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The investigation of endogenous viral elements (EVEs)

has historically focused on only a few lineages of

parasitoid wasps, with negative results consistently

underreported. Recent studies show that multiple viral lineages

were integrated in at least seven instances in Ichneumonoidea

and may be much more widespread than previously thought.

Increasingly affordable genomic and bioinformatic approaches

have made it feasible to search for viral sequences within wasp

genomes, opening an extremely promising research avenue.

Advances in wasp phylogenetics have shed light on the

evolutionary history of EVE integration, although many

questions remain. Phylogenetic proximity can be used as a

guide to facilitate targeted screening, to estimate the number

and age of integration events and to identify taxa involved in

major host switches.
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Introduction
The use of endogenous viral elements (EVEs) by sev-

eral lineages of parasitoid wasps represents a remark-

able example of convergent evolution [1]. EVEs in the

form of virions (polydnaviruses, or PDVs) or virus-like

particles (VLPs) are used to deliver virulence proteins,

suppress the immune system of the wasp’s host, and/or

modify its growth and development [2,3]. Recent

studies have shown that viral acquisition has occurred

in more hymenopteran lineages than previously thought

[4��,5��,6��,7,8,9��]. They furthermore suggest that

multiple viral ancestors were integrated through varied

pathways [10–12,13�,14,15]. Understanding the

phylogenetic history of EVE occurrence in parasitoid

wasps is crucial to unraveling the multiple processes

leading to viral domestication. Here we review the

recent progress in the field, focusing on the

Ichneumonoidea, where the most well-characterized

EVEs are found, outline the major gaps in our

knowledge, and identify a few challenges for future

research.

Overview of endogenized viruses in
Ichneumonoidea
Types of evidence for EVE presence or absence

The first evidence for EVEs in parasitoid wasps was

based on morphological and histological analyses of

wasp ovaries (see Ref. [16] for an overview). Morpho-

logical evidence involves detection of an enlarged,

cup-shaped section just below the ovary, called the

calyx, in which virion production takes place [17]. Its

conclusiveness can be strengthened by selective stain-

ing of DNA, which is typically present in large amounts

in virion-rich tissues (but note that certain VLPs only

contain proteins; [14]). Histology, especially ultra-thin

sectioning combined with transmission-electron

microscopy (TEM) of the calyx tissue, goes a step

further by also elucidating virion morphology, which

can differ considerably even in a single type of EVE

carried by different wasp species [18�]. Beyond

morphology, early studies demonstrated that it was

the virus particles themselves that suppressed the hosts

immune response [19]. Proteomics, transcriptomics or

the preparation of cDNA libraries from calyx tissue

can be used to identify genes involved in the production
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of the virions, which are typically of viral origin [15,20].

In contrast, isolating the virions and sequencing the

DNA molecules that they contain yields virulence

genes of very diverse, but usually non-viral genomic

origins [21]. Finally, sequencing of the whole genome

of an EVE-carrying parasitoid wasp allows the study of

the genomic architecture of the integration [4��,5��,13�,
14].

Phylogenetic distribution of EVEs

A review of the available evidence for EVE presence

across Ichneumonoidea shows that there has been a clear

emphasis on screening species across just a handful of the

�84 subfamilies within Ichneumonoidea (Table 1, Sup-

plementary Table 1). Evidence for the absence of EVEs

may not have been consistently reported across the lit-

erature but is essential to fully understand EVE distribu-

tion and evolution. Recent studies have shown that virus

domestication is more common than previously thought

[4��,5��]; thus a wider taxonomic search using both histo-

logical and genomic approaches is warranted.

A phylogenetic perspective on EVE distribution among

taxa of Ichneumonoidea not only facilitates targeted

screening, but also allows estimating the likely number

of integration events. The last decade has seen a consid-

erable overhaul of our knowledge of the phylogenetic

history of Braconidae and Ichneumonidae [22–26,27�,28],
resulting in an improved assessment of the phylogenetic

history of EVE occurrences (Figures 1 and 2).

In the Bracovirus case, it is likely that all microgastroid

wasps bear bracoviruses: this is a clearly monophyletic

lineage and no species yet investigated in the group have

definitely been found to lack them (although PCR ampli-

fication of nudivirus-origin genes failed in a questionably

preserved Khoikhoinae; [10]). In totality, the evidence

indicates that a single integration event took place at the

base of the microgastroid clade (Figure 1). For the

remaining Ichneumonoidea, however, the phylogenetic

picture is not as clear-cut. Recent genomic studies con-

siderably expanded our knowledge of EVE evolution,

suggesting a more complex story in Campopleginae than

previously assumed and even revealing entirely new

discoveries of EVEs in Opiinae, Microgastrinae and Pim-

plinae [4��,5��].

