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Abstract
Stencil computations are widely used in the scienti�c simula-
tion domain, and their performance is critical to the overall
e�ciency of many large-scale numerical applications. Many
optimization techniques, most of them varying strategies of
tiling and parallelization, exist to systematically enhance the
e�ciency of stencil computations. However, the e�ective-
ness of these optimizations vary signi�cantly depending on
the wide range of properties demonstrated by the di�erent
stencils. This paper studies several well-known optimization
strategies for stencils and presents a new approach to ef-
fectively guide the composition of these optimizations, by
modeling their interactions with four domain-level proper-
ties of stencils: spatial dimensionality, temporal order, order
of accuracy, and directional dependence. When using our
prediction model to guide optimizations for �ve real-world
stencil applications, we were able to identify optimization
strategies that outperformed two highly optimized stencil
libraries by an average of 2.4x.

1 Introduction
In the scienti�c simulation domain, stencils are widely used
in a variety of applications[20]. Often, the e�ciency of the
overarching application is critically linked to the perfor-
mance of its stencils, where a large e�ort of work exists
to optimize their performance. More speci�cally, many ap-
proaches exist to optimize their performance, including both
automatic optimization frameworks by using compilers[9,
29] and domain-speci�c languages (DSLs)[26, 30]; and man-
ual optimization by using libraries such as AMReX[13]
or modifying the source code implementations to directly
manage hardware resources. Where a majority of these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
PMAM’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9339-3/22/04. . . $15.00
h�ps://doi.org/10.1145/3528425.3529103

Figure 1. Impact of dimensionality on the e�ectiveness of
rectangular (R), partial diamond (Pd), and full diamond (Fd)
tiling with thread-level parallelism with 16 threads.

optimizations are mostly variations of tiling[8, 28] and
parallelization[18] and can be systematically applied to a
wide variety of stencils, their e�ectiveness can be inconsis-
tent due to the vast range of behaviors that their underlying
computations can exhibit[21].
To illustrate the wide variation of optimization e�ective-

ness, �gure 1 compares the impact of applying three di�er-
ent optimization strategies to three implementations of a
heat equation ( mDmC = U∆D), which simulates heat propaga-
tion for an isotropic and homogeneous medium [14]. Here
the three di�erent implementations respectively instanti-
ate the equation to be one-dimensional, two-dimensional,
and three-dimensional. Each variation combines thread-level
parallelism (using sixteen threads) with one of three di�er-
ent memory tiling strategies: (1) rectangular tiling, which
strip-mines data accessed by a loop nest into rectangular
blocks, with outer loops enumerating distinct blocks of data,
and each block updated by an equal number of inner loops
[28]; (2) full diamond loop tiling, which alternatively uses
diamonds as the block shapes to allow for more concurrency
and better load balancing among tasks that update distinct
blocks of data[8]; and (3) partial diamond loop tiling, which
works similarly as full-diamond loop tiling but places addi-
tional restrictions on the number of dimensions that can be
tiled[8]. Rectangular tiling provides the highest speedup (4x)
for the one-dimensional implementation, as it introduces the
least amount of runtime overhead compared to the diamond
tiling strategies. As the dimensions of the stencil increase,
full-diamond tiling provides the highest speedup (16x) for
the two-dimensional implementation, where more data are
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Figure 2. Work�ow showing the process to iteratively navi-
gate the optimization space for a stencil

shared across thread boundaries. Partial-diamond tiling pro-
vides the best speedup (6.7x) for the three-dimensional im-
plementation, by lowering the runtime overhead of tiling
compared to full-diamond tiling.

This paper aims to study the relationship between domain-
level properties of stencils and optimization e�ectiveness,
in order to model the interactions among the various opti-
mizations and suggest the most e�ective optimization strat-
egy for an arbitrary stencil. We have identi�ed four higher-
order properties of stencils: spatial dimensionality, tempo-
ral order, order of accuracy, and directional dependence,
which have shown the most prominent in�uences to the
data-access patterns of stencils. This paper focuses on corre-
lating these properties with �ve well-known optimizations
for stencils: OpenMP parallelization[11], rectangular loop
tiling[28], partial and full diamond loop tiling[8], and multi-
plicative inversion[17]. There are three main challenges that
we address:

1. Addressing safety complications from applying an op-
timization.

2. Selecting among multiple alternative code transforma-
tions that serve similar purposes.

3. E�ectively con�guring the transformations and exe-
cution con�gurations for a given architecture.

Figure 2 presents our work�ow. The applicability �lter
provides a set of optimizations that are both 1) safe to ap-
ply to the source code, i.e. those that won’t interfere with
previously applied optimizations, and 2) supported by the
underlying hardware platform. This component takes two
sets of input into consideration: opportunity indicators and
hardware properties, which respectively expose potential per-
formance improvement opportunities in the input source
code (e.g. whether the code can be parallelized) and the hard-
ware platform (e.g., whether multi-threading is supported by
the hardware). As some of the selected optimizations may

serve similar purposes, the prediction model predicts the rela-
tive e�ectiveness of each, and outputs the one which should
be most e�ective, and additionally predicts a set of tuning
parameter values to con�gure it. This decision is made by
considering a set of pre-selected domain-level properties of
the stencil computation, its current execution con�guration,
and the properties of the hardware platform on which it will
run. After applying the optimization recommended by our
prediction model, either manually by developers or auto-
matically through some compiler-based tools, the optimized
code can be again optimized via our work�ow, until all the
applicable optimizations have been applied.

