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Abstract—Implementing a neural network (NN) inference in
a millimeter-scale system is challenging due to limited energy
and storage size. This article proposes an energy-aware adaptive
NN inference implementation that utilizes one of two exits with
different accuracies and computation options. The early-exit
path provides a shorter processing time but less accuracy than
the main-exit path. To compensate for the reduced accuracy,
it additionally applies the main-exit path if the entropy of the
early-exit inference is higher than a predetermined value. The
NN is implemented with a custom low-power 180-nm CMOS
processor chip and a 90-nm embedded flash memory chip and
tested by the CIFAR-10 dataset. The measurement results show
that the implemented convolutional NN (CNN) reduces processing
time and thus energy consumption by 43.9% compared with
a main-exit-only method while sacrificing its accuracy from
69.9% to 66.2%. Also, we explore the required minimum battery
capacity at each optimal configuration for accuracy and/or energy
consumption to achieve energy-autonomous operation under
measured exemplary light profiles. It requires a minimum battery
capacity of 855 mJ, acceptable for the target miniature system
with two millimeter-scale batteries (684 mJ each). Compared with
the state-of-the-art CNN technique (BranchyNet) allowing early
stopping, the proposed design improves the accuracy by 0.7%
and 3.3% to maintain energy-autonomous operation with two
and one millimeter-scale batteries, respectively. Compared with
the state-of-the-art lightweight CNN technique (MobileNet), this
work provides flexibility with a tradeoff between accuracy and
processing time for different application requirements.

Index Terms— Battery capacity, energy harvesting, miniature
system, multiexit, neural network (NN).

I. INTRODUCTION
APID evolution in computing systems has dramatically
reduced their form factor over 70 years from a room-size
mainframe to a miniature Internet-of-Things (IoT) device with
centimeter-/millimeter-scale size [1]. The miniature systems
become attractive monitoring tools in a variety of applications,
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including ecological, biomedical, security, and infrastruc-
ture [2]-[5]. However, there are still substantial challenges
in miniature system design, including limited memory size
and battery capacity. For applications where raw data size
is significant, it is not efficient to store the original data in
small memory in the miniature system. For instance, a small
image with 32 x 32 pixels, RGB color channel, and 8-bit
color depth takes 3 kB (e.g., CIFAR-10 dataset [6]). A 128-kB
flash memory [7], designed for a miniature system, stores only
42 images. To store key information from a greater number of
images, it is more efficient to analyze the raw images and save
only the necessary information in the memory. For example,
the convolutional neural network (CNN), one of the recently
highlighted machine learning (ML) techniques, categorizes the
CIFAR-10 dataset into ten classes so that the final output can
be stored in 4 bits [8]. A CNN with 70-kB coefficients enables
the system to store both the coefficients and 116000 inference
results in the 128-kB memory.

The ML technique performs intensive computation and
consumes considerable energy. Thus, implementing it in a
miniature system encounters an issue with limited energy
resources since the system size constraint restricts physical
battery size and thus battery capacity. For example, a thin-
film battery with 5.7 mm x 6.1 mm stores an only electrical
charge of 50 #Ah or energy of 684 mJ [9]. A low-power TI
MSP430 processor can discharge the battery in 4.2 days just by
its standby power of 0.5 @A [10]. Moreover, it is very difficult
to replace a battery once the millimeter-scale system is fully
encapsulated for physical protection [11]. Hence, a miniature
system usually employs an energy harvesting technique to
recharge the battery using environmental energy and extends
the system lifespan [11]-[13]. However, the small battery
capacity limits usable energy consumption before harvest-
ing typically weak or intermittent environmental energy and
charging the battery again. Here, energy consumption should
be minimized not to fully discharge the battery since the
continuous operation is desirable in typical applications.

