A delayed reaction-diffusion viral infection model with
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Abstract: In this paper, we propose a reaction-diffusion viral infection model with nonlinear
incidences, cell-to-cell transmission, and a time delay. We impose the homogeneous Neumann
boundary condition. For the case where the domain is bounded, we study the well-posedness,
followed by the local stability of homogeneous steady states. We also investigate the threshold
dynamics which are shown to be completely characterized by the basic reproduction number. For
the case where the domain is the whole Euclidean space, we study the existence of traveling wave
solutions by using the cross-iteration method and Schauder’s fixed point theorem.
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1 Introduction

Infectious diseases such as cholera, AIDS, and malaria have posed a great threat to human health.
In order to study the spread and control of infectious diseases, a large number of mathematical
models have been developed[l, 2]. These models have been proved to be a valuable way in un-
derstanding the complex interaction between the immune response and virus infection. Spatial
diffusion models of virus infection have also been developed. For example, Komarova constructed
a virus infection model with a diffusion term to simulate the virus-antibody interaction in order
to study the evolutionary competition of split viruses [3]. Based on the classical virus dynamics
model (a system consisting of three ordinary differential equations [4, 5]), the random movement
of the virus is considered [6]. Nonlinear reaction-diffusion models can describe various physical
and biological phenomena. For unbounded domains, traveling wave solutions are important be-

cause they can determine the long-term behavior of other solutions, accounting for the transition
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phase between different physical system states, propagation modes and fields of invasive species
in population biology [7-9]. The existence of traveling wave solutions in delayed reaction-diffusion
systems has attracted great interest [10-13]. Wang et al. [6] proposed an HBV infection model
with viral diffusion and proved the existence of traveling wave solutions by the geometric singular
perturbation method.

McCluskey and Yang [14] constructed a virus infection model including diffusion, time delay
and a general incidence. They studied the global asymptotic stability of the steady state using
Lyapunov functional. In [15], Zhang and Xu established the existence of traveling wave solutions for
a delayed HBV infection model with the Beddington-DeAngelis incidence using the cross iteration
method and the Schauder’s fixed point theorem. Viral dynamics and spatial structure have been
extensively studied [14, 16]. Considering that virus diffusion consists of random diffusion and
chemotactic movement, Wang and Ma [17] proposed a dynamic model of spreading virus infection

with nonlinear functional response, chemotaxis and absorption effect,

(%(aﬁ,t) = DAu(z,t) + & — g(u(z, t),v(z, t))v(z, t) — du(x, ),
a“’(;t’t) = DAw(z,t) + g(u(x,t),v(z,t))v(z, t) — ah(w(zx,t)), (1.1)
81)(892, t) = DoAv(x,t) + V(vxe(w,v)Vw) + kh(w(z, ) — po(z, t) — g(u(z,t), v(x, t)v(z,t),

where u(z,t), w(z,t), and v(x,t) represent the densities of uninfected cells, infected cells, and
viruses at location x € 2 C R™ and at time t, respectively. € is a bounded domain in R™ with a
smooth boundary 92. The Laplacian operator and the diffusion coefficient of both uninfected cells
and infected cells are denoted by A and D, respectively. Dy is the free diffusion coefficient of viruses.
The term g(u(x,t),v(z,t))v(z,t) represents the infection of uninfected cells by viruses. The same
term was subtracted in the third equation in view of viral absorption during infection [18, 19]. The
death rate of infected cells depends on the state of infected cells, which is given by the nonlinear
removal rate h(w(z,t)). The term vx2(w,v)Vw describes the chemotactic flux of viruses, where the
function xo(w, v) represents the chemotactic response. Table 1 summarizes the biological meanings
of the other parameters. In [17], the authors mainly studied the well-posedness and linear stability
of the model. They showed the threshold dynamics in the absence of chemotaxis. In diffusive
viral models, it is needed to consider the intracellular delays in the viral life cycle. The entry of
viruses to uninfected cells will trigger a series of events, which will eventually enable infected cells
to produce new viruses. The above system (1.1) assumes that this process occurs instantaneously.
However, time delays may affect the dynamics [16, 20]. Xu et al. [21] built an HBV infection model
with time delay and saturated incidence, and studied the global stability of steady states. In order

to explore whether hyperthermia can explain the decline of CD4™ T cells during HIV infection,



Wang et al. [22] studied a time periodic reaction-diffusion model with spatial heterogeneity and

incubation period.

Table 1: Biological meanings of parameters in (1.1)

Parameter Biological description

19 The production rate of uninfected cells
d The death rate of uninfected cells

a The death rate of infected cells

k The production rate of viruses

I The clearance rate of free viruses

Although some studies have shown that cell-to-cell transmission is efficient in viral transmission,
many studies have only focused on the cell-free virus infection. During cell-to-cell transmission,
viral particles can be simultaneously transferred from infected cells to uninfected cells through
virological synapses. Sigal et al. [23] found that this transmission mode can reduce the effectiveness
of antiretroviral therapy. Martin et al. [24] showed that the risk of cell-to-cell transmission being
affected by neutralizing antibodies or cytotoxic T lymphocytes is low. Wang et al. [25] studied
the effect of the infection age and infection ability of infected cells in cell-to-cell transmission. In
addition, some studies investigated within-host models that include both cell-free viral infection
and cell-to-cell transmission [26-29)].

Some studies have shown that viral transmission through cell-to-cell is more effective than cell-
free virus infection, because cell-to-cell transmission avoids some biophysical and kinetic obstacles
[30, 33]. In order to study the influence of cell-to-cell transmission on virus dynamics, we propose
a new mathematical model, combining nonlinear incidences and the two virus transmission modes.
Time delay is also included to account for the time for an infected cell to be productive. From

model (1.1) without considering the chemotaxis of virus, we obtain the following model
ou(x,t)
ot
(2, ) =DAw(z,t) + e ™ f(u(z,t —7),w(z,t — 7))w(z, t — T)
ot (1.2)
+e "g(u(z,t —71),v(z,t — 7))v(x,t —T) — ah(w(z,t)),

=DAu(z,t) + & — f(u(z,t),w(z, t))w(z,t) — g(u(z, t),v(z, t)v(x, t) — du(zx,t),

t
O] oot 1)+ kh(e(a, 1) — o, 1) — g(uCe, ), v(e, D)o, 1),
for t > 0, x € 2, we consider the homogeneous Neumann boundary conditions as follows
ou Ow Ov
el 0 1.3
3% = 35 = o7 0, t>0, xedqQ, (1.3)



and the initial conditions

U(IE,G) = ¢1($79) >0, w(aj79) = ¢2(x’0) >0, U(ﬂf,g) = ¢3(l‘a‘9) >0, v e ﬁv 0 e [77‘7 0]7 (14)

where % denotes the outward normal derivative on 9. ¢;(x,0) (i = 1,2,3) are bounded and
uniform continuous functions on Q x [—7,0]. The Neumann boundary condition (1.3) assumes that
uninfected cells, infected cells and virus particles cannot move across the boundary 9€2. Here, cell-
to-cell transmission is modeled by the nonlinear incidence function f(u(z,t),w(z,t))w(x,t). The
constant m > 0 stands for the death rate of infected cells before viral production and hence e™™"
is the survival probability of a susceptible cell from being infected to viral production.

The functions f(u,w)w € C1([0,4+00) x [0, +0c0), R), g(u,v)v € CL([0,+00) x [0, +0c0), R), and
h(w) € C0, +00), are assumed to satisfy the following conditions.

(H1) f(u,w)w > 0 and g(u,v)v >0 foru >0, w>0,and v > 0, and f(u,w) =0 and g(u,v) =0
if and only if u = 0;

(Ha) af(uw) > 0, af(“w) <0 foru>0, w>0;

(Hs) ot s

(Hy)
(Hs) 89(“ v > 0 for u> 0, v > 0
(Hg) h(0 ) =0, W(w) > L, h"(w) > 0, and tl}gloo h(w) < 400 for w > 0, where L is a positive

constant;

>0foru>0 w > 0;

g(uv)>0 ag(uv)<0f0ru>0 v > 0;

(H7) f(u,w)w < nuw and g(u,v)v < npuv for w > 0, v > 0, and w > 0, where 1, and 7, are
some positive constants.

The structure of this paper is as follows. First, we assume that ) is bounded. In Section
2, we study the basic attributes of system (1.2), including the well-posedness of the model and
linear stability of two homogeneous steady states. It is also proved that if the basic reproduction
number is less than 1, the infection-free steady state is globally asymptotically stable. If the basic
reproduction number is greater than 1, the infection is uniformly persistent. Next, when (2 = R",
we investigate the existence of traveling wave solutions using the cross iteration method and the

Schauder’s fixed point theorem in Section 3. Section 4 gives a brief summary.

2 A threshold dynamics of (1.2) when (2 is bounded

2.1 Well-posedness of (1.2)

For topological spaces A and B, C(A, B) represents the space of all continuous functions from A

to B. Let X = C(Q, R?) be the Banach space equipped with the supremum norm || - || x. Denote



C = C([-7,0],X) to be the Banach space equipped with the norm |¢| = 6?n?ax } lo(0)||x. For
el—r,0

o > 0 and a continuous function ¥ : [-7,0) — X, ¥; € C is defined by ¥;(0) = J(t + 0) for
0 € [—7,0], where t € [0,0). Let X1 = C(Q,R}) and C; = C([-7,0],X;). Then X, induces a
partial order such that (X, X ) and (C,C4) are strongly ordered spaces.

