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Abstract—This paper describes a miniature edge device that 

performs neural network inference with different exit options 

depending on available energy. In addition to the main-exit path, 

it provides an alternative, early-exit path that requires less 

computation and thus increase the number of inference operations 

for given energy. To compensate its degraded accuracy, the 

proposed device provides entropy as a confidence level for the 

early exit. The network is implemented with a custom low-power 

180 nm CMOS processor chip and a 90 nm embedded flash 

memory chip and tested by images from CIFAR-10 dataset. The 

measurement results show the proposed neural network reduces 

processing time and thus energy consumption by 41.3% compared 

with the main-exit only method while sacrificing its accuracy from 

69.5% to 66.0%. 

Keywords—Energy harvesting, neural network, multi-exit, 

miniature system. 

I. INTRODUCTION 

Rapid evolution in computing systems has continuously 

reduced their form factor over 70 years from a room-size 

mainframe to a miniature Internet-of-Things (IoT) device with 

centimeter/millimeter-scale size [1]. The miniature system 

becomes an attractive monitoring solution in a variety of 

applications including ecological, biomedical, security, and 

infrastructure [2]–[5]. Their tiny system size enables to measure 

important parameters with minimally affecting normal 

characteristics of a target object or even creates an 

unprecedented monitoring approach in a space-limited 

application (e.g., intraocular pressure sensor in an eye [6]).  

However, there are still substantial challenges in miniature 

system design, including limited memory size and battery 

capacity. For applications where raw data size is significant, it is 

not efficient to store the original data into a small memory in the 

miniature system. For instance, a small image with 32×32 

pixels, RGB color channel, and 8-bit resolution requires 3 kB 

(e.g., CIFAR-10 dataset [7]).  A 128 kB flash memory [8], 

designed for a miniature system, can store only 42 images. To 

increase the number of data to be stored, it is more efficient to 

extract key information from the raw images and save only the 

significantly reduced data into the memory. For example, 

Convolutional Neural Network (CNN), one of recently 

highlighted machine learning (ML) techniques, categorizes 

CIFAR-10 dataset to 10 classes so that the final output can be 

stored in 4 bits [9]. A CNN with 70 kB coefficients enables to 

store both the coefficients and 116k inferenced results in the 

memory.  

The ML technique performs intensive computation and 

consumes considerable energy. Thus, implementing it in a 

miniature system encounters an issue with limited available 

energy. The total system size budget restricts physical battery 

form factor and thus battery capacity. For example, a thin-film 

battery with 5.7 mm × 6.1 mm stores only electrical charge of 

50 µAh or energy of 684 mJ [10]. A low-power TI MSP430 

processor can discharge the battery in 4.2 days just by its standby 

power of 0.5 µA [11]. Moreover, it is very difficult to replace a 

battery once the millimeter-scale system is fully encapsulated 

for physical protection [12]. Hence, a miniature system usually 

employs energy harvesting technique to recharge the battery 

using environment energy and thus extends the system lifespan 

[12]–[14]. However, it does not always guarantee stable energy 

supply for extensive ML computation since the environment 

energy source is typically weak and intermittent [15].  

In this paper, we present a design example of CNN 

implementation for a millimeter-scale energy-harvesting-

powered edge device. It employs two exit options such as the 

main and early exits and chooses one according to available 

energy in a battery. The early-exit path provides faster 

processing time but less accuracy than the main-exit path. The 

CNN is implemented with a custom low-power processor chip 

[1] and a 128kB flash memory [8], previously fabricated in 180 

nm CMOS and 90 nm embedded flash technology, respectively. 

The proposed neural network reduces processing time and thus 

energy consumption by 41.3% compared with the main-exit 

only method while losing the accuracy from 69.5% to 66.0%. 
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Fig. 1 Proposed system and an example application. 
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II. TARGETED SYSTEM OVERVIEW 

Fig. 1 shows the proposed system for an example  

application where a miniature smart imager is attached to a small 

animal (e.g., insects [16], [17]) to study its living environment. 

The system takes its surrounding pictures, extract their key 

information, and save the inference results  (e.g., forest, water, 

town, etc.) in a memory. Once the animal comes near a gateway, 

the collected data will be remotely transmitted. The miniature 

imager mainly consists of image sensing, wireless 

communication, and data processing & storage parts.  

