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Abstract. We introduce a neural network framework, utilizing adver-
sarial learning to partition an image into two cuts, with one cut falling
into a reference distribution provided by the user. This concept tack-
les the task of unsupervised anomaly segmentation, which has attracted
increasing attention in recent years due to their broad applications in
tasks with unlabelled data. This Adversarial-based Selective Cutting net-
work (ASC-Net) bridges the two domains of cluster-based deep learning
methods and adversarial-based anomaly/novelty detection algorithms.
We evaluate this unsupervised learning model on BraTS brain tumor
segmentation, LiTS liver lesion segmentation, and MS-SEG2015 segmen-
tation tasks. Compared to existing methods like the AnoGAN family,
our model demonstrates tremendous performance gains in unsupervised
anomaly segmentation tasks. Although there is still room to further
improve performance compared to supervised learning algorithms, the
promising experimental results shed light on building an unsupervised
learning algorithm using user-defined knowledge.

1 Introduction

In computer vision and medical image analysis, unsupervised image segmenta-
tion has been an active research topic for decades [14,17,19,20,26], due to its
potential of applying to many applications without requiring the data to be
manually labelled. Recently, advances in GANs [15] have given rise to a class
of anomaly detection algorithms, which are inspired by AnoGAN [24] to iden-
tify abnormal events, behaviors, or regions in images or videos [10,13,25]. The
AnoGAN learns a manifold of normal images by mapping from image space
to a latent space based on GANs. To detect the anomaly, AnoGAN needs
iterative search in the latent space to find the closest corresponding images
for a query image. The AnoGAN family, including f-AnoGAN [23] and other
works [4,5,16,27,28], focus on the reconstruction of the corresponding normal
images for a query image, but not directly working on the anomaly detection. As
a result, their reconstruction quality heavily affects the performance of anomaly
detection.
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Fig. 1. Overview of our proposed ASC-Net for unsupervised anomaly segmentation.
(Color figure online)

To center the focus on the anomaly without needing faithful reconstruction,
we propose an adversarial-based selective cutting neural network (ASC-Net)1,
shown in Fig. 1. This network aims to decompose an image into two selective
cuts based on a reference image distribution. Typically, the reference distribu-
tion is defined by a set of images provided by users or experts who have vague
knowledge and expectation of normal cases. In this way, one cut will fall into the
reference distribution, while other image content outside of the reference image
distribution will group into the other cut. These two cuts allow to reconstruct the
original input image semantically and perform a simple intensity thresholding to
cluster normal and abnormal regions. To consider these two cuts simultaneously,
we extend U-Net [21] with two upsampling branches, as used in CompNet [11],
a supervised image segmentation approach. Meanwhile, one branch connects to
a GAN’s discriminator network, which allows introducing the knowledge con-
tained in the reference image distribution. With the discriminator component
aiding, the network can separate images into softly disjoint regions; that is, the
generation of our selective cuts is under the constraint of the reference image
distribution. As a result, we obtain a joint estimation of anomaly and the cor-
responding normal image, thus bypassing the need for perfect reconstruction.
Furthermore, under the constraints of the GAN discriminator and the recon-
struction of the original input, our ASC-Net becomes an unsupervised solution
for anomaly detection, since we do not have any labels for the anomaly, with
only a collection of normal images in the reference distribution.

1 Our source code is available on Github: https://github.com/raun1/ASC-NET.

https://github.com/raun1/ASC-NET
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We evaluate our proposed unsupervised anomaly segmentation network on
three public datasets, i.e., MS-SEG2015 [7], BraTS-2019 [1,2,18], and LiTS [6]
datasets. For the MS-SEG2015 dataset, an exhaustive study on comparing mul-
tiple existing autoencoder-based models, variational-autoencoder-based models,
and GAN-based models is performed in [3]. Compared to the best Dice scores
reported in [3], we have significant gains in performance, which are increased by
23.24% without post-processing and 20.40% with post-processing2. For BraTS
dataset, our experiments show that f-AnoGAN, the one performs the best after
post-processing in [3], has difficulty reconstructing the normal images required
for anomaly segmentation. By constrast, we obtain a mean Dice score of 63.67%
for the BraTS brain tumor segmentation and 32.24% for the LiTS liver lesion
segmentation, under the two-fold cross-validation settings for both datasets. In
addition, we improve the Dice score for the liver lesion segmentation to 50.23%
using a simple post-processing scheme of open and closed sets.