For Campopleginae, there has been historically a tacit

understanding that ichnoviruses were found in all mem-

bers of the subfamily, but such an assumption depends on

mapping the existing records on a phylogenetic tree

(Figure 2). The recent discovery of a lack of ichnovirus

genes in a species of Dusona [4��] suggests either a later

acquisition in a subset of campoplegine taxa or multiple

loss events in the evolution of the subfamily. Further-

more, the recent characterization of the Venturia canescens
genome confirmed that the genes responsible for the
Current Opinion in Insect Science 2022, 50:100861 
formation of VLPs in this species are integrated, of viral

origin, and related to nudiviruses [14], thus certainly

representing a separate integration event. The authors

also found some potential remnants of ichnovirus genes in

the genome, perhaps suggesting an EVE replacement in

this species, but the matches were not strong enough to

be confident in this hypothesis. Until further evidence

demonstrates ichnovirus presence in members of the

clade that includes Venturia, domestication of an Ichno-
virus in a more restricted subset of Campopleginae should

be considered possible.

In Banchinae, recent molecular and genomic character-

izations of the EVEs in two species revealed several genes

homologous to the ichnoviruses in Campopleginae, as

well as similarities in the architecture of the genome

integration [29,30]. While the phylogenetic evidence

[22,27�] and existing genome screening [4��] suggest

two parallel domestication events from the same viral

group in Campopleginae and Banchinae, we cannot

completely rule out the possibility that this pattern is

due to a single domestication followed by multiple losses.

Extensive taxon sampling within Banchinae as well as in

the subfamilies that are phylogenetically in between

them and the Campopleginae is required to resolve this

question.

Recently, a novel EVE was discovered in the braconid

Fopius arisanus (Opiinae) [5��], a major biocontrol agent of

tephritid fruit flies. In this species, VLPs are produced in

the nuclei of calyx cells, lack DNA, and are most closely

related to pathogenic Alphanudivirus (Nudiviridae)

sequences, highlighting a second independent viral inte-

gration event in Braconidae. Two additional suspected

EVEs were discovered very recently from sequenced

genomes [4��,27�]. Both are related to the filamentous

dsDNA virus in Leptopilina boulardi (LbFV), a cynipoid

parasitoid of Drosophila, and have some similarity to

hytrosaviruses. These viruses were found in divergent

taxa, one as a second EVE in Cotesia vestalis (Microgas-

trinae) and the other in Dolichomitus imperator, a member

of Pimplinae (Ichneumonidae). The latter is a novel

subfamily to contain an EVE and represents the first

idiobiont ectoparasitoid with an EVE. The role of EVEs

in ectoparasitoids has never been examined, but they may

have venom-like functions that benefit the wasp, such as

increasing nutritional value of the host, maintenance of

paralysis, or microbial functions [31].

In total, this represents a minimum of seven integration

events in Ichneumonoidea, three identified in Braconidae

and four in Ichneumonidae. The viral elements found in

Leptopilina (Figitidae) and the recently uncovered evi-

dence for additional EVEs in the genome of Eurytoma
brunniventris (Chalcidoidea: Eurytomidae [9��]) suggest

that future genome sequencing may reveal even more

massive convergence in EVE uptake across the tree of
www.sciencedirect.com
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Table 1

Taxonomic distribution of EVE presence or absence, as reflected in the literature. Numbers in parenthesis after the name of each taxon

represent the number of genera or subfamilies screened for EVEs out of the total number. A plus sign means evidence for presence, a

minus sign evidence for absence, and a question mark denotes uncertain evidence for presence. See Supplementary Table 1 for details

and literature references

Family/subfamily EVE typea Ovary morphologyb TEM of

calyx tissuec
Viral machinery

genesd
Packaged

DNA or proteine
Wasp genomef

Braconidae (11/41)

Cardiochilinae (1/17) Bracovirus 1+ 1+ 1+ 1+

Cheloninae (3/23) Bracovirus 3+ 3+ 1+ 2+ 1+

Euphorinae (2/59) VLP 2+ 2+ 1+ 1�
Helconinae (1/18) None detected 1�
Khoikhoiinae (1/2) Bracovirus? 1?, not

amplified

Macrocentrinae (1/8) None detected 1�
Mendesellinae (1/2) Bracovirus 1

Microgastrinae

(11/81+)

Bracovirus 5+ 6+ 4 3+ 2+

Miracinae (1/1) Bracovirus? 1 1

Opiinae (4/39) Nudivirus, rhabdovirus,

entomopox-virus

(exogenous)

