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Abstract: We propose a novel intensity diffraction tomography (IDT) reconstruction algorithm
based on the split-step non-paraxial (SSNP) model for recovering the 3D refractive index
(RI) distribution of multiple-scattering biological samples. High-quality IDT reconstruction
requires high-angle illumination to encode both low- and high- spatial frequency information
of the 3D biological sample. We show that our SSNP model can more accurately compute
multiple scattering from high-angle illumination compared to paraxial approximation-based
multiple-scattering models. We apply this SSNP model to both sequential and multiplexed IDT
techniques. We develop a unified reconstruction algorithm for both IDT modalities that is highly
computationally efficient and is implemented by a modular automatic differentiation framework.
We demonstrate the capability of our reconstruction algorithm on both weakly scattering buccal
epithelial cells and strongly scattering live C. elegans worms and live C. elegans embryos.
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1. Introduction

3D quantitative phase imaging (QPI) has found use in many biological applications by providing
3D refractive index (RI) information of the samples [1]. Optical diffraction tomography (ODT)
[2] is the most widely used technique for 3D QPI. It works by directly measuring the complex field
using an interferometry setup from multiple angles and then recovering the 3D RI distribution with
an inverse scattering model. However, the need for coherent illumination and an interferometric
path complicates the system and makes it prone to speckle artifacts [3].

Intensity diffraction tomography (IDT) is an alternative 3D QPI technique that recovers
3D phase information from intensity-only measurements on a “non-interferometry” setup [4].
Recently, several groups have demonstrated that IDT can be easily implemented on a standard
microscope using a programmable LED array [5–13]. Most of the IDT acquisition strategies
require taking hundreds of images to achieve high-resolution 3D RI reconstruction. Recently,
our group has developed two strategies to push the acquisition speed and enabled visualizing
dynamic biological samples. The annular IDT achieved a 10 Hz volume rate by using an LED
ring illuminator that provides illumination angles matching the objective’s numerical aperture
(NA) [7]. The multiplexed IDT provided a 4 − 10 Hz acquisition rate by simultaneously tuning
on multiple LEDs using the most widely used LED matrix [10].

The 3D reconstruction of IDT requires an inverse scattering model, similar to ODT. The
single-scattering models are based on the first-Born [5,7,10] or first-Rytov [12] approximation,
allowing closed-form solutions due to the linear relationship between the scattering potential
and the measurements. However, the accuracy of these models are fundamentally limited by the
weak scattering assumption. Recently, several multiple-scattering models have been developed
based on the beam propagation method (BPM) [6,14] and multi-layer Born (MLB) model [8]
and showed enhanced resolution and fidelity on strongly scattering biological samples, such as C.
elegans embryos and worm. However, the accuracy of the BPM degrades for high-NA systems
since it relies on the paraxial approximation [15], which limits its effectiveness for high-resolution
imaging using high-NA optics. The MLB model relies on the local weak scattering approximation
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within each layer, which limits the model fidelity for strongly scattering samples. Recently, a
split-step non-paraxial (SSNP) multiple-scattering model has been developed for ODT [16], which
demonstrated substantial improvement in reconstruction quality compared to the single-scattering
and BPM methods. This ODT setup, however, needs a laser and a spatial light modulator to
provide the coherent illumination and a interferometric path to retrieve the phase information
of the light field. Besides, the large number of measurements used limits this system’s ability
of high-speed imaging for dynamic samples. Inspired by this work, here we develop an SSNP
IDT model for the two fast-acquisition IDT modalities. We demonstrate that our model can
effectively provide high-quality 3D RI reconstruction on several biological samples with simple
“non-interferometric” IDT setups.

The SSNP model is a wave propagation model derived from the Helmholtz equation [17].
Similar to the BPM and MLB, the SSNP works by axially splitting the sample into multiple
slices and propagate the wave slice-wise. The BPM and MLB rely on local homogeneous RI
and weak RI contrast, respectively, to decouple the diffraction from the local phase modulation /
single scattering within each slice. Instead, the SSNP simultaneously propagates both the field
and the axial derivative of the field so that the coupling between the diffraction and local phase
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Fig. 1. (a-b) Our annular IDT setup uses an LED ring of radius r to illuminate the
sample sequentially. The ring is placed h away from the sample and the illumination angle
θ = arctan(r/h) matches the objective NA. (c-d) Our multiplexed IDT setup uses an LED
matrix and illuminates the sample using several LEDs simultaneously. (e) The SSNP model
involves successive propagation P and scattering Q operations to compute the scattered field
and its axial derivative Φi from one slice to the next. (f) 3D reconstruction by iteratively
solving the SSNP-based optimization problem.
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modulation is modeled jointly without making assumptions about the local RI distribution [16].
Due to the same “multi-slice” structure as the BPM and MLB, together with the fast Fourier
transform (FFT)-based propagation implementation [16], the SSNP incurs similar computational
costs while providing improved fidelity on high-scattering biological samples.