For the predictionmodel to predict themost bene�cial opti-
mization and con�guration, it performsmulti-variate polyno-
mial regression analysis on a data set of performance metrics
from pro�ling runs of 456,516 automatically generated and
optimized stencil variants. To create these variants, we de-
veloped a special-purpose stencil code generator and pro�ler
that parameterizes domain-level properties, optimization
strategies, optimization con�gurations, and execution con�g-
urations. The regression model itself functions as a black box
which uses a stencil’s domain-level properties and execution
con�guration as its inputs, and predicts the speedup of each
supported optimization to determine which optimization
will be most pro�table. We test the accuracy of this model
by splitting the generated data set into training and testing
sets, where 66% of the optimization strategies suggested by
our model resulted in the optimal strategy, and 89% of the
suggestions had performance values which fell within 10%
of the performance of the optimal strategy. Our optimizer is
then used to guide the optimization of �ve stencil kernels
which are prominent in the scienti�c computing domain.
Speci�cally, we use the Allen-Cahn[1], heat[5], Laplacian[7],
Poisson for electrostatics[12], and wave[6] stencil kernels.
We then compare the stencil implementations guided by us-
ing our optimization process against those optimized via
AMReX[13] and Pochoir[26]. We show that in most cases,
our optimization process outperforms these libraries (aver-
age of 2.4x). The case where our process did not result in
highest performance is a result of our current prototype,
which does not yet consider the breadth of all available sten-
cil optimization types. Our future work entails extending our
model with additional types of optimizations, e.g. dynamic
programming, to cover these cases.

Our main technical contributions are as follows:
• We introduce a code optimization process that is unique
in its internal representation and iteration of the opti-
mization space using four di�erent aspects of stencils:
domain-, hardware-, code-, and execution-level. Our
prototype focuses on properties that are tightly tied
to multi-core architectures and memory performance.

• We show our approach is highly e�ective on �ve dis-
tinct stencil computations in comparison to two state-
of-the-art grid computing libraries.
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for ( in t t = 0 ; t < T ; t ++)
for ( in t i = 1 ; i < N − 1 ; i ++)

A[ ( t +1 )%2 ] [ i ] = 0 . 1 2 5 ∗ (
− 4 . 0 ∗A[ t %2][ i ]
+ A[ t %2] [ i +1] + A[ t %2] [ i − 1 ] ) ;

Listing 1. One-dimensional, second-order accurate heat
equation

(a) OpenMP Paralleliza-
tion

(b) Rectangular tiling (c) Diamond tiling

Figure 3. Impact of di�erent optimization techniques on
stencils (the x axis is the spatial dimension (from i=1 to N-1),
and the y axis is the temporal loop iteration (from t=0 to T))

The remainder of this paper is organized as follows. Sec-
tion 2 provides a background on the supporting optimiza-
tions of stencils. Section 3 provides a background on stencil
codes and their domain-level properties. Section 4 describes
our approach. Section 5 provides our experimental results.
Section 6 discusses related works, and section 7 concludes.

2 Background: Stencil Optimization
For the purpose of this paper, we de�ne stencils as com-

putations that operate on multi-dimensional array represen-
tations of structured grids. Listing 1 implements the one-
dimensional heat equation; the 8 loop updates each point in a
structured grid as a weighted contribution from its neighbor-
ing points[22], and the C loop repeats the computation until
convergence. Speci�cally, at each time-step C , the simulation
computes a new value for each point (8) in the grid for the
next time step C +1 by using values of the neighboring points
(8 +1 and 8�1) from the current time-step C . Within the scope
of this paper, we study �ve well-known optimizations for
stencil computations.
OpenMP Parallelization[11]. Illustrated in �gure 3(a),

this optimization partitions the spatial dimensions of a stencil
to be evaluated on multiple threads, each thread receiving an
equal portion of the stencil to compute. The optimization is
pro�table when the data size of a stencil is su�ciently large.

Rectangular tiling[28]. illustrated in �gure 3(b), this op-
timization strip-mines all the spatial dimensions of a stencil
into rectangular blocks, with a set of outer loops enumer-
ating all the blocks that comprise the overall stencil, and
the inner loops traversing each block of data to perform
needed computation[28]. When combined with OpenMP
parallelization, each thread is assigned multiple blocks of
data to compute, and as the time step loop progresses, the
blocks assigned to each thread (colored yellow and blue in

Figure 4. The impact spatial dimensionality and order of
accuracy have on stencil data-access pattern

Figure 3(b)) shift to the left to accommodate dependence
relations among neighboring blocks, so that tasks assigned
to di�erent threads can start in a pipelined fashion.