On-device neural network (NN) processing has been
actively researched for devices with limited resources in
energy and memory [14]-[17]. One promising energy reduc-
tion technique, which can be efficiently applied to a
millimeter-scale system, is a multiexit NN. Wu et al. [18],
Gobieski et al. [19], Teerapittayanon et al. [20], and
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Huang er al. [21] proposed a multiexit approach by adding
branches with additional exits. It saves processing time and
energy consumption by sacrificing accuracy to an acceptable
level from a shallower path. However, the multiexit network
cannot be applied to our target millimeter-scale system as it is
since their networks do not simply fit to significantly limited
resources (e.g., 50 uAh battery and 128 kB memory) and
usable energy highly depends on environmental energy.

This work explores a way to implement a multiexit CNN
modified from [18] in a miniature platform and demonstrates
the feasibility of perpetual operation under a measured natural
light profile, as an extended work of [22]. It employs two
exit options such as the main and early exits and chooses
one according to available energy in a battery. The early-exit
path provides a shorter processing time but less accuracy than
the main-exit path. To compensate for the reduced accuracy,
it additionally applies the main-exit path if the entropy of
the early-exit inference is higher than a predetermined value.
Using the entire test set of the CIFAR-10 dataset, the measure-
ment result shows that the implemented CNN reduces process-
ing time and thus energy consumption by 43.9% compared
with the main-exit-only method while decreasing the accuracy
from 69.9% to 66.2% (only 3.7% reduction). The simulation
using actual measured light intensity data demonstrates a
long-term operation situation without battery replacement.
It shows an energy-autonomous operation for 1.5 months,
covering the worst case energy in two miniature thin-film
batteries. This work also describes how to optimize the battery
energy and entropy thresholds for the implemented network
for different use scenarios such as the minimum required
accuracy, the minimum required average processing time, and
the figure of merit (FoM) combining accuracy and required
battery capacity together. Compared with the state-of-the-art
CNN technique (BranchyNet) [20] allowing early stopping,
the proposed design improves the accuracy by 0.7% and 3.3%
to maintain energy-autonomous operation with two and one
millimeter-scale batteries, respectively. Compared with the
state-of-the-art lightweight CNN technique (MobileNet) [17],
this work provides flexibility with a tradeoff between accuracy
and processing time for different application requirements.

An important difference in implementing and processing an
NN of the millimeter-scale system in this work, from other IoT
or edge-level systems associated with the tight energy budgets,
is to take battery capacity and thus its size into account.
This work finds the best configurations for a given goal
(e.g., accuracy and/or energy consumption) and computes the
minimum battery capacity required to be energy autonomous
from a given environmental light profile. The approach enables
us to find the optimal configurations by including acceptable
battery capacity or the maximum battery size as a factor, which
is critical for the total system form factor. Typical IoT or
edge-level systems are not limited by battery size or their
batteries are easy to be replaced after a reasonable lifetime.
Hence, it is not critical for them to include the battery capacity
and size in implementing and processing an NN.

A miniaturized system can be designed without energy
storage by directly powering its circuits using an energy
harvester or wireless power transfer [23]-[24]. The pure
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Fig. 1.

Proposed system and an example application.

energy harvesting system performs a given task only when
a harvesting unit provides enough power to load circuits. The
system does not save excessive energy even if harvested power
is larger than the power consumption of the load circuit. On the
other hand, a millimeter-scale system, envisioned in this work,
stores extra harvested energy in a miniaturized battery, and it
powers the system using the stored energy when harvested
power cannot support the load circuits due to weak available
energy in the environment. Thus, energy consumption must be
optimized, instead of power consumption, to achieve perpetual
operation.

This article is organized as follows. Section II introduces
the target millimeter-scale system. Section III explains how
to implement a multiexit CNN in the system, and Section IV
discusses its scalability. Section V discusses the experiment
results, and finally, Section VI concludes the work.