Define T' = (T3,T3,T3) : C+ — X by

T1(9)(x) = € = f(d1(,0), pa(x,0))da(, 0) — g(¢1(x,0), d3(,0))P3(x, 0) — d1(x, 0),
Ta(9)(x) = e f(¢1(x, —7), da(, —7)) P2, —T)

e 9(91(w, =), a(z, =7))9s(x, =7) = ah(¢n(z, 0)),
T3(¢)(x) = kh(¢2(x,0)) — pgs(x,0) — g(é1(,0), ¢3(x,0))d3(x,0),

for ¢ = (¢1, d2, p3)* € Oy and x € Q. Obviously, T is Lipschitz continuous in any bounded subset

of Cy. System (1.2) can be easily rewritten as the following abstract functional differential equation

9 = AV +T(19t), t >0,
19(0) = ¢ € CJrv

where ¥ = (u,w,v)T, ¢ = (¢1, ¢2,¢3)T and AY = (DAu, DAw, DyAv)T.

Lemma 2.1 For each initial value function ¢ = (1,2, ¢3)T € Oy, system (1.2)-(1.4) has
a unique mild solution V(-,t,¢) = (u(-,t,¢),w(-,t,¢),v(-,t,¢)) on [0,ty) with Yo(-,¢) = ¢, where
ty < +00. Moreover, Vi(-,t,¢) € Cy fort € [0,ty) and V(- t, ) is a classical solution of (1.2) for
t > max(7,ty).

Proof. Note that T'(¢) is locally Lipschitzian. It follows from Corollary 8.1.3 in [31] that we only
need to show that

lim dist(¢(0) +<T'(¢),C1) =0 for ¢ € Cy. (2.1)

¢—0t

By (Hs) and (Hy), for any ¢ > 0, we have
¢(x,0) +<T(0)(z)

¢1(x,0) +<[€ — f(d1(x,0), g2(x, 0))p2(x, 0)
—9(#1(x,0), ¢3(z,0))p3(x,0) — do1(z,0)]
= G2(x,0) +c[e™™" f(¢1 (2, —7), d2(z, —7)) p2(z, —7)
+e " g(¢1(z, —7), ¢3(x, —7))P3(z, —7) — ah(P2(x, 0))]
¢3(x,0) + s[kh(¢2(z,0)) — pes(z,0) — g(é1(x, 0), ¢3(z,0))P3(x, 0)]




¢1(,0)(1 — s(m2(z, 0) + n2¢3(x, 0) + d))
> ¢2(x,0)(1 —sah’(6y)), (6 € [0,w])

¢3(, 0)(1 = ¢(p + m261(2,0)))
for z € Q. This shows that ¢(0) +<T'(¢) € C4 when ¢ is sufficiently small. Thus, (2.1) is proved.

It follows from Corollary 4 in [32] that there exists a unique mild solution (-, ¢, $) on [0,t4) with
Yo(+, ¢) = ¢. Furthermore, 9(-, ¢, ¢) is a classical solution of (1.2) for ¢t > max(7,t4).

Lemma 2.2 For ¢ € C, the following description of solutions of system (1.2) are valid.

(7) u(-,t,¢) > 0 for t > 0 and there exists a constant ko such that tlggo infu(x,t, o) > ﬁ for
x € €.

(i) Assume that w(-,tg, @) Z 0 for some ty > 0, then w(x,t,¢) > 0 and v(x,t,¢) > 0 for all
r€Qandt>ty+T.

(7i1) Assume that v(-,tg,») Z 0 for some tg > 0, then v(x,t,¢) > 0 and w(x,t + 7,¢) > 0 for
all x € Q and t > 1.

Proof. (i) According to (H7), the functions f(u,w)w and g(u,v)v are continuously differentiable

and system (1.2) is point dissipative. Thus there is a constant kg such that

du(z,t)
ot

> DAu(z,t) + & — kou(z,t) — du(x,t) for all large t. (2.2)

By (2.2), there exists small ¢ > 0 such that u(x,t) > ﬁ — ( for all large t. For any solutions

of (1.2), we have tlgrolo infu(x,t,¢) > ﬁ by the standard parabolic comparison theorem. This
proves statement (7).

(74) From the third equation of (1.2), we can easily see that v(-,tg, ¢) # 0 if w(-,to, ) # 0 for
t > to holds. Supposing v(-,tg,¢) Z 0. We first claim that v(-,¢) > 0 for ¢ > to. It follows from

Lemma 2.1 that v(x,t) satisfies

(%g? D > Dotua,t) — o, t) — glula,£), vl ol 1), w0, ¢ >t
v(@;t) _ 0, € 09, t > to.
on

By (H7), there exists sufficiently large @ such that g(u(x,t),v(x,t))v(z,t) < neuv(z,t) and u(z,t) <
@ . Let 0(z,t) be the solution of

augz, t) _ DoAG(x,t) — po(z, t) — pativ(z,t), © € Q, t > t,
W) o weon, t >t
on

o(z,to) = v(x,tg), x € Q.



We prove that o(x,t) > 0 for t >ty and = € Q by contradictory methods. Otherwise, (g, t1) =0
for g € Q and t; > tp. It follows from the strong maximum principle (Theorem 1.1.5 in [35]) that
0(x,t) = 0 for all ¢ > tp, which is a contradiction with o(-,tp) # 0. According to the parabola
comparison theorem (Theorem 7.3.4 in [36]), it can be obtained that v(x,t) > v(z,t) > 0 for t > tg
and x € Q. This proves the claim. Next, suppose that w(z,t2) = 0 for € Q and ty > to+7. When

w(z,t) > 0, we obtain %‘Z’t?) = 0. Recall that h(w(Z,t2)) = h(0) = 0. From the second equation
of (1.2), we can see that
Ow(Z,t
ng’z) =e "g(u(z,ta — 7),v(T,te — 7))v(Z,t2 — T) > 0.
2

This leads to a contradiction with u(z,t2 —7) > 0 and v(Z,t2 — 7) > 0 by (H;). This proves the
claim.

(7i7) The proof is similar to that of (i) and hence is omitted. This completes the proof.

Theorem 2.1 For any ¢ = (¢1, ¢2,¢3) € C, system (1.2) has a unique solution 9(-,t,¢) =
(u(-,t,¢),w(-,t,0),v(-,t,9)) on [0,+00) with Y9 = ¢, and the solution semiflow ®(t) =I(-): Cy —
Cy+ of system (1.2) has a global compact attractor in C,..

Proof. Firstly, let Z(x,t) = e”™ u(x,t — 7) + w(x,t) for x € Q, t € [0,ty). It follows from system
(1.2), (Hg), and the mean value theorem that
0Z(x,t) - ou(x,t — ) n ow(z,t)

ot ot ot
= DA(e " u(z,t —7) +w(x,t) + e "E —de” " u(z,t —7) — ah(w(zx, t))

= DAZ(x,t) +e "¢ — e ™ du(x,t — 1) — ah/(0)w(z,t) (O € [0,w])
< DAZ(x,t)+e ™E—r1Z(x,t),

where 71 = min{d, aL}. From [34], we know that %ﬂ:% is the steady state of the global attractive

steady state for the scalar parabolic equation

8Zg:’t) - DAZ((L"t) +6_mT£7T1Z($7t)a T € Q, t> 07
MZO, x €00, t>0.
on

According to the parabola comparison theorem (Theorem 7.3.4 in [36]), it can be obtained that
u(x,t)+w(z,t) is bounded. From the nonnegativity of u(x,t) and w(x,t)(Lemma 2.2), we have that
u(x,t) and w(z,t) of system (1.2) are bounded. Therefore, we assume that there exist sufficiently
large @ and @ such that 0 < u(z,t) <@ and 0 < w(z,t) < @.

Secondly, we let v = %@) For any v(z,t), we consider the operator C as follows

Cu(z,t) = vy — DoAv — kh(w(z,t)) + pov(z, t) + g(u(z, t), v(z, t))v(z, t).



Clearly,

Cv = pv + g(u,0)v — kh(w) > pv — kh(w) = kh(w) — kh(w) = 0 = Cv(z, t).

It is easy to see that % = 0 based on the boundary 0f). Hence, v = ¥ is an upper solution of the
third equation in system (1.2). From the comparison principle, we have 0 < v(x,t) < ©.

Finally, from the above discussion, we know that the solutions u(z,t), w(x,t), v(x,t) of system
(1.2) are bounded on Q x [0,¢4). By the standard theory of semilinear parabolic systems [37, 38],

we can deduce that t, = 400, otherwise which lead to a contradiction with lim ||| = 4+o00. In
—t
$
addition, it can be concluded that the solution semiflow ®(t) = ¥4(-) : C+ — C4 defined by

(®(t)9)(x,0) = Iz, t +0,9) for 0 € [-7,0], z€Q, t >0,

is point dissipative. It follows from Lemma 2.2 in [40] that the solution semiflow ®(¢) is compact for
each t > 7. By Theorem 3.4.8 in [39], ®(¢) has a global compact attractor in C'y. This completes
the proof.

2.2 Linear stability of homogeneous steady states

System (1.2) always has a unique infection-free steady state Ey = (ug,0,0) = (g, 0,0). It follows
from the next generation matrix operator [41, 42] that the basic reproduction number of system
(1.2) is given by

e f(up,0) e "kg(uo,0)
H0=aw©) T alet gl 0)°

It represents the expected number of the next generation of newly infected cells produced by a single
infected cell in a wholly susceptible population. The proportion of newly infected cells surviving

to viral production is e=™7. Here, %(%L)O’O) represents the total number of newly infected cells

produced by a single infected cell. This is the basic reproduction number of the corresponding model

e ™" kg(uo,0)
a(p+g(u0,0))

infection of cells from viruses produced by a single infected cell.

with cell-to-cell transmission. is the total number of newly infected cells generated by

Note that a homogeneous steady state E* = (u*, w*, v*) satisfies
§ = fu,w)w = g(u,v)v — du =0,
e "™ f(u,w)w + e ™ g(u,v)v — ah(w) =0, (2.3)

kh(w) — pv — g(u,v)v = 0.