Overall, the contributions of our proposed method are summarized below:

– Proposing an adversarial based framework for unsupervised anomaly seg-
mentation, which bypasses the normal image reconstruction and works on
anomaly detection directly. This framework presents a general clustering
strategy to generate two selective cuts based on a reference image set with
human knowledge.

– To the best of our knowledge, our work is the first one to apply an unsu-
pervised segmentation algorithm to the BraTS 2019 and LiTS liver lesion
public datasets. Besides, our method outperforms the AnoGAN family and
other popular methods presented in [3] on the publicly available MS-SEG2015
dataset.

2 Adversarial-Based Selective Cutting Network
(ASC-Net)

2.1 Network Framework

Figure 1 describes the framework of our proposed ASC-Net, which includes two
components, i.e., the main module M and the discriminator D, and one sim-
ple clustering step T based on thresholding. Overall, the main module includes
normal and anomaly branches to semantically reconstruct the original image for
clustering, while the discriminator brings user-defined knowledge into the normal
branch in the main module.

Main Module M . The main module aims to generate two selective cuts, which
guide a follow-up simple reconstruction of an input image to cluster image pixels
based on intensity thresholding. The M follows an encoder-decoder architecture
like the U-Net, including one encoder and two decoders. The encoder E extracts
features of an input image Iin, which could be an image located within or outside
2 Different from that in [3], we use a simple open-and-closed operation for post-

processing.
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Fig. 2. Visualization of the “disjoincy” between images Ifc (top) and Iwc (bottom)
generated by two cuts of ASC-Net. From left to right: the generated image, its his-
togram, and the following four columns representing the histogram equalized images
of the thresholded peaks with the first peak being the first image, etc. The first peak
of Ifc is disjoint with the last peak of Iwc, etc.

of the reference distribution {Ird}, a collection of normal images. One decoder in
green (the second branch) is designed to generate a “fence” cut Cf that is defined
by an image fence formed by {Ird}. The Cf aims to generate an image Ifc and
tries to fool the discriminator D. The other decoder in blue (the first branch) is
designed to generate another “wild” cut Cw, which captures leftover image con-
tent that is not included in Ifc. As a result, the Cw produces another images Iwc

to complement the fence-cut output Ifc. The complementary relation between
these two cuts Cf and Cw is enforced by a positive Dice loss discussed later.
Figure 2 demonstrates the “disjoincy” of Ifc and Iwc, like their complementary
histogram distribution and different thresholded images at different peaks.

The reconstructor R consists of a 1 × 1 convolution layer with the Sigmoid
as the activation function, which is applied on the concatenation of the two-cut
outputs Ifc and Iwc to regenerate the input image Iin back. This reconstruc-
tor R ensures that the Cf does not generate an image Ifc far from the input
image Iin and also ensures that the Cw does not generate an empty image Iwc

if the anomaly or novelty exists. Figure 3 shows the histogram separation of
the reconstructed images, compared to the original input images which present
complex histogram peaks and have difficulty in separating the brain tumor from
background and other tissues via a simple thresholding. The discontinuous his-
togram distribution of Iro is inherited from the two generated sub-images Ifc
and Iwc through a simple weighted combination. As a result, the segmentation
task becomes relatively easy to be done on the reconstructed image Iro.
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Fig. 3. Histogram comparison of two
sample images. From left to right: the
input image, its histogram, its recon-
structed image using ASC-Net, and the
histogram of the reconstructed image.
The histograms of the input images vary
greatly, while the ones of their reconstruc-
tions show peaks at similar ranges, which
enables a thresholding based pixel-level
separation.