II. TARGET SYSTEM

Fig. 1 shows a target system for an example application
where a miniature smart imager is attached to a flying insect
[25], [26] to study its living environment. The system takes its
surrounding pictures, extracts their key information, and saves
the inference results (e.g., forest, water, and town) in memory.
Once it comes near a gateway, the collected data are wire-
lessly retrieved. The miniature imager mainly consists of three
functional blocks for image sensing, wireless communication,
and data processing and storage. In developing such a system,
CNN implementation is one of the major challenges, including
how to attach the system to a flying insect, harvest light
energy, and communicate wirelessly. In this article, we focus
on the CNN implementation with limited resources for data
processing and storage functions.

A die-stacking structure [1] has been used to develop
a variety of millimeter-scale systems with different sensing
modalities [4], [27]-[33], including imagers. The platform
consists of multiple thinned die stacked vertically, as shown
in Fig. 1. The structure provides the maximum functionality
(or silicon area for integrated circuits) per unit volume. The
modular platform enables us to optimally miniaturize systems
for different applications. The layers are connected by bond-
ing wires that form a low-power data bus [34] and deliver
regulated supply voltages. The target system includes chips,
such as a light energy harvester [11], a processor [1], a flash
memory [7], a radio transceiver [35], a power management
unit (PMU) [36], and a battery [9].
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To extend the system’s operational lifetime, a light
energy harvester is included in the miniature system. Pho-
tovoltaic (PV) cells convert light energy to electrical charge
in a small dimension [37]. Different energy harvesting solu-
tions can also be considered for the system. For example,
a piezoelectric transducer can convert mechanical vibration
into electrical energy, but its typical size exceeds an acceptable
millimeter scale [38]. An antenna can convert RF energy into
electrical energy [39], but it is not always available in the
target field application.

The processor includes a commercial ARM Cortex-M0O
processor and a custom low-power 16-kB SRAM, fabricated
in a 180-nm CMOS process [1]. NN processors (neural
processing units (NPUs), NN cores, and so on), providing
acceleration for neural processing, are well studied in recent
years and have been integrated into processors [40]. Due to
the size limitation of the target system, the accelerator can
be implemented only with a more advanced process, but the
leakage current of SRAM should be maintained at a similar
level so as not to increase system power consumption in sleep
mode. The 128-kB embedded flash memory is designed with
custom low-power peripheral circuits and fabricated in a 90-
nm NOR flash process [7]. The nonvolatile memory enables the
system to keep the stored inference results and neural network
coefficients even when the system loses power from extremely
low-energy conditions.

III. PROPOSED CNN INFERENCE IMPLEMENTATION

Similar to a typical NN, the multiexit CNN requires memory
space to store the coefficients. The CNN needs to be compact
to reduce the required memory space in the target system.
Fig. 2 shows the proposed CNN designed for the target system
based on [18], which processes images compatible with the
CIFAR-10 dataset. The depth of the NN and the number
of channels are determined by considering limited memory
and battery capacity to process the images with few data
movements. It mainly consists of three blocks such as the
shared, early-exit, and main-exit parts. The input is an image
with 32 x 32 pixels, RGB channels, and 8 bits. Each convo-
lutional block includes a convolutional layer with a filter size
of 5 x 5 or 3 x 3, a max-pooling layer, and a rectified linear
unit (ReLU). Starting from CONV 1, the system processes each
layer in order. After CONV1, PMU checks available energy.
When available energy is lower than a threshold (BATty),
it performs the shallower network using the early-exit path.
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Fig. 3. Implemented CNN with processor and flash memory chips.

The two exits have the same importance, so their average loss
is minimized during training. The coefficients of the model
occupy 73.2 kB of storage, which is 57% of a 128-kB memory.
To compensate for its reduced accuracy from the shallower
network, it computes entropy as a confidence level. If the
entropy level is lower than a threshold (ENTry), the inference
result is stored in the memory; otherwise, it aborts the result
and executes the main-exit part instead. Here, the entropy is
expressed as [18]

eoutpul,-/ Z £OuPut; (1)
—1->" pi-log, p;. 2)

The proposed NN is implemented with the custom processor
and flash memory chips, as shown in Fig. 3. They are designed
for low-power miniature systems and fabricated in 180-nm
CMOS and 90-nm embedded flash processes, respectively
[1], [7]. The two chips communicate through a low-power
bus [34]. The processor chip receives image data and runs the
NN by loading coefficients for each NN layer from the flash
memory chip. The coefficients include the weights and bias
for the convolution and fully connected layers and the lookup
table (LUT) for entropy calculation, taking 68 kB in the flash
memory. The weights and bias are trained through the Pytorch
framework and then quantized to 8-bit fixed-point values. Each
layer outputs 16-bit fixed-point results.