Diamond tiling[8]. as an extension to rectangular tiling,
this optimization has two variants: full and partial. In essence,
it divides all the rectangular blocks into two groups, colored
yellow and blue in �gure 3(c), so that when parallelized,
all blocks in the same group are entirely independent of
each other and can proceed concurrently, while blocks that
belong to distinct groups wait for one another. To account for
dependence across time steps, the block size changes at each
time step to avoid cross-thread communications, resulting
in tile shapes that resemble diamonds. Full diamond tiling
exploits the nearest neighbor accesses in all dimensions;
however, this can lead to overhead due to overly complex
tile shapes. Partial diamond tiling only considers a subset of
a stencil’s dimensionality to reduce this overhead.
Multiplicative inversion[17]. this optimization substi-

tutes division operations with constant denominators by
using multiplication of the multiplicative inverse, i.e., 01 be-
comes 0 ⇤ 1�1. By pre-computing and saving the multiplica-
tive inverse value outside of loops, the overall computation
overhead is reduced.

3 Stencil Properties
A key incentive of this paper is to extract and model the
impact of important properties of stencil computations and
hardware platforms to identify an optimization work�ow
that can e�ectively enhance their performance. The follow-
ing subsections introduce these factors.

3.1 Domain-Level Properties of Stencils
The main factors that impact a stencil’s performance are its
computation and data access patterns, which can be catego-
rized using domain-level properties of the stencil computa-
tion. For our purpose of modeling optimization e�ectiveness,
we have identi�ed four domain-level properties, detailed
below, which we show are particularly relevant in the e�ec-
tiveness of tiling and parallelization optimizations.

Spatial Dimensionality. This property de�nes the num-
ber of independent variables, discounting the time variable,

37



PMAM’22, April 2–6, 2022, Seoul, Republic of Korea B. Nesterenko et al.

Figure 5. The impact temporal order has on stencil data-
access pattern

used in the overarching partial di�erential equation. For ex-
ample, although the 3D heat equation mD

mC = U
⇣
m2D
mG2 + m2D

m~2 + m2D
mI2

⌘
has four terms with independent variables, C is a time vari-
able, therefore the spatial dimensionality is 3. The spatial
dimensionality property de�nes both 1) the number of spa-
tial dimensions of the underlying storage array in the stencil
implementation, and 2) the shape of the stencil lattice up-
date. To illustrate, �gure 4 shows the data access pattern of
a one-dimensional stencil, which accesses three data points
in a line at each iteration of its nested loop. Increasing the
spatial dimensionality to two not only adds an additional
dimension to the storage array but also changes the stencil
update shape to a cross, by accessing the neighboring points
of each stencil update in both dimensions.

Order of Accuracy. This property de�nes how many
neighboring elements are used in each dimension to up-
date each element of the stencil grid, to ensure a desired
rate of error reduction by each time step. For example, the
�rst two stencils in �gure 4 are second order accurate, as
they use two neighbors in each dimension to compute each
lattice update. The third stencil uses four neighbors in each
dimension to perform the update, therefore increasing the
order of accuracy to four.

Temporal Order. Conceptually representing the order
of the derivative taken with respect to the time indepen-
dent variable in the PDE, this property is represented in the
stencil implementation by how many results computed by
the previous time steps are accessed in each lattice update.
Speci�cally, higher temporal order problems require more
results of the previous time steps to be saved for later uses.
For example, the heat equation ( mDmC = U∆D) is �rst temporal
order, because it is derived from the term mD

mC . In its imple-
mentation (listing 1), the lattice update uses the previous
time step, (C%2), to calculate the new value, at ((C + 1) %2).

Directional Dependence. Conceptually this property rep-
resents whether each spatial dimension of a stencil di�uses
in an isotropic or anisotropic fashion: isotropic stencils di�use
equally in all directions/dimensions, whereas anisotropic dif-
fusions are direction dependent. At the implementation level,
this property is represented by how each data element in a
lattice update (LUP) is weighted. Because isotropic di�usion
assumes uniform grid spacing [14], its stencil implementa-
tion uses constant values as coe�cients to uniformly scale

for ( in t t = 0 ; t < T ; t ++)
for ( in t i = 1 ; i < N − 1 ; i ++)

A[ ( t +1 )%2 ] [ i ] =
c [ 0 ] [ i ] ∗ u_0_0 [ t %2] [ i ]

+ c [ 1 ] [ i ] ∗ u_0_0 [ t %2] [ i −1]
+ c [ 2 ] [ i ] ∗ u_0_0 [ t %2] [ i + 1 ] ;

Listing 2. Fully anisotropic 1D heat stencil

the neighboring points at each LUP. For example, the heat
equation in listing 1 weighs all neighboring points with a
constant value 1, and prior values of the updated point with
-4. In contrast, an anisotropic stencil scales each point dif-
ferently by storing the desired coe�cients inside additional
grids. For example, mD

mC = r · (U (G) rD), is an anisotropic
variant of the heat equation and uses the function U(G) to
weigh the points. Listing 2 shows the corresponding code for
this equation, where the coe�cients for each term are stored
in an extra array 2 . Additionally, for stencils with spatial
dimensionality higher than one, only distinct dimensions
can be anistropic, e.g. r · (U (G) rD (G,~)). This would result
in corresponding coe�cient grids with smaller dimensional-
ity than the stencil’s spatial grid; however, in the scope of
this paper, we assume anisotropy in all dimensions, as it is a
super-set and can still be used for semi-anisotropic stencils.
Three additional properties, mixed derivatives, where

derivatives are taken with respect to multiple independent
variables, e.g. m2D

mGm~ ; skewing, which changes the pattern in
which nearest neighbors are accessed, e.g. from using directly
adjacent points to corner points; and iterative method, which
determines how the solution will converge, are additional
important properties which we leave for our future studies.
This study focuses on the widely popular Jacobi method[10],
non-skewed data accesses, and pure derivatives.
3.2 Performance Of Stencils
While a wide variety of hardware platforms, including CPUs,
GPGPUs, and other accelerators[22–24], can be used to run
stencils e�ciently, for the scope of this paper, we focus on
CPU-based multicore architectures, where the performance
of a stencil computation is largely determined by their usage
of the underlying memory hierarchy and processors. We
intend to address a wider variety of hardware architectures
in our future work.

