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We develop a stochastic HIV model by integrating drug adherence into a pharma-
cokinetic model and by coupling a pharmacodynamic model with a viral dynamic
model. Numerical simulations show that the proposed model can generate viral
blips, which have been observed in HIV patients receiving suppressive antiretroviral
therapy. We calculate the probability density function of infected CD4+ T cells
by developing the generalized density evolution equation. We fit the model to the
clinical data of four HIV patients exhibiting viral blips. The results demonstrate
that poor drug adherence can be a reason explaining the occurrence of viral
blips in treated HIV patients. We also find that viral dynamics are sensitive to
drug-adherence parameters, which have a significant impact on the frequency and
amplitude of viral blips. The modeling and methods can be applied to the study
of long-term therapy of other chronic diseases in which drug adherence might also
be an issue.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

In the absence of e�ective vaccines, human immunodeficiency virus (HIV) infection is still high. About
37.7 million people worldwide were infected with HIV in 2020 based on the Global Progress Report on
AIDS 2021 [1]. The commonly used treatment for HIV infection is highly active antiretroviral therapy
(HAART), a cocktail of at least three drugs that fall into at least two classes of antiretroviral drugs. The
classic combination of HAART is two nucleoside reverse transcriptase inhibitors plus a protease inhibitor
or a non-nucleoside reverse transcriptase inhibitor [2]. HAART has been proven to be highly e�ective in
suppressing viral infection and replication and can control the virus below undetectable levels (below 50
RNA copies/mL) [3]. With the treatment of HAART, most infected people in developed countries greatly
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improved their health status and quality of life, and HAART has also significantly reduced HIV-related
morbidity and mortality.

However, HAART cannot cure HIV patients, as it cannot eliminate the virus. Viral RNA can be detected
by ultra-sensitive assays in plasma [4,5]. Many clinical studies also showed that viral blips occasionally
happen in HIV patients [6–9]. Viral blips refer to the occasional viral-load measurements above the detection
level in patients who have sustained undetectable viremia under HAART. A number of studies have been
used to explain the occurrence of viral blips. Rong et al. [10] demonstrated that asymmetric division of
activated latently infected cells may explain the intermittent viral blips by considering an antigen-dependent
activation function. Other explanations for the appearance of blips were put forward [11], including the
transient increases in viral production due to fluctuations in adherence [12,13], concurrent illnesses or
vaccinations [14]. Based on clinical data of 228 subjects, Podsadecki et al. found that blips were associated
with decreased adherence to antiretroviral therapy [12]. A recent study, aiming at revealing the safety and
e�cacy of HIV-1 seroconversion among women during the clinical trial based on the drug adherence data
collected from the dapivirine vaginal ring, has demonstrated that improved drug adherence can significantly
a�ect the outcomes of treatment [13]. The underlying etiology for viral blips is still unclear and is worth
further investigation [11].

Drug adherence concerns whether patients take drugs at the prescribed time. Poor adherence means
that patients miss doses. Drug adherence plays an important role in the success of disease treatment,
especially for chronic illnesses, which often require long-term therapy. Using pharmacodynamics (PD) as
a bridge, an individual-based treatment regime can be linked to the suppression of the virus in patients.
This helps couple the viral kinetics and pharmacokinetics (PK), consequently making it feasible to analyze
the impact of di�erent drug administration regimens on HIV therapy [15,16]. Huang et al. [16] developed a
viral dynamic model using time-varying drug e�cacies to describe the antiretroviral responses. They studied
how the time-varying treatment e�ect, induced by adherence, plasma drug concentrations and phenotypic
sensitivities, a�ects antiretroviral response in terms of the viral load and T-cell counts. The authors extended
the previous model in [16] and proposed a dynamic Bayesian nonlinear model of HIV infection with mixed
e�ects, including drug compliance, drug resistance and covariates, and fitted the model to clinical data [17].
However, there are very few, if any, modeling studies that investigate the phenomenon of viral blips from
the perspective of drug adherence.

In our previous work [18], we modeled drug adherence in an one-compartment statistical pharmacokinetic
model and conducted a thorough analysis of the existence and uniqueness of the limit distribution of drug
concentration and its higher order moments after multiple doses. The main purpose of this study is to develop
a stochastic model that embeds the stochastic drug-adherence equation to a pharmacokinetic model and that
also couples the stochastic PK-PD model with a viral dynamic model. We will examine whether the missed
medication due to drug adherence is the potential driver in generating viral blips and provide quantitative
guidance for treating HIV infection.

