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Abstract—As the COVID-19 pandemic scattered businesses
and their workforces into new scales of remote work, vital
security concerns arose surrounding remote access. Bring Your
Own Device (BYOD) also plays a growing role in the ability
of companies to support remote workforces. As more enterprises
embrace concepts of zero trust in their network security posture,
access control policy management problems become a more
significant concern as it relates to BYOD security enforcement.
This BYOD security policy must enable work from home, but
enterprises have a vested interest in maintaining the security of
their assets. Therefore, the BYOD security policy must strike a
balance between access, security, and privacy, given the personal
device use. This paper explores the challenges and opportunities
of enabling zero trust in BYOD use cases. We present a BYOD
policy specification to enable the zero trust access control known
as BYOZ. Accompanying this policy specification, we have
designed a network architecture to support enterprise zero trust
BYOD use cases through the novel incorporation of continuous
authentication & authorization enforcement. We evaluate our
architecture through a demo implementation of BYOZ and
demonstrate how it can meet the needs of existing enterprise
networks using BYOD.

Index Terms—zero trust, network security policy, BYOD,
continuous authentication

I. INTRODUCTION

With the onset of the COVID-19 pandemic, the world
has had to quickly adapt to changing working environments,
including working full time and remotely from home. As
companies begin to bring staff back to the office, Bring
Your Own Device (BYOD) programs have seen an uptick in
adoption and expansion as a means to cope with the influx of
both on and off-premise compute needs [1]. BYOD is the use
of one’s personal electronic device for business or other non-
personal use cases. This sort of program can be meaningful to
a business because of the cost reduction in device management
and the flexibility it grants the employees. However, BYOD
comes with a myriad of security and technical hurdles that
must be carefully managed to maintain the same or better
standard of protection for that of company-owned devices [2].

As networks themselves and the applications they support
have grown in complexity over the years with the advent
of cloud computing, the Internet of Things (IoT), and 5G
networking use cases, the need to secure users, companies,
and their data is at the forefront of operator’s minds [4].
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Meanwhile, Zero Trust Architectures (ZTA) for networks have
emerged as a fundamentally new way of approaching network
security [3]. ZTA offers new paradigms for defining and
enforcing policy through various means rooted in modeling
trust relationships.

ZTA is based on the premise of explicit trust relationships
expressed through administrative policy. This policy is the core
of ZTA but is lacking in understanding today. There needs
to be the ability to express high-level business needs and
derive lower-level policy intent, enforced through various ac-
cess control mechanisms. In today’s enterprise environments,
implementing this intent is tedious and error-prone because of
the vast contexts a given policy intent may span and the sub-
sequent tools and technologies that must act homogeneously
to enable an administrator’s policy [20]. This new policy
ecosystem needs to understand and adapt to BYOD use cases.
Thus, naturally, we feel the marriage of ZTA and BYOD will
ultimately offer the right approach to access control policy and
management to build a successful enterprise security posture.
BYOD administrators need effective ways to establish security
policy, and ZTA builds these constructs into its foundation.
The COVID-19 pandemic has shown that companies are not
willing to bring their business operations to a halt because of
employee system access pattern changes. Instead, they have
adapted to changing circumstances. They have not, however,
always done so in a secure way, especially when enabling
employees through the use of BYOD programs [36]. Embrac-
ing BYOD as a core component of one’s ZTA-based network
instead of trying to bolt security onto existing BYOD solutions
will ultimately be the path forward. As we begin to see the
end of the COVID-19 pandemic, it is clear the catalyst for
the remote work transformation will not be slowing down,
only strengthening the argument for the need to bring ZTA to
BYOD [6].