Through direct calculation, we obtain

& —ae"h(w)
u= y :
f (%W,w) w — ae™ h(w) + kh(w)
v = :

7

It is easy to see that u > 0 if and only if w € (0,h~'(=5=)]. We substitute u and v into the first

ae™mT

equation of system (1.2) and get

€ — ae™ h(w) f (%Jh(w),w) w — ae™ h(w) + kh(w)

d ’ U
§—ae™h(w) mr
. (f (f’w) w—ae h(w) + kh(w)) i f (5 - aemTh(W)M) W — aemTh(w) =0.
7 d
Define
_ pemT F () ) w — ae™ h(w) + kh
u
f (%W,w) w — ae™ h(w) + kh(w)
w
+f <5 — ae’;”h(w) , w> w — ae" h(w).
Clearly,
(i) F(0)=0;
(il) F'(0) = f(up,0) + %(f(uo, 0)g(uo, 0) — ae™ h'(0)g(uo, 0) + kh'(0)g(up,0)) — ae™ h'(0)
_ ae™™h'(0)(u+g(uo,0)) (RO . 1)
W Y

(ili) F(h~1(=5%)) = —€ < 0.

aemT

It follows from the Intermediate Value Theorem that there exists w* € (0 such that

e
9 h—l(aem‘r)
F(w*) =01if Ry > 1. Next, we prove that there is only a unique homogeneous infection steady state
E* = (u*,v*,w*). In fact, this follows from the fact that F'(w*) < 0 proved below. By (Hg) and
the second and third equations of (2.3), we obtain w*h/(w*) > h(w*), ae™ = Q) g (u” v Jut

h(w*) ’
_ v (utg(urvr))
and k = “h?w*) . Then

[ ad . Bglut,et) | dglut,vt) B
F(w*)-( y h'(w*) 9 T 90 )"



mT 5] *7 * 0 *7 * * * * mT !, %
+ (_aed (w*) f(?)uw ) + f(gww )>w + f(u",w") — ae™ h(w")

_ae™ L\ Og(utivT) 0g(u*, v*) dv
=-— R (w*) o v—i—( 50 v* 4+ g(u*,v") W

_ae™ W Of (W) Of (ut, W)
+ < d Pw) ou + ow

_ae™ L Og(utvt)
B d Pw) u ©
19(g(u™, v )v") [ ae™ L Of(u, W) Of(ut, W)
+ 7 ov d Pw") ou + ow v

I ov
+ (_ae;’” (w*)af(zg; ) + 8f(15:w*)> w* + f(u*,w") — ae™h' (W)
S ﬂh,(w*)ag(u*’v*)v*
d ou
N <;3(9(ugvv*)v*) N 1> (_ ae;T h/(“*)ﬁf(gzw*) N 3f(g:w*)> o
+ ia(g(ugvv*)v*) (f(u* w*) - aemrh/(w*) —i—kh/(w*)) —i—f(u*,w*) _aem'rh/(w*)
_ae™ Og(u v*)
== h( ) v
(s (g ongen),
1 9(g(u”, v")v") ) f(u ,Whw* £ g(u, v )",
U%(f( - ) )
1 9(g(u”, v )v*) v*(p + g(u*,v)) e ey ST W) 4 g(ut 0ot
45 R P )+ f ) - o ()
_ae™ 89(u v*)
== h (w ) v
N (;3 +1> ( (guvw ), af(gu;w )> o
+;8( g(u* = )v ) <f(u* o) — f(u c;;(zd*)h( ) /}f(flw(u)f)>
e 20 )
d ou
N (;3(9(16;:*)0*) +1> (—ae;Th’(w*)af(g;;w*) n 3f(g:w)> o
19(g(u”,v")v") > ( - f(u*aW*)w*h’(w*)>
+ < +1) | flu",w") —
w dv h(w*)
. [(Og(u”,v%) e o) W) gt vt ot (W)
+v < I +g(u,v)> @) ()

10



R R
<;8(g(u:a,vv:)v:) +1> (_ae;'” h,(w*)ai(gzw**) + éif(g:;w*)>w*
+ g%Wto (f(u*’w*) iC ,c;(iji)h ( >)
+= gv e h(;U:)

<0.

This proves the fact. Next, we prove that system (1.2) has no homogeneous infected steady state
when Ry < 1. If Ry < 1, it is obvious that F’(0) < 0. Note that F(0) = 0 and there exists a
sufficiently small w; > 0 such that F(w;) < 0 for wy € (0,h~*(=5=)]. From the above mentioned

aemT

fact, we can easily see that there is no homogeneous infected steady state when Ry < 1. When
Ry = 1, the contradiction method is used to prove that there is no homogeneous infected steady
state. Otherwise, we assume that F'(w;) has a positive zero say wj. From F’'(w]) < 0, we conclude

that F(wi) > 0 for w; < w? close enough to w*. Thus, F(w;) < 0 for w; € (0,h~1(=5+)] when

ae™T

Ry < 1. We fix w; € (0,w]) and select a series of parameters such that Ry < 1 but converges to 1.
Clearly, F'(w1) converges to F'(w}) > 0, which is a contradiction.
To summarize, we have proved the following result on the existence of homogeneous steady

states.

Theorem 2.2 (1) If Ry < 1, then the only homogeneous steady state of system (1.2) is the
infection-free steady state Ej.

(2) If Ry > 1, then besides Ey, system (1.2) also has a unique homogeneous infected steady state
E*.
Next, we investigate the linear stability of the homogeneous steady states.

Theorem 2.3 If Ry < 1, then the infection-free steady state Ey = (ug,0,0) is locally asymp-
totically stable. If Ry > 1, then Ey is unstable.

Proof. Denote N = (u,w,v), Ny = (ur,ws,v;), D1 = diag(D, D, Dy). Taking the linearization of
system (1.2) at Ey, we obtain

88]27 = D1{AN + A1N + AoN,,
where
—d —f(up,0)  —g(uop,0) 0 0 0
A = 0 —ah/(0) 0 ;o A= 0 e ™ f(uo,0) e " g(up,0)
0 kh'(0)  —p — g(up,0) 0 0 0

11



The corresponding characteristic equation is obtained as follows

IANE + Dyl2 — Ay — e M Ay| =0, (2.4)

where [ > 0 belongs to the set of wave numbers and A is the characteristic value that determines

temporal growth (Theorem 2.3 in [43]). Substituting the matrices A;, A2 and D; into (2.4) yields

(A + DI* +d)g1(\, 1) = 0,

where
g1\ 1) = (A4 DI+ ah’ (0)) (A + Dol® 4 p + g(ug,0))

— (A + Dol + 1+ g(uo, 0))  (uo, 0) + k' (0)g(uo, 0))e~ "7,
The stability of Fy is determined by the roots of g1(\,l) = 0. For the case Ry > 1, noting
[ = 0 is a wave number, with [ = 0, we have ¢1(0,0) = ah/(0)(1 + g(uo,0))(1 — Ro) < 0 and
/\EToo 91(A,0) — +oo. Thus, there exists A\g > 0 such that g;(Ao,0) = 0. Therefore, g;(\,0) = 0
admits at least one positive real root, which implies that Ey is unstable when Ry > 1.

Now, assume Ry < 1. Note that, g1(A,!) = 0 can be rewritten as

_ [ f(uo,0) kh'(0)g(uo,0) ] o~ (mEN)T (2.5)
A+ DIZ+al'(0) (A4 DI2 + al/(0))(A + Dol? + p + g(ug,0)) ' '

We claim that all roots of g1(\,l) have negative real parts. Otherwise, there exists [y such that

there exists Ao with Re(\g) > 0 satisfying (2.5) with [ = lp. Then
1= ’ |: f(u070) + kh/(o)g(u070) :| 67(m+)\0)7
(Ao + DI3 4+ ah’'(0)) (Ao + DI2 + al(0))(Xo + Dol3 + p + g(ug, 0))
f(u07 O)e_mT e*)\oT
(Ao + DI3 + ah’(0))
< f(up,0)e™™"  kg(ug,0)e”™"
- ah(0) a(p+ g(uo, 0))
= R,

kR (0)g(ug, 0)e=™"
(Mo + D2+ ah/(0)) (Ao + Dol2 + 11+ g(uo, 0))

—AoT

°

which leads to a contradiction. Therefore, Ej is locally asymptotically stable when Ry < 1.

Theorem 2.4 If Ry > 1, then the homogeneous infected steady state E* = (u*,w*,v*) is
locally asymptotically stable.

Proof. Let N, N, and D be the same as those in the proof of Theorem 2.3. Denote f* =
flum,w?), fo=nend ) pn = YLD - gr — gut0%), g = 2L and g = 2000 The
linearized system of (1.2) at E* is

N
887 = D1AN + B1N + BoN,,

12



where

—fuwt — gt —d —fiwt =T —gput —g°
By = 0 —ak/(w*) 0 :
—gyv* k(W) —p—gpv* —g°
and
0 0 0
By=| e ™ (faw" +gpv*) e M (fow" + f*) e ™ (gpvt +g7)
0 0 0

The characteristic equation is

or

(A + DI + ah'(w*))[(A+ DI + faw™ + d)(A + Dol® + pu + gyv* + g*) + (A + Dol® + p)gyv*] =
(A + DI + d) [k (") (gsv™ +g%) + (F50™ + FYA+ Dol® + i+ ggo™ + g*)Je” "7,
(2.6)

where as before, [ belongs to the set of wavenumbers. Now, we use the method of contradiction to
prove that all roots of (2.6) have negative real parts which implies that E* is locally asymptotically
stable. Otherwise, there is one root A\g with Re(\g) > 0 for some ly. Then

(Ao + DIg + d)
(Mo + DI§ + faw* +d)(Xo + Dolg + p+ giv* + g*) + (Mo + Dolg + p)giv*

KR/ (@) (go" +g7)e MO (frw® 4 £) (Mo + Dolg + p + gio” + g)e MO
Ao + DI3 + ah/(w*) Ao + DI + ah/(w*)

_ ‘ (Ao + DIZ + d)
~ [ (Ao + DI§ + fiw* + d) (Ao + Dolg + p+ gzv* + g*) + (Ao + Dolg + p)giv*