2. Stochastic HIV model and main results

2.1. Model formulation

We start with the assumptions used in the previous model [18]. We assume that each patient would either
take full doses or miss doses with a certain probability at the drug-administration time, due to poor drug
adherence. The drug adherence is assumed to follow a binomial distribution with parameter an. If we take
An as the quantitative index to indicate whether the patient takes the drug at the nth drug administration
time, then it can take two values: 1 when an individual takes the drug with probability an at the exact
prescribed time, and 0 when the individual misses the drug with probability 1 ≠ an.
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Fig. 1. Diagram for coupling drug adherence (DA), pharmacokinetics (PK), pharmacodynamics (PD) and viral dynamics (VD).

Based on the above assumptions of multiple drug administration in the presence of drug adherence, we
can reformulate the one-compartment classical pharmacokinetic model using the stochastic structure. The
administration time sequence {tn, n œ N

+} with t0 = 0 is assumed to be a Poisson process with certain
intensity ⁄. This means that the random intervals ·n

—= tn ≠ tn≠1 between two intakes are independent and
identically distributed (i.i.d.) with exponential distribution of parameter ⁄; i.e., ·n ≥ Exp(⁄) [19]. If tn is a
random variable, then there are two types of randomness: random dose amount and random dosing time.
As HIV patients need life-long treatment, we do not consider the random dosing time in this study.

We incorporate drug adherence into a PK model, and consequently into a PD model [18,20]. We also
couple the PD model with the VD model of HIV infection. The embedding and coupling diagram is shown
in Fig. 1. We propose the following stochastic viral dynamic model of HIV by including pharmacokinetics
and drug adherence

Y
_____________________]

_____________________[

Viral dynamics ∆

Y
____]

____[

dT
dt = ⁄ ≠ dT ≠ (1 ≠ ÷RA(t))kTVI ,

dT ú
dt = (1 ≠ ÷RA(t))kTVI ≠ ”T

ú
,

dVI
dt = (1 ≠ ÷P I(t))N”T

ú ≠ cVI ,

dVNI
dt = ÷P I(t)N”T

ú ≠ cVNI .

Pharmacodynamics ∆ ÷j(t) = C(t)

IC50(t)+C(t)
, j = RA, PI.

Pharmacokinetics ∆

Y
_]

_[

dAa(t)

dt = ≠kaAa(t), t ”= tn,

dC(t)

dt = F kaAa(t)

V ≠ kelC(t), t > 0,

Aa(t+

n ) = Aa(tn) + AnD, t = tn.

Drug adherence ∆
;

an = —an≠1 + (1 ≠ “)(1 ≠ an≠1),
An ≥ b(1, an).

(1)

T (t), T
ú(t), VI(t) and VNI(t) denote the concentrations of CD4+ T cells that are susceptible to HIV, produc-

tively infected cells, infectious virus and noninfectious virus at time t, respectively. Aa(t) represents the drug
amount at the absorption chamber, C(t) represents the drug concentration of the central compartment, and
÷(t) is the e�ectiveness of drugs at time t. A summary of the parameters used in model (1) is listed in Table 1.
For consistency, we use the following values of parameters in numerical experiments, where the parameters
related to PK model can be found in [21], and parameters related to VD model can be found in [22,23]. In
model (1), we use the Emax model to describe PD. Note that di�erent drugs usually have di�erent treatment
e�ects, so there are two functions, ÷RA(t) and ÷P I(t), denoting the e�cacy of reverse transcriptase inhibitors
and protease inhibitors, respectively. Using occupation theory [20], Emax model converts the concentration
to the e�ect of the drug, generating a dose–e�ect relationship. Under di�erent elimination and absorption
rate constants, ÷RA(t) and ÷P I(t) can be calculated by ÷j(t).

System (1) is high-dimensional, highly nonlinear, and non-autonomous so it is di�cult to directly study
its dynamical behavior and viral blips analytically. We start with a numerical simulation of model (1) in
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Fig. 2. Numerical simulations of model (1). (A): CD4
+

T cells T ; (B): infectious virus VI ; (C): infected CD4
+

T cells T ú
; (D):

noninfectious virus VNI ; (E): viral load VI + VNI . Subplots (A–D) show model stochastic solutions and (E) is used to compare total

viral load VI + VNI with infected CD4
+

T cells T ú
shown in (C).