Here we first extend the SSNP model to IDT and apply it to two IDT modalities, including
the sequential and multiplexed IDT (as summarized in Fig. 1(a)-(d). Next, we derive an
efficient SSNP-IDT forward model (as illustrated in Fig. 1(e)). We then derive a reconstruction
algorithm by solving a regularized least-squares optimization (Fig. 1(f)). We elucidate on how
the analytical gradient of the SSNP-IDT model can be efficiently computed, akin to “back-
propagation”. Furthermore, we devise a unified algorithmic framework that allows fast 3D
recovery from both sequential and multiplexed IDT measurements based on a memory efficient
automatic differentiation framework. To quantitatively evaluate the fidelity of the forward model
and reconstruction algorithm, we conduct numerical simulations. Lastly, we experimentally
demonstrate high-quality, large field-of-view (FOV) 3D RI reconstructions on buccal epithelial
cells and a live C. elegans worm from annular IDT and live C. elegans embryos from multiplexed
IDT.

2. Theory

2.1. SSNP theory

The SSNP model first discretizes the 3D sample into a series of axial (z) slices and then calculates
the internal field slice-by-slice (xy), as illustrated in Fig. 1(e). In the following, we provide the
key steps to derive the governing equations for light propagating through the sample by following
[16,17], and then describe the integration to specific IDT systems in separate sections.

The scalar wave propagation in an inhomogeneous medium with a 3D RI distribution n(r)
satisfies the Helmholtz equation(︃

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)︃
φ(r) + k2

0 n2(r) φ(r) = 0, (1)

where r = (x, y, z) denotes the 3D spatial position, φ is the field and k0 = 2π/λ is the wavenumber
in free space. We derive the SSNP model by first rewriting Eq. (1) into a matrix form

∂Φ(r)
∂z

= H(r) Φ(r), (2)

where

Φ(r) = ⎛⎜⎝
φ(r)
∂ϕ
∂z

⎞⎟⎠ , H(r) = ⎛⎜⎝
0 1

− ∂2

∂x2 − ∂2

∂y2 − k2
0n2(r) 0

⎞⎟⎠ . (3)

Here the vector Φ(r) contains both the field itself and its z-derivative, which is the quantity of
interest in the SSNP-based wave propagation. For brevity, we will refer Φ to the 2D “field” at
a slice in the rest of this article. Next, we decompose the operator H(r) = H1 + H2(r), which
decouples the diffraction operator H1 and the scattering operator H2(r):

H1 =
⎛⎜⎝

0 1

− ∂2

∂x2 − ∂2

∂y2 − k2
0n2

0 0
⎞⎟⎠ , H2(r) =

⎛⎜⎝
0 0

k2
0(n

2
0 − n2(r)) 0

⎞⎟⎠ . (4)

Here n0 is the RI of the background medium. H1 is spatially invariant describing the diffraction
in the homogeneous background medium. H2(r) is spatially variant based on the distribution
of the scattering potential ∝ (n2

0 − n2(r)), akin to the Born scattering model. Equations (2)–(4)
constitute the governing equations in the SSNP model.
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Next, we describe the numerical method to efficiently calculate Eq. (2)–(4). First, we discretize
the sample volume as a series of z-slices. Second, to compute the field propagating a small
distance ∆z between two adjacent slices, we approximate Eq. (2) as a first-order homogeneous
linear system of differential equations with constant coefficients. The solution is approximated as

Φxy(z + ∆z) ≈ exp(H(r)∆z)Φxy(z) ≈ P Q(z)Φxy(z), (5)

where Φxy(z) represents the 2D field at the axial position z, and

P = exp(H1∆z), Q(z) = exp(H2(x, y, z)∆z). (6)

