
e
��t

= I3(�).

Since I3(0) = k"1 � µ"2 � ↵k1"2 +
↵(k3+"2)
1�k1

< 0, there exists a �⇤3 > 0 such that I3(�) < 0 for all

� 2 (0,�⇤3).

Thus, taking �̄
⇤ = min(�⇤1,�

⇤
2,�

⇤
3), we have shown that ⇢̄(t) = (�̄(t), '̄(t),  ̄(t)) is an upper

solution of system (3.2) for � 2 (0, �̄⇤). 2

Lemma 3.9 There exists �⇤ > 0 such that, for 0 < � < �
⇤, ⇢(t) = (�(t),'(t), (t)) is a lower

solution of system (3.2).

Proof. For �(t), we can prove it in two cases.

Case 1. 1� k1 � 2�k1
k1

e
��t  0. Then �(t) = 0. It is clear that

D0�
00(t)� c�

0(t)� �(t) + �(1� �(t))'(t) + ↵(1� �(t)) (t)

= �'(t) + ↵ (t)

� 0.

Case 2. 0  1 � k1 � 2�k1
k1

e
��t. Then �(t) = 1 � k1 � 2�k1

k1
e
��t

, '(t) = k2 � 2k2
k1

e
��t

,  (t) =

k3 � 2k3
k1

e
��t. We have

D0�
00(t)� c�

0(t)� �(t) + �(1� �(t))'(t) + ↵(1� �(t)) (t)

= �D0
2� k1

k1
�
2
e
��t � c

2� k1

k1
�e

��t � (1� k1) +
2� k1

k1
e
��t

+ �

✓
k1 +

2� k1

k1
e
��t

◆✓
k2 �

2k2
k1

e
��t

◆
+ ↵

✓
k1 +

2� k1

k1
e
��t

◆✓
k3 �

2k3
k1

e
��t

◆

� �D0
2� k1

k1
�
2
e
��t � c

2� k1

k1
�e

��t � (1� k1)

+
2� k1

k1
e
��t + �k1

✓
k2 �

2k2
k1

e
��t

◆
+ ↵k1

✓
k3 �

2k3
k1

e
��t

◆

= �D0
2� k1

k1
�
2
e
��t � c

2� k1

k1
�e

��t +
2� k1

k1
e
��t � 2�k2e

��t � 2↵k3e
��t

= I4(�).

As I4(0) =
2�k1
k1

� 2�k2 � 2↵k3 =
2�k1
k1

� 2(1�k1)
k1

= 1 > 0, there exists a �⇤4 > 0 such that I4(�) > 0

for all � 2 (0,�⇤4).
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For '(t), we also discuss it in two cases.

Case 3. k2 � 2k2
k1

e
��t  0. Then '(t) = 0. We get

D0'
00(t)� c'

0(t) + e
�dm⌧

�(1� �̄(t� c⌧))'(t� c⌧) + e
�dm⌧

↵(1� �̄(t� c⌧)) (t� c⌧)� a'(t)

= e
�dm⌧

↵(1� �̄(t� c⌧)) (t� c⌧)

� 0.

Case 4. 0  k2� 2k2
k1

e
��t. Then '(t) = k2� 2k2

k1
e
��t

, �̄(t�c⌧) = 1�k1+
1

1�k1
e
��(t�c⌧)

,  (t�c⌧) =

k3 � 2k3
k1

e
��(t�c⌧). We have

D0'
00(t)� c'

0(t) + e
�dm⌧

�(1� �̄(t� c⌧))'(t� c⌧) + e
�dm⌧

↵(1� �̄(t� c⌧)) (t� c⌧)� a'(t)

= �D0
2k2
k1

�
2
e
��t � c

2k2
k1

�e
��t + e

�dm⌧
�

✓
k1 �

1

1� k1
e
��(t�c⌧)

◆✓
k2 �

2k2
k1

e
��(t�c⌧)

◆

+ e
�dm⌧

↵

✓
k1 �

1

1� k1
e
��(t�c⌧)

◆✓
k3 �

2k3
k1

e
��(t�c⌧)

◆
� a

✓
k2 �

2k2
k1

e
��t

◆

= �D0
2k2
k1

�
2
e
��t � c

2k2
k1

�e
��t � a

✓
k2 �

2k2
k1

e
��t

◆

+ e
�dm⌧

�

✓
k1k2 � 2k2e

��(t�c⌧) � k2

1� k1
e
��(t�c⌧) +

2k2
k1(1� k1)

e
��(t�c⌧)

e
��(t�c⌧)

◆

+ e
�dm⌧

↵

✓
k1k3 � 2k3e

��(t�c⌧) � k3

1� k1
e
��(t�c⌧) +

2k3
k1(1� k1)

e
��(t�c⌧)

e
��(t�c⌧)

◆

= �D0
2k2
k1

�
2
e
��t � c

2k2
k1

�e
��t + e

�dm⌧
�

✓
� k2

1� k1
e
��(t�c⌧) +

2k2
k1(1� k1)

e
��(t�c⌧)

e
��(t�c⌧)

◆

+ e
�dm⌧

↵

✓
� k3

1� k1
e
��(t�c⌧) +

2k3
k1(1� k1)

e
��(t�c⌧)

e
��(t�c⌧)

◆

= �D0
2k2
k1

�
2
e
��t � c

2k2
k1

�e
��t

+
e
��(t�c⌧)

k1(1� k1)

h
e
�dm⌧

�(�k1k2 + 2k2e
��(t�c⌧)) + e

�dm⌧
↵(�k1k3 + 2k3e

��(t�c⌧))
i

= �D0
2k2
k1

�
2
e
��t � c

2k2
k1

�e
��t +

e
��(t�c⌧)

k1(1� k1)
a

✓
�k2 +

2k2
k1

e
��t

◆

= I5(�).