Table 1
Descriptions and values of the parameters in model (1). The PK parameters (Nevirapine is used as an example drug) can be found

in [21]. The VD parameters are chosen from [22,23].

Parameter Description Value Range

— The conditional probability of dose taking at current time under the Variable [0, 1]

condition that it is taken at the previous time

“ The conditional probability of no dose taking at current time if no Variable [0, 1]

dose is also taken at the previous time

an The probability of dose taking at the nth event Variable [0, 1]

D Drug amount (mg) 200 –

kel First-order elimination rate constant (/h) 0.0614 –

ka First-order absorption rate constant (/h) 0.23 –

V Volume of distribution (L) 60 –

· Fixed dosing interval for multi-dose administration (h) 24 –

IC50 Drug concentration necessary to inhibit viral replication by 50% (mg/L) 0.8 –

⁄ Recruitment rate of uninfected cells (/mL/day) 10 [10
≠2, 50]

d Death rate of uninfected cells (/day) 0.02 [10
≠4, 0.2]

k Infection rate of target cells by virus (mL/day) 1.3 ◊ 10
≠5

[10
≠7, 10

≠3
]

” Death rate of infected cells (/day) 1 [10
≠1, 1]

N Total number of virus particles released by a productively infected cell 1000 [1, 2000]

c Clearance rate of virus (/day) 3 [10
≠1, 10]

÷RA E�ectiveness of reverse transcriptase inhibitors Variable See text

÷P I E�ectiveness of protease inhibitors Variable See text

An Random variable accounting for the random drug intake behavior Variable {0, 1}

Aa(t) Drug amount at time t at the absorption chamber Variable –

C(t) Drug concentration of the central compartment Variable –

Fig. 2 that illustrates whether poor drug adherence can produce viral blips in HIV patients. It follows from
Fig. 2 (A–D) that missed drugs can indeed generate viral blips. It should be noted that pharmacodynamics
is stochastic in our model, so the solution of the HIV viral dynamic model is a four-dimensional stochastic
process. Instead of finding the solution directly, we will obtain the probability density functions in next
section, which can help study the existence of viral blips.
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2.2. Generalized density evolution equation of T
ú

As depicted in Fig. 2 (C) and (E), the solution of infected CD4+ T cells T
ú has a very similar trajectory

as the solution of the total viral load VI +VNI . Therefore, given that the large magnitude of viral load could
a�ect the division of finite di�erence mesh, we choose T

ú as the substitution variable to study the evolution
of its probability density function (PDF) over time in the presence of drug adherence. For simplicity, we
assume ÷RA = ÷P I = ⇥ . Denoting X , (X1, X2, X3, X4) = (T, T

ú
, VI , VNI), we can reformulate the

equations of viral dynamic model (1) as follows
Y
____]

____[

X
Õ
1
(t) = ⁄ ≠ dX1 ≠ (1 ≠ ⇥)kX1X3,

X
Õ
2
(t) = (1 ≠ ⇥)kX1X3 ≠ ”X2,

X
Õ
3
(t) = (1 ≠ ⇥)N”X2 ≠ cX3,

X
Õ
4
(t) = ⇥N”X2 ≠ cX4.

(2)

Assume that X = H(⇥ , t) is the solution of model (2) (a four dimensional stochastic process), with
H(⇥ , t) = (H1(⇥ , t), H2(⇥ , t), H3(⇥ , t), H4(⇥ , t)). When ⇥ = ◊, we have X2(t) = H2(◊, t) with
probability 1. Hence,

pX2|⇥(x, t|◊) = ”
!
x ≠ H2(◊, t)

"
, (3)

where ”(·) is Dirac delta function with

”(y) =
I

1, y = 0,

0, y ”= 0.

Taking the derivative of Eq. (3) with respect to t, we have

ˆpX2|⇥(x, t|◊)
ˆt

=
ˆ”

!
x ≠ H2(◊, t)

"

ˆt
=

ˆ”
!
x ≠ H2(◊, t)

"

ˆx
·

ˆ
!
x ≠ H2(◊, t)

"

ˆt

= ≠Ḣ2(◊, t)
ˆpX2|⇥(x, t|◊)

ˆx
.

