
molecules

Article

Domain Analysis and Motif Matcher (DAMM): A Program to
Predict Selectivity Determinants in Monosiga brevicollis PDZ
Domains Using Human PDZ Data

Haley A. Wofford 1,†, Josh Myers-Dean 2,†, Brandon A. Vogel 1, Kevin Alexander Estrada Alamo 1,
Frederick A. Longshore-Neate 1, Filip Jagodzinski 2 and Jeanine F. Amacher 1,*

����������
�������

Citation: Wofford, H.A.;

Myers-Dean, J.; Vogel, B.A.; Alamo,

K.A.E.; Longshore-Neate, F.A.;

Jagodzinski, F.; Amacher, J.F. Domain

Analysis and Motif Matcher

(DAMM): A Program to Predict

Selectivity Determinants in Monosiga

brevicollis PDZ Domains Using

Human PDZ Data. Molecules 2021, 26,

6034. https://doi.org/10.3390/

molecules26196034

Academic Editor: Kyle Hadden

Received: 11 September 2021

Accepted: 1 October 2021

Published: 5 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA;
haley.wofford@gmail.com (H.A.W.); vogelb2@wwu.edu (B.A.V.); estradk@wwu.edu (K.A.E.A.);
longshf@wwu.edu (F.A.L.-N.)

2 Department of Computer Science, Western Washington University, Bellingham, WA 98225, USA;
myersdj@wwu.edu (J.M.-D.); jagodzf@wwu.edu (F.J.)

* Correspondence: amachej@wwu.edu; Tel.: +1-(360)-650-4397
† These authors contributed equally to this work.

Abstract: Choanoflagellates are single-celled eukaryotes with complex signaling pathways. They
are considered the closest non-metazoan ancestors to mammals and other metazoans and form
multicellular-like states called rosettes. The choanoflagellate Monosiga brevicollis contains over 150 PDZ
domains, an important peptide-binding domain in all three domains of life (Archaea, Bacteria, and
Eukarya). Therefore, an understanding of PDZ domain signaling pathways in choanoflagellates
may provide insight into the origins of multicellularity. PDZ domains recognize the C-terminus
of target proteins and regulate signaling and trafficking pathways, as well as cellular adhesion.
Here, we developed a computational software suite, Domain Analysis and Motif Matcher (DAMM),
that analyzes peptide-binding cleft sequence identity as compared with human PDZ domains
and that can be used in combination with literature searches of known human PDZ-interacting
sequences to predict target specificity in choanoflagellate PDZ domains. We used this program,
protein biochemistry, fluorescence polarization, and structural analyses to characterize the specificity
of A9UPE9_MONBE, a M. brevicollis PDZ domain-containing protein with no homology to any
metazoan protein, finding that its PDZ domain is most similar to those of the DLG family. We
then identified two endogenous sequences that bind A9UPE9 PDZ with <100 µM affinity, a value
commonly considered the threshold for cellular PDZ–peptide interactions. Taken together, this
approach can be used to predict cellular targets of previously uncharacterized PDZ domains in
choanoflagellates and other organisms. Our data contribute to investigations into choanoflagellate
signaling and how it informs metazoan evolution.

Keywords: protein–protein interactions; PDZ domains; choanoflagellates; evolution; target selectiv-
ity; protein–peptide interactions; signaling

1. Introduction

PDZ domains are small peptide-binding domains named for the proteins where they
were first discovered: PSD-95, Dlg1,and ZO-1 (PDZ) [1–4]. These are scaffolding domains
that recognize the extreme C-terminus of target proteins, with the bulk of the PDZ–protein
interaction involving up to 6 residues on the target [5–7]. PDZ domains are found in all
three domains of life (Archaea, Bacteria, and Eukarya), and PDZ-mediated interactions
are important in signaling and trafficking pathways, as well as in cell adhesion [5,8,9].
Examples include: regulation of the trafficking of receptors throughout the cell, e.g., the
cystic fibrosis transmembrane conductance regulator (CFTR), signaling pathways mediated
by G-protein coupled receptors (GPCRs), and interactions with proteins involved in tight
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junctions and within the postsynaptic densities of neurons [10–27]. Due to their central
role in cellular processes, PDZ domains are therapeutic targets in a number of human
diseases [28–32]. They are also a common target of viral proteins during infection. The
best studied examples include PDZ domain targeting by oncoproteins in human papillo-
maviruses, but several other viruses, including influenza, human immunodeficiency virus
(HIV), and coronaviruses also target PDZ domains [5,33–38]. For example, proteins in the
SARS-CoV-2 proteome, which causes COVID-19 disease, interact with and bind several
PDZ domains during infection [39–42]. The trafficking of angiotensin-converting enzyme 2
(ACE2) receptor, which is targeted by SARS-CoV-2, contains a PDZ-binding motif at its
C-terminus (sequence: DVQTSF, motif residues are underlined) and is also regulated by
PDZ domains [43].