3+ 4+ 2+ 1+ 1+ 1�

Rogadinae (1/62) None detected 1�
Ichneumonidae (8/42)

Adelognathinae (1/1) None detected 1�
Banchinae (3/67) Ichnovirus 3+ 1+ 2? 1+ 2+ 1+

Campopleginae

(11/66)

Ichnovirus + VLP

(nudiviral origin)

6+ 5? 5+ 3? 4+ 3+ 3+ 1�

Ctenopelmatinae

(2/107)

Unclear / none 1+ 1�

Ichneumoninae

(1/437)

Ascovirus (exogeneous) 1? 1?

Mesochorinae (1/12) None detected 1�
Pimplinae (1/77) LbFV (similar to

hytrosavirus)

1+

Xoridinae (1/4) None detected 1�
aUnclear evidence as indicated by a question mark mostly stems from incomplete information in the literature about the detection method.
b Enlarged region below wasp ovarioles found (‘calyx’).
c Transmission electron microscopy identified structure of virions produced in wasp ovaries.
d Genes involved in particle formation and/or virus DNA replication sequenced, usually through transcriptomics, proteomics or cDNA library

preparation of purified virions or at least ovary tissue.
e Packaged genes from within virions isolated and sequenced (‘viral genome’, but genes usually not of viral origin), or their effect on host cells studied

(e.g. through RNA interference).
f Wasp genome sequenced and integration of viral machinery genes and/or of packaged virus genome among the wasp genes examined.
parasitoid wasps. Furthermore, the discoveries of exoge-

nous viruses with convergent functionality to EVEs (a

poxvirus in an Opiinae and an ascovirus in an Ichneumo-

ninae species [32,33�,34]) suggest that viral mutualisms

do not necessarily require genome integration (Figure 2).

Age of domestications of Bracovirus and Ichnoviruses

The phylogenetic distribution indicates an old age for

both the Bracovirus and the Ichnovirus mutualisms. The

oldest fossil microgastroid is a chelonine from Oise amber

(47.8–56 Ma; [35]), but a divergence dating study [36]

estimated an age of 103 Ma for the group. Although this

result was largely based on an age estimate for Baltic

amber fossils that is now considered too high, this number

is reasonable given the extensive ghost ranges common in

the insect fossil record.
www.sciencedirect.com 
As for ichnoviruses, Campopleginae and Banchinae fossils

are known from the Florissant Formation (37–33.7 Ma;

[37]). A recent dating study recovered a likely age of

98 Ma for Campopleginae and even 117 Ma for Banchinae

[28]. These dates might have to be reviewed if it is shown

that not all members of these subfamilies harbour ichno-

viruses, and improved fossil sampling may also lead to the

revision of these age estimates in the future. In any case,

the Bracovirus and Ichnovirus domestications certainly

date back many dozens of million years.

Adding a phylogenetic perspective to EVE
discovery
Bracoviruses and the microgastroid wasps harbouring

them offer a clear example of an ancient EVE acquisition

that persisted in a hyperdiverse group through time, with
Current Opinion in Insect Science 2022, 50:100861
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Figure 1

Current Opinion in Insect Science 

Phylogenetic overview of the EVEs found in Braconidae. On the left, consensus phylogenetic tree of the family based on the most recent studies

[26,27�]. Uncertain or poorly supported relationships are shown as polytomies and dashed lines. Lineages with EVEs are highlighted with symbols

for either PDVs or VLPs. Colored boxes summarize current information about braconid EVEs. Phylogenetic relationships for VLP-carrying species

of Fopius based on sequences for the lef-8 gene available in Ref. [5��]. Phylogenetic tree for arthropod-infecting large dsDNA viruses modified

from Ref. [4��].
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Figure 2

Current Opinion in Insect Science 

Phylogenetic overview of the EVEs found in Ichneumonidae. On the left, consensus phylogenetic tree of the family based on the most recent

studies [22–25,27�] and unpublished data. Uncertain or poorly supported relationships are shown as polytomies and dashed lines. Lineages with

EVEs are highlighted with symbols for either PDVs or VLPs. Colored boxes summarize current information about ichneumonid EVEs. Simplified

phylogeny of Banchinae depicts the putative relationship among tribes based on current information. Phylogenetic tree for Campopleginae based

on unpublished molecular data held by the authors. The box titled ‘Venturia canescens’ depicts a hypothesized sequence of events in which

ichnoviruses are domesticated earlier in campoplegine evolution and lost in the Venturia clade following the acquisition of VLPs derived from an

alphanudivirus.

www.sciencedirect.com Current Opinion in Insect Science 2022, 50:100861
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Box 1 Glossary terms

Endogenous viral elements (EVEs): DNA sequences of viral origin

that become permanently integrated into the genome of another

organism. EVEs can degrade over time or be retained and assume

important roles for the biology of their host organisms.