Fig. 4(a) shows the measured time taken across layers
for the main- and early-exit paths. At the processor clock
frequency of 3.2 MHz, processing an image takes 4.07 min for
the main-exit path but only 1.27 min for the early-exit path,
reducing the processing time and thus energy consumption

pi =
Entropy =
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Fig. 4. CNN layer. (a) Measured processing time. (b) Simulated memory
usage.

by 68.8%. Computing the convolutional layer dominates the
total processing time due to multiples of matrix multiplication
in series. The first convolutional layer (CV1) costs a longer
time than the other following layers since the input size
becomes smaller at later layers due to the pooling operation.
Fig. 4(b) shows simulated allocated memory usage for dif-
ferent layer computations. The minimum remaining SRAM
memory of 0.84 kB in the processor chip can store 1720 4-bit
inference results, and additional results can be stored in the
flash memory.

Wu et al. [18] used more advanced compression algo-
rithms to the multiexit CNN for higher accuracy, including
reinforced-learning-assisted, nonuniform pruning, and quanti-
zation. However, the work has been done targeting a com-
mercial microprocessor for a centimeter-scale edge device,
so the same technique cannot be applied. Thus, this work
indispensably keeps the code simple and the data unified,
considering the limited memory size and the hardware only
supporting 8-, 16-, and 32-bit fixed-point computation. The
weights and bias values are uniformly quantized to the same
format as well as the input image.

Fig. 5(a) presents the bit assignment for the input and inter-
mediate data, which is designed in 8 and 16 bits, respectively.
To efficiently utilize the 32-bit SRAM, the intermediate value,
multiplication of two 8-bit values, is not truncated. Keeping
the 16-bit result increases the accuracy by 0.6% and takes
more memory space from 11 to 18.5 kB. Fig. 5(b) shows how
the inference accuracy changes according to the number of
decimal bits of the input image and layer coefficients. The
decimal part is set to 5 bits to reduce the data from 16 to
8 bits and hold the data of one layer fully in the SRAM while
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Fig. 5.  Simulated CNN for 10000 images with different bit allocations.
(a) Bit field of the input and intermediate data. (b) Accuracy and memory
space required.

Larger memory occupancy Consistency (%)

99.8

1024
91.5
a2 — | -832
Q
$ 256 5 | 740
E 2 | Le66
= g
; 128 S -58.3
64 -50.0
i41.7
32 1 334
LUT range
: (a)
704 66.5%
) 60—_
© 50 1
@ 404
g . 31.6%
D 30—_
20
10
ol . 0.4% 1.4%
Pass/Pass Fail/Fail Fail/Pass Pass/Fail
Condition
(b)
Fig. 6. Simulated LUT with ENTtg of 1.9. (a) Consistency between

LUT-based and actual entropy across the LUT range and the number of
entries. (b) Histogram of the consistency at the chosen LUT design parameters
(LUT-based/actual entropy).

sacrificing the accuracy by only 1.69% and 2.44% for the
main- and early-exit paths, respectively.

After processing the early-exit path, the design calcu-
lates the entropy of the output to judge its credibility.
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(a) Estimated accuracy and memory size. (b) Estimated processing time.