The operator P computes the propagation by ∆z in the homogeneous background medium and
can be efficiently computed by FFT as

PΦxy = F −1
xy {˜︁PFxy{Φxy}}

= F −1
xy

⎧⎪⎪⎨⎪⎪⎩⎛⎜⎝
cos(kz∆z) sin(kz∆z)/kz

−kz sin(kz∆z) cos(kz∆z)
⎞⎟⎠Fxy{Φxy}

⎫⎪⎪⎬⎪⎪⎭ ,
(7)

where Fxy{·} and F −1
xy {·} denote the 2D Fourier and inverse Fourier transform on the XY

plane, respectively, and kx and ky are the corresponding k (wave vector) components. kz =√︂
k2

0 n2
0 − k2

x − k2
y if k2

x + k2
y ≤ k2

0 n2
0; otherwise, ˜︁P = 0 that removes the evanescent component.

The operator Q(z) computes the scattering induced by the RI difference in the object slice at z
and is computed directly in the real space as

Q(z)Φxy =
⎛⎜⎝

1 0

k2
0

(︂
n2

0 − n2
xy(z)

)︂
∆z 1

⎞⎟⎠Φxy. (8)

The SSNP model computes the exit field at slice zn by recursively applying P and Q slice-wise
starting from the illumination field, as illustrated in Fig. 1(e). Detailed derivations for Eq. (5)–(8)
are provided in Supplement 1.

2.2. SSNP-based sequential IDT forward model

The sequential IDT, such as annular IDT [7], uses a single LED to illuminate the sample in each
measurement. To derive the SSNP-based forward model, we first compute the illumination field
and its axial derivative at z = z0 as the initial condition to the SSNP equations. Each illumination
field is a plane wave φ(r) = φ0 exp[j(kin

x x + kin
y y + kin

z z)] where kin = (kin
x , kin

y , kin
z ) is the wave

vector. By omitting the constant factors φ0 and exp(j kin
z z0), we have

Φ0 = exp[j(kin
x x + kin

y y)] ⎛⎜⎝
1

j kin
z

⎞⎟⎠ . (9)

For non-plane wave illumination, Supplement 1 provides a general treatment to construct Φ0.
By propagating the illumination field through the sample with the SSNP equations, we obtain

the exit field from the sample at plane zn. To compute the field through the microscope reaching
the camera Φcam, we first back-propagate the exit field from zn to the front focal plane (zfocal),
and then filter it by the microscope’s pupil function:

Φcam = PNAP∆zfΦxy(zn), (10)

where P∆zf = exp(H1∆zf ) is the propagation operator by a distance ∆zf = zfocal − zn. PNA denotes
the low-pass filtering by the pupil function, and can be computed efficiently in the Fourier space as
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a multiplication between the pupil function ˜︃PNA and the Fourier transform of the back-propagated
field (and its axial derivative). In our implementation, we assume a binary pupil function with a
cutoff frequency at k0n0NA and ignore the apodization and aberrations. The field Φcam contains
both forward-propagating and back-propagating components. In practice, the back-propagating
component will introduce high-frequency artifacts [16], we extract only the forward-propagating
component fromΦcam by an operator F. The forward-propagating field component at the camera
plane φout is

φout = FΦcam = F −1
xy

{︃(︃
Fxy {φcam} −

j
kz
Fxy

{︃
∂φcam
∂z

}︃)︃/︃
2
}︃

= F −1
xy

{︃(︃
1
2

, −
j

2kz

)︃
Fxy{Φcam}

}︃
.

(11)

Detailed derivation of F and a discussion about the bi-directional property of the SSNP model
are provided in Supplement 1. Finally, the intensity from sequential IDT estimated by the SSNP
model is Iout = |φout |

2.
To summarize, our SSNP-based sequential IDT (SSNP-sIDT) forward model can be written in

the following compact form

Iout =
|︁|︁FPNAP∆zf PQ(zn−1) . . . PQ(z1)PQ(z0)Φxy(z0)

|︁|︁2 . (12)

2.3. SSNP-based multiplexed IDT forward model

Multiplexed IDT uses several LEDs to illuminate the sample in each measurement [10]. Since
the light from different LEDs are incoherent with each other, we can model the scattering process
independently and compute the measured intensity as the sum of the intensities from all the
LEDs in each measurement. Therefore, the forward model of the SSNP-based multiplexed
IDT (SSNP-mIDT) is similar to the sequential IDT but with an additional incoherent sum over
Eq. (12):

Iout =

M∑︂
m=1

Im
out, (13)

where Im
out is the intensity from the mth LED. Each multiplexed measurement uses M LEDs.