Virus-like particles (VLPs): molecules that are structurally similar to

viruses but lack any genetic material. In parasitoids, VLPs act as

delivery systems for virulence factors and other wasp-derived pro-

teins. These molecules can originate as a functional adaptation

deriving directly from the metabolism of eukaryotic organisms (in

which case they do not constitute EVEs) or from the genomic capture

of ancient viruses with subsequent loss of the packaged DNA.

Polydnaviruses (PDVs): Large double-stranded DNA viruses whose

packaged genome is composed of multiple molecules of circular

DNA (segments) that encode virulence genes. In addition to these

proviral segments, the integrated PDV genomes include clusters of

replication genes that are expressed in the wasp calyx cells during

the process of PDV production, but not packaged in the viral parti-

cles. PDVs are found in the parasitoid families Braconidae (bracov-

iruses, or BVs) and Ichneumonidae (ichnoviruses, or IVs).

Ancient core genes: Loci encoding replication components that are

common to most families of double-stranded DNA viruses that infect

insects. Targeted search for sequences of ancient core genes in

parasitoid genomes is one of the tools that can be used to identify

EVEs.

Koinobionts: Parasitoids that allow the host to continue feeding and

developing during parasitization. Koinobionts usually live inside the

tissues of the host (endoparasitoids), and as such need to cope with

the host’s immune system and other physiological changes. Almost

all parasitoid wasps with EVEs discovered thus far are koinobiont

endoparasitoids.

Idiobionts: Parasitoids that permanently interrupt the development

of the host at the time of parasitization via the inoculation of an

incapacitating cocktail of venom and other substances. Idiobionts

are usually ectoparasitoids and likely have little interaction with the

internal physiology of their hosts.
the existing evidence suggesting correspondence

between wasp and viral phylogenies (reviewed in Ref.

[38]). For other EVEs in parasitoid wasps, it is already

clear that presence of endogenous viruses cannot be

assumed across entire lineages, especially for Opiinae,

Banchinae and Campopleginae (Figures 1 and 2). Thus,

taxonomic generalizations should be replaced by system-

atic screening of individual lineages using phylogenetic

proximity as a roadmap. Robust demonstrations of co-

phylogeny between wasps and EVEs may be the best

non-exhaustive evidence of widespread presence of viral

elements across entire lineages.

In many cases it is not clear whether wasp taxa for which

EVEs have not been reported actually lack EVEs, possess

distantly related undetected EVEs, or have simply not

been sufficiently investigated to conclude anything. Cur-

rent limitations to improving the situation partly revolve

around the need to accurately identify and provide

voucher specimens for the wasps, while at the same time

preserving them in a condition suitable for transmission

electroscopy (in fixative such as 2% gluteraldehyde in

0.1 M cacodylate buffer – [18�]), genomic level analysis

(ultracold frozen) or preferably both with independent

specimens. Ichneumonoid wasps are hyperdiverse and

poorly studied, with an estimated several hundred thou-

sand species, and include many small and relatively

uncommon species that are near impossible to identify

at low taxonomic levels in the field. Obtaining DNA

barcodes from field samples before genome sequencing

might allow streamlining of the process, although at

present faunal inventories and reference barcode libraries

remain highly incomplete. Currently, there are approxi-

mately 230 000 barcodes for roughly 13 000 species of

Ichneumonoidea in the Barcode of Life Database (http://

www.barcodinglife.org/), compared to about 47

000 described and many more undescribed species [39].

Another labor-intensive but effective method for obtain-

ing samples is through rearing from host insects as is done

at several tropical sites (e.g. Ref. [40]); there is a strong

need to pursue this underdeveloped aspect of field col-

lecting both for completeness of sampling and for under-

standing the natural history of virus/wasp/host insect

interactions.