Without explicit optimization, the computation and data-
access patterns of stencil computations typically run ine�-
ciently on existing multi-core architectures, as the computa-
tion traverses a large amount of data within each time step.
Additionally, the degree of concurrency among the di�erent
threads often determines the overall performance. Another
factor that impacts stencil performance is division, which
often compute coe�cients and step sizes. Division can take
3-6 times as long as other operations [3], making it di�cult
to hide its long latency.

The performance of a stencil can also be in�uenced by its
execution con�guration, speci�cally any pre-set constraints
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on the environment in which the stencil must run. Examples
of such factors include the size and layout of the input data a
stencil computation needs to operate on, the number of time
steps that the computation needs to run before convergence
can be achieved, and the number of threads available to be
dedicated to the stencil computation.
4 Modeling Optimization E�ectiveness
In this paper, we focus on modeling the e�ectiveness of �ve
optimizations: rectangular loop tiling, partial diamond tiling,
full diamond tiling, OpenMP parallelization, and multiplica-
tive inversion. The goal is to predict the optimization that
is expected to produce the highest speedup based on the
data access patterns (represented by domain-level properties
of a stencil) and execution con�gurations of a given sten-
cil computation. The key strategy is to identify the factors
which contribute to a stencil’s ine�cient use of hardware
resources, and predict the optimization which should best
address these factors and improve performance.
Figure 2 presents the overall work�ow of our prediction

process, which includes two main components. First, the
applicability �lter identi�es a set of optimizations which
target the underlying stencil and hardware platform. More
speci�cally, this component cross-references coding patterns
(exposed via opportunity indicators) with properties of the
underlying hardware to identify potential ine�ciencies of
hardware resources. The set of potentially bene�cial opti-
mizations is the combination of all optimizations which tar-
get these ine�ciencies. The prediction model then predicts
and con�gures the optimization from this set that should
provide the highest speedup for the stencil. More speci�-
cally, this prediction uses regression analysis that correlates
properties which contribute to a stencils data access pattern
to an optimizations e�ectiveness. These properties consist
of domain-level properties, which are extracted automat-
ically from the stencil’s source code using a preliminary
code analyzer we developed, and execution con�guration,
which is provided by a user. The optimization is then tuned
to the underlying hardware resources using the execution
con�guration and hardware properties.
The work�ow is repeatable to allow for multiple rounds

of optimization to be applied. In particular, after applying an
optimization, the stencil’s source code properties will change.
Upon performing a new round of optimization, the applica-
bility �lter will not detect as many potential ine�ciencies,
and the set of potentially bene�cial optimizations suggested
to the prediction model will be reduced. The repetition ends
when either the applicability �lter can no longer identify any
relevant optimizations, or the prediction model no longer
predicts any optimization to be bene�cial.
4.1 The Applicability Filter
The applicability �lter in our work�ow provides the needed
check to make sure only potentially pro�table optimizations
are applied to a stencil. It is assumed that the correctness of

Algorithm 1 Applicability Filter Algorithm
function I�������P��������O������������($� , �% )

?A><8B8=6_>?CB  ú
for each >?C 2 (*%%$')⇢⇡_$%)�"�/�)�$#( do

8B_>?C_5 0E>A01;4  )'*⇢
for each >8 2 $� do

if ! 8B_14=45 8280;_5 >A (>?C ,>8) then
8B_>?C_5 0E>A01;4  ��!(⇢
break

end if
end for
for each ⌘? 2 �% do

if ! C0A64CB(>?C ,⌘?) then
8B_>?C_5 0E>A01;4  ��!(⇢
break

end if
end for
if 8B_>?C_5 0E>A01;4 then

0??4=3(?A><8B8=6_>?CB,>?C )
end if

end for
return ?A><8B8=6_>?CB

end function

each optimization will be guaranteed either manually by the
developer or automatically by some software tools.

Algorithm 1 details how the applicability �lter determines
the set of potentially bene�cial optimizations. We de�ne
a function, �34=C8 5 ~%A><8B8=6$?C8<8I0C8>=B , which takes
two inputs:$� , for opportunity indicators, and �% , for hard-
ware properties; and outputs a set of optimizations,$ , which
are potentially bene�cial to the stencil. The output set of
optimizations, ?A><8B8=6_>?CB , is initialized as an empty set
(ú). An optimization is considered promising if it is applica-
ble to both 1) the underlying source code, which is exposed
via opportunity indicators, and 2) the hardware, which is
exposed via hardware properties.
Table 1 de�nes the opportunity indicators and hardware