There are approximately 270 PDZ domains in the human proteome, and PDZ domain-
containing proteins have 1–13 PDZ domains [5]. All PDZ domains characterized to
date share a common structural fold, consisting of an antiparallel β-sheet (βA-βE) and
1–2 α-helices (αA–αB) (Figure 1) [5]. Historically, PDZ domains are separated into binding
classes, dependent on two positions: the most C-terminal residue, termed P0, and two
adjacent, or P−2 [5,44]. For example, Class I PDZ domains recognize the motif X-S/T-X-Φ,
where X = any amino acid and Φ = hydrophobic amino acid (typically, F/I/L/V) [5–7,44].
However, these motifs are unable to describe the overlapping specificities of the PDZ
family [5]. Over the past decade, we and others have teased apart selectivity determinants
at positions other than those described in the characterized motifs [5,45–47]. The ability to
identify and determine selectivity determinants in closely-related PDZ domains is critical
to understanding their role in cellular pathways and processes.
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Figure 1. Structures of PDZ domains from Monosiga brevicollis are shown in cartoon representation,
with the conserved secondary structure elements labeled in the mbDLG-2 figure. Bound peptides
are in black sticks and colored by heteroatom (N = blue, O = red) and labeled. PDB ID codes for
choanoflagellate PDZ domains from this work include: 6X1X, 6X20, 6X22, 6X23, 6X1P, 6X1N, and
6X1R [48].

Choanoflagellates are microbial eukaryotes that live in marine and freshwater envi-
ronments [49]. They are considered the closest relative to metazoans, and evolutionary
biologists argue that these organisms can provide insight into the origins of multicellular-
ity [49,50]. For example, choanoflagellates have extensive signaling networks and form
a molecular architecture that resembles a multicellular state, called rosettes [51–53]. In
our previous work, we concluded that there are 178 PDZ domains in M. brevicollis, with
1–20 PDZ domains in a single protein [48]. We previously used protein biochemistry and
structural biology to characterize several PDZ domains from the M. brevicollis proteome,
including those from mbDLG, mbGIPC, and mbSHANK1 (Figure 1) [48,54]. These PDZ
domain-containing proteins all have clear homologues in the human proteome, and we
found that selectivity determinants are largely conserved, despite ~750 million years of
evolution between these organisms [48].

In this work, we wanted to expand the investigation of choanoflagellate PDZ domains
and develop techniques to characterize those that do not have homologues in the human
proteome. Based on our previous work and the work of others, we hypothesized that
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binding preferences in PDZ domains are directly determined by the amino acids that
interact with specific peptide positions at both motif and modulator (or non-motif) posi-
tions [45–47,55–58]. Because we aimed to identify endogenous interactions, we chose not to
use common high-throughput techniques to determine PDZ selectivity, e.g., phage display
or peptide arrays, which are tuned to look for highest affinity binders [32,38,47,59,60]. We
reasoned that this approach may limit the number of matching sequences in the M. brevicol-
lis proteome and cause us to overlook sequences with lower affinity. It is well established
that endogenous PDZ interactions are not necessarily optimized for affinity, as these are
often regulatory in nature and in pathways involving several proteins and molecular
states [5]. Therefore, in our approach, we developed a computational program, Domain
Analysis and Motif Matcher (DAMM), which determines the human PDZ domain(s) that
share the greatest number of conserved residues in the peptide-binding cleft with an input
PDZ sequence, independent of overall sequence identity. The target sequences of human
PDZ domains are largely known; therefore, we then predicted potential target sequences
in the choanoflagellate proteome using the Motif Matcher part of the DAMM, based on
our published MotifAnalyzer-PDZ program [54]. We used protein biochemistry, structural
biology, and DAMM to identify two M. brevicollis sequences that bind to a previously
uncharacterized PDZ domain with <100 µM affinity, validating our approach. We argue
that this computational and experimental pipeline provides a straightforward methodology
for predicting cellular targets of PDZ domains and can be applied to other peptide-binding
domains, e.g., SH2 and SH3 domains, that also contain conserved structural folds.

2. Results
2.1. Identification of Peptide-Interacting Residues in PDZ Domains

We wanted to develop a computational pipeline that could be used in combination
with knowledge of human PDZ domain specificity to predict the endogenous targets of a
PDZ domain that does not have a homologue in Homo sapiens. Based on our previous work
characterizing PDZ domains in the Monosiga brevicollis proteome, we chose to focus on
UniProt ID A9UPE9_MONBE, a 545 amino acid protein with one PDZ and one SH3 domain.
We will refer to this protein as A9UPE9 moving forward for simplicity. Notably, there are no
proteins in the human proteome that contain this domain architecture, and a BlastP search
of the full-length sequence returns alignments limited to one of the isolated domains.