Table 1 summarizes the state-of-the-art low-power CMOS 

image sensors (CISs) for the image sensing part [18]–[21]. 

Power consumption of CISs has been reduced for portable 

device and becomes small enough to be powered by energy 

harvesters [18], [22]–[25]. The prior works have been optimized 

for different pixel resolution, RGB/monochrome, and ADC 

resolution. In the target application, relatively small images will 

be periodically captured rather than continuous streaming. Thus, 

performances reported for low-performance setting  (e.g., low 

pixel resolution, slow flame rate, etc.) are used for comparison. 

All the CISs consumes small energy so that they do not rapidly 

discharge a millimeter-scale battery (e.g., 684 mJ [10]) even 

considering images of 1M pixels, RGB, and 10 bits.  

For wireless communication, [26] demonstrated an energy-

efficient radio transceiver designed for a miniature system. It 

consumes the average power of 60.6 μW at the maximum data 

rate of 30.3 kbps in transmit mode while consuming 1.85 mW at 

the maximum data rate of 62.5 kbps in receive mode. It costs 

790 ms and 47.9 µJ to transmit a 32×32- pixel, RGB, 8-bit 

image while requiring 16.9 minutes and 61.4 mJ for  a 1M-pixel, 

RGB, 10-bit image. For the latter, only 11 images can be 

transmitted by the 684 mJ battery. Thus, data size to be 

transmitted must be reduced [27].  

Michigan Micro Mote (M3) platform [1] has been used to 

develop various millimeter-scale systems with different sensing 

modality [28]–[33], including imagers [4], [34]. The platform 

consists of multiple chips stacked in a vertical way as shown in 

Fig. 1. The structure provides the maximum functionality  (or 

silicon area for integrated circuits)  per unit volume. The 

modular platform enables easy system development for different 

applications. The layers are connected by bonding wires that 

form low-power data bus [35] and deliver  regulated supply 

voltages. The proposed system includes chips such as a solar 

energy harvester [12], a processor [1], a flash memory [8], a 

radio transceiver [26], a power management unit [36], and a 

battery [10]. Here, the processor and flash memory manage the 

system operation, extract key information from the images by a 

neural network for data size reduction, and storage its required 

coefficients and inference results. The process includes a 

commercial ARM Cortex-M0 processor and a custom low-

power 16 kB SRAM, fabricated in 180 nm CMOS process [1]. 

The 128 kB embedded flash memory is designed with custom 

low-power peripheral circuits and fabricated in 90nm NOR flash 

technology [8]. This non-volatile memory enables the system 

keep the stored inference results and neural-network coefficients 

even when the system loses power under extremely low energy 

condition. Once the battery is recharged by the energy harvester, 

the system operation is restored by copying its program code 

from the flash memory back to the SRAM memory of the 

processor chip [8].  

III. PROPOSED NEURAL NETWORK INFERENCE 

In the proposed miniature system with limited memory 

capacity, a neural network helps to reduce output data size and 

enables to store essential information from all the images. 

However, the neural network is typically resource-hungry so 

that prior networks cannot be directly applied to the target 

system without proper adjustment. For instance, a small 

MobileNetV2 has >3.4M coefficients and requires computing 

300M multiply-accumulate (MAC) operations [37]. Only to 

complete the MAC operations, a microprocessor operating at 1 

MHz with 16 kB memory needs to perform 208 times of data 

exchange with the external data storage, taking 5 minutes. The 

high energy consumption restricts its usage in the proposed 

system with limited available energy. 

To overcome this issue, [38] proposes to exploit 

compression on neural networks and break task-based 

abstraction for a system powered by intermittent energy, but it 

requires multiple power cycles to accomplish an inference. As 

the harvested energy are not predictable nor stable, the inference 

can be postponed for long time until available energy reaches a 

threshold again, and thus it blocks the following operations. 

Instead, we choose to use a multi-exit approach proposed in [39] 

and [40]. In addition to the original, main network, it 

additionally has a branch with shallower network and provides 

a choice to save processing time and thus energy consumption 

by sacrificing its inference accuracy. [15] applies the early-exit 

approach to an energy-harvesting-powered device.  