. (k(giv* +g%)e ™" n (fiw* 4+ 1) (Ao + Dolg + p + gsv* + g*)e™™" )
a ah/(w*)
(Ao + DI3 + d) (Ao + Dold + pu+ giv* + g*)
‘ (Mo + DI§ + frw* 4 d)(Ao + Dol§ + p + gzv* + g*) + (Mo + Dol + p)giv*
, ( k(gyv* +g*)e ™" (fow™ + f*)e‘””>
a(Xo + Dol + p + giv* + g*) ah’(w*)
= ‘ (Ao + DI§ + frw* 4+ d)(Ao + Dolg + p + g5v* + g*) 4+ (Mo + Dolg + p)giv*

(Mo + DI3 + d) (Ao + Dol3 + pu + giv* + g*)
. (k(g;"v* +g% e (fowt + f*)e””>

a(p+ ggv* + g*%) ah’(w*)

1|

This is impossible as shown below.
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On the one hand, note that

ah(w*)  a(p+g*)

—mT

This, combined with

b < b
W (w*) hw*) p+giv+g°  p+g*

h(w*) < W (w*)w™,

from (Hp) — (Hg), gives us

(fjw* —I—f*)€7m7 k(g;"v* _‘_g*)efm‘r

<1.
ah/(w*) a(p+ gyv* + g*)

On the other hand, we can check that (Ao + DI3 + fiw* + d)(Ao + Dold + p+ giv* + g*) + (Mo +
Dol3 + w)giv*| > |(Ao + DI3 + d) (Mo + Dol3 + p + giv* + g*)|. In fact, denote

A= (Ao + DI+ faw* +d)(Xo + Dol§ + pu+ giv* + g%) + (Ao + Dolg + p)giv*,
Az = (Mo + DIZ+d) (Mo + Dold + p + giv* + g*).
Let Ao = zg + 1yo. Then
A2 = ((zo + DI + fiw* + d)(zo + Dol§ + p+ giv* + g*) + (z0 + Dol + ) giv* — y3)?
+ (2z0 + (D + Do)l§ + fow* +d+ p+ giv* + g* + giv*)?yg
and
1Ao2 = ((zo 4 DIZ + d)(zo + Dol? + pu+ giv* + g*) — y)?
+ (230 + (D + Do)l§ + d + p+ giv* + g°)y5.
Thus,
|A112 = |A2)? = [(zo + DIZ + fiw* + d)(wo + Dol + p + giv* + g*) + (xo + Dol? + p)giv*)?
— [(wo + DI + d)(z0 + Dol2 + 1+ giv* + g*)]?
+ 2[(frw* + giv*)? + 2g5v* (zo + DIZ + d + giv* + ¢%) + 2f w* (xo + DI2 + d)]

> 0

as fi >0, ¢g& >0, and giv* + g* > 0, which implies that |A;| > |Aa|. This completes the proof.

2.3 A threshold dynamics

For convenience, besides X and X, we denote Y := C(Q, R) and Y} = C(Q, Ry).
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Theorem 2.5 When Ry < 1, the infection-free steady state Ey = (ug,0,0) of system (1.2) is
globally asymptotically stable.

Proof. We construct the following Lyapunov functional,

L(t) = /Q <emm(x,t)+zem%(x,t)+ /t o Flu(z, s),w(z, s))w(z, s)ds

-7

+ /t ™ e, ), v(z )o(, s)d5> da.

—T
For convenience, we denote z = z(z,t) and z; = z(z,t — 7) for z = w,w,v. Calculating the

directional derivative of L(t) along the solutions of system (1.2), we obtain

dL(t) mrOw @ . 0v
= /Q (e 5 + ke T [y, wr)ws g(uT,vT)UT> dx
:DemT/ AwderDoemTa/Avdx/vemTa(u+g(u,v))dx.
Q k Ja Q k

According to the Divergence Theorem and homogeneous Neumann boundary conditions, we get

/Awd:z:— d:U—O/Avd:E—/
GQ 8Q

Therefore,

r @
— = ¢ k/ﬂv(u—kg(u,v))d:z:.

Hence, %}Et) < 0 for all u(x,t), w(z,t), v(x,t) > 0. Moreover, dzgt) = 0 if and only if v = 0.

This, together with system (1.2), implies that the Largest invariant set My C M = {(u,w,v) €
(oML dL( t) = 0} is the singleton {Ey}. According to LaSalle’s Invariance Principle, the infection-free
steady state Fy is globally asymptotically stable when Ry < 1. This completes the proof.

Recall that the linearized system of (1.2) at the infection-free steady state Ey is

ou

% = DAuy — ah!(0)uz + "7 f(ug, 0)uz + e~ g(ug, 0)us, 2.7)
ou

aTg = DoAusz + kh'(0)ug — (1 + g(uo, 0))us,

with the boundary conditions

aul o au2 o 6u3 o
%—%—%—Oforxeafl, t>0.

It follows from system (2.7) that we can combine the last two equations into a cooperative sys-

tem. Substituting uz(z,t) = eM¢i(x) and uz(x,t) = e Mpo(x) into ug,uz, we get the following
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characteristic problem
Ap1(z) = DAGy(x) + (€77 f(uo, 0) — ah’(0)) b1 (x) + e~™7 g(uo, 0)da (),
Ap2(z) = DoAdy(x) + k' (0)dr(x) — (1 + g(uo, 0))p2(2), (2.8)
9orle) _ 003(0) _ ) for ¢ € B, ¢ > 0.

The uniform persistence of system (1.2) is elicited by applying the following results.

Lemma 2.3 The eigenvalue problem of (2.8) has a principal eigenvalue \o(D, Dy, ug) associ-

ated with a strongly positive eigenvector.
Lemma 2.4 Ry — 1 has the same sign as \g.

Lemma 2.5 If Ry > 1, then there exists ¢g > 0 such that for any ¢ € Cy with ¢2 # 0, the

solution u(t,x, @) of system (1.2) satisfies

limsup |u(t, -, ¢) — (uo0,0,0)[|c, > eo.
t——4o00

Proof. 1t follows from the second equation of system (1.2) and (Hg) that

%—C: > DAw — ah(w) > DAw — ah/(®)w.

By the parabola maximum principle, we obtain

w(z,t) >0, t>0, z €. (2.9)

Since Ry > 1, we have A\g > 0 by Lemma 2.4. Given ¢ € (0,up], we let A\g(¢) be the principal

eigenvalue of the following elliptic eigenvalue problem
Ap1(x) = DAy () + (e ™ f(ug — €,e) — ah/ () d1(x) + e " g(ug — €, €)pa(x),
Ap2(x) = Dol () + kh'(0)¢1(x) — (1 + g(uo + €,0)) P2 (),
9or(x) _ 9%20x) — ¢ for 2 € OQ, t> 0.

Clearly, we have limJr Xo(g) = Ao. Therefore, there exists a sufficiently small number gy € (0, ug]
e—0
such that Ag(eg) > 0. Now, we prove the result with contradictive arguments. Assume that there

exists ¢ € X4 with ¢o # 0 such that

lim sup ||u(t, -, ) — (u0,0,0)||x, < €o-
t——+o00
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Then there is T7 > 0 such that

up — o < u(w,t) < eg +ug, w(x,t) <eg, v(w,t)<ego for t>T) —7, x€Q.

It follows that for ¢t > 17,

0
8—(': > DAw + (e_mTf(U(] — €0, 60) - ah/(SO)) w + e_ng(UO — €0, 50)’”7
0
ait’ > DoAv + kI (0)w — [+ g(ug + 20, 0)]v.
We consider
61/1 —mT / —mT
H = DA + (6 f(uo — €0, 80) —ah (60)) v +e g(UQ — 50,80)V2,
81/2 ’
E = DyAvy + kh (0)1/1 — [,u + g(uo + &g, 0)]V2.

It follows from (2.9) with (v1(x,0),v2(z,0)) = (w(x,0),v(z,0)) for (x,0) € Q x [Ty — 7,T1] and
% = % = 0 and A\p(gp) > 0 that

lim vi(z,t) = lim wve(x,t) = +oo.
t——+00 t——+00
By the Comparison Theorem, we have

(w(z,t),v(z,t)) > (11 (z,t),v2(x,t)) for t > T7.

This leads to a contradiction.

Next, we are ready to establish the uniform persistence of system (1.2).

Theorem 2.6 If Ry > 1, then there exists § > 0 such that for any nonnegative solution
'U:(t, L, ¢) with ¢2 7é 07
lim infw(z,t) >4, lim info(x,t) >0

t—-+o0 t——+o0

uniformly for x € Q.

Proof. Define

W =A{¢=(d1,02,¢3) € Cy : g2 #0 and ¢3 # 0}

and

OW :=Cp \W={peCy:¢p2=0 or ¢3=0}.
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It follows from Lemma 2.1 that W is a positive invariant set. Next, we define

My :={¢p € Cy: D)€W, t>0).

Let w(¢) be the omega-limit set of the orbit of ®(¢) through ¢ € Cy and M; := {(up,0,0)}. Then
we show Ugenr,w(¢) C M. In fact, for any ¢ € My, we have ui(¢) € OW. For t > 0, we have that
either w(t,¢) = 0 or v(t,¢) = 0. We claim that w(t,¢) = 0 for all ¢ > 0. Otherwise, w(t,¢) Z 0
for some ¢; > 0. Then by Lemma 2.2 (ii) that w(t,¢) > 0 and v(¢t,¢) > 0 for t > t;1 + 7, a
contradiction to w(t, @) =0 or v(t,¢) = 0 for all ¢ > 0. This proves the claim. The claim, together
with the second equation of (1.2) and Lemma 2.2 (i), gives v(t,¢) = 0 for ¢ > 0. Then it follows
from the first equation of (1.2) that tlif& u(t,x) = up uniformly for x € Q. Therefore, we have
Ugenpw(9) C M.
Define a continuous function p : Cy — [0, 00) by

p(¢) = min{min gs(z,0), min gs(z,0)} for ¢ € .
e €2

One can easily see that p~1(0, +00) C W. If p(¢) = 0 where ¢ € W or p(¢) > 0, then p(®(t)(¢)) > 0
for all ¢ > 0 . Thus, p is a generalized distance function for the semiflow ®(¢). Note that ®(t)(¢)
converges to Ey in My and {Ep} is an isolated invariant set in C'y, and W*(Ey) N W = (), where
W (Ey) is the stable set of Ey. Moreover, there is no cycle in My from Ej to Ey. By Theorem 3
in [46], there is a § > 0 such that min{p(y))} > 0 for any ¢ € W. This completes the proof.

