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a b s t r a c t

Path planning on grid graphs has been studied for decades in several applications such as

robotics and computer games. However, the process for determining short paths can still

be inefficient on large grid graphs. The SPS (Surrounding Point Set) method has made it

efficient by considering only a few unblocked cells. Since eight-neighbor grid graphs do

not provide sufficient connectivity for SPS, it found a path on a graph where two cells

are connected with an edge within a given density bound. However, verifying whether

the resulting edges are blocked is time-consuming; further, it is unclear which density

bound to use and restrictive to allow only edges within the bound. To address these limi-

tations, we propose a multi-SPS with Theta* that uses eight-neighbor grid graphs, allows

distant connectivity by Theta*, and improves the SPS by considering more obstacles

between the start and goal cells. Our experimental results demonstrate that compared

with the existing path planning algorithms, multi-SPS with Theta* and variants of Theta*

can run faster and obtain similar path lengths. The results also demonstrate the beneficial

effect for Theta* in that the expensive runtime of Theta* can be reduced by the SPS

approach.

� 2021 Elsevier Inc. All rights reserved.

1. Introduction

Path planning on grid graphs has been studied for decades and is widely applied in areas such as robotics and computer

games [1–3]. The grid is a simple approach that discretizes continuous spaces and represents maps as graphs. Further, grids

are used in complex obstacle fields owing to their simplicity and certainty in terms of the location of nodes and edges [4,5].

In general, free space and obstacles are represented as unblocked and blocked cells, respectively, in grid graphs. Each cell

serves as a node in a graph, and edges are generally restricted from each cell to its adjacent neighbors (typically, eight neigh-

bors). It aims to find a short unblocked path from a given start cell and to a given goal cell where an agent can always move

from its current cell to any one of its unblocked neighboring cells [6]. Graph search methods are generally applied to find a

path on a grid graph such as A* or Dijkstra algorithm for a static and known environment [7], and LPA* (Lifelong Planning A*)

or D* algorithm for a dynamic and unknown environment [8,9]. These graph search methods have recently been studied for

enhancing their efficiency during searches or when practically applied by hybridizing them with other methods [5,10–12].

Path planning on grid graphs still remains inefficient, as the map size grows and there is a possibility of improving path

quality where a graph is constructed with angle-restricted edges. To realize efficient path planning on grid graphs, the SPS
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(Surrounding Point Set) method, which avoids unimportant cells, was implemented in previous studies [13,14]. In this

method, the search space for path planning is reduced by determining a subset of unblocked cells. To this end, a set of

unblocked grid cells surrounding obstacles that collide with the straight line between the start and goal cells is identified;

these unblocked grid cells are defined as CO (Critical Obstacles). Then, solely the cells around the obstacles and on the line

are used for planning a path. This approach considerably reduced the number of cells and enhanced the efficiency of path

planning.

The previous SPS method exhibits a limitation with respect to the construction of a graph based on the subset of

unblocked cells before conducting a path planning search. Because the SPS method uses only a subset of grid cells, the typical

four- or eight-neighbor grid graphs cannot help obtain a good solution for the path length. Furthermore, even with a small

number of cells, constructing a full graph can consume a considerable amount of computational time because of the frequent

line-of-sight checks required. Hence, connecting edges between cells within a density bound is used for graph construction.

This density-bound based graph could provide more connectivity; however, the line-of-sight checks to verify whether edges

are feasible should be implemented. Owing to these checks, the runtime for the density-bound based graph is higher than

that for the simple eight-neighbor grid graph. Other limitations include the need to make decisions regarding the appropri-

ate value for the bound and the impossibility to obtain distant connectivity beyond the bound value.

To avoid bound-based connectivity and use the grid graph as it is, we focus on a well-known any-angle path planning

algorithm, Theta* [15–17]. The traditional shortest path planning algorithm, such as A* or Dijkstra, wherein a grid graph typ-

ically has connectivity to its eight neighbors, generally generates a longer path than the one in a continuous space and con-

tains unnecessary heading changes in free space [7,18]. By contrast, any-angle path planning algorithms resolve the

limitation of the shortest grid path planning algorithms by interleaving the path smoothing with search. In any-angle path

planning, several algorithms, such as Theta*, Lazy-Theta*, and any-angle sub-goal graph algorithm, have been developed

[15,16,19] and applied in various domains [20–22]. Recently, any-angle path planning algorithms have been extended to

real-time environments with re-planning mechanism and to those considering path constraints for practical application

[23,24]. These methods determine shorter paths than A* on the grid by propagating information across all cells of the grid,

but not restricting the resulting paths to lie on the grid [25]. Unfortunately, Theta* needs to perform several line-of-sight

checks to verify whether the edge is unblocked, which is time-consuming [26,27].

The present paper proposes a method called multi-SPS with the Theta* algorithm to efficiently plan a path on eight-

neighbor grid graphs. This method determines a subset of cells that lie on certain lines (i.e., the line connecting the start

and goal cells) and surround the clusters of blocked cells that intersect these lines. This subset of cells is then used by Theta*

during the search rather than the entire set of cells. This approach resolves the limitations of the previous SPS method as the

grid graph is used as it is and decisions regarding a bound value are no longer required. The approach avoids a feasibility test

on each edge generated within the bound and achieves distant connections beyond the bound value by the parent-update

mechanism in Theta*. From the perspective of Theta*, the advantage of the proposed method is that it resolves the issue of an

expensive runtime at the expense of a slight increase in the length of the resulting path, since only a subset of cells is used by

Theta* during the search, which reduces both its search space and its number of line-of-sight checks.