Then, using structural analyses of peptide-bound human PDZ domains, we identified
seven key residues whose side chains interact directly with the peptide. Examples include
peptide-bound structures of DLG1 PDZ2 (or DLG1-2), PSD95-1 (which is also referred to
as DLG4-1), and ZO1-1 (Figure 2) [61–63]. These include: the βB+2, βB+4, βC−2, βC-αA+1,
αB+1, αB+5, and αB+9 residues, where the secondary structure elements are as defined
in Figure 1, the superscript numbers indicate residues from the N- (positive values) or
C-termini (negative values) of those secondary structure elements, and “βC–αA” is the
loop between the βC strand and αA helix. Notably, due to a high degree of variability
in the length of the βB–βC loop amongst PDZ domains, we did not include residues in
this structural element, although they can interact with peptide positions, e.g., P−4 and
P−5. In addition, other residues make non-covalent interactions with peptide residues in
individual PDZ domains, but we kept our assignments relatively conservative, limited to
those that form the core of the peptide-binding cleft (Figure 2).

We also wanted to use the online Robetta server for de novo structure prediction
to generate a model of A9UPE9 (Figure 3) [64]. Robetta output four conformations that
mainly differed in the conformation of the βB–βC loop, and alignments revealed RMSD
values for main chain atoms, as compared with conformation 1 of 0.455 Å for 289 atoms
(conformation 2), 0.530 Å for 291 atoms (conformation 3), and 0.679 Å for 311 atoms
(conformation 4) (Figure 3a). Due to the similarities, we restricted our structural analyses
to conformation 1. The structure, as well as sequence patterns, allowed us to identify the
relevant peptide-binding cleft residues (Figure 3b).
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Figure 2. Identification of peptide-binding cleft residues in DLG1 PDZ2 (or DLG1-2, PDB ID 2OQS,
green), PSD95-1 (6SPZ, yellow), and ZO1-1 (4YYX, cyan). Proteins are shown in both cartoon (top)
and surface representations (bottom) with bound peptides in black sticks and colored by heteroatom
(N = blue, O = red). The peptide-binding cleft residues used in this analysis are represented as side
chain sticks and are colored by heteroatom or monochrome, respectively, and labeled. DLG1-2 is
bound to a peptide of the HPV18 E6 oncoprotein (sequence: RRETQV) [61]. PSD95-1 is bound to a
peptide with sequence RRESEI [62]. ZO1-1 is bound to the Claudin2 C-terminal tail (SLTGYV) [63].
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Figure 3. Model of A9UPE9 PDZ structure. The four conformations from Robetta are in cartoon
representation and colored as labeled in (a). (b) Identification of peptide-binding cleft residues in
A9UPE9 conformation 1 (A9UPE9_1). Residues used for analysis are shown as side chain sticks,
colored marine by heteroatom (N = blue, O = red) and labeled.

2.2. Domain Analysis and Motif Matcher (DAMM) Program

In order to determine the human PDZ domain with the most similar peptide-binding
cleft as A9UPE9, we developed a Python-based software suite called Domain Analysis
and Motif Matcher (DAMM). The computational pipeline of DAMM is in Figure 4a. We
will refer to the input sequence as “A9UPE9” or “the choanoflagellate PDZ domain se-
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quence”, but this program can theoretically be used for any PDZ domain sequence from
any organism. Ultimately, we did not want to require a structural model of an input PDZ
domain sequence in order to identify the seven peptide-binding cleft residues. Therefore,
we manually identified these amino acids for 140 solved PDZ domain structures, based on
our previous curation of mammalian PDZ domains in the Protein Data Bank [5]. These data
became an input database for our computational program, and the first step in DAMM is
to take a single input PDZ domain sequence (<100 residues) in FASTA file format and run
a BLAST alignment with the 140 PDB sequences that we manually curated [5,65]. The top
pairwise alignment based on sequence similarity is provided as an output with asterisks
marking the peptide-binding cleft residues of the annotated PDB structure. The user PDZ
domain input sequence has reference numbers, allowing the user to identify and input
the seven peptide-binding cleft positions for matching. For example, for A9UPE9, if the
input sequence included the N-terminus of the protein, the user would input: 26, 28, 44, 47,
77, 81, and 85 (Figure 3b). It is important to note that these numbers may vary depending
on the input sequence, e.g., if the input FASTA file only contained the UniProt annotated
A9UPE9 PDZ domain (residues 12–99), the numbers would be shifted by 12 as a result
because E12 would be considered residue 1 by DAMM. This description is to highlight
that the identified peptide-binding cleft residues will likely not correspond to the residue
numbers in the full-length protein.
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Figure 4. The Domain Analysis and Motif Matcher (DAMM) software suite. Details of the computational workflow of the
Domain Analysis program are in (a) and Motif Matcher program are in (b).