The exponential and logarithmic functions are implemented by
LUTs. The logarithmic function uses a 128-entry LUT stored
in the flash and the input range from 0.0071825 (1/128) to 1.
The boundary values are used if the input is out of the range.
Fig. 6(a) shows the consistency between the LUT-based and
actual entropy values, compared with ENTty of 1.9, as the
input range and number of entries change. Increasing the
input range gives more accurate lookup numbers for extremely
large or small values while reducing the resolution. Increasing
the number of entries improves the resolution issue while
leading to larger memory occupancy. For inconsistency, less
than 2%, the 128 entries and input range from —8 to 8 are
chosen. Fig. 6(b) presents the simulated consistency with the
chosen design parameters; 0.6% of the failed cases (higher
than ENTpy) with the actual entropy values pass (lower than
ENTry) with the LUT-based method. On the other hand, 4.3%
of the passed cases with the actual entropy values fail with the
LUT-based method.

IV. SCALABILITY OF CNN IMPLEMENTATION

In addition to the designed five-layer CNN, we investigate
whether a larger CNN can be implemented in the system, using
Python and floating-point computation. Fig. 7(a) shows the
estimated accuracy and required memory size and Fig. 7(b)
shows the estimated processing time for the CFAR-10 dataset
across different numbers of layers for a CNN from 5 to 34.
Although the accuracy becomes higher with more numbers of
layers, the required memory size increases relatively faster.
Even the seven-layer CNN requires a 3.5-MB flash memory
chip in the target system and takes 9.2 h to complete the
processing, which cannot be acceptable in a typical appli-
cation. Moreover, the 34-layer CNN needs a 19-MB flash
memory chip and takes 7.8 h.

Also, we investigate how the multiexit benefits for the
34-layer CNN as an example of a large NN by assuming that
a target system has more hardware resources (e.g., memory
size and available energy) than our target. Here, we use a
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Fig. 8. Simulated resources for 34-layer CNN with different early exits.
(a) Estimated accuracy and number of MAC operations. (b) FoM.

more complex dataset, CFAR-100, to distinguish the effect
of different exit points better. Fig. 8(a) shows the simulated
accuracy and the calculated number of multiply—accumulation
(MAC) operations for an early-exit path branched at different
positions of the original 34-layer path. Fig. 8(b) shows an FoM
to visualize the optimal point that maximizes the multiplication
of the estimated relative processing time saving and the
average accuracy as an example. The relative processing time
is calculated by assuming that a system uses the early-exit
path for half of the inputs due to lack of available energy and
the main path for the other half, and then, it is normalized
to the processing time of the main-exit path only method.
From this study case, the CNN with an early exit branched
from the middle (15th layer) of the main exit shows the best
FoM. Please note that the processing time is proportional to
energy consumption in the condition that instantaneous power
is relatively constant.

In future research, a systematic way can be explored to
find an optimal exit from an NN and constraints. For a given
NN with a large number of layers, we create a new exit with
information such as a branching point and additional layers.
From this exit, we find accuracy, processing time (or energy
consumption), and required memory size and evaluate them
as a target FoOM considering their different significance. Then,
finding branching points and additional layers to achieve the
best FOM becomes an optimization problem. There are two
potential issues to process this optimization problem. First,
there are a significant number of candidates for the additional
layers after a branching point for a new exit. It is not only a
different number of additional layers but also the complexity
of each layer. A smaller set of candidates needs to be chosen
in a certain way to simplify the optimization problem. Second,
finding accuracy for all the candidates can take significant
effort. We can reduce the computation of accuracy of the
candidates by saving data from each potential branching point
when processing the original main-exit path and applying it to
the newly created additional layers. Computation effort for this
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work can be relieved by reducing the number of candidates
(as suggested in the first issue) or finding simpler equations
that predict accuracy.

V. EXPERIMENT RESULTS

Fig. 9 shows the photograph for the testing setup. The
program code for the NN operation and its coefficients are
written to the SRAM of the processor chip or the flash memory
by the National Instruments PCle-6535b digital I/0 device.
Inference and entropy results are recorded by monitoring the
bus communication using the same device. The power con-
sumption is measured by Keithley 2401/2450 source meters.