The proposed method can be applied to environments that require high resolution, such as game maps, as it can handle

the complexity by reducing the search space [16,28]. Consequently, once geometric concepts in the proposed method are

properly expanded to 3D space, it can be use of for a 3D environment because the size of set of surrounding cells would

increase less sharply than the overall search space does from 2D to 3D. Moreover, it can be effectively applied to urban maps

where environments are unstructured [12,29], since obstacles do not need to be defined as polygons in advance. These char-

acteristics would ultimately contribute to the efficient adaptive path planning for dynamic environments once a certain

mechanism such as modification on the set of surrounding cells is further included in the method. This is because that

the only small part of search space would still be handled with respect to the environment changes, and the shape of obsta-

cles could be easily adapted as the proposed method gets to identify it over the process of finding the set of surrounding cells.

The main contributions of this paper can be summarized as follows:

i) Resolving the issues related to bound-based graph construction in the previous SPS method by using a simple eight-

neighbor grid graph with Theta*.

ii) Improving the previous CO and SPS concepts by developing a multiple operation of SPS in a practical manner.

iii) Simultaneously improving both SPS and Theta* in terms of solution quality and efficiency based on the complement

incorporation.

iv) A significant decrease in the runtime of Theta* algorithm by considering only a subset of unblocked cells and reducing

the number of line-of-sight checks at the expense of a slight increase in the path length.

The remainder of this paper is organized as follows. Theta* is briefly reviewed in Section 2. The definition and assump-

tions of path planning on grid graphs are provided in Section 3. An overview of the proposed method, along with a brief sum-

mary of the previous work, is presented in Section 4. Numerical experiments and simulation results are discussed in

Section 5, and conclusions are drawn in Section 6.
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2. Brief overview of Theta*

Theta* is a well-known any-angle path planning algorithm that generates a path with a connectivity between distant grid

cells, rather than a limited-connectivity with a certain number of neighbors at fixed angles. It mainly consists of expansion

(propagation) and a parent-update process based on line-of-sight checks. The expansion process has the same concept as the

existing shortest path planning algorithms such as A*, in which each cell expands the cost to its neighbors and records itself

as a parent of those expanded neighbors. This expansion is repeated until the goal cell is reached. When the goal cell is

expanded with the smallest cost from the start cell, the path is obtained by tracking back from the goal to the start cell using

the parent information. Theta*, by contrast, updates the parent information with the parent of the parent during expansion if

the newly considered edge does not collide with blocked cells. For example, in Fig. 1, when Theta* generates a cell x while

expanding a cell y, as depicted by the dotted line (a), it checks whether the straight line segment from parent z of the

expanded cell to x has line-of-sight (b). If so, then it considers the short-cut that moves directly from z to x (c).

Typically, the path length can be shortened more by the parent-update process than the shortest path planning algo-

rithms. Given the start and goal cell corners as S and G, Fig. 2 compares the paths obtained from traditional shortest path

planning (left) and Theta* (right). In the left figure, each path segment is made only between eight neighbors in a fixed num-

ber of angles, demonstrating the possibility of further reduction in path length from an unnecessary heading change in free

space. Simultaneously, Theta* resolves this issue by obtaining a longer and unblocked segment through the parent update,

which results in shortening the overall path length as compared to the shortest grid path length.

3. Proposed approach

An efficient path planning method in a 2D grid graph is proposed based on the multiple surrounding point set approach

and Theta* algorithm. The problem’s definition and assumptions are presented in Section 3.1. Previous work on CO and SPS

and the motivation for the proposed approach are described in Section 3.2, and the proposed method is developed in

Section 3.3.

3.1. Problem definition and assumptions

This study aims to develop a method to efficiently find a path from a given start to a goal cell in a 2D grid graph by deter-

mining a subset of unblocked cells surrounding clusters of importantly considered blocked cells and using those cells for

Theta*. The map is represented by a set of 2D cells, N, which is categorized into a set of unblocked or blocked cells, denoted

as Nf and No, respectively. Start and goal cells, denoted as S and G, respectively, are given as unblocked cells. The environ-

ment is assumed to be static and known; hence, no blocked cells would move, and full information about the map is pro-

vided in advance. The edges are connected between the center coordinates of each cell. Each cell, ci, has edges with eight

neighbors. The path is represented by unblocked line segments from S to G and evaluated by its length.

Notations for the proposed approach are summarized in Table 1.

3.2. Previous work on the CO and SPS

The proposed method, multi-SPS with Theta* algorithm, is an advanced work based on the previously proposed method

named CO and SPS [13,14,30]. This concept started from the observation that, in free space, not many cells remain unin-

volved in the planning of the shortest path. Therefore, the method focused on identifying which cells should be considered

more important than others to enhance the efficiency of path planning. A straight line between the start and goal cells was

selected and used to determine which obstacles (clusters of blocked cells) are critical, denoted as CO. Once an obstacle inter-

sects with the straight line, it is considered to be CO. Consequently, a subset of unblocked cells, denoted as SPS, was deter-

mined to completely surround the critical obstacle. Fig. 3 illustrates CO and SPS given the straight line segment between S

and G. In (a), two obstacles in dark grey and unblocked cells in blue circles are identified by the straight line segment. Then,

all surrounding cells for each obstacle in CO are determined (b), and finally, those surrounding cells with cells on the seg-

Fig. 1. Parent-update process in Theta*

J. Han and S. Koenig Information Sciences 582 (2022) 618–632

620



ment are defined as SPS (c). After SPS was identified, a graph was constructed based on the cells in SPS, and the path was

found using a shortest path planning algorithm such as A* or Dijkstra algorithm.