Following identification of the peptide-binding cleft residues for matching, DAMM
runs BLAST pairwise sequence alignments with all previously curated 272 human PDZ
domain sequences, including those that do not have a solved structure in the Protein
Data Bank [5]. The user is prompted to specify how many sequences to output, listed in
descending order by overall sequence identity. Included in the output file is a list of the
pairwise alignments with number of peptide-binding cleft matches, in both identity and
similarity, indicated for each of the alignments. The output file is ordered by sequence
identity to ensure that alignments listed at the top are those where the majority of the
PDZ domain sequences aligned, but overall, sequence identity does not play a role in
number of matches specified. Amino acids are defined as “similar” based on the following
categories, using one-letter abbreviations: acidic (D, E), basic (H, K, R), polar (C, M, N, Q,
S, T), non-polar (A, I, L, V), and aromatic (F, W, Y).
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Once these results are obtained, the user can run literature and database searches
to identity potential binding sequences based on known human PDZ targets. The Mo-
tif Matcher piece of DAMM and MotifMatcher-PDZ can then be used similarly, where
C-terminal sequences in the choanoflagellate proteome are filtered and screened for closest
matches to an input sequence [54]. Alternatively, we can use DAMM to screen the M. brevi-
collis proteome for specific preferences at each position, similar to those that would be identi-
fied using phage display or another high-throughput technique. All components of DAMM
were developed in Python 3, and are available at https://pdzselectivity.cs.wwu.edu (ac-
cessed on 11 September 2021).

2.3. Binding Preferences of A9UPE9 PDZ

To identify the binding preferences of A9UPE9 PDZ, we used the DAMM program to
find the human PDZ domains with the most similar binding cleft residues. For reference,
the PDZ domains with the top 5 highest overall sequence identities are in Table 1.

Table 1. Highest sequence identity values of human PDZ domains with A9UPE9 PDZ.

PDZ Domain Sequence Identity Sequence Similarity

INADL-10 42% (35/83) 59% (49/83)
SNTG2 41% (36/87) 57% (50/87)
GRIP1-2 41% (30/74) 60% (45/74)
GRIP2-2 41% (26/63) 61% (39/63)
GRIP1-4 35% (30/85) 51% (44/85)

Based on the overall sequences, A9UPE9 appears to most closely resemble the GRIP
PDZ domains (Table 1). However, the results from the DAMM program revealed a different
result. Table 2 shows the human PDZ domains with the most similar peptide-binding
clefts as A9UPE9 PDZ. For reference, the GRIP1-2 and A9UPE9 PDZ domains have one
identical residue amongst the peptide-binding cleft positions, an αB+1 His, and three
similar residues, at the βC−2 (Ser for A9UPE9, Thr for GRIP1-2), βC-αA+1 (Lys and Arg,
respectively), and αB+9 (Arg and Lys, respectively). This result highlights the importance
of using number of matches and not sequence identity for this type of analysis.

Table 2. DAMM program results for A9UPE9 PDZ.

PDZ Domain Matching/Similar Residues Sequence Identity

SYNJ2BP 5/2 31%
DLG1-2 4/2 29%
DLG2-2 4/2 29%
DLG4-2 4/2 29%

MPDZ-12 4/2 32%
DLG3-2 4/2 30%
DLG1-1 4/2 30%
DLG2-1 4/2 29%
DLG4-1 4/2 29%
DLG3-1 4/2 30%

Our DAMM program results clearly show that while the top result for A9UPE9 PDZ is
SYNJ2BP PDZ, overall, its peptide-binding cleft is most similar to the DLG family of PDZ
domains. Of these PDZ domains, those from DLG proteins are more extensively studied,
including by our lab. Therefore, we chose to use DLG1-1 PDZ in fluorescence polarization
experiments to directly compare binding affinity values with A9UPE9 PDZ.

The A9UPE9 and DLG1-1 PDZ domains were expressed and purified following similar
protocols, as previously described and in the Materials and Methods [48,54]. The reporter
peptide used for both proteins was a fluoresceinated sequence matching the C-terminus of
the HPV18 E6 oncoprotein (sequence: FITC-RLQRRRETQV), or F*-HPV18 E6. Determined

https://pdzselectivity.cs.wwu.edu
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KD values for each protein following triplicate experiments were 2.3 ± 1.6 µM for DLG1-1
PDZ and 6.9 ± 1.7 µM for A9UPE9 PDZ (Figure 5). The HPV18 E6 sequence was chosen
based on its known interaction with DLG1-1 PDZ [66–68]. A fluoresceinated version of the
HPV16 E6 C-terminal sequence (FITC-SSRTRRETQL) was also tested and bound A9UPE9
PDZ with KD = 19.5 ± 1.8 µM, based on duplicate experiments. Therefore, we used the
higher affinity F*-HPV18 E6 as our reporter peptide.
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Figure 5. Representative fluorescence polarization experiments to determine KD values of A9UPE9
(left, as labeled) and DLG1-1 (right, as labeled) PDZ domains. Overall KD values were calculated
from triplicate experiments.