Fig. 10(a) presents the measured entropy distribution of the
early-exit path using 10000 images from the test set of the
CIFAR-10 dataset. The average entropy of correct inferences
is 1.27, while that of incorrect ones is 1.89. Fig. 8(b) shows the
inference accuracy when the results are accepted if entropy is
lower than a threshold (ENTry). At extremely low ENTryy,
there are rarely incorrect results, leading to high accuracy.
However, only 2% of the results are kept as the final output.
At ENTry of 1.9, 65.0% of the result is accepted without
running the main-exit path additionally, among which 73.4%
are correct. We can improve the accuracy by running the
main-exit path when the entropy is higher than ENTry, with
increasing the total energy consumption. Fig. 10(c) and (d)
shows the accuracy and number of correct inference results,
respectively. After computing the main-exit path additionally,
the accuracy at ENTyy of 1.9 is 66.2%. Since all the results
are accepted, the number of correct inferences increases from
4786 to 6620. Fig. 8(e) shows the average processing time
across ENTrty in this approach. Note that the total time
for inference, when entropy > ENTry, is the processing
time of “early-exit path + main-exit path — shared part.” At
ENTry of 1.9, it reduces processing time and thus energy
consumption by 46.2% (from 67.5 to 36.3 mJ) compared with
the main-exit-only method while lowering the accuracy from
69.9% to 66.2%.

Fig. 11(a)—~(d) shows the power consumption and total
energy cost to perform inferences. The processing time is
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Fig. 10. Measured CNN for 10000 images. (a) Entropy distribution.

(b) Accuracy and acceptance ratio of only the early-exit path. (c) Accuracy
acceptance ratio of the early-exit path followed by the main-exit path if
entropy > ENTrg. (d) Number of correct inferences. (e) Average processing
time.

adjusted by the supply voltage and internal oscillator config-
uration. Fig. 11(e) and (f) shows their energy-delay product
(EDP). At a supply voltage of 0.7 V and a clock frequency of
3.2 MHz, it achieves near-optimal EDP for both the main- and
early-exit paths. Here, the early-exit path has a 3.4x shorter
processing time and thus 3.4x lower energy consumption per
inference than the main-exit path.

Fig. 12(a) shows the power consumption breakdown for
four different functions. Compared with image sensing [41],
the CNN inference consumes 233 x higher power. Among the
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Fig. 11. Measured power and energy consumption across processing time.
(a) Power consumption for the early-exit path. (b) Power consumption for the
main-exit path. (c) Energy consumption for the early-exit path. (d) Energy
consumption for the main-exit path. (e) EDP for the early-exit path. (f) EDP
for the main-exit path.
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Fig. 12.  Measured power and energy consumption of the CNN processing

system compared with an image sensor. (a) Power consumption. (b) Energy
consumption.

CNN operations, the reading memory and entropy calculation
take up to 8 s, while MAC operations take 235 s. The
early-exit path reduces the number of MAC operations from
13000000 to 500000, finishes the inference faster by 3.1x,
and saves energy by 68.8%.

In addition, we simulate the energy stored in a battery
for a long-term operation and evaluate that the proposed
CNN implementation can be sustained by a millimeter-scale
energy harvester. The sunlight intensity is recorded every
5 min for more than 45 days (March 2020-April 2020) in the
Beechwood Farms Nature Reserve in western Pennsylvania
by five HOBO Pendant MX loggers (MX2202) in different
places [42]. The harvesting power is measured across light
intensities using a light energy harvester based on PV cells
connected in series [37]. The simulated use scenario is that a
system takes images every 30 min if the light level is stronger
than 1 kIx and infers the object in the image.