Indeed, very little is known about the impact of EVEs on

long-term evolutionary dynamics between parasitoids

and their hosts. It has been suggested that the presence

of EVEs may increase host specialization and diversifica-

tion within Ichneumonoidea [27�], and more specifically

in the microgastroid complex [41], but specific tests of

these hypotheses have not been completed. There is also

growing evidence that EVEs impact multi-species inter-

actions and thus may have far wider significance than just

between the wasp and the virus. For example, recent

studies show that wasp viral particles can reach the
Current Opinion in Insect Science 2022, 50:100861 
salivary glands of their hosts, which then alters the

quantity and specificity of volatiles released by the host

plant in response to herbivory [42,43]. These volatiles are

then used as cues for parasitism for the hyperparasitoids of

the EVE carrying wasps, demonstrating complex and

interesting evolutionary interactions across ecological

networks. The evolution of EVEs seems to occur as a

response to the evolutionary need to cope with the

immune system of the hosts, an interaction that applies

more directly to koinobiont endoparasitoids (see Box 1).

Acquisition of EVEs in wasps with other host relation-

ships (e.g. idiobionts) may be less likely or serve very

different purposes (Figure 2). Switching among host

lineages may also represent a remarkable evolutionary

challenge for the wasp-EVE interaction. While all micro-

gastroids are associated with lepidopteran hosts, other

discovered EVEs are in parasitoids that attack different

insect orders; studying their loss or persistence during

major host switches is a promising avenue of research

[18�]. In addition, comparing the rate at which the viral

machinery evolves with that of the packaged virulence

genes would provide unique insights into selective
www.sciencedirect.com

http://www.barcodinglife.org/
http://www.barcodinglife.org/


Many evolutionary roads led to virus domestication in parasitoid wasps Santos et al. 7
pressures caused by host switches on the wasp-virus

association. Campopleginae might represent an ideal

study system to tackle such questions, given their multi-

ple transitions from Lepidoptera to Coleoptera, Hyme-

noptera and even Raphidioptera (Figure 2).

Finding viruses using the latest sequencing
and bioinformatics techniques
Sequencing advances beyond just purification and elec-

trophoresis [44] led to new approaches to EVE discovery,

from clonal or targeted DNA [10] to mRNA amplification

of known viral genes [45,46]. However, targeted amplifi-

cation is complicated by the rapid mutation rate of viral

genes, making primer or probe design challenging, espe-

cially when screening across diverse lineages [27�].
Genome sequencing allowed for characterization of viral

gene dispersion, synteny, phylogenetic history, and other

sequence characteristics beyond single genes, and thus

has become the best way to validate if viruses are endo-

genized [10,47–50]. Further refinements in assembly and

annotation have better outlined the comparative genomic

composition and organization of bracoviruses and ichno-

viruses across wasp genomes [12,18�,29,51,52��,53].
Genome sequencing has also led to the discovery of novel

viruses, suggesting that virus domestication may be more

common than previously thought and the viruses

involved are more diverse and have integrated more

recently than bracoviruses and ichnoviruses [4��,5��].

In addition to genome sequencing, innovative bioinfor-

matic approaches can lead to viral discovery through

targeted searches for ancient core genes that are the most

commonly found across all known dsDNA viruses, many

of which are arthropod infecting viruses [4��]. However,

this may not indicate endogenization and may not find

viruses that show little recognizable homology to other

known virus lineages, as is the case with ichnoviruses.

Endogenization can be inferred through discovery of viral

genes dispersed through the wasp genome. If genome

quality is poor, integration may be inferred indirectly by

using a sliding window approach across wasp scaffolds to

search for viral signatures, including intron-less genes,

abrupt changes in gene order and homology, transposable

elements, small RNAs, or differential gene statistics such

as nucleotide composition, codon bias and read coverage

[54,55]. These bioinformatic approaches can provide an

economical screen, thereby helping to improve taxon

sampling without the need for particularly complete

genome assemblies. However, their false-positive recov-

ery rate may be rather high, and histological examinations

and TEM analysis of reproductive regions may still

provide the most efficient approach to novel virus discov-

ery across the broadest range of taxa. This approach can

also help focus genomics-based approaches to specific

lineages for a cost-effective and well-evidenced screening

methodology.
www.sciencedirect.com 
Conclusions
The increased feasibility in generating whole genome

sequence data and the recent boost in wasp phylogenetics

represent an opportunity for a revolution in our under-

standing of the distribution of EVEs across parasitoid

lineages. This opens the venue for a comprehensive

catalogue of EVE-bearing lineages, studies of co-phylog-

eny and comparisons of genomic architecture among

independent viral acquisition events. These advances,

in turn, will allow us to investigate major evolutionary

questions involving the association between viruses and

wasps. What makes certain virus lineages susceptible to

integration, while others are not? Does the use of EVEs

have a significant impact on the diversification process

among wasp lineages? Does the use of EVEs lead to an

expansion or to a restriction in host use by parasitoids?

What we do know is that the phylogenetic distribution

and evolution of EVEs among parasitoid Hymenoptera is

only beginning to be explored.
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