3 Existence of travelling wave solutions when ) = R"

Spatial effect plays an important role in studying the propagation speed of infectious diseases. For
cooperative systems, some researchers have proved that the spreading speed is equal to the minimum
wave speed [44]. For some non-cooperative systems, it has been shown that the spreading speed is
also equal to the minimum wave speed [45]. However, it is still unknown if there is a similar result
for other non-cooperative systems, including virus infection models. It was found through numerical
simulations that the virus propagation speed may be greater than its minimum propagation speed
[43]. Under such circumstances, it is extremely difficult to calculate the spread speed of the virus.
However, one can study the traveling wave solutions, which can be used as a function of measurable
parameters for quantitative prediction. In this section, we study the existence of traveling wave

solutions of (1.2) when Q = R".
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3.1 Preliminaries

We adopt some notations for the standard ordering in R3. For u = (uj,u2,u3)’ and v =
(v1,v9,v3)T, we denote u < v if u; < w;, i =1,2,3; v <wvifu<ovbutu#uv, andu < v
if u < wvbutu # v, i=123 If u<w, wealso denote (u,v] = {w € R* : u < w < v},
[u,v) = {w € R3:u < w < v} and [u,v] = {w € R? : u < w < v}. We represent the Euclidean
norm in terms of | - | in R? and the supremum norm in terms of || - || in C([—7, 0], R®).

For convenience, we assume that uninfected cells, infected cells and viruses have the same
diffusion coefficient Dg. We also assume that f(u,w)w = fuw, g(u,v)v = auv, and h(w) = w.

Thus, the model becomes

% = DoAu + £ — fu(z, t)w(zx, t) — au(z, t)v(z,t) — du(z,t),
(?;; = DoAw + e " pu(z,t — T)w(z, t —7) + e "Tau(z,t — T)v(z, t — 7) — aw(x, t),
?): = DoAv + kw(x,t) — po(z,t) — au(x, t)v(z,t).
To facilitate the calculation, we introduce the dimensionless variables by letting
u:gu, v:ZU, w:zw, t=dt, B:%, 07:3—5,
_a + k _ p - Dy - m
a d7 d7 l’l/ d’ 0 d ) d T T
After dropping the bars on u, v, w, t, 5, «, a, k, u, Dg and 7, we get
ou
i DoAu+ 1 — pu(z, t)w(x,t) — au(z, t)v(z, t) — u(zx,t),
0
% = DoAw + e Bu(z, t — Tw(z,t —7) + e T au(z, t — T)v(z,t — ) — aw(z,t),  (3.1)
0
8—: = DoAv + kw(z,t) — po(z,t) — au(z, t)v(x,t).

Recall that system (3.1) always has a unique infection-free steady state Ey = (1,0,0). In addition,

o Be_me ake—dm‘r

when Ry > 1, where Ry = a(ita)

it also has a unique homogeneous infected steady

state E* = (u*, w*, v*), where

ot — —(uB + ka — aaed™™) + /(uB + ka — aaedn)? + 4aBpaednT
208 ’
o 208 + pf + ka — aae®™ — \/(ufB + ka — aaedmT)? + dafuaedm
2aBaedmT ’
. k(208 + pB + ka — agedn — V(1B + ka — aaednT)2 + daBuaedmr)
0T aaedn(uf — ka + aaedn™ + \/(uf + ka — aae®n™)? 4 dafuaetnT)

The objective of this section is to find traveling wave solutions connecting the infection-free steady

state Ey and the infection steady state E*. In order to simplify the mathematical analysis, the
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following changes are made to the variables 4(z,t) = 1 —u(z,t), &(z,t) = w(z,t), 0(x,t) = v(z,t).
We remove the hats and get

%1: =DoAu — u(w,t) + (1 — u(z, t))w(@, 1) + a(l — u(z, t))v(w,1),

ow —dyr

Sy =DoAw+e T B(1 — ula,t = T)w(e,t — 7) (3.2)
+ e*mea(l —u(z,t —7))v(x,t — 1) — aw(x, t),

% =DoAv + kw(z,t) — pov(x,t) — a(l —u(x, t))v(z,t).

System (3.2) always has a unique infection-free steady state Ey(0,0,0). When Ry > 1, it also has
a unique homogeneous infected steady state E*(1 — u*, w*, v*).
To prove the existence of traveling wave solutions of system (3.2), we study the following general

reaction-diffusion system with time delay

%l: = DoAu + fi(w(x),wi (), ve(x)),
(z)t = DoAw + fo(ur(z), wi(z), ve()), (3:3)
(ij = DoAAv + fy(us(x), wi(x), vi(2)),

where t € R, z € Q = R3 Dy > 0, fi € C([-7,0,,R*) — R (i = 1,2,3) is continuous and
ut(z) € C([—7,0], R) is given by us(x)(s) = u(t+s,z), s € [-7,0], where for any fixed x € Q, wi(z)
and v¢(z) are defined similarly. We also assume that the reaction term of system (3.3) satisfies the
following the partial quasi-monotonicity (PQM) conditions [49, 50].

(PQM) There are three positive constants 3; > 0 (i = 1,2,3) such that

fer(o1,01,91) = fea(d2, 2, ¥2) + B1(41(0) — ¢2(0)) >0
fea(@1,01,91) — fea(d1, 02, ¥2) + Ba(p1(0) — ¢2(0)) > 0,
fea(1, 01, 91) — fea(d2, 1, 91) <

fea(d1,01,91) — fes(d2, 02, vb2) + B3(11(0) — 12(0)) > 0

where ¢;, @i, 1¥; € C([—7,0],R), i = 1,2, with 0 < ¢2(s) < ¢1(s) < M1, 0 < pa(s) < ¢i(s) < My,
0 < a(s) < i(s) < Ms, s € [—7,0].

A traveling wave solution of system (3.3) is of the form u(z,t) = ¢(z - e + ct), w(x,t) =
o(x-e+ct), v(z,t) = (x-e+ct), where ¢, ¢, ¥ € C?>(R,R), ¢ > 0 is the wave speed, and e

is a unit vector in R™. Substituting these expressions of u, w, and v into (3.3) and denoting the
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traveling wave coordinate x - e + ct by ¢, we get the corresponding wave equation

D0¢H(t) - C¢,(t) + fcl(¢t7 Pt ¢t) = 07
DDSO//(t) - CSO/(t) + f02(¢t) Pt, lbt) = 07 (34)
DOwH(t) - C¢,(t) + fc3(¢t7 Pt ¢t> = 07

where 61(C) = 6(C + 1), ¢u(C) = (¢ + 1), Y(C) = Y(C +¢), the functions fu(6,4,0) : X, =
C([~ecr,0], R?) — R (i = 1,2, 3) are defined by f.;(0,p, ) = fi(¢¢, ¢ ), and

¢C(S) - ¢(CS)7 (PC<S> - ¢<05)7 W(S) - 1?(03)7 s € [_7—7 0]7 i1=1,2,3.

Based on [47, 48], we propose the following assumptions
(Al) fl(07070) :fi(kl)k27k3):0) 2217273
(A2) There are three positive constants L; > 0 (i = 1,2, 3) such that

|fi(®) = fi(W)] < Lil[® — ||

for ® = (¢1,¢1,91), ¥ = (¢, p2,%2) € C([—T,0], R?) with 0 < ¢i(s) < My, 0 < pi(s) < Ma, 0 <
Yi(s) < M3, s € [—1,0], M; > k; (i=1,2. j =1,2,3) are positive constants.
(A1) implies that (0,0,0) and (k1, k2, k3) are two steady states of (3.3). Without loss of gener-

ality, we assume the boundary conditions for traveling wave solutions,

lim (6(1), ¢(1),¥(1)) = (9-, o, 9-) = (0,0,0),

t——o0

lim (6(1), (1), (1)) = (04, p+,U+) = (K1, k2, k3),

t—+o00

(3.5)

and seeking for traveling wave solutions to connect the two steady states.
In order to apply the Schauder’s fixed point theorem, we consider the continuity of operators.
For this purpose, a topology is introduced in C(R, R?). Let po > 0 and equipped C(R, R?) with

the exponential decay norm given by
@], = sup e 1 D(t)|ps.
teER
Define
Buy(R, R®) = {® € C(R, R?) : |B,,, < o).
It is easy to show that (B, (R, R%),| - |.,) is a Banach space.

For system (3.3), we give the definitions of upper and lower solutions as follows.
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Definition 3.1 A pair of continuous functions p = (¢, ,%) and p = (¢,0,%) are called a
pair of upper and lower solutions of system (3.3) if there is a finite set of multiple points A =
{t1,ta, -+ ,tm} such that p and p are twice continuously differentiable in R\ A, they are essentially
bounded on R\ A, and

DOQ_SH(t) — Cd_)l(t) + fcl(d;t’ @tqu;t) S 0’ a.e. in R’
Do@”(t) - C@/(t) + fc2(@7 957% Q;t) S 07 a.e. in R’
DOQZ”(t) — C?,Z_),(t) + ch(d;t’ @t» szjt) S 0’ a.e. in R’

and

a.e. in R,

Dod (t) — ¢/ (t) + fer (e, oe,101) >

0,
Doy" () — e/ (t) + fea(dr, prbt) > 0, ace. in R,
Doy () — e/ () + fea(¢ts @1, ¥e) > 0,

a.e. in R.