properties we use for the scope of this study, and their corre-
lations with optimizations. Speci�cally, we de�ne three op-
portunity indicators and two hardware properties, which are
referenced by the functions 8B_14=4 5 8280;_5 >A and C0A64CB
in algorithm 1, respectively. The �rst opportunity indicator,
iteration-space traversal of linear-order, classi�es whether all
loops in a stencil traverse the stencil in a single pass. This
hints that the code may not be e�ciently using the cache
hierarchy when the stencil is large, and is an indicator for
all the tiling optimizations, i.e. rectangular and partial/full
diamond tiling. The second indicator, serial execution, is set
to true if the source code is sequential (not already paral-
lelized). It is therefore an indicator for parallelization, i.e.,
OpenMP, which modi�es the computation to use multiple
cores of the hardware platform. The third indicator, number
of constant denominators per lattice update (LUP) > 0, indi-
cates whether the stencil computation contains divisions
with denominator values that don’t change across LUPs, and
identi�es multiplicative inversion.
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Optimization Opportunity Indicators Hardware Target
Rectangular Tiling iteration-space traversal of linear-order Multi-level Cache
Partial Diamond Tiling iteration-space traversal of linear-order Multi-level Cache, Multicore
Full Diamond Tiling iteration-space traversal of linear-order Multi-level Cache, Multicore
OpenMP Parallelization serial execution Multicore
Multiplicative Inversion num constant denominators per LUP > 0 Any

Table 1. Conditions for an optimization to be valid

The applicability �lter component uses two hardware-
level properties to select applicable optimizations. The �rst
property, multi-level cache, indicates whether the hardware
has multiple levels of cache, which is an indicator for opti-
mizations that target multi-level caches, e.g., variations of
tiling. The second property, multicore, indicates how many
cores are available in the underlying platform and thereby
indicates whether any parallization optimization is appli-
cable. Additional opportunity indicators likely need to be
included to accommodate new types of optimizations or to
target alternative types of architectures (e.g., GPUs). How-
ever, our experimental results show that the �ve indicators
in table 1 are su�cient for selecting the �ve optimizations
and the multi-core architecture we target.

4.2 The Prediction Model
After identifying potentially pro�table optimizations for a
stencil, the prediction model predicts the one which should
provide the highest speedup. This is a two-step process: 1)
predicting the optimization which should provide the high-
est speedup, and 2) predicting a con�guration which should
maximize the speedup from applying the optimization. We
build a series of multi-variate linear regression models with
interaction[4] to predict both the maximum speedup that
an optimization can attain (step 1), and the speedup that
an optimization will provide under a given con�guration
of tuning parameters (step 2). Fundamentally, each model
predicts the speedup of a particular optimization using a
given set of inputs. The regression models for step 1 predict
the maximum speedup of each supported optimization using
two inputs: the input stencil’s domain-level properties and
execution con�guration. The regression models for step 2
extend the prediction from step 1 to predict the real speedup
of the optimization by adding another input: a particular
con�guration of the optimization’s tuning parameters. The
set of tuning parameters can change depending on the spa-
tial dimensionality of the stencil, as higher dimensionalities
will use more loop blocking factors. The prediction for step
two then chooses from multiple potential models for each
optimization based on the spatial dimensionality of the sten-
cil.

To build the regression models, we automatically generate
a data-set of 456,516 stencil variants that di�er from one
another by domain-level properties of the stencil, execution
con�guration, optimizations applied, and tuning parameters
of each optimization. To ensure the results of each prediction
are consistent with one-another, their models are constructed

Problem 1D 2D 3D
T_blk {1,8,64} {1,8,64} {1,8,64}
X_blk {512,1024,2048} {4,16,64} {1,4,16}
Y_blk {256,512,1024} {2,8.32}
Z_blk {64,128,256}

Table 2. Tuning Parameter Values for Prediction

using the same data set. As wemaintain a separate regression
model for each optimization, and each model is trained with
a subset of this overall data set. Each prediction model is
implemented by using the ;<() function from the stats R
package.
Algorithm 2 details the underlying logistics of this pro-

cess using a function, %A4382C⌫4BC$?C , which takes three
inputs of an input stencil, ⇡ , its domain-level properties, ⇢,
its execution con�guration, and �% , the hardware proper-
ties where it will run; and has two outputs: 14BC_>?C , the
optimization which should provide the highest speedup, and
14BC_2 5 6, the tuning parameters which should yield the high-
est speedup for 14BC_>?C . The algorithm has two steps. Step
1 selects the optimization which should provide the highest
speedup for the stencil. It predicts the maximum speedup of
each supported optimization, and the optimization which is
predicted to have the highest speedup is stored in 14BC_>?C .
The regression model is selected using 64C_>?C_<>34; by
looking up the predictor for the optimization in the cur-
rent iteration. The maximum speedup is predicted by calling
?A4382C_<0G_B?443D? with the model and predictor vari-
ables. Step 2 predicts the optimal con�guration for the se-
lected optimization’s tuning parameters. In particular, it pre-
dicts the actual speedup that the optimization would pro-
vide under various di�erent con�gurations of tuning pa-
rameters, with each con�guration stored in ) . The function
64C_2 5 6_<>34; determines the correct regression model to
use with a mapping based on the selected optimization and
spatial dimensionality of the stencil. The speedup is then
predicted by calling ?A4382C_A40;_B?443D? . Where ) stores
the tuning parameters that were used to train the model on
a speci�c machine, the function B20;4_5 >A_<02⌘8=4 updates
these values for the target architecture.
The tuning parameters that the model currently consid-

ers are the blocking factors of loop tiling optimizations and
the number of threads for parallelization. We consider four
blocking factors: one for the time dimension C , and three for
the spatial dimensions G ,~, and I. Table 2 provides the values
we consider for each blocking factor. The values we consider
for each blocking factor depends on the spatial dimension-
ality of the problem, as the size of a block is determined
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Algorithm 2 Optimization Prediction Algorithm
function P������B���O��(⇡ , ⇢, �% )