The motivation of this study lies in the limitations of the SPS method with respect to graph construction. Given a subset of

unblocked cells (SPS), a graph needs to be generated by considering the connectivity between cells such that a graph search

based method can be applied for path planning. As shown in Fig. 4, the most general way to do this in grid graphs is to simply

connect edges from a cell to its eight neighbors in the left, right, up, down, and diagonal directions. However, this might not

provide sufficient connectivity in the SPS method, since several cells that were not chosen as SPS were excluded from the

graph. Meanwhile, a full graph can be also considered; however, it has to go through the expensive computational time, since

all possible edges need to be tested in terms of line-of-sight as well as the exponential increase in search space. Accordingly,

the previous work adopted a density-bound based graph that connects edges from a cell to its adjacent cells within a bound.

For example, the center plot in Fig. 4 shows a graph in which the bound value is set to 3. This approach was beneficial for

obtaining a good solution in an efficient manner, as it lies between two extreme approaches. However, it would still take a

Fig. 2. Comparison between a shortest grid path planning and Theta*

Table 1

Notations.

Notation Description

N Set of grid cells

Nf Set of unblocked grid cells,Nf � N

No Set of blocked grid cells,No � N

ci ith grid cell,ci 2 N

S Start cell

G Goal cell

Fig. 3. Example of CO and SPS.

Fig. 4. Comparison of the graph constructions based on cells in SPS.
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longer time than a simple eight-neighbor grid graph, as line-of-sight checks for graph construction would have to be imple-

mented. There would be a longer path length than a full graph because its connectivity cannot exceed the bound value. In

addition, we need to decide which bound should be used for a map, which has a critical impact on solution quality and time.

For simplicity, given the blocked cells that intersect with the straight line as an input parameter, we defined the SPS pro-

cess as a function FindSPSðÞ that returns the set of unblocked cells that surrounds the obstacles. Since we assume that an

obstacle is not provided as a polygon in advance (rather, its cluster is identified by the SPS process), it also returns the cluster

information of CO.

3.3. Multi-SPS with Theta* algorithm on grid graphs

The proposed approach is based on previous research on the SPS method that considers a subset of unblocked cells on a

straight line between S and G and then uses them for planning a path. However, when applying Theta* to the subset of cells

(the result of SPS), the edges made from Theta* would not be able to provide proper connectivity, since not all eight neighbor

cells are considered for expansion. For example, in Fig. 5, which shows each edge after parent update in grey, when ci
expands to its neighbor cj, the edge from parent of ci, which is S, to cj collide with blocked cells (see the red dashed line),

making ci the parent of cj. As a result, the subsequent cells are connected with ci, rather than making direct short-cuts to

S (see the figure on the right). Based on this result of SPS with Theta*, multi-SPS, which implements the SPS process multiple

times by considering additional lines, the straight line between S and G was developed.

The multi-SPS method can provide more connectivity in the searching phase of Theta* because it considers more critical

obstacles and their surrounding cells based on multiple lines and consequently improves the results of Theta*. The

unblocked cells resulting from multi-SPS would have fewer neighbors, since all cells that are not on the lines or surrounding

the critical obstacles would not be considered. This could result in generating a long path; yet, connecting the cells to further

parents in Theta* algorithm could shorten the path.

As multi-SPS is based on identifying the existence of critical obstacles in the way, it defines each way as a line segment.

Note that a line segment l from sl ¼ sl;x; sl;y
� �

to gl ¼ gl;x; gl;y

� �

is converted to a series of cells, denoted as Nl, LineInGridCellsðÞ
that is based on Bresenham’s line-drawing algorithm with a the modification entailed adding missing cells [26,31]. Each line

segment l is placed in the line list as a queue and popped off one at a time at each round as a referent line denoted as l
r
. If

there are blocked cells colliding with the reference line l
r
, which are identified by the intersection of Nlr (a series of cells for l

r
)

and No (a set of all blocked cells) (hence, Nlr \ No–£), then a set of surrounding unblocked cells and those covered obstacles,

denoted as SPSlr and, COlr respectively, are obtained from FindSPSðÞ. Consequently, lines are added in the line list in which the

line will pop-off the list as a reference line at each round of the SPS process. However, if no obstacles are colliding with l
r
,

indicating Nlr \ No ¼£, then no SPS process regarding l
r
is required, and no new lines are added in the line list.

With respect to the line addition, the lines between certain cells in SPSlr and two cells, slr and glr , which define the current

reference line, l
r
are added in the line list. In the initial round, slr ¼ slr ;x; slr ;y

� �

and glr ¼ glr ;x; glr ;y

� �

are set to be S and G. To

decide which cells in SPSlr should be used for the line addition, we focused on the most distant cells from the line because

these cells would work as barriers and might have to be considered in generating a path to G. Therefore, given the general

line representation for l
r
to Ax + By + C = 0, where A ¼ glr ;y � slr ;y, B ¼ slr ;x � glr ;x, C ¼ slr ;y � glr ;x � slr ;x � glr ;y, we divided the cells in

SPSlr into the upper and lower cells from l
r
, denoted as SPSlr ;U and SPSlr ;L, respectively. For the upper side, the most distant cell

cU can be obtained by calculating the distance between each cell ci ¼ ci;x; ci;y
�

) in SPSlr ;U and l
r
, and returning one that has the

maximum distance (Eq. (1)). The most distant cell cL on the lower side can also be obtained in a similar manner (Lines 27–43

in Algorithm 1). Then, in the initial round, four lines, slr cU ; cUglr ; slr cL; cLglrf g, as depicted by the dashed red lines in Fig. 6 (left

figure), are placed in the line list (Line 17).