According to the multiplication formula pX2⇥(x, ◊, t) = pX2|⇥(x, t|◊) · p⇥(◊) and setting x0 as the initial
value of X2, we obtain Y

]

[

pX2⇥(x, ◊, t)
ˆt

+ X
Õ
2
(◊, t)pX2⇥(x, ◊, t)

ˆx
= 0,

pX2⇥(x, ◊, t)|t=0 = p⇥(◊) · ”(x ≠ x0).
(4)

Next, we use the finite di�erence method to solve the above partial di�erential equation (i.e., model (4)),
and then calculate pX2

(x, t) by
pX2

(x, t) =
⁄

œ⇥

pX2⇥(x, ◊, t)d◊.

Here, the finite di�erence method refers to an algorithm that is easy to implement and has good precision.
In the di�erence scheme, Lax–Wendro� has second-order accuracy but it is often not guaranteed that the
density function is nonnegative [24]. Under such circumstances, applying a flux limiter to Lax–Wendro�
constitutes the total variation diminishing (TVD) di�erence scheme, which can guarantee the nonnegativity
and normality of the density function [25,26].

Note that Eq. (4) does not involve ◊, so ◊ can be taken as a parameter. Consequently, we first calculate
the value of ◊, then use the value of ◊ to obtain X

Õ
2
(◊, t) by solving model (2), and finally solve Eq. (4). The

algorithm implementation process is summarized as follows:

1. Based on the PK-PD model, the distribution of ⇥ is approximated by the expectation and variance of
the limiting distribution U(Umin, Umax) using 3‡ guidelines;
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Fig. 3. Solutions of the probability density function of T ú
from 0 to 100 days.

2. Randomly generate N discrete points from the distribution of ⇥ : ◊1, ◊2, . . . , ◊N , which is actually the
discretization of initial condition;

3. Substitute ◊i into the model to obtain the discrete X
Õ
2
(◊i, tm), where tm = m · —t and —t is the time

step;
4. Substitute X

Õ
2
(◊i, tm) into Eq. (4), and use the finite di�erence method with TVD scheme to solve the

equation pX2⇥(xj , ◊i, tm), where xj = x0 + j · —x, —x is the space step;
5. Integrate pX2⇥(xj , ◊i, tm) numerically, and obtain pX2

(xj , tm).

In what follows, we provide a numerical example (shown in Fig. 3) for solving the PDF of T
ú using the

algorithm introduced above, where we also focus on presenting viral blips. In the simulation, we used the
parameter values listed in Table 1; specifically, — = 0.5 and “ = 0.6. Following the analysis of extravascular
administration in our previous work [18], we can calculate that the expectation and variance of the limiting
distribution are µ = 0.5925 and ‡

2 = 0.2730, respectively. We cannot obtain the expression of the limit
distribution, which uses the uniform distribution U(0.0700, 1.1150) to approximate based on 3‡ guidelines.
It is natural that the PDF of ⇥ is

p⇥(◊) =
I

IC50

Umax≠Umin
· 1

(1≠◊)2 ,
Umin

IC50+Umin
< ◊ <

Umax
IC50+Umax

,

0, otherwise.

Here N = 100, — t = 0.01, — x = 0.5. We can calculate the PDF of T
ú at typical time following the above

algorithm. With the evolution of time, T
ú should be stable at 0 if the patient has perfect drug adherence.

However, as seen in Fig. 3, under poor drug adherence, T
ú can randomly blip within the considered time

interval. This further supports the fact that drug adherence can explain the phenomenon of viral blips in
HIV patients, which is also a cross-validation of the previous simulation results in terms of the existence of
viral blips.

2.3. Data fitting and sensitivity analysis

We obtained the data of four HIV patients from a follow-up database [27], which includes some individual
information, follow-up times, CD4+ T cell counts every 3 months and viral loads every 6 months, observed
from July 2004 until July 2010. Due to expensive cost, poor compliance or other reasons, some viral loads
data are missing actually. We fit the model to these data sets for each of four HIV patients. The fitting
results are shown in Fig. 4, where the best-fitting curves of CD4+ T cells and viral loads are shown in red
and blue, respectively. The model can capture the characteristics of the data, especially the moments when
viral blips happen. It should be mentioned that the fitting curves presented more time points with viral
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Fig. 4. Data fitting of model (1) to four subjects, where the solid dots and squares denote the data of CD4
+

T cells and viral loads,

respectively. The best fitting curves of CD4
+

T cells and viral loads are shown in red and blue, respectively.