2.4. Inverse problem for SSNP-sIDT

Next, we formulate the inverse problem for reconstructing the 3D RI distribution using multiple
intensity measurements taken from L different LEDs Il

meas indexed by l = 1, 2, . . . , L. We
formulate the sequential IDT reconstruction as the following optimization problem

n̂ = argmin
n∈Θ

{︄
L∑︂

l=1

∥︁∥︁∥︁∥︁√︂Il
out −

√︂
Il
meas

∥︁∥︁∥︁∥︁2

2
+ τRTV(n)

}︄
, (14)

where Θ is a set to enforce physical constraints, such as realness for non-absorbing samples and
positivity for certain samples. The first data-fidelity term computes the L2-norm of the difference
between the forward model computed and measured amplitude. We use the magnitude instead of
intensity based on a previous observation that it is more robust to signal dependent noise [18].
The second regularization term utilizes priors about the sample to alleviate the ill-posedness
of the inverse problem. Here we adopt the widely used 3D total variation regularizer RTV that
assumes the RI distribution is piece-wise constant [8,14,15]. One can also use more advanced
“denoisers”, such as denoising deep networks, to further boost the performance, as shown in
recent works [19]. τ is a tuning parameter that controls the strength of the regularization.

We calculate the gradient using the automatic differentiation technique. Since the SSNP
forward model consists of a chain of simple operations, the gradient of the data-fidelity term can

https://doi.org/10.6084/m9.figshare.20473725
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be computed using the chain rule to perform “error back-propagation”. We define the gradient G
of a complex function w(v) as G(w, v) = ∂w/∂v + ∂w/∂v according to the Wirtinger calculus
[20], where the · operator means the complex conjugate. The chain rule of the gradient is

G(w, u) = G(w, v)
∂v
∂u

. (15)

By repeatedly applying the chain rule in Eq. (15), one can compute the gradient from a single
LED measurement. For notation simplicity, we omit the LED index in the subsequent derivation.
Considering the data-fidelity contribution from a single LED: L =

∥︁∥︁√Iout −
√

Imeas
∥︁∥︁2

2, our goal is
to get ∂L/∂n(x, y, zi), which is the gradient for the slice zi. This gradient can be computed from
a series of local gradient computed using its definition and the chain rule, as follows:

G(L, φout) = 2
∂L

∂φout
= 2

(︂
|φout | −

√︁
Imeas

)︂ φout
|φout |

, (16)

G(L,Φcam) =
∂φout
∂Φcam

G(L, φout) = F −1
xy

⎧⎪⎪⎨⎪⎪⎩⎛⎜⎝
1/2

j/(2kz)

⎞⎟⎠Fxy{G(L, φout)}

⎫⎪⎪⎬⎪⎪⎭ ,

G(L,Φxy(zn)) =
∂Φcam
∂Φxy(zn)

G(L,Φcam)

(17)

= F −1
xy

⎧⎪⎪⎨⎪⎪⎩⎛⎜⎝
cos(kz∆zf ) −kz sin(kz∆zf )

sin(kz∆zf )/kz cos(kz∆zf )

⎞⎟⎠ · Fxy{PNA G(L,Φcam)}

⎫⎪⎪⎬⎪⎪⎭ . (18)

Next, we calculate a series of gradient G(L,Φxy(zi)) indexed by i = n − 1, . . . , 2, 1 (corresponding
to a physically reversed order), using the chain rule. For notational simplicity, we define
Gi ≡ G(L,Φxy(zi)) and G′

i ≡ G(L, Q(zi)Φxy(zi)), and derive the following relations,

G′
i =

∂Φxy(zi+1)

∂[Q(zi)Φxy(zi)]
Gi+1 =

∂[P Q(zi)Φxy(zi)]

∂[Q(zi)Φxy(zi)]
Gi+1

= F −1
xy

⎧⎪⎪⎨⎪⎪⎩⎛⎜⎝
cos(kz∆z) −kz sin(kz∆z)

sin(kz∆z)/kz cos(kz∆z)
⎞⎟⎠Fxy{Gi+1}

⎫⎪⎪⎬⎪⎪⎭ ,
(19)