Assuming a battery with 1 J capacity, Fig. 13 shows the
contour map of the average accuracy, required battery capacity,
and average processing time, across ENTty and BATty. The
accuracy varies from 62.8% to 67.9%, while the required
battery capacity ranges from 120 to 4100 mJ. The average
processing time is shorter than 4.4 min. Higher BATty allows
more early-exit inferences, while higher ENTty accepts more
inference results of the early-exit path. For ENTry less than 1,
the three parameters do not depend on BATry since most
inferences are completed by the main-exit path. For ENTty
higher than 2, the parameters depend on both BATty and
ENTry since more early-exit inferences initiated by lower
battery energy than BATty becomes the final inference out-
puts. At the condition of either ENTty = 1.9 or BATty =
650 mJ, the related BATty and ENTry similarly affect the
parameters.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 24,2022 at 00:53:31 UTC from IEEE Xplore. Restrictions apply.



856 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 7, JULY 2022

M Early Exi
ore Early Exit Accuracy (%)

67.9
67.3
66.7
66.0
65.4
64.7
64.1
63.4
62.8

1000

BAT (mJ)
[e)] [o4]
o o
o o

More Early Exit

400

ENTH
(a) Battery Capacity (mJ)
[ 4100

3603
3105
2608
2110
1613
1115
618

120

1000

800

34.2x

BAT (mJ)
[e)]
o
o

400

3

2
ENTw
(b) Avg. Proc. Time (min.)

4.31
4.09
3.87
3.65
3.43

3.20
2.98
2.76
2.54

BATH (mJ)

ENTy
(©)

Fig. 13.  Simulated accuracy, battery capacity, and average processing time
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processing time.

Fig. 14 shows the remaining energy, for ENTty of 1.9 and
BATty of 700 mJ. It maintains the energy level stored in the
battery under all the five environmental light intensity profiles,
demonstrating energy-autonomous operation without battery
replacement. The maximum energy drops of 855.3 mJ can
be tolerated by including two millimeter-scale batteries. The
targeted system includes two stacked batteries (684 mJ each),
physically stacked in the die-stacking structure and electrically
connected in parallel.

Fig. 15 shows the best accuracy at each processing time.
For lower processing time, it requires both higher BATty and
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Fig. 14. Simulated remaining battery energy with 1-J battery capacity and
different light intensities measured from five commercial light sensors.
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Fig. 15. Optimal ENTty and BATty for the maximum accuracy at different
averaging processing times.

ENTrg to complete the inference computation at the early
exit more and not use the main exit additionally. To reduce
the processing time from 4.25 to 2.75 min (35% reduction),
the inference accuracy needs to be sacrificed from 67.9% to
64.8% (4.6% reduction).

We also explore two different case studies with different
requirements and investigate how the optimal ENTrty and
BATty are changed for the different constraints. Fig. 16(a)
considers a case where target minimum accuracy should be
achieved. The design points, marked by “x,” are the optimal
ENTry and BATty for different target minimum accuracies.
The design point for 67.5% accuracy is not acceptable in the
system since it requires more than two miniature batteries,
which makes the system larger than the target. Fig. 16(b)
considers the other case that maximizes the FoM for different
weighting factors in the FoM. In addition to accuracy, it takes
the battery capacity into account to decrease a custom battery
size further and thus the system form factor. The FoM is
defined as

FoM — (f (accuracy))* 3)
S (minimum battery capacity)
fa) =140 )
max — min
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where accuracy and battery capacity are mapped to a range
between 1 and 2 and a is a weighting factor and controls the
significance of accuracy compared to the required minimum
battery capacity. For example, at o of 1, FoM becomes the
highest at ENTty of 2.9 and BATty of 450 mJ, obtaining an
accuracy of 66.6% and requiring the minimum battery capacity
of 632 mJ. Each marked point depicts the optimal ENTpy and
BATty for the maximized FoM. The enclosed numbers are «,
accuracy, and minimum battery capacity. The design points
for a of 3 and 4 require two batteries or more, so they are
not acceptable for the proposed system. As « increases, the
optimal point moves to an area with higher accuracy, requiring
larger battery capacity.