Fig. 5. Example of the parent-update process of Theta* based on SPS.
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cU :¼ argmax
ci

Aci;x þ Bci;y þ C
�

�

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p ; 8ci 2 SPSlr ;U ð1Þ

Following the initial round, a cell cI is selected between cU and cL in the inner side between the current line l
r
and its prior

line. This method could restrict the number of SPS processes and prevent distant lines from being considered, which might

not be effective, as prior lines generally play an important role in constructing the shortest path because the path length

would have to be increased over rounds. To identify this inner cell, which line each line is generated from should be recorded

as a back-line, denoted as l
r
b. When new lines are added to the line list, the current line l

r
is set as the back-line l

r
b for those

new lines and placed in the backline list as the number of new lines. Then, we construct a triangle polygon (green region in

Fig. 6 (right figure)) based on l
r
and l

r
b, and we select a cell cI in the triangle using a function intriangleðÞ where it returns

which cell from a given set of cells (cU and cL) is in a given triangle (Line 20). Consequently, two lines slr cI; cIglrf g between

this inner cell and slr and glr are placed in the line list (Line 21).

At each round, the covered obstacles of the reference line, COlr , would be removed from the set of remaining uncovered

blocked cells to see if there exist any new obstacles that get in the way. Hence, No0 is defined to represent the set of uncov-

ered blocked cells, which is set to be No in the beginning. It is updated by removing COlr at each round as shown in Eq. (2).

No0 :¼ No0fCOlr ð2Þ

Theorem 3.3.1. The multi-SPS algorithm terminates after a finite number of iterations.

Proof. Initially, assuming obstacles are present on the straight line between S and G, four lines are placed in the line list,

generating two triangles: D cU ; S;Gð Þ and D cL; S;Gð Þ. For generality, we focus on the upper triangle. The multi-SPS algorithm

runs with respect to i) the existence of blocked cells and ii) each line in the line list. For i), let us assume that there are n

clusters of blocked cells in a triangle D cU ; S;Gð Þ. These are removed through the intersection with each line, indicating that

the number of clusters of blocked cells decreases over rounds. For ii), we only need to prove that lines generated over rounds

lie inside the triangle D cU ; S;Gð Þ. Note that the lines are the segments of a triangle. A triangle is constructed by one segment

of its preceding triangle and cI , which is an inner cell of the preceding triangle by definition, resulting in the succeeding tri-

angle fully belonging to its preceding triangle. Then, all lines generated over the rounds lie inside the initial triangle

D cU ; S;Gð Þ. Therefore, the algorithm runs at most n times from the perspective of a triangle D cU ; S;Gð Þ.
We denote the subset of cells as Nsub, which is set to be an empty set in the beginning. It is merged with the chosen cells

with respect to each reference line l
r
. If l

r
is a feasible line (no intersection between Nlr and No0 ), then Nlr is merged to Nsub, as

shown in Eq. (3) (Lines 9–10). However, for the opposite case, SPSlr and the unblocked cells obtained by excluding COlr from

Nlr are merged to Nsub (Lines 11–13).

Nsub :¼ Nsub [ Nlr ifNlr \ No0 ¼£
Nsub [ NlrfCOlrð Þ [ SPSlrotherwisef

�

ð3Þ

Fig. 6. Line addition of multi-SPS.
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Algorithm 1 Multi-SPS

1: Nsub :¼£;

2: No0 :¼ No;

3: line :¼ SG;

4: backline :¼ SG;

5: while line–£

6: l
r

:¼ line:PopðÞ;
7: l

r
b :¼ backline:PopðÞ;

8: Nl
r :¼ LineInGridCells l

r� �

;

9: if Nlr \ No0
� �

¼£
10: Nsub :¼ Nsub [ Nl

r ;

11: else

12: SPSlr ;COlr
� �

:¼ FindSPS Nlr \ No0
� �

;

13: Nsub :¼ Nsub [ Nl
rfCOl

r

� �

[ SPSlr
	 


;

14: No0 :¼ No0 fCOlr ;

15: cU ; cL½ � :¼ GetMaxCells l
r
; SPSlr

� �

;

16: if lr ¼ SG

17: line :¼ line [ slr cU ; cUglr ; slr cL; cLglr
� �

;

18: backline :¼ backline [ arraycopy l
r
;4

� �	 


;

19: else

20: cI :¼ intriangle cU ; cL½ �; l
r
; l

r
b

� �� �

;

21: line :¼ line [ slr cI; cIglr
� �

;

22: backline :¼ backline [ arraycopy l
r
;2

� �	 


;

23: end if

24: end if

25: end while

26: returnNsub

27: function GetMaxCells l
r
; SPSlr

� �

28: cU :¼ cL :¼ Null;

29: maxdistU :¼ maxdistL :¼ 0;

30: for all ci 2 SPSlr

31: if sign Aci;x þ Bci;y þ C
� �

> 0

32:
if

Aci;xþBci;yþCj j
ffiffiffiffiffiffiffiffiffiffi

A2þB2
p > maxdistU

33: cU :¼ ci;

34:
maxdistU :¼ Aci;xþBci;yþCj j

ffiffiffiffiffiffiffiffiffiffi

A2þB2
p ;