Policy, of course, is only a part of the solution, as one
needs a system to enforce the policy. ZTA, along with the
NIST standard, outlines several tactics and methodologies,
from which systems can be architectures to meet the new needs
of networks [5]. This paper describes the need for ZTA in a
BYOD-focused access model and proposes a new ZTA policy
language and enforcement architecture. Two central features
of our solution revolve around continuous authentication &
authorization and dynamic context management, which we see
as key to meeting the fundamental needs of Zero Trust. We will



show what our system architecture can be used to implement
ZTA enforcement constructs in an enterprise-friendly manner,
not requiring the deployment of entirely new technologies.
We offer an instantiation and analysis of our architecture and
policy language built on top of iptables [42] through the use
of specific attack scenarios.

In summary, our work makes the following novel contribu-
tions through the implementation and analysis of our policy
language and enforcement architecture known as Bring Your
Own Zero Trust or BYOZ.

1) We develop a high-level policy language that addresses
enterprise BYOD’s needs through adherence to zero trust
network architectures.

2) We design and evaluate a network architecture that
enforces continuous authentication & authorization to
enable zero trust network security for BYOD use cases.

We prove through our results that BYOZ can successfully
address these issues and meet the needs of securing enterprise
BYOD use cases through the adoption of Zero Trust network
security.

II. MOTIVATION

Our work in this space is motivated by a set of core ideas
and gaps in the literature. First, ZTA, on its merit, is not a tool,
solution, or standard that can be implemented and analyzed.
Instead, it can be thought of as a guiding framework with a set
of foundational concepts that can be applied across a variety
of security domains that, when reasoned in aggregate, form the
principles of ZTA. This framework primarily seeks to flip the
traditional enterprise access paradigm of security posture such
that all authorization is explicitly accounted for and expressed.
This is achieved through various means such as isolation and
segmentation, mutual and continuous authentication, holistic
policy expression and administration, and state feedback loops
for events and changes in the environment.

Second, at their root, Zero Trust Architectures operate on
the premise of a fully explicit policy. That is, there can be
no implied trust relationships in any network, application,
access control, or other policies an organization implements.
A simple analogy is to never trust and always verify. In
principle, this idea is sound and ensures that if some flow
is to be permitted, there is guaranteed to be a policy that
expresses this administrative desire [18]. If enacted within
existing enterprise ecosystems, a simple example of a user
accessing an internal website would require the policy orches-
tration of host-level firewall rules, network Access Control
Lists (ACL), network firewall policies, and application-level
ACLs [20]. In effect, each of the various policy sets is siloed
from one another [19] [21]. Different policy languages must
be understood, and the lack of feature parity makes simple
translation and interoperability difficult.

These challenges motivated us to build a solution that
meets three main goals; first, build a system that allows for
simplified policy expression by an administrator, regardless
of the underlying enforcement technology. Second, provide
such an enforcement architecture that fits within existing

enterprise network deployment models, which uses concepts
of continuous authentication to implement zero trust. Finally,
in both cases, focus on the use of BYOD since it is clear this
will continue to be a significant access means in the enterprise.

III. THREAT MODEL

It is vital that we clearly define the threat model and
environmental assumptions we are targeting in our design
and implementation. Since a motivating driver for our work
is the usage of BYOD, many of our attack vectors focus
on a compromised BYOD device joining the network or the
act of compromising a BYOD device while connected to the
network. We consider a compromised BYOD device to be
under the control of a malicious subject, which could either
be the legitimate device owner or a 3rd party acting without
the consent of the device owner.

While our system design strives to adhere to zero trust
primitives set forth by NIST, we make several assumptions
about the administrative and infrastructure components of the
environment. For example, we talk about profile extraction
and the actions between BYOD devices and the controller
in our architecture in Section V. However, we assume the
controller and this communication channel to be secure, using
existing industry protocols and standards like TLS [44]. We
acknowledge, however this is realistically an open area for
further research, especially as it relates to zero trust compute
resources. There are obviously ways an attacker may attempt
to exploit the controller or other components in our design, but
this too, we leave to future work and focus in this paper on
attack scenarios directly relating to the use of BYOD devices
and subjects. These specific scenarios will be discussed in
Section VI

Section V discusses the BYOZ architecture in detail, but
it should be noted that our design itself is meant to be
flexible and adaptable as a blueprint for implementation in
several different ways. For this reason, our experimentation
utilizes an implementation of our design comprised of certain
standardized components rather than reinventing portions of
the system. For instance, we use MQTT as the message bus
for communication between components and iptables as the
low-level policy enforcement mechanism [45] [42].