Gi =
∂[Q(zi)Φxy(zi)]

∂Φxy(zi)
G′

i =
⎛⎜⎝
1 k2

0

(︂
n2

0 − n2
xy(z)

)︂
∆z

0 1
⎞⎟⎠G′

i , (20)

where nxy(zi) ≡ n(x, y, zi). The gradient of the data-fidelity term from this measurement is

G(L, nxy(zi)) =
∂Q(zi)

∂nxy(zi)

∂[Q(zi)Φxy(zi)]

∂Q(zi)
G′

i

= Re ⎛⎜⎝−2 k2
0 nxy(zi)∆z Φxy(zi)

⊤ ⎛⎜⎝
0 1

0 0
⎞⎟⎠G′

i
⎞⎟⎠

= Re
(︂
−2 k2

0 nxy(zi)∆z
(︁
0 φxy(zi)

)︁
G′

i

)︂
,

(21)

where (·)⊤ denotes matrix transpose. Finally, the total gradient of the entire data-fidelity term is
simply the sum over all the measurements. A diagram that illustrates the forward and gradient
calculation is provided in Supplement 1.

https://doi.org/10.6084/m9.figshare.20473725
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With the gradient of the data-fidelity term, we perform the reconstruction using the fast
iterative shrinkage-thresholding algorithm (FISTA) to solve Eq. (14). The 3D TV regularization
is implemented using an efficient proximal operator based on [15]. We initialize n(r) as the
background RI, n0, and then update the estimation iteratively.

2.5. Inverse problem for SSNP-mIDT

For multiplexed IDT data, we have intensity measurements from L illumination patterns, with
each pattern containing M LEDs. Correspondingly, the reconstruction is achieved by solving the
following optimization problem:

n̂ = argmin
n∈Θ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L∑︂

l=1

∥︁∥︁∥︁∥︁∥︁∥︁
⌜⃓⎷ M∑︂

m=1
Il,m
out −

√︂
Il
meas

∥︁∥︁∥︁∥︁∥︁∥︁
2

2

+ τRTV(n)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (22)

where Il
meas denotes the lth intensity measurement and Il,m

out denotes the SSNP-model computed
intensity from the mth LED in the lth pattern.

To derive the gradient for the multiplexed data-fidelity term, we discuss a single LED pattern
and omit the pattern index in the subsequent derivation for brevity. The data-fidelity term for the

lth measurement is L ′ =

∥︁∥︁∥︁∥︁√︂∑︁M
m=1 Im

out −
√

Imeas

∥︁∥︁∥︁∥︁2

2
, and the local gradient is

G(L ′, φm
out) = 2

∂L ′

∂φm
out
= 2
∂L ′

∂Im
out

·
∂Im

out
∂φm

out

= 2

√︂∑︁M
m=1 Im

out −
√

Imeas√︂∑︁M
m=1 Im

out

· φm
out.

(23)

This gradient step effectively performs demultiplexing, which is analogous to the 2D multiplexed
phase retrieval problem [21]. The subsequent gradient calculation steps are the same as
Eq. (17)–(21) except that φout is replaced by φm

out and the gradient G(L ′, nxy(zi)) calculated from
all the LEDs in each measurement is summed up at the final step.

Overall, our SSNP-IDT algorithm is computationally efficient and requires ∼ 2× time and
memory cost as the BPM algorithm since the SSNP requires computing both the field and its
axial derivative. We implemented the algorithm using custom CUDA code on Python to leverage
the massively parallel processing power of GPU [22]. To reconstruct a single volume containing
600 × 600 × 150 voxels, the algorithm typically requires 20 iterations to converge and takes
∼ 120 s on a PC equipped with a GeForce RTX2070 GPU. A unified efficient algorithm for
both the sequential and multiplexed IDT and an evaluation of the computational performance are
provided in Supplement 1.