35: end if

36: else

37:
if

Aci;xþBci;yþCj j
ffiffiffiffiffiffiffiffiffiffi

A2þB2
p > maxdistL

38: cL :¼ ci;

39:
maxdistL :¼ Aci;xþBci;yþCj j

ffiffiffiffiffiffiffiffiffiffi

A2þB2
p ;

40: end if

41: end if

42: end for

43: return cU ; cL

In Theta*, a modification is made to obtain the neighbors of a popped off cell s from the open list, denoted as nghbr
vis sð Þ. It

would expand all adjacent neighbors; however, any adjacent neighbors that are not in Nsub would be excluded for defining

neighbors, and consequently, for expansion (see Eq. (4)). Fig. 7 shows an example of Nsub from multi-SPS where each consid-

ered line is depicted as a red dashed line, and the resulting path is shown as a blue solid line obtained by Theta* that is only

used Nsub as an input set of cells. Each expansion is depicted as a grey edge, while generating a short-cut between distant
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cells through the parent update process. Because Theta* preserves parent information for each expansion, the shortest path

can be simply obtained by tracking back from G to S.

nghbr
v is sð Þ :¼ nghbr

vis sð Þ \ Nsub ð4Þ

Theorem 3.3.2. The multi-SPS with Theta* algorithm finds a feasible path if one exists.

Proof. Theta* is a complete algorithm, as it is basically identical to A* algorithm but includes short-cuts only if they succeed line-

of-sight checks. Therefore, we only need to prove that the output of the multi-SPS, Nsub, guarantees feasible connectivity from S to G

in an eight-neighbor grid graph. With respect to feasibility of Nsub, for a line l, a set of cells Nl is entirely merged with Nsub if l is

feasible (Nl \ No ¼£); further, this set is partially merged with Nsub as it excludes the clusters of blocked cells COl if l intersects

with any blocked cells. SPSl is also merged with Nsub, which is a set of unblocked cells surrounding obstacles by definition. Therefore,

the cells in Nsub are unblocked.With respect to connectivity between cells in Nsub, note that each cell in Nsub comes from either a line

(Nl) or SPS process (SPSl). As the SPS process is conducted from an intersection with a line, at least one incoming and outgoing cell

exists (in the direction of S to G), wherein these cells are both defined as Nl and SPSl. Hence, each cell in Nsub other than S and G has

at least two neighbors in an eight-neighbor grid graph. From this, we obtain feasible connectivity from S to G.

4. Experiments

In this section, experiments are conducted to test the proposed approach regarding its effectiveness in reducing the

search space and comparing the results to the existing methods in terms of the features of maps, solution quality, and effi-

ciency. We also conduct performance tests to determine how well the existing and proposed methods perform with an

increase in the map size.

4.1. Experimental design

We used 2D grid maps from Nathan Sturtevant’s repository (http://movingai.com/benchmarks/). The following three

types of maps were considered: randomly blocked maps of varying blockage rates from 10 to 40%, real-world street maps

(Berlin, Boston, New York, and Paris), and room maps of varying room sizes from 8 � 8 to 64 � 64. All maps were

512 � 512 in grid size, but we also considered the map size from 256 � 256 to 1024 � 1024 for further test. The start

and goal cells were selected to run the scenarios of a sufficiently long path. The experiments were run on an Intel i5-

6300U (2.40 GHz) CPU and 4 GB of RAM, and the algorithms were written in MATLAB.

We simulated the proposed method in different maps to see how it performs and discuss the results. With respect to the

previous work named COSPS [14] which conducts finding the set of surrounding cells only once based on a line segment

between start and goal cells, we compared the results in terms of differences in number of lines, cells, as well as efficiency

and solution quality. In particular, for COSPS, we constructed a graph by a density bound value as the previous work did

where the density value was set to 0.1% of the number of unblocked grid cells (Nf). For comparative experiments, we first

compared the multi-SPS + Theta* with A*, which is the most basic search method, and then with Theta* and variants of

Theta*, such as Lazy Theta* and Theta* with re-expansion (denoted as Theta* R). We allowed these algorithms to consider

all grid cells, so that we could discuss how much CPU runtime decreases and path length increases by reducing the number

of searched cells. With respect to two variants of Theta* above, Lazy Theta* is a well-known any-angle path planning algo-

rithm that delays the line-of-sight checks in Theta* to increase the computational efficiency [27], further, Theta* R allows a

Fig. 7. Example of Nsub from multi-SPS (left) and a resulted path by Theta* (right).
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vertex to be re-expanded and re-inserted in the open list even after it is placed on closed list by not maintaining a closed list

to find a shorter path at an increase in runtime [15]. In addition, we combined the multi-SPS with those variants of Theta*

and additionally with Theta* with key vertices (denoted as Theta* KV) to see how well the variants of Theta* would work

with the multi-SPS. Theta* KV uses a key vertex as the parent of an expanding vertex for a short-cut and increases the num-

ber of visible neighbors of that key vertex, so that it can update the vertices later from expansion [15]. For the performance

test, we considered the small and large maps that are available on the street map, where the number of grid cells would be

65,536, 262,144, and 1,048,576 for 256 � 256, 512 � 512, and 1024 � 1024 size, respectively.

4.2. Experimental results

The simulation results of the multi-SPS with Theta* and the previous work COSPS are summarized in Fig. 8 and Table 2. All

blocked cells, including green cells, represent obstacles. The unblocked cells surrounding CO and on the lines are marked

with blue dots.