14BC_>?C  n ù Step 1: Predicting the best optimization
B?443D?<0G  0
for each >?C 2 (*%%$')⇢⇡_$%)�"�/�)�$#( do

>?C_<>34;  64C_>?C_<>34; (>?C )
?A4382C>AB  ⇡ [ ⇢
B?443D?q  ?A4382C_<0G_B?443D?(>?C_<>34;,?A4382C>AB)
if B?443D?q > B?443D?<0G then

14BC_>?C  >?C
B?443D?<0G  B?443D?q

end if
end for
if (<0G < 1 then

return n, n
end if
14BC_2 5 6 n ù Step 2: Con�guring the optimization
B?443D?<0G  0
CD=8=6_?0A0<B  64C_CD=8=6_?0A0<B(14BC_>?C )
for each) 2 4=D<4A0C4_E0;D4B(CD=8=6_?0A0<B) do

2 5 6_<>34;  64C_2 5 6_<>34; (>?C,⇡ .B?0C80;_38<)
?A4382C>AB  ⇡ [ ⇢ [)
B?443D?q  ?A4382C_A40;_B?443D?(2 5 6_<>34;,?A4382C>AB)
if B?443D?q > B?443D?<0G then

B20;43_2 5 6 B20;4_5 >A_⌘0A3F0A4() ,�% )
14BC_2 5 6 B20;43_2 5 6
B?443D?<0G  B?443D?q

end if
end for
return 14BC_>?C,14BC_2 5 6

end function

by the length of its sides. These values aim to individually
capture when each tuning parameter is most bene�cial to
the e�ectiveness of the optimization, independent of archi-
tecture. More speci�cally, they represent a small, medium,
and large factor with respect to the dimensionality of the
problem. The small, medium, and large factors are translated
to values that are more appropriate to the speci�c multi-core
architecture where the stencil will run. In particular, we scale
the tuning parameters in spatial dimensions to preserve the
ratio between the working set size and L3 cache size between
the training and target machines. Speci�cally, we use the
following equation to scale the tuning parameters for each
dimension

88 2 3, V8C  3

s
(V8B )3 ⇤⇠C

⇠B
(1)

where 3 is the spatial dimensionality of the stencil, V8B and
V8C are the blocking factors for the source (i.e. training) and
target machines in the 8 dimension, and⇠B and⇠C are the L3
cache sizes of the source and target machines. For the number
of threads to use, we consider all values lower than that given
in the execution con�guration, where each iteration divides
the last value by two, and uses it if a power of two, otherwise
the next highest power of two.
The success of our prediction model depends on our se-

lection of domain-level properties to represent data-access

CPU Intel Xeon Gold 6130 Intel E5-2420

Cache
L1-Data 32 KB 32 KB
L2-Private 1,024 KB 256 KB
L3-Shared 22,528 KB 15,360 KB

Main Memory 64 GB 12 GB
Number of Cores 16 12

Table 3.Machine con�guration
patterns of an arbitrary stencil. The list of domain-level prop-
erties we currently support serves to demonstrate the useful-
ness of this approach and currently includes spatial dimen-
sionality, temporal order, order of accuracy, and directional
dependence, explained in details in section 3.1. The imple-
mentation of a stencil computation can be more e�ectively
optimized by our prediction model if its entire data access
pattern can be derived from these domain-level properties.
Our future work will include additional properties , e.g., iter-
ative methods, skewing, and derivative types.
4.3 Training the Prediction Model
To train the prediction model with a su�ciently represen-
tative data set that encompasses the varying interactions
among data-access patterns, execution con�gurations, and
optimization pro�tability, we developed a stencil kernel gen-
erator which automatically generates un-optimized sten-
cil computations from input domain-level properties. We
then de�ne a sub-domain for each supported domain-level
property to enumerate valid combinations of the property
values: spatial dimension: {1,2,3}, temporal order: {0, 1, 2}; or-
der of accuracy:{2,4}, and directional dependence: {isotropic,
anisotropic}. We use these values because their combina-
tions can fully describe the data access patterns of many
stencils, e.g. wave[6] and Laplacian[7]. By enumerating the
variations of these properties (in contrast to enumerating
the actual variations of their underlying implementations),
we can focus on the semantic-level variations of the stencil
computations, without being limited by idiosyncrasies of
their underlying implementations (e.g., how the data is laid
out in memory or whether registers/caches are reused).
For each auto-generated un-optimized stencil kernel, we

create a large collection of its optimized variants by apply-
ing each optimization both individually and by combining it
with other related optimizations. For example, we combine
OpenMP parallelization with each distinct tiling strategy to
generate optimized variants. We invoked the Pluto[9] com-
piler v0.12 to apply Rectangular tiling, partial/full diamond
tiling, and OpenMP parallelization. Multiplicative inversion
is applied by our special-purpose stencil generator. For each
tiling optimization, we use the same blocking factors to train
the model as for the prediction itself, where the values are
detailed in table 2. This is to keep the training and prediction
input constant, as the predicted values can be adjusted to
match the cache size of the target architecture itself. Each
di�erently optimized stencil variant is run under di�erent
combinations of execution con�gurations, including num-
ber of time steps {32, 64, 128}, input sizes {16MB, 32MB, and
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65Mb}, and number of threads for combinations that include
OpenMP parallelization {1,4,16}. The performance of
each execution is calculated by normalizing its execution
time against the total number of �oating point operations
performed.