IV. RELATED WORK
A. Zero Trust

Perhaps the most well-known and directly relevant work
related to zero trust is the architectural proposal published by
NIST [5]. Here NIST describes the principles of zero trust and
provides an architectural framework for implementing zero-
trust network security in various scenarios. These deployment
scenarios include campus branch, cloud, third-part access,
federation, and public-facing services. ZTA is not a new
concept. However, as pointed out by Kindervag et al., ZTA
comes about from realizing that traditional network security
is implemented as an overlay to fundamental network transport
architectures [29]. A significant aspect of the proposed zero



trust architecture proposed by Rose et al. is the concept of
closed-loop feedback systems [5] [27].

B. BYOD

Enterprises have come to realize that the personal devices
that their employees already own are generally capable of
the same sort of operations technically necessary to access
company assets, opposed to expensive devices owned and
issued by the organization. This makes BYOD a financially
lucrative proposition for many enterprises, forming the basis
of the trade-offs between security and operability that we
researchers are drawn towards with BYOD [33]. On the other
hand, before the COVID-19 pandemic, in the earlier days of
2020, BYOD was still seen by some organizations as a security
conundrum that they may never really have to tackle. However,
with the massive shift in workforce needs, BYOD became a
saving grace to many organizations [32].

C. Policy Languages

In terms of zero trust and BYOD, there is a need for a
comprehensive policy language that can address the specific
requirements of the solution but also be able to bridge the gaps
in enforcement technologies. Hong, et. al., contribute their
PBS language, which focuses on BYOD use cases, but not
through the lens of zero trust. The PBS policy specification
dawned several attributes for our languages, such as the physi-
cal location and the ability to re-check a flow periodically [7].
We also drew ideas from the Poise project by Kang, et al [8].
Specifically, Poise led us down the path of deriving low-level
intent from a higher-level language (discussed in Section IV)
through the building of a P4 transpiler [8]. It is also important
to consider existing industry solutions for security policy, like
network ACLs from the Cisco IOS operating system [9], policy
statements from the Juniper Junos operating system [10],
and firewall policy from the Palo Alto Networks operating
system [11]. While each of these languages makes it’s own
unique contributions, we found none to solve the needs of
expressing high-level, dynamic BYOD context for zero trust
enforcement and so we created BYOZ.

V. BYOZ DESIGN

We explain the concept of our ideas for BYOZ through
a description of the high-level zero trust policy language
definition and a system architecture that is capable of accepting
such policy input from an administrator and enforcing its
intent. We further present a concrete system that acts as a proof
of concept to illustrate the effectiveness of our architecture
in serving BYOD zero trust use cases. We point out that
our architecture may be implemented with existing enterprise
technologies via Software Defined Networking (SDN) [41], or
as a part of an entirely new system design.

A. Policy Language

Zero trust implies, in many contexts, the ability for higher-
level intent to be used to derive lower-level policy statements,
which calls for a language capable of this abstract definition.
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Fig. 1. ZTA infrastructure showing the ability to compile and derive lower-
level access control policy intent from higher-level policy definition.

This comes from the NIST standard surrounding zero trust
and emphasizes central administration of the policy [5]. While
such languages exist today, we argue that none specifically
address the unique concerns related to enabling Zero Trust
Architectures in BYOD environments. The Zero Trust Ar-
chitectures themselves propose the infrastructure necessary
to support a system of high-level intent without proposing
a concrete language. It is our position that such a language
needs to be introduced, noting we limit ourselves to the
use case of supporting Zero Trust Architecture for BYOD
security. Figure 1 shows an overview of derived high-level
intent, in which the zero trust business policy is defined
using a high-level, user-friendly language and is translated
into lower-level intent, which can be acted upon and enforced
by various security mechanisms. ZTA also requires a lot of
context about the running environment like a central Identity
Provider (IDP) [25] or an application registry. We integrate
these sources to understand subjects and resources in BYOZ.