As shown in Fig. 8 and Table 2, the number of generated lines tended to increase, as the map included more blocked cells,

which consequently resulted in an increase in the number of CO, and the ratio of Nsub to Nf . For example, as the blockage rate

increased from 10% to 40% for the random map, or the room size decreased from 64 � 64 to 8 � 8 for the room map, we

observed that the ratio of Nsub to Nf grew based on the number of lines and CO. With regard to the different features between

maps, the street map showed a relatively small number of lines, CO, and the ratio of Nsub to Nf , which were on average 13,

13.25, and 2.92, as compared to other maps (50.5, 427.25, and 3.11 for random maps and 26, 97.5, and 5.45 for the room

map). This was because the clusters of obstacles were rather simple shapes and large, requiring less frequent iterations of

SPS, while blocked cells were disjoint and scattered over the space in random or room maps, which resulted in a more fre-

quent implementation of SPS.

Compared to the COSPS, the multi-SPS with Theta* generated the number of CO and Nsub almost 3 times larger than COSPS

which is obvious since COSPS includes only one line segment between start and goal cells. On the other hand, the runtimes of

the multi-SPS with Theta* and COSPS were 3.61 and 60.39 (sec) on average respectively. This shows the advantage of using

the eight-neighbor grid graphs by implying that a density-bound graph construction had a significant impact on runtime

since each cell had to go through the feasibility tests with adjacent cells within the bound to define edges that do not collide

with any blocked cells. In addition, we observed that runtime tends to increase over an increase of Nsub and Nf , which is

because the feasibility tests should be frequently conducted in those cases. With respect to path length, COSPS obtained

4.9% longer paths than the proposed method given the density bound. Knowing that the previous work used relatively small

sized maps where the map size was 2000 for each axis and the width size was set to 100–200 while the map size in this

paper are 512 for each axis and the width size is set to 1, the comparative results indicate that COSPS would work less effec-

tive in large maps resulted from a graph construction. Consequently, the multi-SPS with Theta* can resolve the limitation of

the previous work by using an eight-neighbor grid graph as it is and adopting Theta* to obtain distant connectivity.

The results of comparative experiments in Fig. 9 and Table 3 show that when the number of unblocked cells was on aver-

age 203,510 across all maps, A*, Theta*, Lazy Theta*, and Theta* R searched 41%, 34%, 36%, and 35% of cells, respectively.

However, the proposed method searched for only 3% of cells with Theta*, Lazy Theta*, Theta* R, and 6% with Theta* KV to

generate the path. Note that Theta* KV is known for a significant increase in runtime due to the overhead of keeping the

key vertices and large number of neighbors; it increased the number of searched cells twice as many as Theta*, Lazy Theta*,

and Theta* R with the proposed method. The results of the number of expanded cells were related to the CPU runtime result,

as overall runtime tended to increase with search space. However, we observed that line-of-sight checking worked expen-

sively, since Theta* was approximately 5 times slower than A* despite a lower number of searched cells in Theta* than in A*

(69,447 and 84,410 on average, respectively).

The longest and shortest runtimes were obtained by Theta* R and multi-SPS + Lazy Theta* (61.71 and 3.46 sec, respec-

tively), where A*, Theta* (with its variants), and multi-SPS + Theta* (with its variants) showed 6.69, 36.19, and 4.70 sec

on average. These results suggest that using multi-SPS with Theta* made it possible to effectively reduce the runtime from

using all grids. With respect to differences in Theta* algorithms, allowing re-expansion such as Theta* R and Theta* KV

turned out to be critical in runtime, as it increased almost twice as much as Theta* in both cases of all grids and multi-

SPS. Using Theta* instead of Lazy Theta* slightly increased the runtime (by approximately 0.16 sec) when multi-SPS was

applied, while a difference of 18.06 sec was present between them when all grid cells were considered. Meanwhile, the

multi-SPS + Theta* KV showed a similar runtime with A* as 6.73 and 6.69, respectively, while other variants were 1.3–1.9

times faster than A*. With respect to the maps, the proposed method was particularly fast for street maps or maps with a

low occupancy rate. The case where the proposed method provided a longer time, such as the random map with 40% rate,

involved small and disjoint obstacle cells scattered over the space, and a map with a high occupancy rate of obstacles. When

obstacles were disjoint and frequently scattered, the multi-SPS procedure had to be implemented more frequently, as many

disjoint obstacles were encountered in the lines. By contrast, compared with other maps, street maps with obstacles as large

polygons showed a higher efficiency for the proposed method. In addition, the proposed method yielded a higher efficiency

in sparse maps. For example, when the occupancy rate decreased from 40 to 10% in the random map, or from 8 � 8 to

64 � 64 size in the room map, implying that the maps became sparse, the proposed method (unlike A* or Theta*) showed

a trend of a decrease in runtime.
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Fig. 8. Result plots of the proposed method compared to COSPS.
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Regarding the path length, Theta* R and multi-SPS + Lazy Theta* generated the shortest and longest paths (704.30 and

735.03, respectively) across all maps, where A*, Theta* (with its variants), and multi-SPS + Theta* (with its variants) gener-

ated 734.24, 705.68, and 729.07 in path length, respectively. These results suggest that the proposed method has a 2.3% solu-

tion gap from using all grid cells. With respect to differences in Theta* algorithms, Lazy Theta* generated slightly longer

paths than Theta* or Theta* R, as it delayed the line-of-sight checks for efficiency; further, Theta* and Theta* R obtained sim-

ilar path lengths (with minor improvement). These results remained consistent after combining multi-SPS, as the multi-

SPS + Theta*, Lazy Theta*, and Theta* R generated 732.61, 735.03, and 729.90 in path length, respectively. In particular,

the multi-SPS generated the shortest path with Theta* KV, not with other Theta* algorithms. This implies that increasing

the number of neighbors for key vertices in the case of short-cuts can play an important role under the limited set of grid

cells. Compared to A*, the proposed method combined with Theta* algorithms allowed us to obtain similar path lengths

and even find shorter ones with Theta*, Theta*R, or Theta* KV. Regarding the shape of paths, A* showed frequent heading

changes in free space, as it restricts the connectivity to eight neighbors at fixed angles; however, Theta*, Lazy Theta*, Theta*

R, and Theta* KV with or without the multi-SPS contained relatively longer line segments by any-angle connectivity.