3. Results

3.1. Simulation: forward model accuracy evaluation

A major benefit of the SSNP model compared with the BPM model is its higher accuracy when
computing scattered field under high-NA illumination [16]. To evaluate the SSNP-IDT model’s
accuracy under high-NA illumination, we simulated sequential IDT measurements of a bead
using the BPM and SSNP models and compare them against the Mie scattering theory. In this
simulation, the bead has an RI of 1.02 and is immersed in air (n0 = 1). The diameter of the
bead is 6λ = 3.09 µm where λ = 0.515 µm is the wavelength. In Fig. 2, we show the on-axis
and an off-axis 0.9 NA illumination case. The microscope has a 0.9 NA objective lens. The

https://doi.org/10.6084/m9.figshare.20473725
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discretization steps are (∆x,∆y,∆z) = (λ/4, λ/4, λ/8). The simulated intensities from the BPM
and SSNP IDT models and their difference maps from the Mie theory are shown. For the on-axis
illumination case, both the SSNP and BPM models agree with the Mie theory with negligible
errors. For the off-axis high-NA illumination case, SSNP retains high accuracy while the BPM
model suffers from more severe errors. This study confirms that our SSNP-IDT forward model is
highly accurate in simulating IDT measurements under high-NA illuminations. As a result, we
will use the SSNP model for simulating the measurements in the subsequent numerical studies
due to its higher computational efficiency and flexibility compared to the Mie theory.SSNP BPM SSNP BPM

-0.05

0.050.8

1.2

(a) On-axis (b) Off-axis 0.9 NA
Fig. 2. Simulation using the SSNP and BPM IDT models for a 6λ diameter bead (n = 1.02)
in air (n0 = 1) using (a) on-axis illumination (NA = 0), and (b) off-axis illumination (NA =
0.9). The bead center is placed at the origin at z = 0, and the observation plane is placed
at z = 125λ. The upper row shows the normalized intensity, and the lower row shows the
difference comparing against the Mie theory.

3.2. Simulation: reconstruction algorithm evaluation

To assess our SSNP-IDT reconstruction algorithm in the non-paraxial regime, we simulated
high-NA annular IDT measurements using the SSNP-sIDT forward model and then performed
reconstruction using the algorithm in Section 2.4. We simulated a 6λ-diameter sphere with
voxel size (λ/4, λ/4, λ/8). To study the performance under different scattering strengths, we
used two RI contrast values, including ∆n=0.01 and 0.05. We simulated 8 intensity images from
illuminations evenly distributed on a 0.89 NA ring, collected by a 0.9 NA objective (Fig. 3(a)).

We performed reconstruction using both the SSNP, the original BPM [15], and modified BPM
model [16] (see details in Supplement 1) in Fig. 3(b) and 3(c). Then we use the relative mean
squared error (MSE) E to quantify the overall reconstruction quality in Fig. 3(d), which is defined
as E = ∥nGT−n̂∥2

∥nGT−n0 ∥
2 , where nGT and n̂ are the ground-truth and reconstructed RI, respectively. The

original BPM over-estimates the RI values in both the weakly and strongly scattering cases.
This is because the BPM forward model underestimates the phase modulation for the high-NA
components [16]. The modified BPM model introduces an cosine obliquity factor to compensate
for the under-estimated phase modulation, which improves the model accuracy at high angles
[16]. However, this approximation results in under-estimation in the reconstructed RI values.
Figure 3(d) quantitatively shows that the SSNP model can recover the RI distribution with better

https://doi.org/10.6084/m9.figshare.20473725
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Fig. 3. (a) An example image from the SSNP simulated intensity measurements for low and
high RI sphere samples. (b) Error maps of the RI reconstructions from the SSNP, original
BPM, and modified BPM models. The X-Y and X-Z cross sections through the center of
each sphere are shown. (c) The cutlines along X and Z of the reconstructed and ground-truth
RI through the center of each sphere. (d) The relative MSE of all the reconstructions.

accuracy compared to the BPM and modified BPM models in both the weakly and strongly
scattering cases. By inspecting the cross sections and cutlines shown in Fig. 3(b) and 3(c), we
concluded that the reconstruction in all three dimensions are limited by the finite Fourier coverage
provided by the illumination and imaging optics. Both the lateral resolution and the amount of
axial elongation due to the “missing-cone” problem are comparable regardless of the model used.