5 Experimental Results
5.1 Experimental Con�guration
We have implemented our applicability �lter and prediction
model in R. Our special-purpose stencil C code generator
was implemented using the POET language [29].

We validated our regression-based prediction model by
analyzing its prediction accuracy in correctly correlating
domain-level properties and execution con�gurations with
optimization e�ectiveness and by using it to optimize �ve
real stencil computations: Laplacian, Poisson for electrostat-
ics, heat, wave, and Allen-Cahn. These kernels were chosen
because they are common in the scienti�c simulation domain,
e.g. �uid mechanics[7], electromagnetics[12], elasticity[6],
di�usion[5], and materials science[1]. The un-optimized ver-
sions for the heat, wave, Laplacian, and Poisson PDEs were
obtained from Burkadt’s website[2]. The Allen-Cahn source
code was derived from the Yamanka Lab[1], which was orig-
inally written in Python, and we converted to C.
We compare the performance attained via our work�ow

against that attained by having the stencil computations
invoke the libraries, AMReX[13] and Pochoir[26]. AMReX
uses a generalized divide-and-conquer parallelization tech-
nique that is well-suited to the general computational pattern
of structured grid. We use AMReX’s single-node OpenMP
parallelization scheme, as our work focuses on single-node
optimization. This scheme uses OpenMP to distribute threads
among processors, alongside rectangular tiling of the spatial
domain. Pochoir is a domain-speci�c language for stencils
that uses a cache-oblivious dynamic programming algorithm
to decompose sub-regions of the grid into trapezoidal shapes,
and thread-level parallelism via PThreads to compute sub-
grids concurrently.
All training and testing measurements were run on an

Intel Xeon Gold 6130 CPU (shown in table 3). All stencil
implementations were compiled with GCC 7.5.0 to gener-
ate their binaries. Each stencil was run four times, with a
normalized standard deviation of 2%.
To test our prediction model across di�erent machines,

we optimized the �ve stencil case studies on an Intel E5-2420
machine (shown in table 3) using the previously produced
model from the Xeon Gold machine. Each stencil was com-
piled on the Intel E5-2420 machine using GCC 4.8.5.

5.2 Accuracy of Prediction
We analyze the accuracy of our prediction model by splitting
the automatically generated stencil performance data set into
a training and testing set, where we analyze the accuracy
and error of predicting optimization strategies of the testing

Figure 6.Comparing the performance attained from optimiz-
ing the case studies in table 4 using our proposed approach
against optimized libraries

set on our model built from the training set. As the user-
level inputs into the prediction model are the domain-level
properties of a stencil, its execution con�guration, and the
number of divisions in the underlying stencil, we separate
the training and testing subsets based on unique combina-
tions of these predictor variables. This results in 4,860 unique
combinations. We randomly select 5% of these combinations,
or 243 unique input combinations, to be used as testing data,
and use the optimization combination and con�guration that
resulted in the highest speedup to compare our prediction
against. The remaining 95% of inputs, along with all com-
binations of optimizations and con�gurations, or 433,690
di�erently optimized stencil variants, are used as the train-
ing set of the model.

To evaluate the accuracywhen predicting the optimization
strategy of the testing set, we analyze the residuals of the
predictions and the relative root mean squared error (rRMSE)
of the model. 66% of the predictions resulted in the optimal
strategy, 78% of the predictions had speedups within 5% of
the optimal speedup, and 89% of the predictions had speedups
within 10% of the optimal speedup. The rRMSE was 5.3%.

5.3 Optimization E�ectiveness
Figure 6 presents the GFLOPS attained for the �ve PDE use
cases from table 4 by comparing results attained by using our
optimization work�ow with those attained by invoking the
optimized software libraries AMReX and Pochoir. Pochoir
is only able to handle isotropic stencils, and is thereby only
used on the Allen-Cahn and wave case studies.
For Allen-Cahn, our tool applied partial diamond tiling

with multiplicative inversion, which resulted in 4.3x and 5.2x
higher speedups than AMReX and Pochoir, respectively. In
particular, the speedup over AMReX comes from specializing
the tiling strategy to take better advantage of the data ac-
cess pattern; the speedup over Pochoir comes from a smaller
input size, resulting in Pochoir’s dynamic programming ap-
proach having more overhead. Additionally, our tool applied
multiplicative inversion, which neither of the other software
libraries utilize. For heat, our tool applied partial diamond
tiling with OpenMP parallelization with 16 threads, which
resulted in a 1.6x higher speedup than AMReX. This speedup
comes from specializing the tiling strategy to the speci�c
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Stencil Laplacian Poisson Wave Heat Allen-Cahn