Fig. 2 shows the proposed CNN designed for the target 

system based on [15], which is designed to process images 

compatible with CIFAR-10 dataset. It mainly consists of 3 

blocks such as the shared, early-exit, and main-exit parts. The 

input is an image with 32×32 pixels, RGB channels, and 8 bits. 

Each convolutional block includes a convolutional layer with 

filter size 5×5, a max-polling layer, and a Rectified Linear Unit 

(ReLU). When available energy is lower than a threshold 

(BATTH), it performs the shallower network using the early-exit 

path. To compensate its reduced accuracy, it computes entropy 

as a confidence level. If the entropy level is lower than a 

threshold (ENTTH), the inference result is stored in the memory. 

Table I. Performance summary of the state-of-the-art  
low-power CISs. 

Parameters 
JSSC 

2019 [18] 

ISCAS 

2020 [19] 

ISSCC 

2019 [20] 

VLSIC 

2020 [21] 

Pixel resolution 
320 

×320 

4240 

×3216 

792 

×528 

640 

×480 

Frame rate 5 fps 30 fps 5.6 fps 15 fps 

ADC resolution 10 bits 10 bits 10 bits 10 bits 

RGB/Mono. RGB RGB RGB Mono. 

Energy/frame 

/pixel/bit 
9.1 pJ 8.1 pJ 5.6 pJ 5.6 pJ 

Estimated energy 

for an imageA 
224 nJ 199 nJ 138 nJ 138 nJ 

Estimated energy 

for an imageB
 

286 µJ 255 µJ 176 µJ 176 µJ 

A: 32 × 32, RGB, and 8 bits,   B: 1024 × 1024, RGB, and 10 bits 
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Otherwise, the result is aborted, and the main exit is executed 

instead. Here, the entropy is expressed as: 
  

�� = �������	/ ∑ �������	. (1) 

�
����� =  −1 ∙ ∑ �� ∙ log� �� . (2) 

IV. IMPLEMENTATION OF THE NEURAL NETWORK 

The proposed neural network is implemented with custom 

processor and flash memory chips as shown in Fig .3. They are 

previously designed for low-power miniature systems and 

fabricated in 180 nm CMOS and 90 nm embedded flash 

technology, respectively [1], [8]. The processor chip includes an 

ARM Cortex-M0 processor and a 16 kB SRAM memory. The 

flash memory chip includes a 128 kB flash memory for data 

storage and also an 8 kB SRAM memory to transfer data 

between the SRAM of the processor and the flash memory. The 

two chips communicate through a low-power bus [35]. The 

processor chip receives image data and run the neural network 

by loading coefficients required for each layer from the flash 

memory chip. The coefficients include the weights and bias for 

the convolution and fully connected layers and the lookup table 

for entropy calculation. They are stored in the flash memory, 

taking 68 kB. The weights and bias are trained through Pytorch 

framework and then quantized to 8-bit fixed-point values. Each 

layer outputs 16-bit fixed-point results.  

Fig. 4 (a) shows the simulated time taken across layers for 

the main-exit and early-exit paths. At the processor clock 

frequency of 3.2 MHz, processing an image takes 4.07 minutes 

for the main-exit path but only 1.27 minutes for the early-exit 

path, reducing the processing time and thus energy consumption 

by 68.8%. Computing the convolutional layer dominates the 

total processing time due to multiples of matrix multiplication in 

series. The first convolutional layer (CV1) costs longer time 

than the other following layers since the input size becomes 

smaller due to the pooling operation. Fig. 4 (b) shows allocated 

memory usage for different layer computation. The minimum 

remaining SRAM memory of 860 bytes in the processor chip 

can store 1,720 4-bit inference results, and additional results can 

be stored in the flash memory.  
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Fig. 2. Proposed CNN structure. 
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Fig. 5. Simulated CNN for 10k images with different bit 
allocations. (a) Bit field of the input and intermediate data. (b) 
Accuracy. 
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Fig. 3. Implemented CNN with a processor and flash memory 
chips. 
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Fig. 4. Simulated CNN layer. (a) Processing time. (b) Memory 
usage. 

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 24,2022 at 00:43:40 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5 (a) presents the bit assignment for the input and 

intermediate data, which is designed in 8 and 16 bits, 

respectively, to efficiently utilize the 32-bit SRAM. Fig. 5 (b) 

shows how the inference accuracy changes according to the 

number of decimal bits of the input image and layer coefficients. 