Discriminator D. The GAN discrim-
inator tries to distinguish the gener-
ated image Ifc, according to a refer-
ence distribution Rd defined by a set
of images {Ird}, which are provided
by the user or experts. The Rd typ-
ically includes images collected from
the same group, for instance, normal
brain scans, which share similar struc-
tures and lie on a manifold. Introduc-
ing D allows us to incorporate our
vague prior knowledge about a task
into a deep neural network. Typically,
it is non-trivial to explicitly formu-
late such prior knowledge; however, it
could be implicitly represented by a
selected image set. The Rd is an essen-
tial component that makes our ASC-
Net possible to generate selective cuts according to the user’s input, without
requiring other supervisions.

Thresholding T . To cluster the reconstructed image Iro into two groups at
the pixel level, we choose the thresholding approach with the threshold values
obtained using the histogram of Iro. We observed that for an anomaly that is
often brighter than the surrounding tissues like the BraTS brain tumor, the
intensity value at the rightmost peak of the histogram is a desired threshold;
while an opposite case like darker LiTS liver lesions, the value at the leftmost
peak would be the threshold. We also observed that the histograms of the recon-
structed images for different inputs reflect the same cut-off point for the left or
right peaks, which allows using one threshold for an entire dataset.

Loss Functions. The main module M includes three loss functions: (i) the
image generation loss for Cf (LossCf

), (ii) the “disjoincy” loss between Cf

and Cw (LossCw
), and (iii) the reconstruction loss (LossR). In particular, the

Cf tries to generate an image Ifc that fools the discriminator D by mini-
mizing LossCf

= 1
n

∑n
i=1 |D(I(i)fc ) − 1|. Here, n is the number of samples in

the training batch. The Cw tries to generate an image Iwc that is comple-
ment to Ifc by minimizing the positive Dice score LossCw

= 2|Ifc∩Iwc|
|Ifc|+|Iwc| . The

last reconstruction takes an Mean-Squared-Error (MSE) loss between the input
image Iin and the reconstructed image Iro: LossR = 1

n

∑n
i=1 ‖I(i)in − I

(i)
ro ‖22.

The discriminator D tries to reject the Cf output Ifc but accept the images
from the reference distribution Rd, by minimizing the following loss function:
LossD = 1

n+m

(∑n
i=1 |D(I(i)fc ) − (−1)| +

∑m
i=1 |D(I(i)Rd

) − 1|
)
. Here, m is the

number of the images in Rd. Even though D and Cfc are tied in an adversarial
setup, here we do not use the Earth Mover distance [22] in the loss function,
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since we would like D to identify both positive samples and negative samples
with equal precision. Therefore, we use Mean Absolute Error (MAE) instead.

2.2 Architecture Details and Training Scheme

We use the same network architecture for all of our experiments as shown in
Fig. 1. The encoder E consists of four blocks of two convolution layers with a
filter size of (3, 3) followed by a max pooling layer with a filter size of (2, 2)
and batch normalization after every convolution layer. After every pooling layer
we also introduce a dropout of 0.3. The number of feature maps in each of the
convolution layer of a block are 32, 64, 128, and 256. Following these blocks is a
transition layer of two convolution layers with feature maps of size 512 followed
by batch normalization layers. The Cfc and Cwc decoders are connected to the
E and mirror the layers with the pooling layers replaced with 2D transposed
convolutional layers, which have the same number of feature maps as the blocks
mirror those in the encoder. Similar to a U-Net, we also introduce skip connec-
tions across similar levels in the encoder and decoders. The reconstructor R is
simply a Sigmoid layer applied to the concatenation of Ifc and Iwc, resulting in
a simplified CompNet [11]. The Discriminator D mimics the architecture of the
E, except for the last layer where a dense layer is used for classification. All the
intermediate layers have ReLU activation function and the final output layers
have the Sigmoid activation. The only exception is the output of the discrimi-
nator D, which has a Tanh activation function to separate Ifc and images from
the Rd to the maximum extent.

We use Keras with Tensorflow backend and Adam optimizer with a learning
rate of 5e−5 to implement our architecture. We follow two distinct training
stages:

– In the first stage, we train D and M in cycles. We start training D with
{Rd} with True labels and {Ifc} with False labels. These training samples
are shuffled randomly. Following D, we train M with {Iin} as input and the
weights of D frozen while preserving the connection between {Ifc} and D.
The objective of the M is to morph the appearance of {Iin} into {Ifc} to
fool D with the frozen weights. We call these two steps one cycle, and in each
step there may be more than one epochs of training for M or D.