3.2 The existence of traveling wave solutions for system (3.3)

In this subsection, we study the nonlinear reaction term of system (3.3) that satisfies (PQM).
In addition to this, we also assume that a pair of upper and lower solutions satisfy the following

properties

(P1) (0,0,0) < (g(t), @(t), ¥(1)) < (&(t), ¢(t), ¥(t)) < (M1, M2, M3), t€ R.
(Py) 1im (8(t), (), %(t) = (0,0,0), Mlim ((t), @(t),¥(t) = (kn, k2, ks).

t——+o0

Let Cx (R, R?) = {(¢,0,7) € C(R,R?) : (0,0,0) < (¢(s), p(s),%(s)) < (M1, My, M3), s € R}.
For the constants 31, B2, #3 > 0in (PQM), define H : Cx (R, R®) — C(R, R®) by

H1(¢7 %W(t) = fcl(¢t> %ﬂ/}t) + Blgb(t))
Hy(¢, 0, 9)(t) = fea(dt, 1, 1bt) + Bao(t),
H3(¢a ©s ¢)(t) = fc3(¢t7 P, wt) + 537/)(0

The operators Hi, H» and Hj3 have the following properties.

Lemma 3.1 Assume that (A1) and (PQM) hold. Then

Hy (o1, p2,12)(t) < Ha(o1, 01,91)(t), Ha(d1,e1,91)(t) < Ha(dz,01,91) (1),
H (1, ¢1,91)(t) = Ha(¢1, @2, 91)(1)

for (@i, 0i,0;) € Cr (R, R?) with 0 < ¢a(s) < ¢1(s) < My, 0 < pa(s) < p1(s) < Ma, 0 < hs(s) <
P1(s) < M3, s€R, i=1,2.
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Proof. By (PQM), we calculate

Ha(¢1,p1,91)(t) — Ha(o1, p2,%2)(t) = fea(o1,01,9%1) — fea(o1, p2,%2) + B2(¢1(0) — ¢2(0)) > 0
Hy (2, 01,91)(t) — Ha(91, 01,91)(t) = fea(P2, 1,%1) — fea(@1,1,%1) > 0,
Ha(¢1,p1,91)(t) — Ha(o1, 02, ¥1)(t) = fea(@1, 01,9%1) — fea(P1, 02, 91) + B2(01(0) — ©2(0)) > 0.

This completes the proof.

Lemma 3.2 Assume that (A1) and (PQM) hold. Then for any (0,0,0) < (¢, ¢,v) < (k1, k2, k3),
we can obtain

(1) Hi(o, 0, ¥)(t) 2 0, H3(d,9,4)(t) 20, t € R.

(1) Hi(¢2,92,%2)(t) < Hi(¢1, o1, ¥1)(t), Hs(d2,p2,2)(t) < Hs(d1,1,91)(t) for t € R with
0 < ¢a(s) < g1(s) < My, 0<(s) < @i(s) < Mz, 0<1h(s) <¢i(s) < Ms.

From the definitions of Hj, Hy and Hs, system (3.4) can be rewritten as follows.

Do¢" (t) — c¢'(t) — B1o(t) + Hi(, 0, 0)(t) =0
DOSON(t) - Csol(t) - 6280@) =+ H2(¢a 2 %Z’)(t) = 07
Doy (t) — i)' (t) — Barb(t) + Ha (o, p,9)(t) = 0
Let
)\120—\/62+451D0 )\2—C+ \/02—|—4,31D0
2Dy ’ N 2D ’
_C—\/62+462D0 _C+\/02+452D0
As = 2Dy M= 2Dy ’
A\ _C—\/62+453D0 A\ _C+\/C2+453D0
5 2D » e 2Dy '
Define F = (Fy, Fy, F3) : Cx (R, R?) — C(R, R?) by
t e’}
R0 = po s | [ I s+ [T I 090
t
R0 00 = i | o) + [ M 0,0 0008]
t o0
R0 )0 = 5oy | [ G )i+ [ O (6,5

for (¢, ¢, ) € Cx (R, R?). It is easy to conclude that Fy(¢, o, ), Fa(é, @, ) and Fy(¢, ,)) satisfy
DoFY' (¢, 0,0) — cFL(d,0,%) — B1F1(d, 0,%) + Hi(¢, ,¢) =
DoF5 (¢, 0,%) — cF3(¢,0,0) — BoFo(8, 0, 9) + Ha(g, p,0) =
DoF5 (¢, 0,0) — cF3(d,,%) — B3F3(d, ,%) + Ha(¢, ¢, ¢) = 0.

Similar to Lemma 3.1 and Lemma 3.2, we have the following lemma to explain some properties of

F.
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Lemma 3.3 Assume that (A1) and (PQM) hold. For any (0,0,0) < (¢, p,¢) < (M, M2, Ms),

we obtain

Fi(¢2,p2,02)(t) < Fi(d1,01,91)(t), Fa(or,p2,v2)(t) < Fo(d1,¢1,11)(1),
(1,01, 91)(t) < Faldz, 1, ¢1)(t), Fi(d2,p2,192)(t) < F3(o1, 1, ¢1)(1)

for (¢,¢,¢) € Cx(R, R?) with 0 < ¢a(s) < ¢1(s) < My, 0 < pa(s) < @i(s) < Ma, 0 < aho(s) <
P1(s) < Ms.

Now, we put forward the following profile set to seek the traveling wave solutions of system

(3.3).
(i) (8(t), (1), ¥(t)) € C(R, R?);
(i1) o(t) < ¢(t) < d(t), p(t) < p(t) < @(t), Y(t) < Y(t) < B(1).
Obviously, I'((¢, ¢, %), (¢, ¢, %)) is non-empty, convex, closed and bounded.

Lemma 3.4 Assume that (Ay) holds. Then F = (I, F»,F3) : Cx(R,R?) — C(R,R) is

continuous in point of the norm | - |, in By, (R, R®).

Proof. We pick po > 0 such that pg < min{—>A1, A2, —A3, Ay, = A5, A¢}. For any ¢; > 0, we let
o1 < Lw“gié“h@ﬁ Let (P = (¢1,g01,1/]1) and \IJ = (¢2,Q027’l/12) - CK(R, R3) Wlth

| — W, = sup |D(t) — W(t)|e ol < .
teR

Direct calculations yield

‘Hl(d)l? 9017¢1) — H1(¢27 ('0271/}2)‘67.“0‘“

< | f1(Pres P16, %1e) — f1(Pae, o, o) e MO 4 By |y — ®2 o

< Lof|@y — Wyl|x. e 4 Bildr —

< Ly osup [@(s+1) — W(s+t)|e oIt sup erolittelemnolil gy (g — gyl
se[—cr,0] s€[—7,0]

< Ly|® — U, e roltleroltigroer 4 g 1d — ),

< (L€ 4 B1)|@ — ¥

< €.

Next, we claim that Fy : Cx (R, R?) — C(R, R) is continuous with respect to the norm | - |,,.
If ¢t > 0, then we have

|F1(¢1,01,%1) — Fi(¢a, 2,1b9)|eHol
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1 by
= - eMU=s) , 01, s)— H , 09, s ds] g Hot
Dol =) [/Oo |H1 (1,01, 91)(8) — Hi(¢2, 92, ¢2)(s)]
1 © _
4+ = M2 (t=8) , 01, s)—H , 09, sds}e“ot
s | [H (61, p1,60) () — H (G, o2, U 9)
r 0 t [e's)
€1 At —()\ —+ )S Alt/ (,uo—Al)s )\Qt/ (yo—)\g)s :| —pot
< —|eM e WTHOSds 4 e e ds+e e ds| e
Do(A2 — A1) | /—oo 0 ¢
= €1 20 (M=ot + A2 — M }
Do(A2 — A1) [ A — po? (1o — A1) (A2 — po)
< €1 [ 2pu0 n Ao — A1 ]
= Do(A2— A1) [ AT —po® (ko — A1) (A2 — po)

If t < 0, we obtain

|Fi (g1, 91,91) — Fi(a, p2,b2)|eHol

1 ¢ .
— B | I G0 (0) G )]s | e
1 & s
+ Dol — A1) [/ 2 Hy (¢, 01, 1)(s) — Hi(ba, @2,¢2)(3)|d«9] eh!
t
r t 0
< 5 ()\61 3 ) CAlt/ 6—(>\1+,u,0)sd8+6)\2t/ 6_(>\2+#0)sd8+6)\2t /OO 6(“0_)\2)st:| 6,LLOt
0\A\2 — A1) L —0o0 t 0

= €1 [ 20 e(rotA2)t + AL— A2 ]

Do(A2 = A1) [ A3 — po? (1o + A1) (A2 + po)
< €1 [ 2u0 n Al — A2 ]
= Do(A2— A1) [ A5 —pmo? (o +M)(A2+po)]

In summary, Fy is continuous. Similarly, we can prove that Fy, F3 : Ck(R,R3) — C(R, R) are
continuous. Thus, we see that F' = (Fi, Fy, F3) is continuous with respect to the norm |- |, in

B, (R, R?). This completes the proof.

Lemma 3.5 Assume that (A1) and (PQM) hold. Then
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From Lemma 3.2, we select (¢, ¢,v) = (6, ®,1), and denote ¢1(t) = F1 (b, @,)(t) such that

Do¢Y (t) — c¢(t) — Pro(t) + Hi(d, 3, 9)(t) = 0. (3.7)

Letting y(t) = ¢1(t) — ¢(t) and combining (3.6) and (3.7), we get the following inequality

Do(¢(t) = ¢"(t)) — (¢ (t) — ¢ () — Bi(en(t) — &(t)) > 0,
Doy"(t) — cy'(t) — Bry(t) > 0.

From Lemma 3.3 in [12], it can be concluded that y(t) < 0, which implies that Fy(¢,p,v) < ¢.

SimilarlY? we can obtain Fl (@7 ¥, ﬂ) > 97 FQ(&;E; ﬂ) > 2 FQ(?a @, &) < P, F3(Qa ¥, Q) > %7 and
F3(¢, ¢,) < 1. This completes the proof.