Equation 0 = r ·
(U (G) rD)

� d
n = r ·

(U (G, ~) rD)
m2D
mC2

= 22∆D
mD
mC = r ·
(U (G, ~, I)rD)

mq
mC = �

p
2,
6U "

✓
m (q )
mq (6⌫ � 6�) +, m@ (q )

mq �U2∆D
◆

Dimension 1 2 2 3 3
Order of Accuracy 4 4 4 2 2
Temporal Order 0 0 2 1 1

Directional Dependence Anisotropic Anisotropic Isotropic Anisotropic Isotropic
Timesteps 32 256 128 64 32
Input Size 131MB 16MB 134MB 80MB 33MB
N Threads 8 16 16 16 1

Is iteration space
traversal of linear order T T T T T

Is serial execution T T T T T
Is constant denominators

per LUP > 0 F T F F T

Table 4. Equation, domain-level properties, execution con�gurations, initial opportunity indicator values

Figure 7. Comparing the speedups attained using our opti-
mization approach using di�erent machines

data access pattern. For Laplacian, our tool only applied
rectangular tiling, which resulted in a 1.9x higher speedup
than AMReX. In this case, both our proposed strategy and
AMReX use rectangular tiling; however, the speedup from
our approach comes from the lack of parallelization. The 8
threads used by AMReX incurred additional overhead that
our strategy recommended against. For Poisson, our tool ap-
plied full diamond tiling with OpenMP parallelization with
16 threads, which resulted in a 1.8x higher speedup than
AMReX. This speedup comes from specializing the tiling
strategy to the speci�c data access pattern. For wave, our
tool applied full diamond tiling with OpenMP parallelization
with 16 threads, which resulted in 1.1x higher speedup than
AMReX, but a 60% slowdown compared to Pochoir. Here,
Pochoir outperforms our strategy, as the overhead induced
by dynamic programming is lessened due to the larger input
size of the program. In comparison to AMReX, our strat-
egy specializes a tiling strategy to attain a higher level of
performance. Overall, the key advantages of our proposed
strategy are 1) individual optimizations can be strategically
selected from a choice of multiple with similar purposes, 2)
each optimization can be specially con�gured to the problem
at hand, and 3) optimizations can be strategically disabled, if
its application will result in slowdown.

5.4 Reproducibility Across Architectures
Here, we analyze the consistency of the optimization strate-
gies tailored by our model work on machines of di�ering

numbers of cores and cache/memory sizes. In particular, we
optimize the same �ve stencils from table 4 on the Intel E5-
2420 machine shown in table 3 which has 12 cores, 12GB of
main memory, and a 16 MB L3 cache size; compared to the
machine which trained the model, which has 16 cores, 64GB
of main memory, and a 23 MB L3 cache size. The blocking
factors for the tiling optimizations are scaled to match this
machine’s L3 cache using equation 1. The resulting di�er-
ence in speedups for the Allen-Cahn, heat, Laplacian, Pois-
son, and Wave equations are then 17%, 15%, 14%, 21%, and
13% between the two machines.

6 Related Work
Our research belongs in the general area of performance anal-
ysis and optimization for computational workloads. Speci�-
cally, we investigate performance modeling and optimization
prediction for stencil computations.

Exploring analytical modeling to predict performance and
optimizations of stencils has beenwidely studied. Hammer[16]
and Laukemann[19] develop tools to predict performance
and scaling behavior of loops using the roo�ine[27] and
execution-cache-memory[25] analytical models. Guerrera[15]
leverages analytical models to generate optimized stencil ker-
nels for speci�c architectures. In contrast to using analytical
modeling to predict performance, our work uses code-level
properties to indicate a potential presence of a bottleneck,
and uses regressionmodeling to predict the best optimization
to eliminate the identi�ed bottleneck.

Rahman [22] presents a stencil optimization process which
similarly uses regression analysis of stencil performance. In
particular, their work derives formulas that will predict a
stencil’s execution time using hardware counters as input,
and uses this to compose and tune optimizations to reduce
bottlenecks on certain hardware resources. Our work, in
contrast, leverages domain-level knowledge about the stencil
at hand to predict optimization pro�tability.
Domain speci�c languages (DSLs) provide an alterna-

tive method to attain high performance applications us-
ing higher-level speci�cations of the problem at hand, in
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which a special purpose compiler translates into machine
code. Prominant examples of stencil DSLs are Pochoir[26],
which uses a divide-and-conquer parallelization algorithm,
and Snow�ake [30], which uses micro-compilers to perform
multiple optimization passes over its AST to generate more
customizable code. Our work, in contrast, identi�es opti-
mizations for existing code using higher-level properties of
an input stencil rather than generating new code from a
higher-level speci�cation.

7 Conclusion
To summarize, we show that domain-level properties can
be used to predict e�ective optimization strategies for sten-
cils. We de�ne a repeatable two step optimization approach
that �rst identi�es an initial set of optimizations that are
compatible with the stencil, and then uses regression to pre-
dict the most bene�cial optimization among them. We use
our optimization approach to optimize �ve di�erent partial
di�erential equations to attain an average of 2.4x higher
speedup over two highly-optimized stencil libraries.
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