– In the second stage, M and D continue to be trained alternatively; however,
the input images to D are changed, since the training purpose at this stage
is to focus on the differences between the {Rd} and {Iin}, while ignoring the
noisy biases created by the M in transforming {Iin} to {Ifc}. To achieve
this, we augment the reference distribution {Rd} with its generated images
via M , i.e., {Ifc(Rd)}. We treat them as true images, and the union set
{Rd ∪ Ifc(Rd)} is used to update D.

Runtime Analysis. We use two Nvidia TitanX GPUs and on average a dis-
criminator cycle takes 2.5 ms to process a single 2D image slice with size of 240
× 240, while the main module cycle takes 15.5 ms to process a single 2D image
slice during training.
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3 Applications

We evaluate our model on three unsupervised anomaly segmentation tasks: MS
lesion segmentation, brain tumor segmentation, and liver lesion segmentation.
We use the MS-SEG2015 [7] training set, BraTS [1,2,18], and LiTS [6] datasets
in these tasks.

MS-SEG2015. The training set consists of 21 scans from 5 subjects with each
scan dimensions of 181 × 217 × 181. We resize the axial slices to 160 × 160, so
that we can share the same network design as the rest of the experiments.

BraTS 2019. This dataset consists of 335 T1-w MRI brain scans collected from
259 subjects with high grade Glioma and 76 subjects with low grade Gliomas in
the training set. The 3D dimensions of the images are 240 × 240 × 155.

LiTS. The training set of LiTS consists of 130 abdomen CT scans of patients
with liver lesions, collected from multiple institutions. Each scan has a varying
number of slices with dimensions of 512 × 512. We resize these CT slices to
240 × 240 to share the same network architecture with other tasks.

For all experiments, the image intensity is normalized to [0, 1] over the 3D vol-
ume; however, we perform the 3D segmentation task in the slice-by-slice manner
using axial slices. To balance the sample size in Iin and Rd, we randomly sample
and duplicate the number difference to the respective set.

MS Lesion Segmentation. In this task, we randomly sample 2870 non-tumor,
non-zero, Brats-2019 training set slices to make our reference distribution Rd as
in [3], while they use their own privately annotated healthy dataset. Meanwhile,
the 2870 non zero 2D slices of the MS-SEG2015 training set are used in the main
module M . We train this network using three cycles in the first stage and one
cycle in the second stage and take the threshold at 254 intensity based on the
right most peak of the image histogram.

We obtain an average Dice score of 32.94% without any post processing. By
using a simple post-processing with erosion and dilation3 with 5 × 5 filters, this
number improves to 48.20% Dice score. In comparison, a similar study conducted
by [3] consisting of a multitude of algorithms including AnoVAEGAN [4] and
f-AnoGANS, obtained a best mean score of 27.8% Dice after post processing by
f-AnoGANS. Before post processing the best method was Constrained AutoEn-
coder [8] with a score of 9.7% Dice. Sample images of our method are included
in Fig. 4

Brain Tumor Segmentation. In this task, we perform patient-wise two-fold
cross-validation on the Brats-2019 training set. In each training fold, we use
a 90/10 split after removing empty slices. The 2D slices from the 90% split
without tumors are used to make our reference distribution Rd; while the 2D
slices with tumors from the 90% split and all the slices from the 10% split are
used for training our model. As a result, the sample size of Rd for fold one and

3 We use this operator to improve the connectivity of the generated anomaly mask.
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two amounts to 11,745 and 12,407 respectively, while the size of Iin amounts to
11,364 and 10,786, respectively. We train this network using two cycles in the
first stage and one cycle in the second stage.

Iin Ifc Iwc Iro Mgt Mest Mest ∩ Iin

Fig. 4. Sample results of MS-SEG2015, Brats-2019 and LiTS (top to bottom) obtained
from the various branches of the network. The Ifc in the second row is contrast
enhanced to present the content contained in the brain region. None of these include
any of the post processed images.