Fig. 10 shows the average performance results as the map size increased from 256 � 256 to 1024 � 1024 for the street

maps. As the map became larger (i.e., the number of cells increased from 65,536 to 1,048,576), the number of expanded cells

significantly increased for A* (from 21,185 to 392,864) and Theta*, Lazy Theta*, and Theta* R (from 16,748 to 304,044 on

average) compared with those with multi-SPS (from 2,266 to 12,979). More importantly, A* and Theta* algorithms showed

relatively consistent ratios of searched cells as A* searched 44%, 53%, and 49% of grid cells, and Theta* algorithms searched

34%, 44%, and 38% of grid cells in 256 � 256, 512 � 512, and 1024 � 1024 maps, respectively. In contrast, the multi-

SPS + Theta*, Lazy Theta*, Theta* R, or Theta* KV showed a decreasing pattern of 4.7%, 2.8%, and 1.6%, respectively. This result

indicates that the proposed method exhibits superior performance for an increased map size and consequently explains the

difference in the slope of runtime in the center plot. At runtime, the multi-SPS approach showed an insignificant increase

from 1.35 to 7.56 sec, whereas A* and Theta* algorithms had steeper slopes from 1.57 to 40.46 sec and from 8.43 to

271.77 sec, respectively. Regarding the path length, differences were relatively insignificant compared with the differences

in efficiency. We also noticed that the multi-SPS + Theta* KV appeared to be similar to Theta* algorithms in terms of path

length. This result indicates that the proposed method, compared to the existing methods, tends to be more effective as

the map size grows with respect to the increasing trend in path length and runtime.

In summary, the proposed method successfully reduced the set of grid cells and generated feasible paths from the given

start to the goal. It obtained a minor increase in path length and a significant reduction in runtime compared with Theta*,

Lazy Theta*, and Theta* R, which considers all existing grid cells. In particular, Theta* KV turned out to be beneficial in terms

of computational time and solution quality when it was merged with the proposed method. Even with A*, the results showed

a shorter runtime required to generate similar or even shorter path lengths. The efficiency of the proposed method increased

when a map got sparse rather than had a high occupancy rate of obstacles, and where obstacles were positioned in relatively

large shapes of polygons rather than being separated and scattered. This result indicates that the proposed method can be

more efficient in real-world maps, such as street maps where regions for unblocked cells are relatively spacious. The results

of the performance test demonstrated that the proposed method can be more advantageous for large maps, as it does not

proportionally increase the computational time along with an increase in the map size. In addition, even though the pro-

posed method removed several cells in search to enhance the efficiency of path planning, it did not necessarily lower the

solution quality, showing a path length similar to that afforded by other methods such as A* and Theta* algorithms.

Table 2

Result summary of the proposed method compared to COSPS.

No. of lines No. of CO Nsub Nsubto Nf ratio (%) Runtime (sec) Path length

COSPS Multi-SPS

with Theta*

COSPS Multi-SPS

with Theta*

COSPS Multi-SPS

with Theta*

COSPS Multi-SPS

with Theta*

COSPS Multi-SPS

with Theta*

COSPS Multi-SPS

with Theta*

Random map 10% 1 26 81 203 1046 2549 0.44 1.08 29.33 1.78 671.57 671.44

20% 1 40 148 482 1252 3631 0.60 1.73 31.61 3.54 685.96 683.66

30% 1 58 172 565 1491 4201 0.83 2.33 35.07 4.76 714.50 699.25

40% 1 78 84 459 2653 7678 2.53 7.31 52.22 7.54 570.37 536.68

Street map Berlin 1 10 4 7 2342 5136 1.19 2.61 57.89 1.56 820.95 764.04

Boston 1 16 5 17 1403 5827 0.71 2.96 36.38 2.41 796.36 717.59

New York 1 12 5 14 2106 6312 1.07 3.21 51.95 2.32 713.17 759.00

Paris 1 14 6 15 1950 5762 0.99 2.92 47.91 2.36 822.13 735.30

Room map 8 � 8 1 42 61 235 4323 14,351 2.09 6.94 95.13 5.62 822.47 791.53

16 � 16 1 30 34 99 4644 13,436 2.00 5.79 107.84 4.56 818.69 770.62

32 � 32 1 18 15 44 4082 13,434 1.70 5.58 99.07 4.12 826.88 808.75

64 � 64 1 14 5 12 3113 8640 1.26 3.50 80.28 2.84 959.63 853.50
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Fig. 9. Path results on 512 � 512 size maps.
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Table 3

Comparison between algorithms on 512 � 512 size maps.