Beyond these inventory and state integration, the BYOD
use cases call for specific unique characteristics important to
our policy definitions. One of these is the concept of logical
location. We want to understand and act on metadata about the
heuristics of where on the network a device is connecting from.
This is about more than simply knowing the subnet a device is
attached to and is akin to understanding that the connection is
occurring over WiFi, what the SSID is, and whether or not the
WiFi connection is encrypted. From a BYOD standpoint, we
feel this is an essential attribute because it gives our policy
context of what type of environment the source device and
user are operating within. By elevating this context to the
policy level via our architectural implementation, we allow that
context to be exposed throughout the entirety of the end-to-
end flow. Ultimately, this logical location context is conjoined
with the physical location of the source device obtained via
GPS or other means when available.

Figure 2 shows our proposed language specification in terms
of all defined attributes and their values. We make use of other



attributes which are more or less standardized for general use
cases in terms of network security policy. These include items
like host state, defined from Host Information Protocol (HIP)
checks [24], a policy action, such as allow and deny, and
an event type, which specifies what portion of the flow upon
which the rule should act.

Again, our goal is to enable BYOD use cases within zero
trust security architectures; thus, each of these attributes plays
arole in one or both of those aspects. We attribute these policy
attributes to BYOD functionality and use cases: source type,
host, host state, location physical, and location logical. As
shown in Figure 2, these attributes contribute to zero trust:
Source Type, Host State, Location Physical, Location Logical,
Destination Type, Event, and Apply Action. The location at-
tributes are of specific interest to our BYOD use cases because
of the highly mobile nature of these users. Combined with the
logical location, we can tackle remote and on-premises use
cases with more than simple network segmentation controls.
The destination attributes in Figure!2 show an understanding
and reliance on external context information in our system,
such as an inventory of potential resources and metadata
about those resources. This can include where they reside,
potentially what kind of data they hold, or their risk profile
to the organization. This metadata can be used to make more
informed policy decisions when a subject wishes to access a
resource.

To refine the ability of the ZTA policy to be rendered
to enforcement languages, we have built a compiler for our
language, which is a part of the enforcement architecture.
Figure 3 shows an example policy expressed in our language
to service the use case of a managed BYOD device connecting
to an internal application from a public WiFi network. This
highlights the need for integration with inventory systems, for
example, application repositories, to specify the infrastructure
on which those applications run. From the policy expression,
our compiler can render the policy output for iptables, and
the Palo Alto Networks firewall policy syntax [11] as shown
in Figure 4. In doing so, we show that our enforcement
architecture can support any number of security appliances
with their own policy language implementation since we can
compile down from our high-level BYOZ definition. Imagine
that an administrator uses the policy specification in Figure
2 to define a high-level policy such as that in Figure 3 and
the compiler in our system renders that policy down to the
enforcement languages in Figure 4.

B. Enforcement Architecture

The BYOZ architecture builds upon NIST ZTA concepts
and serves to clarify specific roles and how they are to
be implemented in enterprise environments for BYOD use
cases. To this end, we make use of standard components,
including Policy Enforcement Points (PEP), Policy Decision
Points, Policy Administrator (PA), Policy Engine (PE), and
the constructs of subject and resource. In our architecture,
we implement the three central components—Policy Engine,

Source Type := (PRIVATE | PUBLIC

| HYBRID)
Source = {Source Type

+ Value}
Host = (MANAGED | UNMANAGED)
Host State = {HIP Metadata}
Location Physical := {GPS}
Location Logical = {Source Type

Metadata}
Destination Type = (NETWORK | APP

| CLOUD)
Destination = {Destination Type

+ Value}
Time = {Date time range}
Event = (Session Init

| Quarantine Check

| Interval)
Action := ALLOW | DENY

| { (REDIRECT

| QUARANTINE)
+ ADDRESS}

Apply = (IMMEDIATE

| {PERIODIC

+ Value})

Fig. 2. BYOZ language specification showing all attributes and possible
values.