We obtain an average Dice score of 63.67% for the brain tumor segmentation.
Figure 4 shows samples generated by our ASC-Net. Figure 5 shows our attempt
to apply f-AnoGANs [23] by following their online instructions. The failure of
AnoGANs in the reconstruction brings to light the issue with the regeneration
based methods and the complexity and stability of GAN based image recon-
struction.

Liver Lesion Segmentation. To generate the image data for this task, we
remove the non-liver region by using the liver mask generated by CompNet [11]
and take all non-zero images. We have 11,926 2D slices without liver lesions
used in the reference distribution Rd. The remaining 6,991 images are then used
for training the model. We perform slice-by-slice two-fold cross-validation and
train the network using two cycles in both first and second stages. To extract
the liver lesions, we first mask out the noises in the non-liver region of the
reconstructed image Iro and then invert the image to take a threshold value at
242, the rightmost peak of the inverted image.

We obtain an average Dice score of 32.24% for this liver lesion segmenta-
tion, which improves to 50.23% by using a simple post processing scheme of
erosion and dilation with 5 × 5 filter. Sampled results are shown in Fig. 4. In
comparison, a recent study [12] reports a cross-validation result of 67.3% under
a supervised setting. Note that the annotation in the LiTS lesion dataset is
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imperfect with missing small lesions [9,12]. Since we use the imperfect annota-
tion to select images for the reference distribution, some slices with small lesions
may be included and treated as normal examples.

Fig. 5. Query images (top) and their reconstructions (bottom) using f-AnoGANs [23].

Fig. 6. Stability: The first image is the input image, the second is the ground truth.
The rest of images are reconstruction from various re-runs of the framework with
variable training cycles and stage. All runs are able to isolate the anomaly in question.

4 Discussion and Future Work

In this paper we have presented a framework that performs two-cut split in an
unsupervised fashion guided by an reference distribution using GANs. Unlike the
methods in the AnoGAN family which operate as a reconstruction-based method
and needs faithful reconstruction of normal images to function properly, we treat
the anomaly segmentation as a constrained two-cut problem that requires a
semantical and reduced reconstruction for clustering. Our ASC-Net focuses on
the anomaly detection with the normal image reconstruction as a byproduct,
thus still producing competitive results where reconstruction dependent methods
such as f-AnoGAN fails to work on. The current version of our ASC-Net aims
to solve the two-cut problem, which will be tasked to handle more than two
selective cuts in the future. Theoretical understanding of the proposed network
is also required, which is left as a future work.

Limitations and Opportunities. One reason of our low Dice scores could be
that we had to select non-tumor or normal slices as our reference distribution,
which does not account for other co-morbidities. This affects the performance of
the framework as it has no other guidance and would consider co-morbidities as
an anomaly as well. However, this provides possibility of bringing other anomalies
into the users’ attention.
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Fig. 7. Termination of network
training affects the reconstruction
result. Left to right columns in each
row: the input image, the image
reconstructed via two cycles in the
first stage and one in the second
stage, and the image reconstructed
via adding one cycle in the second
stage.

Termination and Stability. The termina-
tion point of this network training is peri-
odic. The general guideline is that the peaks
should be well separated and we terminate
our algorithm at three or four peak sepa-
ration. However, continuing to train further
may not always result in the improvement
for the purpose of segmentation due to accu-
mulation of holes as shown in Fig. 7, even
though visually the anomaly is captured in
more intricate detail. We however encourage
training longer as it reduces false positive
and provide detailed anomaly reconstruction,
though the Dice metric might not account for
it. In our experiments, we specify the num-
ber of cycles in each stage. However, due to
the random nature of the algorithm and the
lack of a particular purpose and guidance, the
peak separation may occur much earlier, then training should be stopped accord-
ingly. The reported network in our Brats-2019 experiments has an average Dice
score of 6% over the network trained longer as shown in Fig. 7. Regarding the
stability, Fig. 6 demonstrates an anomaly estimated by different networks that
are trained with different number of training cycles. We observe that while the
appearance of Iro changes, we still obtain the anomaly as a separate cut since
our framework works without depending on the quality of reconstruction.
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23. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-
AnoGAN: fast unsupervised anomaly detection with generative adversarial net-
works. Med. Image Anal. 54, 30–44 (2019)
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