Fig. 5. CD4
+

T cells and viral load simulated by model (1) with di�erent values of “. Parameters related to drug adherence are

fixed as – = 0.5, — = 0.6, initial values are C0 = 0, Aa0 = D, T0 = 1200, T ú
0 = 0, VI0 = 100, VNI0 = 100, and other values are as

listed in Table 1.

blips compared to the real data. The most possible reason is that viral loads are measured every 6 months
making some blips undetected.

Based on the fitting results, we conducted a scenario analysis by solving model (1) with di�erent values
of — and “. The solutions were shown in Figs. 5 and 6. When — (or “) was fixed, a larger “ (or a smaller
—) means worse adherence. From these simulations, we found that the frequency and amplitude of viral
blips can be significantly di�erent as drug adherence varies (i.e., di�erent values of — or “). The worse drug
adherence sets, the lower CD4+ T cells and the more frequent viral blips.
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Fig. 6. CD4
+

T cells and viral load simulated by model (1) with di�erent values of —. Parameters related to drug adherence are

fixed as – = 0.5, “ = 0.5, initial values are C0 = 0, Aa0 = D, T0 = 1200, T ú
0 = 0, VI0 = 100, VNI0 = 100, and other values are as

listed in Table 1.

We further conducted a sensitivity analysis by evaluating the time-dependent partial rank correlation
coe�cients (PRCCs) [28] of the variables in the viral dynamic model with respect to the drug adherence
related parameters — and “. We used the Latin hypercube sampling (LHS) to sample the parameters from
the distributions — ≥ U(0.01, 1), “ ≥ U(0.01, 1). The result is shown in Fig. 7, from which we can see that
the PRCC of — is always positive and the value of “ is almost negative for CD4+ T cells T (t). This means
that — is positive related to T (t) while “ is negative related to T (t) [29].

In comparison, we found that the PRCCs of T
ú(t), VI(t) and VNI(t) related to — and “ switch their signs

in the early phase, while the signs of the PRCC values (except those of VNI related to “) remain unchanged
later. This indicates that drug adherence can bring uncertainty to the viral load dynamics in the early stage
of treatment. In addition, the PRCCs related to — are larger than those related to “ most of the time, which
means that the results are more sensitive to — in our coupled model.

3. Conclusion and discussion

We investigated whether and how the drug adherence can generate viral blips by mathematical modeling.
We developed a novel stochastic HIV model by coupling the stochastic drug uptakes under the imperfect
adherence with PK-PD models and the viral dynamic model. The formulated coupled model is a high
dimensional non-autonomous stochastic system where the drug e�ect is a random variable. The approaches in
the current study also di�er from previous works, which usually considered specific drugs and quantitatively
studied blip frequency, viral amplitude and duration of occurrence [30,31].

By solving the model numerically and calculating the probability density function of infected CD4+ T
cells, we found that the random dosage uptake assuming binomial distribution in our model can generate
viral blips. This shows that poor drug adherence can explain the occurrence of viral blips during the
treatment of HIV infection. We fit the model to the clinical data of four HIV patients. The best-fitting curves
captured viral blips in the four patients. Drug adherence can have significant influence on the frequency and
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Fig. 7. Partial rank correlation coe�cients (PRCCs) of variables in model (1) with respect to — and “. Latin Hypercube Sampling

was performed with 1000 bins. Subplots (A)–(D) are for T , T ú
, VI and VNI , respectively.

amplitude of viral blips. Thus, with di�erent drug adherence, the treatment outcome can be di�erent, even
though patients are taking the same drugs under the same treatment protocol.

There are a few limitations in this study. First, we did not conduct a thorough mathematical analysis of
the stochastic model because of its high dimensionality and highly nonlinearity. The model may have more
complex dynamical behaviors than we observed, but the analysis is challenging. Second, drug adherence
considered in this model is individual-based. How to model the population-based drug adherence and
integrate it to virus dynamics remains to be investigated. Lastly, we did not include the latent reservoir
in the model, which is considered as a significant obstacle to viral elimination with the current antiretroviral
treatment. Despite these limitations, the model and methods developed in this study can allow us to better
understand the dependence of CD4+ T cells and viral load on individual-based drug adherence. This may
provide theoretical guidance for evaluating the relationship between drug adherence and the occurrence of
viral blips. The model and methods may be applied to the study of long-term treatment for other chronic
diseases in which drug adherence might also be an issue.
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