Random map Street map Room map

10% 20% 30% 40% Berlin Boston New York Paris 8 � 8 16 � 16 32 � 32 64 � 64

Number of expanded cells Nf 235,900 209,281 180,136 104,950 196,667 196,678 196,500 196,672 206,642 231,854 240,671 246,178

A* 23,613 32,034 48,278 22,302 54,660 136,871 94,629 132,416 101,095 88,669 117,274 161,079

Theta* 10,108 20,584 35,303 19,365 29,579 129,595 62,928 124,104 86,968 68,037 92,315 154,483

Lazy Theta* 22,360 33,229 46,756 19,569 29,550 130,009 62,612 124,118 95,507 71,743 93,229 154,552

Theta* R 20,679 22,951 38,781 20,071 29,901 133,583 57,600 126,186 89,431 69,062 92,673 154,804

Multi-SPS + Theta* 2,450 3,588 3,997 4,324 2,101 5,748 5,249 5,588 14,144 12,972 11,710 8,339

Multi-SPS + Lazy Theta* 2,531 3,608 4,058 4,324 2,101 5,748 5,249 5,580 14,158 13,010 11,724 8,339

Multi-SPS + Theta* R 3,796 4,467 4,376 4,437 2,459 6,072 5,399 6,025 16,088 15,902 16,610 9,685

Multi-SPS + Theta* KV 6,447 7,053 6,644 6,778 3,466 10,893 7,708 10,477 26,958 26,224 36,827 18,515

Runtime (sec) A* 2.02 2.44 3.58 1.52 4.50 10.19 7.55 10.29 7.82 6.95 9.88 13.50

Theta* 4.47 6.42 9.42 4.61 18.32 81.78 35.36 68.25 26.20 23.51 37.60 73.61

Lazy Theta* 4.02 5.63 7.50 3.80 6.89 32.39 15.14 26.21 14.99 11.92 15.85 28.48

Theta* R 13.35 13.46 17.83 10.28 33.99 168.41 61.17 133.25 45.99 43.54 65.39 133.87

Multi-SPS + Theta* 1.78 3.54 4.76 7.54 1.56 2.41 2.32 2.36 5.62 4.56 4.12 2.84

Multi-SPS + Lazy Theta* 1.51 3.19 5.63 7.67 1.55 2.26 2.30 2.08 5.25 3.83 3.68 2.63

Multi-SPS + Theta* R 2.87 4.51 5.80 8.19 2.16 3.61 3.20 3.62 7.84 7.01 6.97 4.44

Multi-SPS + Theta* KV 3.65 5.35 6.26 8.63 2.22 5.61 4.09 5.33 10.57 9.72 12.30 7.04

Path length A* 679.46 694.49 708.89 518.07 745.2 728.68 725.79 752.27 799.44 771.51 836.64 850.4

Theta* 670.52 681.39 690.95 501.36 709.94 698.36 688.79 716.76 767.36 737.58 789.12 805.07

Lazy Theta* 673.78 688.40 700.35 503.04 709.95 698.93 688.64 717.03 777.57 742.18 790.61 805.48

Theta* R 670.33 680.54 690.05 500.87 709.94 698.34 686.58 716.36 767.27 737.49 788.80 805.08

Multi-SPS + Theta* 671.44 683.66 699.25 536.68 764.04 717.59 759.00 735.30 791.53 770.62 808.75 853.50

Multi-SPS + Lazy Theta* 676.70 690.15 706.79 538.39 764.04 717.59 759.02 735.00 796.11 773.43 809.46 853.68

Multi-SPS + Theta* R 671.26 682.37 698.32 536.34 763.94 717.59 755.14 734.89 787.74 767.90 803.00 840.33

Multi-SPS + Theta* KV 671.26 682.35 698.13 535.25 709.93 713.75 690.46 727.51 787.74 768.18 801.14 839.25
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5. Conclusions

The algorithm proposed in the present paper improved the efficiency of path planning on 2D grid maps by considering

unblocked cells around certain obstacles. Furthermore, the limitation of a long path length owing to the consideration of

fewer cells rather than all existing grid cells was resolved by the parent updating mechanism in Theta* algorithm. The results

of numerical experiments demonstrated that, compared with existing well-known path planning methods such as A* and

several variants of Theta*, the multi-SPS with Theta* algorithm could significantly reduce the runtime without noticeable

degradation in path lengths. In particular, Theta* that additionally considered vertices for expansion worked well with

the multi-SPS, as its combination could obtain a path length similar to that of considering all grid cells.

The proposed method can be effectively applied in cases where a map is sparse with a low occupancy rate, and where

obstacles are relatively large polygons, rather than being small and frequently scattered over the space, as it implements

the procedure based on the existence of disjoint obstacles on the lines. More importantly, because the proposed method does

not need to have the entire polygon information for obstacles in advance, it can be useful for urban maps. Furthermore, it can

be useful for large or high-resolution maps such as game maps, as the computational time does not significantly increase

over the map size, unlike the existing traditional path planning methods. Finally, the multi-SPS can be combined with other

types of any-angle path planning algorithms as well as Theta* algorithm because it is basically an approach that determines a

subset of cells on grid maps.

In future research, the proposed method can be implemented in 3D environments, wherein the line for dividing SPS into

two sides and the triangle for identifying the farthest cell should be a plane and polyhedron, respectively. The approach can

also be enhanced by developing additional post-smoothing methods based on the result of the straight line between start

and goal. Dynamic modification and re-planning mechanism in partially known environments would be another research

topic for real-time application. In addition, kinematic constraints such as angle smoothness or safe distance from obstacles

can be considered for practical use of the proposed method in robotic environments. These restrictions might involve a

multi-objective function in Theta* search or introduce safeness-considered proximity in determining a set of surrounding

cells.
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