Source Type = PUBLIC

Source = 5.5.5.5

Host = MANAGED

Host State = HIP SAFE

Location Physical := 41.40338, 2.17403
Location Logical = WIFI::Starbucks::0PEN
Destination Type = APP

Destination = ERP

Event = SESSION_INIT

Action = ALLOW

Apply = IMMEDIATE

Fig. 3. Example policy showing a situation of a BYOD managed device

connecting to an enterprise app from a public WiFi network.

iptables —A INPUT \
-s 5.5.5.5 \
-p tcp \
——dport 443 \
-d 10.10.10.10,11.11.11.11 \
-5 ALLOW

set security policy
"5.5.5.5 to 10.10.10.10,11.11.11.11"
from untrust to trust
source 5.5.5.5
destination 10.10.10.10,11.11.11.11
applciation iROAR
protocol tcp port 443
action allow;

Fig. 4. Rendered iptables followed by Palo Alto Network firewall rules,
compiled from the example policy in Figure 3.

Policy Administrator, Policy Decision Point, and Context
Manager—on a single system and collectively refer to this as
the Zero Trust Controller or just the Controller. Indeed, this
borrows from core concepts of SDN, and while we have not
implemented our evaluation system using SDN, it is entirely
feasible.

The first significant and novel component of our BYOD-
focused architecture is the Context Manager (CM), which
performs profile extraction from the BYOD Mobile Device



Management (MDM) agents and aggregates context from
external systems. The agent resides on the subject host device
and collects metadata about the state of the device and provides
it to the context manager. A realistic enterprise scenario would
be implemented via the Host Information Protocol (HIP)
through a BYOD MDM program.

The CM’s role is to process the profile information to
maintain a current and accurate state of each subject and their
BYOD devices. We discussed previously that continuous au-
thentication & authorization is a key aspect of our solution, and
it is the Context Manager which implements this functionality.
The Context Manager is responsible for poling subject devices
at regular intervals to update the authentication state of open
connections. This state is fed into the Policy Engine, which
may act upon changes in authorization in real-time. We refer to
these regular poling intervals as the continuous context check.

The network administrator uses the BYOZ language in
Figure 2 to specify policy intent within the PA which is the
interface between the controller and the outside world for
defining policy and understanding its meaning.

The PDP will use this intent from the PA in combination
with the most up-to-date information in the context manager
to make policy decisions that are pushed into the PE. The PDP
is responsible for inspecting all profile information included
in the device context. In a given flow request, the PE then will
generate the enforcement intent for the PEPs, and then these
PEPs will act upon that intent. The network forwarding nodes
are the Policy Enforcement Points in our architecture and
receive dynamic policy updates from the Policy Decision Point
through the management network. This enforcement action is
for the purpose of establishing or closing a flow between a
BYOD subject and the resource that this subject wants to
access. Our reference implementation of the architecture uses
iptables [42] running on connected nodes to act as the PEPs.
Our PE orchestrates the automated deployment and retraction
of iptables policy on the PEP nodes.

When a BYOD subject wants access to a resource within the
network, it must request permission from the PDP. Therefore,
a request will be made from the device agent and sent to the
PDP through the CM, depicted by (1) in Figure 5. The PDP
will attempt a BYOZ policy match with input from the most
recent subject and device context from the context manager.
Unlike the routine device continuous context check, this flow
initiation request will include the resource the subject wants
to access. This is depicted as (2) in Figure 5.