3.3. Experiments: sequential IDT

To test our SSNP-sIDT reconstruction algorithm, we apply it to the annular IDT data from our
previous publication in [7]. Briefly, our annular IDT system consists of a Nikon E200 microscope
equipped with a ring LED (Adafruit, 1586 NeoPixel Ring). We used a 40×/0.65 NA (Nikon,
CFI Plan Achromat) objective. The ring LED has 24 LEDs and is 60 mm in diameter. It is
centered at the optical axis and placed approximately 35 mm away from the sample, which sets
the illumination angle to be ∼ 40◦ and matches with the objective NA. Each LED illumination is
approximated as a plane wave with a wavelength λ = 515 nm. We use the same self-calibration
method as [7] to get the accurate direction of the wave vector.

In our reconstruction algorithm, the physical quantities on the XY plane, including the field,
the field’s axial derivative, and the slices of the predicted RI values, are discretized on 2D grids.
The grid spacing is ∆x = ∆y = 0.1625 µm, which is chosen to be smaller than but close to λ

4NA
to ensure both accuracy and computational efficiency of the algorithm, and is the same as the
effective pixel size on the camera.

First, we verify the reconstruction algorithm on unstained buccal epithelial cells immersed
in purified water on a glass slide and covered by a coverslip. The dataset contains 24 intensity
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images. The reconstructed volume is between -9.7 µm to 9.7 µm around the focal plane, and
the FOV is 162.5 µm × 162.5 µm. We discretized the sample volume to 150 slices, each with
1000 × 1000 pixels, with voxel size 0.1625 µm × 0.1625 µm × 0.129 µm. To perform the
reconstruction with memory-limited hardware, we cropped the full FOV into four 576 × 576-pixel
subregions, reconstructed them separately, and then stitched them together. Figure 4(a) shows
the 3D rendering of the reconstructed RI distribution of the entire cell cluster volume. The 3D
reconstruction allows easily discriminating cells at different depths. As shown in Fig. 4(b)-(c),
our SSNP algorithm successfully reconstructs high-resolution features, such as cell boundaries,
membrane, and native bacteria around the cells.
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Fig. 4. Reconstruction of buccal epithelial cells. (a) 3D rendering of the full-FOV
reconstruction. (b), (c) Zoomed-in views of XY (Top), XZ (Bottom) cross sections. The red
ellipses show the native bacteria crowded regions. The yellow arrows highlight the sharp
cell boundary features.

Next, we apply our algorithm to a live C. elegans worm sample. Young adult C. elegans
were mounted on 3% agarose pads in a drop of nematode growth medium (NGM) buffer. Glass
coverslips were then gently placed on top of the pads and sealed with a 1:1 mixture of paraffin
and petroleum jelly. The time series IDT measurements were taken at ∼ 10 Hz with 8 intensity
images for each set. The reconstruction is performed in a volume of 97.5 µm × 390 µm × 38.6
µm centered at the focal plane. The volume is discretized to 600 × 2400 × 300 voxels with voxel
size 0.1625 µm × 0.1625 µm × 0.129 µm. The reconstruction is more challenging since the worm
contains complex and strongly scattering features. Figure 5(a) shows four consecutive volumes
reconstructed by our SSNP algorithm, displayed as color-coded depth projections. Figure 5(b)-(c)
shows two zoomed-in XY and YZ cross-sectional views around the buccal cavity and terminal
pharyngeal bulb regions. Comparing with the SSNP model, the first-Born model underestimates
the RI value and misses the low-frequency information. This effect is also reported in other
multiple-scattering models for IDT reconstruction [8,14]. Additional zoom-in regions at different
depths and time points are shown in Fig. 5(d)-(e), containing features including the anterior bulb,
vulva, lipid droplets, and body wall muscle cells inside the worm sample.
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Fig. 5. Reconstruction of a live C. elegans worm. (a) Color-coded depth projections of
the whole worm reconstruction using SSNP model at different times. (b-c) XY and ZY
cross-sections of the buccal cavity (top), part of the isthmus and terminal bulb (bottom). The
reconstructions are using SSNP model and first-Born based model, respectively. (d) XY
cross-sections of SSNP-IDT reconstruction at different time points of the same subregion
and depth. (e) XY cross-sections of SSNP-IDT reconstruction at different depths and time
points of the same subregion.
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3.4. Experiment: multiplexed IDT

Next, we test our SSNP-mIDT reconstruction algorithm to process data from our previous
publication in [10]. Briefly, the multiplexed IDT system consists of a Nikon TE 2000U
microscope equipped with a custom LED matrix. Each LED approximately generated a plane
wave with a central wavelength λ = 632 nm. The measurements were taken with a 40× / 0.65
NA objective (Nikon, CFI Plan Achromat) and an sCMOS camera (PCO.Edge 5.5).