Fig. 17 compares the proposed design with another approach
that allows early stopping of CNN processing for fast infer-
ence (BranchyNet) [20]. BranchyNet always processes the
early-exit path and computes its entropy and moves to the
main-exit path if the entropy is not low enough. In this
simulation, BranchyNet is applied to the same CNN archi-
tecture of the proposed design. Compared with the proposed
approach, this method does not consider the energy condition
(e.g., BATTty) before processing the early-exit-only part. If the
entropy is not low enough, energy and processing time for the
early-exit-only part directly becomes a penalty. The proposed
method avoids the risk at the cost of losing a chance to
complete the computation only with the early-exit path with
entropy lower than ENTrpy. In the CIFAR-10 dataset and
the given light intensity profile, the two techniques achieve
similar performance when ENTry is less than 0.9. For higher
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Fig. 17. Simulated proposed design and BranchyNet across ENTty.
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Fig. 18. Simulated inference processing time and accuracy of the proposed
design and MobileNet.

ENTry, the proposed design achieves higher accuracy up to
3.7% than BranchyNet at the cost of a larger required battery
capacity up to 510 mJ. In the proposed miniature system, the
battery capacity should be smaller than 1368 mJ. To meet this
requirement, ENTpy should be set to 1.8 for the proposed
design and 1.4 for BranchyNet. Despite higher ENTty to
complete more samples in the early-exit path, the proposed
design achieves 0.7% higher accuracy. If the system is further
miniaturized and able to include only a single battery (684 mJ),
the advantage of the proposed design becomes more noticeable
by achieving 3.3% higher accuracy.

Fig. 18 compares the proposed design with a state-of-the-
art lightweight CNN architecture (MobileNet) [17], which
can be applied to relatively small target CNN among many
others. MobileNet employs the depthwise convolution that
reduces the scale of the coefficients and thus the number
of MAC operations. The depthwise convolution technique
is applied to the target CNN architecture for comparison.
In the CIFAR-10 dataset and the given light intensity profile,
MobileNet dramatically reduces the processing time by 65%
with similar accuracy to the early-exit path of the proposed
design, but it cannot be accepted if a target accuracy is higher
than 63%. Instead, in the proposed design, the accuracy can be
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improved at the cost of processing time using two thresholds
(BATTty and ENTrp) between the early-exit or main-exit paths,
which enables to satisfy different application requirements.

The proposed design provides the best performance with
the optimally selected BATty and ENTrty. They need to be
chosen by considering the environmental light intensity profile,
required minimum accuracy, and available battery capacity.
For a practical operation, the technique can be used with
BATty and ENTyy with a margin from the optimal point
to cover different environmental light intensity levels from
the estimation. In the worst case, the batteries will be fully
discharged, and the system will be shut down. However, the
system restarts its operation again once the energy harvester
recharges the battery enough, and data stored in the nonvolatile
flash memory can be downloaded to a gateway.

VI. CONCLUSION

This article proposes an energy-aware adaptive NN imple-
mentation for a millimeter-scale sensing system. It includes
two exit options for dynamic available energy conditions in
a miniature system powered by an energy harvester. The
implemented NN reduces processing time and thus energy
consumption by 43.9%, compared with the main-exit-only
approach while sacrificing its accuracy from 69.9% to 66.2%.
Also, we explore the required minimum battery capacity at
each optimal configuration for accuracy and/or energy con-
sumption to achieve energy-autonomous operation under mea-
sured exemplary light profiles. It requires a minimum battery
capacity of 855 mJ, acceptable for the target miniature system
with two millimeter-scale batteries (684 mJ each). Compared
with the state-of-the-art CNN technique (BranchyNet) allow-
ing early stopping, the proposed design improves the accuracy
by 0.7% and 3.3% to maintain energy-autonomous opera-
tion with two and one millimeter-scale batteries, respectively.
Compared with the state-of-the-art lightweight CNN technique
(MobileNet), this work provides flexibility with a tradeoff
between accuracy and processing time for different application
requirements.
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