In the above, we have used

e
�dm⌧

�k1

✓
k2 �

2k2
k1

e
��(t�c⌧)

◆
+ e

�dm⌧
↵k1

✓
k3 �

2k3
k1

e
��(t�c⌧)

◆
� a

✓
k2 �

2k2
k1

e
��t

◆
= 0

to obtain

e
�dm⌧

�(k1k2 � 2k2e
��(t�c⌧)) + e

�dm⌧
↵(k1k3 � 2k3e

��(t�c⌧)) = a

✓
k2 �

2k2
k1

e
��t

◆
.
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Then I5(0) = a
k1(1�k1)

(�k2 + 2k2
k1

) = ak2(2�k1)
k21(1�k1)

> 0 implies that there exists �⇤5 > 0 such that

I5(�) > 0 for � 2 (0,�⇤5).

For  (t), the following two situations are discussed separately.

Case 5. k3 � 2k3
k1

e
��t  0. Then  (t) = 0. It is clear that

D0 
00(t)� c 

0(t) + k'(t)� µ (t)� ↵(1� �(t)) (t) = k'(t) � 0.

Case 6. 0  k3� 2k3
k1

e
��t. Then  (t) = k3� 2k3

k1
e
��t

, �(t) = 1�k1� 2�k1
k1

e
��t

, '(t) = k2� 2k2
k1

e
��t.

It is seen that

D0 
00(t)� c 

0(t) + k'(t)� µ (t)� ↵(1� �(t)) (t)

= �D0
2k3
k1

�
2
e
��t � c

2k3
k1

�e
��t + k

✓
k2 �

2k2
k1

e
��t

◆

� µ

✓
k3 �

2k3
k1

e
��t

◆
� ↵

✓
k1 +

2� k1

k1
e
��t

◆✓
k3 �

2k3
k1

e
��t

◆

= �D0
2k3
k1

�
2
e
��t � c

2k3
k1

�e
��t + k

✓
k2 �

2k2
k1

e
��t

◆
� µ

✓
k3 �

2k3
k1

e
��t

◆

� ↵k1k3 + 2↵k3e
��t � ↵k3(2� k1)

k1
e
��t +

2↵k3(2� k1)

k
2
1

e
��t

e
��t

= �D0
2k3
k1

�
2
e
��t � c

2k3
k1

�e
��t � ↵k3(2� k1)

k1
e
��t +

2↵k3(2� k1)

k
2
1

e
��t

e
��t

= I6(�).

As I6(0) = �↵k3(2�k1)
k1

+ 2↵k3(2�k1)
k21

> �↵k3(2�k1)
k1

+ 2↵k3(2�k1)
k1

= ↵k3(2�k1)
k1

> 0, there exists a �⇤6 > 0

such that I6(�) > 0 for all � 2 (0,�⇤6).

Let �⇤ = min(�⇤4,�
⇤
5,�

⇤
6). Then we have shown that ⇢(t) = (�(t),'(t), (t)) is a lower solution

of system (3.2) for � 2 (0,�⇤).

Applying Lemma 3.8 - 3.9, we have the following theorem.

Theorem 3.2 Let R0 > 1. For every c > c
⇤ and any value of ⌧ � 0, system (3.2) always has

a traveling wave solution with speed c connecting the infection-free steady state E0 = (0, 0, 0) and

the unique homogeneous infected steady state E
⇤ = (1� u

⇤
,!

⇤
, v

⇤).

4 Conclusion

In this paper, we developed a dynamic model of virus infection with nonlinear functional response,

di↵usion, absorption due to infection, and time delay. We also considered two viral transmission

mechanisms: cell-to-cell transmission and cell-free infection. When the domain is bounded, we

studied the well-posedness of the model and discussed the linear stability of the homogeneous
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steady states of the model under homogeneous Neumann boundary conditions. More precisely,

it is proved that if the basic reproduction number is less than unity then the disease-free steady

state is globally asymptotically stable while if the basic reproduction number is larger than unity

then the infection is uniformly persistent. When the domain is the whole space, by using the cross

iteration method and Schaueder’s fixed point theorem, we attributed the existence of traveling

wave solutions to the existence of a pair of upper and lower solutions. Furthermore, when the basic

reproduction number is larger than unity by constructing a pair of upper and lower solutions, we

obtained the existence of traveling wave solutions connecting the disease-free steady state and the

homogeneous infected steady state.

We discussed how the speed of spread in space a↵ects the spread of cells and viruses. We studied

the existence of the wave speed c
⇤, which is dependent on the di↵usion coe�cient. Moreover, the

two modes of virus transmission a↵ect the minimum wave speed. A natural question is whether the

wave speed c
⇤ is the minimum wave speed cmin. For 0 < c < cmin, there is no traveling wave solution

connecting the two steady states. According to the linear theory [51], the minimum wave speed is

usually the asymptotic propagation speed, but in general the relation between the minimum wave

speed and asymptotic propagation speed remains to be further investigated.
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