Lemma 3.6 Assume that (PQM) holds. Then F : T'((¢, @, 1), (6, @,79)) — L((¢, 0,7), (6, 0,7)

18 compact.
Proof. By Lemma 4.6 in [47], we can get the proof of this lemma.

Theorem 3.1 Assume that (A1), (A2) and (PQM) hold. If there is a pair of upper and lower

solutions p(t) = (¢(t), p(t),¥(t)) and p(t) = (p(t), @(t),¢(t)) satisfying the conditions (Py) and
(P2), then system (3.3) has a traveling wave solution satisfying (3.5).

Proof. It follows from Lemma 3.4-3.6 that we claim F(T'((¢, ¢, ¥), (¢, 8, %))) C T((¢, 0, %), (¢, 6,%))
and F are compact. There exists a fixed point (¢*(t), ¢*(t),v*(t)) € T((¢,¢,v), (¢, 6, )) by
Schauder’s fixed point theorem, which gives a solution of (3.3). Next, in order to prove that the
solution is a traveling wave solution, it is necessary to verify the asymptotic boundary conditions
(3.5).
By (P2) and the obvious fact
(0,0,0) < (¢, ,%) < (¢7(1), " (1), ¥ (1))

AN
®
i
=
IN
=
&
5

we obtain

lim (¢™(£), 9" (¢), 9" () = (0,0,0),

t——o00

lim (6*(8), 9" (£), (8)) = (k1. kz, k).

t—+00

Therefore, the fixed point (¢*(¢), *(t),1*(t)) satisfies the asymptotic boundary conditions. This

completes the proof.
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3.3 The existence of traveling wave solutions for system (3.2)

In this subsection, we will use the results in subsection 3.2 to prove the existence of the traveling

wave solutions of (3.2). From (3.4), we have

D0¢H(t) - C¢,(t) + fcl(¢t7 Pt, ¢t) 0
Do" (t) — e’ (t) + feadt, o1, 01) = 0,
Dop" (t) — e (t) + fe3(ot, 1, 00t) = 0,

where

fer(@e, o, 00) = =o(t) + B(1 = o)) p(t) + a1 — &(8)) (1),
Fe2(0e, 1, 0n) = €T TB(L — ot — er))p(t — e7) + e Ta(l — ¢t — )i (t — eT) — ap(t),
Jfe3(De, 1, 01) = kep(t) — pap(t) — a(1 = B())3 ().

The following asymptotic boundary conditions are satisfied.

lim (4(t),(t), () = (0,0,0), lim (¢(t), &(t), ¥(t)) = (1 — ka1, k2, k3),

t——o00 —
where k1 = u*, ko = w*, kg = v*.
Lemma 3.7 The nonlinear reaction term of system (3.2) satisfies (A1), (A2), and (PQM).

Proof. For any ¢;, @i, ¥; € C([—7,0],R), i = 1,2, with 0 < ¢a(s) < ¢1(s) < My, 0 < pa(s) <
p1(8) < Mz, 0 <hs(s) <1(s) < Ms, s € [—T,0], we obtain

fer(d1e, 16, ¥12) — fer(dar, par, at)
— ¢1(0) + B(1 = ¢1(0))91(0) + (1 — $1(0))41(0)
+ $2(0) — B(1 — ¢2(0))2(0) — a1l — ¢2(0))2(0)
— (61(0) = $2(0)) — Bep1(0)(¢1(0) — ¢2(0)) — o1 (0)(41(0) — $2(0))
= — (01(0) = ¢2(0)) — (Be1(0) + a1p1(0))(#1(0) — ¢2(0))
> — (14 BMsz + aMs3)($1(0) — ¢2(0)).
Let 81 = 1+ My + aMs > 0. This implies that fo1(d1r, 10, 1011) — fer(Gor, ot Yar) + B (0) —

$2(0)) >0
For fea(d,p, 1), we have

Vv

Jea (@1, 16, ¥1t) — fea(bre, 02t Vor)
= e "R = ga(—er))pr(—er) + e Ta(l = gi(—er))ihi (—er) — ap1(0)
— e B(1 = dr(—cr))pa(—er) — e~ Ta(l = gr(—e7))iha(—cT) + aipa(0)
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> e B — fr(—er))pa(—er) + T a(l = g (—er) a(—er) — a1 (0) — 2(0))
e~ B(1 = pi(—c1))pa(—cr) — e Tl = di(—eT))a(—c7)
= —a(p1(0) — ¥2(0)).
Let B2 = a. Then fea(¢1,1,91) — fea(d1, 2, ¥2) + B2(91(0) — ¢2(0)) > 0.
Similarly, the following results are obtained
fea(b1e, 016, V1e) — fea(Pat, 0165 P1¢)
= ¢ TB(1 = g1 (—er))pr(—er) + e T a(l = di(—er))r (—er) — api(0)
— e TR = ga(—cr))pr(—er) — e a(l = do(—er))i(—er) + api(0)
= ¢ " B(ga(—cr) = p1(—c7))pr(—er) + e alga(—cT) — di(—er))dhi(—eT)
< 0.

Note that

Jea(1e, o1 1) — fes(Pat, pot, Yar)
= kp1(0) = p2p1(0) — (1 = ¢1(0))11(0) — kp2(0) + p1p2(0) + (1 — $2(0))1p2(0)
= k(1(0) — ¢2(0)) — p(¥1(0) — ¥2(0)) — a(¥1(0) — ¥2(0)) + a(¢1(0)1h1(0) — ¢2(0)12(0))
> = (p+ o) (1(0) — ¥2(0)).

Let B3 = p+ a > 0. We derive that fe3(d1,01,%1) — fe3(d2, p2,v2) + B3(¥1(0) — 1p2(0)) > 0. This

completes the proof.

) -
)~

Next, we construct a pair of upper and lower solutions of system (3.2). Let ¢* = 2y/DyK),

where

Bko + aks — 1+ kq kg(ﬂ—a) + aks kko
Ky = max ) (-
1— kl k2 k3

If Rp > 1 and ¢ > ¢*, then there exists Ao € [A_, Ay] such that

Do)\3 — cho + Ko <0,

where
C — \/C2 —4DOK0 c—+ \/02 —4DOK()
A= , Ay = .
2D0 2DO

We select appropriate ¢; > 0 (i = 1,2, 3) that satisfy the following inequalities,

(B—a)(ky+e1) +aMs3 <0,

a(kg + 53)

< 0.
11—k

key — pes — akieg +
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Then, for A > 0 we define continuous functions p(t) = (¢(t), ¢(t), ¥ (t)) and p(t) = (¢(t), ¢(t), ¥ (1))

as follows,
o(t) = min{(1 — ky)et, 1,1 — - e MY, @(t) = min{koe o ky + 167},
P(t) = min{kze !, ks 4 g0}, ¢(t) = max{0,1 — k; — 2;1k16_>‘t},
p(t) = max{0, kb — ﬁ e MY, P(t) = max{0, k3 — % e MY,

We see that My = sup¢ > 1 — ki, My =sup@p > kg, Mz =supt) > k3, p(t) = (6(t), (1), ¥(t))
teR teER teR

and p(t) = (¢(t), ¢(t),¥(t)) satisty (P1) and (P).
Lemma 3.8 There exists \* > 0 such that, for any A € (0, X*), p(t) = (4(t), @(t),¥(t)) is an

upper solution of system (3.2).

Proof. For ¢(t), let us consider three cases.
Case 1. (1 — k1)e?" < min{1,1 — k1 + ;=Z-e M}, Then ¢(t) = (1 — k1) and @(t) =
koeot, )(t) = kget. Tt follows that

D¢ (t) — c¢'(t ) o(t) + B(1 = ¢(1)P(t) + a1 — d(t)) (1)
< DoA2(1 = kp)eMt — eXg(1 — kp)eM! + Bhae! + akse! — (1 — kp)eo!
_ Aot<D0A2_0A0+ﬁk2+tllliak—ll+k1>
< 0.

Case 2. 1 < min{(1 — ky)et 1 —k; + ﬁe*)‘t}. Then ¢(t) = 1. We have

Do¢"(t) — ¢/ (t) — ¢(t) + B(1 — d(1))P(t) + a(l — (1))P(t) = —1 < 0.
Case 3. 1 — k1 + 19— M <min{(1 — k1)e*’, 1}. Then ¢(t) = 1 — k1 + 1=2-e M.

Dog"(t) — cd/(t) — ¢(t) + B(L — (1)) (t) + a(l — &(1))¥(t)
DoX? _\, O I _x
1—0]€1e ' +1—/€1e ’ —(=hk) - 1—kle '

1 1
M ki — — At M k1 — -t
+8 2(1 1—]4:16 >—l—a 3(1 1—]{:16

Y [ DoA? A

IA

k At
R ey i

1
M) 4 OtM3€>\t(k‘1 — 76_”)
1—Fk

IN

M)\t ki —
+BMse (1 1—]{:16

= L(\).
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Note that 1(0) = k1 = g + M2 (I = ) + s (b = ) = (b = 27 ) (L+ 602 +
aM3) < 0. From the continuity of I;()), there exists A\ > 0 such that I;(A1) < 0 for X € (0, A}).

Hence,

Dog"(t) — ¢/ (t) — o(t) + B(1 — ¢(£))@() + a1 — ¢(£))1h(t) < 0, A € (0, A7).
For ¢(t), we consider the following two cases.
Case 4. koe?? < ky+e1e M. Then @(t) = kae 0t @(t — 1) = koe0(=T) < fperot 4p(t —c7) =

k3e0(t=¢T) < g0t Tt is seen that

D" (t) = ' (6) + €~ TB(1 = ot — en))p(t — e7) + e~ Ta(l - §(t — er))i(t — e7) — ap(?)