We next wanted to interrogate preferences at specific positions along the peptide, as
well as to broadly compare binding affinities of known PDZ targets to the A9UPE9 and
DLG1-1 PDZ domains. Starting with the HPV18 E6 C-terminal sequence, we designed
a number of peptides to test specific peptide positions, including HPV16 E6, HPV18 E6,
SRETTV, SRETDV, RRETTV, and RRETDV, where underlined residues differ from HPV18
E6. As a control, we also tested human SNX27, SHANK1, and GIPC PDZ targets previously
studied, including GIRK3 (sequence: ESESKV), BPIX (WDETNL), GAIP (QSSSEA), TYRP1
(PNQSVV), and B1AR (ASESKV), as well as previously identified mbSHANK targets, in-
cluding A9V7Z4 (EDETAL), A9UP44 (QSESRL), and A9UXE1 (QDETAL) [48,54]. Example
competition experiment binding curves are in Figure 6, and all KI binding affinity values
are reported in Table 3.
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(left, as labeled), and DLG1-1 (right, as labeled) PDZ domains are shown with the HPV18 E6
variant peptides SRETTV and SRETDV. The average values are shown, with error bars representing
standard deviation from at least triplicate experiments. KI values were determined using SOLVER,
as previously described [12,45,46,48,54,60].
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Table 3. Binding affinities for the A9UPE9 and DLG1-1 PDZ domains, determined by fluorescence
polarization experiments. For all, F*-HPV18 E6 was used as a reporter peptide, and values reflect
at least triplicate experiments. Differences as compared with HPV18 E6 are underlined, as rele-
vant. Lines indicate related clusters of peptides: HPV sequences, HPV18 E6 variant sequences,
SNX27/SHANK1/GIPC targets, and mbSHANK M. brevicollis targets, respectively.

KI Values (µM)

Peptide Sequence A9UPE9 PDZ DLG1-1 PDZ

HPV18 E6 RLQRRRETQV 16 ± 1 2.8 ± 1.3
HPV16 E6 SSRTRRETQL 66 ± 24 23 ± 5

SRETTV SRETTV 83 ± 31 4.4 ± 1.9
SRETDV SRETDV 12 ± 3 7.9 ± 3.7
RRETTV RRETTV 33 ± 1 2.0 ± 1.6
RRETDV RRETDV 8.1 ± 3.1 9.5 ± 6.6

GIRK3 ESESKV >1000 350 ± 20
BPIX WDETNL 330 ± 160 460 ± 140
GAIP QSSSEA >1000 980 ± 180

TYRP1 PNQSVV 97 ± 24 46 ± 21
B1AR ASESKV 95 ± 30 44 ± 23

A9V7Z4 EDETAL 580 ± 160 460 ± 190
A9UP44 QSESRL 64 ± 35 39 ± 25
A9UXE1 QDETAL 460 ± 210 190 ± 20

As expected, both A9UPE9 and DLG1-1 bound the HPV18 E6 variant peptides with
much higher affinity than peptides matching SNX27, SHANK1, and GIPC targets (Table 3).
Our competition experiments revealed a key difference between the A9UPE9 and DLG1-1
PDZ domains. Specifically, while DLG1-1 PDZ bound the HPV18 E6 variant peptides
containing a P−1 Thr residue with higher affinity, A9UPE9 PDZ greatly preferred a P−1

Asp (Table 3). Sequence and structural analyses suggest this difference is due to the βC-
αA+1 residue, which is I259 in DLG1-1 and K47 in A9UPE9 PDZ and which can directly
interact with the P−1 residue (Figure 7a). This βC-αA+1 Ile is also in DLG1-2 and PSD95-1
(Figure 2). In fact, a multiple sequence alignment of the 12 PDZ domains in DLG1/2/3/4
confirms that these proteins share almost identical peptide-binding clefts, with βB+2 = S or
N, βB+4 = A or V, βC−2 = S or T, βC-αA+1 = I or L, αB+1 = H, αB+5 = V or A, and αB+9 = K.

Finally, we predicted that the apparent preferences of A9UPE9 PDZ for P−4 and P−5

Arg residues (e.g., for P−5, in RRETDV as compared with SRETDV) are due to D33 and/or
D34, residues in the βB–βC loop, as well as D78, the amino acid following the αB+1 His, and
that a preference for a P−3 Glu (as in the HPV sequences) is likely due to K45 (Figure 7b).
Taken together, our DAMM program successfully identified DLG PDZ domains as having
similar binding preferences as A9UPE9 PDZ, based on shared binding cleft residues. A
small number of substitutions in a target sequence, here HPV18 E6, were able to further
refine these preferences for A9UPE9 PDZ, and we identified two sequences, F*-HPV18 E6
and RRETDV, that bound with <10 µM affinity.