The decimal part is chosen to 5 bits to reduce the data from 16 

to 8 bits while sacrificing the accuracy by only 1.68% and 2.44% 

for the main and early-exit paths, respectively. 

V. MEASUREMENT RESULTS 

Fig. 6 shows the photo for the testing setup. The program 

code for the neural network operation and its coefficients are 

written to the SRAM of the processor chip or the flash memory 

by National Instruments PCIe-6535b digital I/O device. 

Inference and entropy results recorded by monitoring the bus by 

the same device. Its power consumption is measured by Keithley 

2401/2450 sourcemeters. 

Fig. 7 (a) presents the measured entropy distribution of the 

early- exit path using randomly selected 2000 images from the 

CIFAR-10/Test dataset. The average entropy of correct 

inferences is 1.30 while that of incorrect ones is 1.90. Fig. 7 (b) 

shows the inference accuracy when the results are accepted if 

entropy is lower than a threshold (ENTTH). Also, it shows how 

many inference results are accepted at three ENTTH values. The 

number of inferenced images can be improved by running the 

main-exit path when the entropy is higher than ENTTH. However, 

it increases the total energy consumption. Figs. 7 (c) and (d) 

show the accuracy and the average processing time across 

ENTTH for this approach. Note that the total time for re-inference, 

when entropy > ENTTH, is the processing time of ‘early-exit path 

+ main-exit path – shared part’. With ENTTH of 1.9, it reduces 

processing time and thus energy consumption by 41.3% (63.7mJ 

→ 37.4mJ) compared with the main-exit only method while 

lowering the accuracy from 69.5% to 66.0%. 

Figs. 8 (a), (b), and (c) show the power consumption and 

total energy cost to perform an inference. The processing time is 

adjusted by supply voltage and internal oscillator configuration.  

Figs. (d) and (e) shows their energy-delay product (EDP). At 0.7 

V supply voltage and 3.2 MHz clock frequency, it achieves near 

optimal EDP for both the main-exit and early-exit paths. Here, 

the early-exit path has the 3.2× shorter processing time and thus 

3.2× lower energy consumption per inference than the main-exit 

path.   

VI. CONCLUSION 

This paper presents a neural network designed for a 

miniature edge device. It includes two exit options for dynamic 

available energy condition in energy-harvesting-powered 

system. The implemented neural network reduces processing 

time and thus energy consumption by 41.3% compared with the 

main-exit only method while sacrificing its accuracy from 

69.5% to 66.0%.  

20 40 60 80 100 120 140

20

30

40

50

150 200 250 300 350

50

100

150

200

250

E
n

e
rg

y
 (

m
J
)

Processing Time (sec)
(c)

E
n

e
rg

y
 (

m
J
)

Processing Time (sec)
(d)

20 40 60 80 100 120 140

1.4

1.6

1.8

2.0

2.2

2.4

E
D

P
 (

J
∙s

)

Processing Time (sec)
(e)

150 200 250 300 350

15

20

25

30

35

40

Processing Time (sec)
(f)

E
D

P
 (

J
∙s

)

20 40 60 80 100 120 140

0.0

0.4

0.8

1.2

1.6

P
o

w
e

r 
(m

W
)

Processing Time (sec)
(a)

150 200 250 300 350
0.0

0.4

0.8

1.2

1.6

P
o

w
e

r 
(m

W
)

Processing Time (sec)
(b)

0.26mW & 1.3min
@ 0.7V & 3.2MHz

Main ExitEarly Exit

0.26mW & 4.1min
@ 0.7V & 3.2MHz

19.8mJ 
@ 1.3min

63.7mJ 
@ 4.1min

Main ExitEarly Exit

1.51J∙s 
@ 1.3min

1.44J·s 
@ 1min

15.5J∙s 
@ 4.1min

Main ExitEarly Exit

 

Fig. 8. Measured power and energy consumption across 
processing time. (a) Power consumption for the early-exit path. 
(b) Power consumption for the main-exit path. (c) Energy 
consumption for the early-exit path. (d) Energy consumption 
for the main-exit path. (e) EDP for the early-exit path. (f) EDP 
for the main-exit path.  
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Fig. 6. Photo of the testing setup. 
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