S Dokg/\(%e/\ot — C)\0k2€)\0t + 5]?26)\075 + Oékge)‘ot — akge)‘ot
ko(B — k
= et <D0A3 _ep4 o) ta 3>
ko
< 0.

Case 5. ky + 16N < koe?t, Then @(t) = ko + 1. Tt follows that

Do@"(t) — e/ (t) + e TB(1 = §(t — e7))@(t — e7) + e T a1 — p(t — e7))P(t — e7) — ap(?)

Do\%e1e™™M + cheje M + Bks + 8167)\(15767—)) +aMsz — a(ks + ale*)‘t)

IN

< DoNere ™M+ cheje M+ Bke + 516ACT) + aMs — a(ke + 616_)‘t)

= DL(\).

As I(0) = (B8 — a)(ka + 1) + aM3 < 0, there exists A3 > 0 such that I5(0) < 0 for all A € (0, \}).
For 1 (t), we distinguish two cases again.

Case 6. kze ! < k3 +eoe™™. Then 9(t) = k3!, @(t) < koeo!, H(t) = 1. We obtain that

Doy (t) — e/ (t) + k@(t) — b (t) — (1 — o(1))3)(t)

< DoA2k3eMt — cAokse ! + kkgeto!
kk

= k3€>‘0t <D0>\g —cho + 2)
k3

< 0.

Case 7. k3 + ege ™ < kze'. Then o(t) = k3 + e2e™, ¢(t) = 1 — k1 + =-e™ M, @(t) =
ko + e1e~ . We have

Doy (t) — ey’ (t) + kp(t) — pap(t) — (1 — o(t))9(t)
< DoXege™ + chege ™ + k(ko + e1e7M)
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1
(&
11—k

= DO/\QSQG*M + chege M 4 kky + keje M

— p(ks 4 g0e™) — <k1 - )‘t> (k3 + ege™ )

—\t —At
_ _ akse agge _
— pks — pege At akiks — akiege A e M
1— k% 1—Kk
—Xt —)\t
_ _ _ _ _ akse agge _
= DO/\QSQe My cAege My keie At ueoe At akieqe M At

[
= I3()\).
Since I3(0) = ke1 — pea — akiea + M < 0, there exists a A§ > 0 such that I3(\) < 0 for all
A€ (0,23).
Thus, taking A\* = min(A\}, A3, \5), we have shown that p(t) = (4(t), @(t),v(t)) is an upper
solution of system (3.2) for A € (0, \*). O

Lemma 3.9 There exists \* > 0 such that, for 0 < X < A", p(t) = (¢(t), (t),(t)) is a lower
solution of system (3.2).

Proof. For ¢(t), we can prove it in two cases.

Case 1. 1 — k1 — & kl e < 0. Then ¢(t) = 0. It is clear that

Do¢"(t) — ¢/ (t) — ¢(t) + B(L — d(t))p(t) + a1 — (1)) (1)
= Be(t) + ap(t)
> 0
Case 2. 0 <1 —ky — 3 e ™. Then ¢(t) = 1 — ky — Ze ™, o(t) = ky — 227, (1) =
ks — %e‘”. We have
Do¢”( ) —cg/(t) — o(t) + B(1 — d(t))p(t) + a(l — ¢(1))¥(?)

kfl 2 M\t 2_k1 2\t Q—k'l )\t
= -D A —e e M (1 — k) +
0 k1 ¢ k1 c ( ) k:1 °

— k1 f)\t 2k -\t — k1 7)\t 2ks -\t
k ko — — k fo — 222
+5<1+ i ><2 kle 1+ o 3 k1e

—k 2k
Y Nin SO R . Py (1—ky)

>
- k1 k1
2—k 2k 2k
+ e M L Bl [k — S22 ) ok (kg — T2 M
2—k 2—k 2—k
= — Doil)\Qe_’\t — el e + L2 P 261626_)‘t — 2a/€36_>‘t
k1 k1 k1
= I4(N).
As 14(0) = =% 20ks = 2;51 - %lk;lkl) =1 > 0, there exists a A} > 0 such that I4(\) >0

for all A € (0,\}).
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For ¢(t), we also discuss it in two cases.

Case 3. ky — 2k2 —A < (0. Then p(t) = 0. We get

Dop" (t) — e (t) + e mTB(1 — Gt — cr))p(t —cr) + e Tl — gt — cr))(t — er) — ap(t)
= e o1 — Pt — ) (t — cr)

AV

0.

Case4d. 0 < k‘g—%(i_)‘t. Then p(t) = ka— 2k2 e ™M, g(t—er) = 1—7€1+ﬁ€_)‘(t_w), P(t—cr) =

ks — %e_/\(t_”). ‘We have

Dogﬁ(t) - cg’(t) + efmeﬁ(l — Pt — cr))p(t —cr) + efmeoz(l — Pt — cr))(t — er) — ap(t)

2k 0 xne  2kay i 4 L - 2ka
— — Dn22 N — o2y mT ey — — cT) k (t—ecT)
s e c » e M+te B\ k1 T kle 2" T

1 2k 2k
—dmT B —A(t—cr) 3 f)\(t er) ) o ah2 )t
+e « <k1 1= kile > </€3 k‘l > a (k?z I e )

2k 2k 2k
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k2 2k
+e meﬁ <kj1k;2 — 2k2€—>\(t cr) 1_714:16 —A(t—cT) + klujkl)e—)\(t—cﬂe—)\(t—cr)>
k 2k
+ e T <k1k3 — kg ME—em) ?E’kjlefk(tfﬂ) + Mek(tcr)eA(tm)>
22 N2e M — 223N ke a—er) | ZF2 a—en) - aen)
= — Do~ -t mT T -4 cT cr
TR AR HCTCETS ‘
k 2k
—dmT M Ai—er) 4 AWM —X(t—er) ,—A(t—cT)
e a( T—hp© T ¢ >
2k2 2 _—\t 2k2 —\t
kl ‘ /{?1
—A(t—c1)
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In the above, we have used

2 2 2
e—drn'rﬁkl (k:2 _ :fe_k(t—(ﬂ')> + e—meakl (k;?, _ ]flzse_k(t—CT)> —a <k2 — I@e—)\t> — 0

to obtain

2
e_meIB(kle . 2k26—)\(t—c7—)) + e_meOé(klk‘g - 2]{?36_)\(t_CT)) —a <k2 _ k26—)\t> )
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Then I5(0) = M( ko + 2k‘2) = % > 0 implies that there exists A} > 0 such that
I5(\) > 0 for X € (0, \}).
For ¢(t), the following two situations are discussed separately.

Case 5. k3 — %e‘” < 0. Then 3(t) = 0. It is clear that

Doy (t) — e/ () + kep(t) — pp(t) — (1 — ¢(1)) ¥ (t) = kp(t) > 0.

Case 6. 0 < k‘g—%e_)‘t. Then (t) = k3 2’“36_” o(t) =1— kl—%e_)‘t, o(t) = kg—%@‘”.

It is seen that

Doy"(t) — e’ (t) + keo(t) — pp(t) — a1 = ¢(£))3(2)

2k 2k 2k
= — Do—s)\Qe_’\t e EB e + k| ky— 22
k1 k1

2]{}3 )\ 2 — kl —\t 2k3 -\t
N e e Y by — 28
“(3 W ) O‘<1 ¢ T ¢

2k 2k 2k 2k
= — Dok—g)\Qe*At — ck—?’)\e*” +k (kg — ]{:26/\t> —u <k:3 - 3e>‘t>
1

1 1 k1
k3(2 — k 20k3(2 — k
— akiks + 2akse™ — avks ( l)e—At + avks ( a l)e—Ate—At
2k3 o e 2ks o  oks(2—k1) 5 20k3(2—Kk1) _y
— Dy AL P U A G V) cams\a = k)
0 I e c I e I e + k% e e
— I\,
As I(0) = ak3(2 LI 2ak3(? M) o> ak3(2 LI 2ak3(? k1) _ O‘k3(k2;k1) > 0, there exists a \j; > 0

such that Is(\) > 0 for all A € (0, A).

Let A" = min(Aj, A, A§). Then we have shown that p(t) = (¢(t), o(t),%(t)) is a lower solution
of system (3.2) for A € (0, \").

Applying Lemma 3.8 - 3.9, we have the following theorem.

Theorem 3.2 Let Ry > 1. For every ¢ > ¢* and any value of T > 0, system (3.2) always has
a traveling wave solution with speed ¢ connecting the infection-free steady state Ey = (0,0,0) and

the unique homogeneous infected steady state E* = (1 — u*,w*, v*).

4 Conclusion

In this paper, we developed a dynamic model of virus infection with nonlinear functional response,
diffusion, absorption due to infection, and time delay. We also considered two viral transmission
mechanisms: cell-to-cell transmission and cell-free infection. When the domain is bounded, we

studied the well-posedness of the model and discussed the linear stability of the homogeneous
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steady states of the model under homogeneous Neumann boundary conditions. More precisely,
it is proved that if the basic reproduction number is less than unity then the disease-free steady
state is globally asymptotically stable while if the basic reproduction number is larger than unity
then the infection is uniformly persistent. When the domain is the whole space, by using the cross
iteration method and Schaueder’s fixed point theorem, we attributed the existence of traveling
wave solutions to the existence of a pair of upper and lower solutions. Furthermore, when the basic
reproduction number is larger than unity by constructing a pair of upper and lower solutions, we
obtained the existence of traveling wave solutions connecting the disease-free steady state and the
homogeneous infected steady state.

We discussed how the speed of spread in space affects the spread of cells and viruses. We studied
the existence of the wave speed c*, which is dependent on the diffusion coefficient. Moreover, the
two modes of virus transmission affect the minimum wave speed. A natural question is whether the
wave speed ¢* is the minimum wave speed cpi,. For 0 < ¢ < cpin, there is no traveling wave solution
connecting the two steady states. According to the linear theory [51], the minimum wave speed is
usually the asymptotic propagation speed, but in general the relation between the minimum wave

speed and asymptotic propagation speed remains to be further investigated.
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