2.4. Endogenous Targets of A9UPE9 PDZ

Finally, we set out to identify potential endogenous targets of A9UPE9 PDZ, based on
peptide-binding cleft similarities with human PDZ domains. We used our HPV18 E6 variant
sequences (Table 3), as well as known human targets of the top hit from the DAMM pro-
gram, SYNJ2BP PDZ. As previously described, Motif Matcher scans a filtered set of M. brevi-
collis sequences consisting of the final 6 C-terminal residues for each protein in the UniProt-
downloaded proteome for most-similar matches to each sequence [54]. We initially required
the program to maintain a P0 Val residue, based on the affinity difference between the
HPV16 E6 and HPV18 E6 sequences, but allowed P−2 to be Ser or Thr. In addition, we ran
M. brevicollis proteins that were closest matches to known SYNJ2BP PDZ targets, including
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TMIGD1 (sequence: HSETAL), DLL1/DLL4 (VIATEV), and SYNJ2BP (ASGSSV), through
Motif Matcher [70–72]. We ultimately tested seven additional peptides in our fluorescence
polarization assay, including A9V6G5_MONBE (HRESTV), A9UWH1_MONBE (STRSDV),
A9UR52_MONBE (SRRTEV), A9UWP5_MONVE (GSESSV), and A9UYY4_MONBE (RLA-
SEV), as well as A9VB85_MONBE (ARESEI), which contained P−1/P−3 Glu residues and a
P−4 Arg, as well as the DLL1/DLL4 sequence directly (Table 4). A9VB85_MONBE was iden-
tified by using Motif Matcher to search for sequences with the highest number of positive
modulators for A9UPE9 based on our biochemical analyses, including P−1 = E/D/Q/N,
P−3 = E/D, P−4 = R/K, and P−5 = any residue except E/D.
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Figure 7. (a) Comparison of the peptide-binding clefts of A9UPE9 PDZ (marine) and DLG1-1
(pink, PDB ID 3RL7). DLG1-1 is bound to the peptide matching the C-terminal sequence of the
adenomatous polyposis coli (APC) tumor suppressor protein (sequence: YLVTSV) [69]. Peptide-
binding cleft residues are shown as side chain sticks, colored by heteroatom (N = blue, O = red) and
labeled, where black text indicates shared residues and blue/pink text indicates differences. The
βC-αA+1 residue, which influences P−1 selectivity, is indicated with a black circle. (b) Additional
residues in A9UPE9 that may influence peptide preferences include D33, D34, K45, and/or D78,
which are labeled and highlighted with circles. All side chains are shown as gray sticks and colored
by heteroatom, with peptide-binding cleft residues used in the DAMM program colored as in (a).
The HPV18 E6 peptide (sequence: RRETQV) from PDB ID 2OQS is shown as reference and labeled.

Table 4. Binding affinities for A9UPE9 PDZ with M. brevicollis sequences, determined by fluorescence
polarization experiments. The reference sequence for Motif Matcher is included, where applicable.
Experiments conducted as in Table 3 and as described in the Materials and Methods.

KI (µM)

Peptide Sequence Reference
Sequence A9UPE9 PDZ

A9V6G5_MONBE HRESTV HSETAL (TMIGD1) 97 ± 30
A9UWH1_MONBE STRSDV HSETAL (TMIGD1) >1000
A9UR52_MONBE SRRTEV RRETQV (HPV18 E6) >1000

A9UWP5_MONVE GSESSV ASGSSV (SYNJ2BP) 490 ± 110
A9UYY4_MONBE RLASEV VIATEV (DLL1/4) >1000
A9VB85_MONBE ARESEI >1000

DLL1/DLL4 VIATEV 240 ± 40

As shown in Table 4, most of our peptides failed to bind A9UPE9 PDZ with rea-
sonable affinities to suggest an endogenous interaction. Structural analyses suggested
that A9UWH1_MONBE and A9UR52_MONBE likely failed to bind due to the presence
of the P−3 Arg residue, which may negatively interact with the positively-charged K45
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(Figure 7b). It is not immediately clear why A9UYY4_MONBE bound with no detectable
affinity, defined as >1000 µM. One hypothesis is that A9UPE9 PDZ requires a P−3 Glu
for binding. Despite containing all other preferred selectivity determinants, including
P−1/P−3 Glu residues and a P−4 Arg, the P0 Ile in A9VB85_MONBE likely explains why
that sequence does not bind A9UPE9 PDZ. Our previous work investigating the basis of P0

selectivity found that the PDZ-defining carboxylate-binding loop sequence “GFGF”, as in
A9UPE9 PDZ, will likely only accommodate Val and Leu residues [46].

Overall, this work shows that it is challenging to predict endogenous targets of a
choanoflagellate PDZ sequence that is not homologous to human PDZ domains. However,
we identified one sequence, A9V6G5_MONBE, that binds with an endogenously relevant
affinity, <100 µM, using the DAMM program. In addition, a previously tested M. brevicollis
peptide, A9UP44 (QSESRL), bound A9UPE9 PDZ with KI = 64 µM (Table 3). It is not clear
why A9UPE9 PDZ bound this sequence with relatively high affinity, despite the P−1 Arg
residue, and suggests that the P−3 Glu provides the majority of free energy of binding
amongst non-motif/modulator residues. In our previous work, we successfully used
MotifMatcher-PDZ to identify sequences that bound mbSHANK with ~40–70 µM affinity,
which is in the same relative range and may reflect the relatively low affinities that PDZ
domains have for their endogenous targets [5,54]. Taken together, structural and sequence
analyses, in combination with the DAMM program, allowed us to identify two potential
endogenous targets of A9UPE9 PDZ. Future work to validate these targets in vivo, as well
as to test additional M. brevicollis sequences is necessary to develop a holistic view of the
cellular function of A9UPE9.