We apply our algorithm to a highly scattering sample of live C. elegans embryos. The
multiplexed measurement used 16 disjoint illumination patterns, each containing 6 LEDs. In
total 96 LEDs are used in this experiment, corresponding to illumination NA ranging from 0.3
to 0.575. We reconstructed a 81.3 µm × 81.3 µm × 19.0 µm volume, which was discretized
to 500 µm × 500 µm × 120 µm voxels with voxel size 0.1625 µm × 0.1625 µm × 0.158 µm.
In Fig. 6, the embryo on the left is in the late three-fold (quickening) stage, and the one on the
right is in the comma stage. From the color-coded view in Fig. 6(a), how the worms are folded
can be clearly observed. From the single-depth cross-sections in Fig. 6(b), the morphological
details of the cells’ outline, the buccal cavity, and the tail of the worm are reconstructed. Similar
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Fig. 6. Reconstruction of live C. elegans embryos. (a) Color-coded depth projection of
SSNP-mIDT reconstructon at t = 7.5 s, 15 s, 30 s (b) XY zoom-in cross sections at various
times and depths using SSNP and first-Born models, which shows developing cells, buccal
cavity and tail region of the embryos and worms, respectively.
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to aIDT, the SSNP model reconstructs more low-frequency phase information and higher RI
contrast than the first-Born model. Besides, the TV regularization used in the SSNP model
effectively suppresses the noise, which helps to provide a clean background and sharp embryo
boundary comparing with the Tikhonov regularization used in the first-Born model. The high
acquisition rate of multiplexed IDT enabled reconstructing the developing process and the
moving behavior of the embryos, as shown in the time-series reconstructions. As compared
to our previous single-scattering based linear multiplexed IDT reconstruction algorithm [10],
SSNP-mIDT provides more robust demultiplexing capability that removes the fuzzy diffraction
artifacts inside the embryos. Since the algorithm allows independent update from individual
LEDs in each pattern, it greatly suppresses the cross-talk artifacts suffered by the linear model.

4. Conclusion and discussion

In conclusion, we developed a non-paraxial multiple-scattering model for 3D RI reconstruction
from both sequential and multiplexed intensity diffraction tomography measurements. The
SSNP model ensures high accuracy when imaging strongly scattering samples under high-angle
illumination. We demonstrated the robustness of the model on weakly scattering cells and
multiple-scattering dynamic C. elegans worm and embryos. With a unified reconstruction
algorithm, our model is flexible for both the sequential and multiplexed IDT setups. This
treatment for multiplexed measurement can also be applied to interferometric setups and speed
up the acquisition for the ODT systems [1,16].

A major limitation of our current IDT systems is the limited angular coverage (up to 0.65
NA) that creates a significant amount of missing-cone artifacts and fundamentally limits the
reconstruction quality, as shown by our numerical studies and experimental results. While several
recent works alleviate the missing-cone artifacts by using higher NA (>1) optics and more than
10× more measurements [8,14], it sacrifices the FOV and acquisition speed, which prevented
them from capturing the whole worm without mechanical FOV scanning and imaging dynamic
biological processes. It may be possible to integrate the annular and multiplexed illumination
strategies in these systems to speed up the acquisition while achieving better Fourier coverage.

It has been shown that 3D Fourier Ptychography models based on the first-Born approximation
[23] and BPM [6] can further handle dark-field measurements, which allows considering high
spatial frequency information beyond the objective NA in the 3D reconstruction. Since our
SSNP model can be treated as an enhancement of the first-Born and BPM models, it is possible
to extend our work to incorporate additional dark-field information for high-resolution IDT
reconstructions, which will be considered in our future work. Alternatively, several advanced
reconstruction frameworks for IDT have been recently developed and shown promising results
to greatly suppress the missing-cone artifacts, including end-to-end supervised learning [24],
untrained neural network [9], model-based reconstruction with a deep denoiser [19], neural
fields based reconstruction [25], and physics-informed neural network [26]. Notably, our SSNP
forward model has been previously applied to generate a large-scale training data set to train a
supervised learning model [24]. It is further possible to directly incorporate our SSNP model
into the model-based learning strategies [9,19,25] in the future.
Funding. National Science Foundation (1846784).
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