3. Discussion

Characterization of the proteins in choanoflagellate signaling pathways can pro-
vide important insights into the evolution of human cellular processes. We developed
a program to predict the target selectivity of PDZ domains in choanoflagellates, based
on conserved amino acids in the peptide-binding cleft. Another critical consideration
in future studies will be to think about the other domains in PDZ domain-containing
proteins and how they coordinate to regulate cellular processes. For example, there are
eight proteins in the M. brevicollis proteome that contain both PDZ and SH3 domains, a
domain architecture that is only present in choanoflagellates based on BLAST searches,
including A9UNP0_MONBE, A9UPE9_MONBE, A9UPI8_MONBE, A9UUC6_MONBE,
A9UYE7_MONBE, A9V111_MONBE, A9V6P1_MONBE, and A9V7E4_MONBE. Notably,
proteins that contain both PDZ and SH2 domains appear to be unique to organisms from
the phylum Choanozoa as well, and there are five M. brevicollis proteins that contain these
domains: A9V6T4_MONBE, A9V7X5_MONBE, A9VA09_MONBE, A9VB90_MONBE, and
A9VC25_MONBE [48].

SH2 and SH3 domains were first discovered in the late 1980s, based on homology
between the Src oncoprotein and phospholipase c, and play important scaffolding roles in
signal transduction pathways [73–75]. There are >120 SH2 domains in the human proteome
and >300 SH3 domains [76,77]. SH2 domains recognize phosphotyrosine-containing pep-
tide motifs [78–81]. SH3 domains recognize proline-rich peptides that form a polyproline
type II helix [82]. These domains play critical roles in tyrosine signaling pathways in
mammalian cells, by coupling tyrosine phosphorylation to intracellular signaling [83–87].

Work over the past decade has identified a complex network of tyrosine kinase sig-
naling in choanoflagellates, more so than in any metazoan characterized [88–92]. It is
clear that such networks are critical for cellular communication, environmental adapta-
tion, and other processes in both non-metazoans, such as choanoflagellates, as well as in
metazoans [90]. However, the intricacies of metazoan signaling pathways are not well
understood, and future investigations into how PDZ and SH2/SH3 domains act synergisti-
cally in these proteins may provide deeper insight into the role of tyrosine kinase signaling
in non-metazoans.
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We developed the DAMM program, which can be used to characterize a previously
uncharacterized PDZ domain, using sequence identity at key residues in the peptide-
binding cleft. We hypothesize that the same approach could be applied to SH3 and other
domains, based on conservation in amino acids that directly interact with a peptide target
(Figure 8a,b. For example, despite only 29% sequence identity (14/48 residues), structural
analyses of the A9UPE9 SH3 and human Src SH3 domains reveal similar peptide-binding
cleft residues (Figure 8b). While protein biochemistry can tease apart unique selectivity
determinants and identify potential protein–protein interactions in choanoflagellates, cell-
based experiments to directly test predictions and investigate these complex pathways will
be an exciting next area of research in understanding the evolution of PDZ and tyrosine
kinase signaling.
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Figure 8. (a) A homology model of A9UPE9 SH3 is shown in cartoon representation. The template
PDB ID used was 7CSO (Ephexin4 SH3). (b) The A9UPE9 and Src SH3 domains are in cartoon
representation, with peptide-binding cleft residues in sticks, colored by heteroatom (N = blue,
O = red) and labeled. The APP12 peptide is in black ribbon. Alignment of main chain atoms revealed
an overall RMSD = 0.824 Å for 170 atoms.

4. Materials and Methods
4.1. Protein Expression and Purification

Expression and purification of all human and M. brevicollis PDZ domains followed a
similar protocol, as previously reported for mbSHANK1 PDZ [48,54]. Briefly, N-terminal
His-tagged versions of A9UPE9 PDZ (residues 7–98) and DLG1-1 PDZ (residues 220–317)
with cleavable TEV sites were inserted into the pET28a+ vector by gene synthesis (Gen-
Script) and expressed in Escherichia coli BL21 (DE3) cells. Cells were lysed on ice using
sonication. The lysis buffer used was 50 mM Tris pH 8.5, 200 mM NaCl, 10 mM CaCl2,
10 mM MgCl2, 20% (w/v) glycerol, 50 mM imidazole pH 8.5, 0.25 mM TCEP, DNAse, and
protease inhibitor cocktail. Immobilized metal-affinity chromatography, 5 mL HisTrap (GE
Healthcare, now Cytiva), was used to purify proteins from the clarified supernatant. The
wash buffer used was 25 mM imidazole pH 8.5, 25 mM Tris pH 8.5, 250 mM NaCl, 10%
(v/v) glycerol, and 0.25 mM TCEP, and the elution buffer was 400 mM imidazole pH 8.5,
25 mM Tris pH 8.5, 50 mM NaCl, 10% (v/v) glycerol, and 0.25 mM TCEP. Except for the
protein used in binding experiments, the protein was then dialyzed in dialysis/gel filtration
buffer (25 mM Tris pH 8.5, 150 mM NaCl, 10% (w/v) glycerol, 0.5 mM TCEP) and incubated
at 4 ◦C overnight with TEV protease to cleave off the His-tag. The cleaved protein was then
purified using a second nickel column with the wash and elution buffers described above.
All proteins were further purified on a Superdex S75 column (Cytiva), using gel filtration
buffer. Proteins were concentrated using Amicon centrifugal concentrators (3 MWCO).
Concentrated proteins used in fluorescence polarization assays were flash frozen in liquid
nitrogen for storage at −80 ◦C. The extinction coefficient values used for quantification of
the proteins at A280 were 1490 cm−1·M−1 (A9UPE9) and 4470 cm−1·M−1 (DLG1-1).



Molecules 2021, 26, 6034 12 of 17

4.2. Fluorescence Polarization

Fluorescence polarization assays were conducted, as previously described [12,45,46,
48,54,60]. The reporter peptide used in competition experiments was F*-HPV18 E6 (FITC-
RLQRRRETQV), and KD values were averaged from triplicate experiments. In both KD and
KI experiments, 30 nM reporter peptide was used. Determined KD values for each protein
following triplicate experiments were 2.3 ± 1.6 µM for DLG1-1 PDZ and 6.9 ± 1.7 µM for
A9UPE9 PDZ. The final protein concentrations used for KI competition experiments were
10.5 µM (A9UPE9) and 4.5 µM (DLG1-1). Competition experiments were performed in
at least triplicate, and binding affinities were determined using SOLVER, as previously
described [12,45,46,48,54,60]. Binding curves were visualized using Kaleidagraph.

4.3. Design and Development of Domain Analysis and Motif Matcher (DAMM)

The DAMM software suite was written using Python 3. The first step of DAMM,
Domain Analysis (DA), receives a PDZ domain sequence in FASTA format as input from
the user. DA interfaces with BioPython and performs a pairwise BLAST-style alignment of
the input sequence to the 140 PDZ-labeled domains in our database [93]. DAMM outputs
the top-scoring pairwise alignment, showing known conserved residues, then prompts the
user for a list of seven conserved residues. Critically, the sequence will not properly align
with the annotated PDZ domain sequences if the input is >100 residues, so it is important
to input just the PDZ domain itself.

Following identification of peptide-binding cleft residues, DA aligns the input se-
quence with the sequences of all 272 human PDZ domains, based on previous curation [5].
The output file lists pairwise alignments in order based on BlastP score and also lists the
number of matching and/or similar peptide-binding cleft residues. Amino acid similarity is
based on the following five groupings: (group 1, hydrophobic) AILV; (group 2, negatively-
charged) DE; (group 3, positively-charged) KRH; (group 4, aromatic) FYW; (group 5, polar)
CMNQST. Glycine (G) and proline (P) are not included in the groupings because of their
unique chemical and/or structural properties.

A user might want to perform a motif similarity search after the alignment analysis
and determination of number of matching/similar peptide-binding cleft residues. DAMM
provides a separate motif matching program, inspired by MotifAnalyzer-PDZ and here
named Motif Matcher (MM) [54]. Motif Matcher takes as input a target proteome, specific
position constraints for each motif residue (e.g., P0 = F, I, L, or V and P−2 = S or T), and
the maximum amount of substitutions a user will tolerate (e.g., for a hexamer with two
defined motif positions, the maximum number here would be equal to four). The output
is a list of all C-terminal hexameric sequences that meet these constraints, including the
number of substitutions at non-motif positions (Table 5).

Table 5. Example output of Motif Matcher, using sequence GGGTGL as a search model.

Number of
Substitutions UniProt ID Matching Sequence Reference Sequence

2 tr|A9UQN5|A9UQN5_MONBEGGCTLL GGGTGL
2 tr|A9V457|A9V457_MONBE YGGTSF GGGTGL
2 tr|A9UZY0|A9UZY0_MONBERYGSGV GGGTGL
2 tr|A9UWI6|A9UWI6_MONBEGGCSLL GGGTGL
2 tr|A9UR91|A9UR91_MONBE GYGSTI GGGTGL
2 tr|A9UU72|A9UU72_MONBE GGPTDI GGGTGL
2 tr|A9UX10|A9UX10_MONBE GLGTTI GGGTGL
2 tr|A9UNL7|A9UNL7_MONBEGGSTQI GGGTGL
2 tr|A9UPF5|A9UPF5_MONBE GDGSSF GGGTGL

4.4. Protein Analyses

Structural models of A9UPE9 PDZ were created using the Robetta online server [64].
A structural homology model of A9UPE9 SH3 was created using SwissModel [94–96].
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Sequence alignments were performed using BLAST and T-coffee [65,97]. All structure
figures were created using PyMOL.

5. Conclusions

Here we provide an experimental pipeline to predict endogenous targets of a pre-
viously uncharacterized PDZ domain with no homology to any human protein. In our
approach, we use structural conservation and sequence analyses to determine positional
selectivity determinants, and we successfully identify two choanoflagellate sequences with
endogenously relevant binding affinities. We argue that this type of approach is applicable
to other peptide-binding domains, e.g., SH2 and SH3 domains. These experiments have
the potential to provide important insights into signaling pathways in choanoflagellates
and other organisms, allowing us to better understand the origins of multicellularity.
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