When a policy match occurs that results in an allowed flow,
the PE will compile the BYOZ policy specification down to
PEP-specific syntax, which is pushed to the PEP, as shown by
(3) in Figure 5. Again, our implementation renders iptables
policy, however, our policy compiler also supports Palo Alto
Network firewall syntax [11] as an example of the extensibility
of the architecture and specific plug-ability of the compiler.
Figure 6 shows this overall workflow. A valid flow remains
active in the network for as long as it is needed or dictated
by policy. The PDP does, however retain the critical right to
revoke a flow at any point in time if the dynamic context of the
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Fig. 5. High level design showing major architectural components. Here we
depict the basic steps in BYOZ for a device to request a flow to a network
resource.

subject or device changes in a negative way. The highlighted
portion of Figure 6 shows how this action is taken by the PDP
upon a continuous context check.

All the communications within the network among the
BYOD devices, CM, PDP, PE, and PEP, are encrypted to
ensure the integrity of the message. The encryption and
decryption keys are assigned and stored before the BYOD
device connects to the network. The keys are generated and
configured when registering the BYOD device via MDM using
standard TLS.

C. Continuous Authentication & Authorization

At the core of our design are the concepts of continuous
authentication & authorization, plus context management. Tra-
ditional network access paradigms are predicated on an early
and often single authentication check and this fundamental
trait has been exploited numerous times through means such
as session hijack attacks. Our system employs the idea of
continuous authentication which fits well within the scheme
of ZTA because as the name implies, there is no implicit trust
of an active session simply because it exists on the network.
Instead, the authentication and authorization of the session’s
subject credential is interrogated throughout of the lifetime of
the flow by the network Policy Enforcement Points, Policy
Engine, and Context Manager.

Our design conforms to the abstract architecture specified in
the [5]. Each time a BYOD device wants to access a resource
within the network, it must communicate with the controller
that implements the Policy Decision Point to verify its identity
and authorize its permission to acquire the access.

The access control workflow in our demo system is shown in
Figure 6. After the BYOD device is registered and connected
to the network, the MDM agent will continuously report profile
metadata about the device and its subject to the CM. As stated
previously, the device agent is also responsible for sending
a flow request to the CM for evaluation when the device
wishes to access a resource on the network. This PDP will
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evaluate this request and either allow or deny the flow. In the
case of an allowed flow, beyond the PEP involvement already
covered, our system implements continuous authentication and
authorization for the duration of the flow. Because the device
agent will periodically report state, the CM and PDP have the
opportunity to reevaluate the eligibility of the device and/or
subject to access its requested resource. A subject change on
the device (i.e., switching users on a shared device) would
register in the CM as a change of authentication. Indeed, the
CM may also take an external context, for example, from
a Security Information Event Manager (SIEM), which may
inform the CM that a device or subject is compromised in
some meaningful way. The CM aggregates all this information
and makes it available to the PDP for evaluation. At each
interval, the PDP may decide that the BYOD device or subject
now violates the previously allowed policy. In such an event,
the PDP would instruct the PE to revoke the flow policy
from the PEPs, effectively disconnecting the device from the
resource. In another case, an administrative decision may be
made elsewhere in the organization that the employee no
longer has access to some resource or data. By understanding
this external context, our architecture would be able to react
to this dynamic authorization change and act accordingly,
revoking any active flows.

V1. EVALUATION
A. System & Experiment Setup

For our evaluation, we implemented a prototype of the
BYOZ system described in Section V. Later parts of this
section will describe the BYOD device specifications used in
the various test scenarios. In each case, though, we used the
same controller and network PEP environment, also with a
static set of resources. The controller was implemented pri-
marily in Python and utilized the MQTT messaging protocol
for communication between the components [45]. The PDP
is a single process that comprises the PA and PE. The PA
function takes as input a JSON file that contains BYOZ policy
objects created by the administrator. For each experiment

discussed later, a specific policy set was crafted. The PE
implements the BYOZ compiler and, in this case, is configured
to render iptables PEP policy and apply that policy to the
PEPs. The rest of the PDP implementation deals with the
logic of receiving a flow request from the CM, performing
a policy lookup, and acting accordingly via the PE. The CM
is a separate process that deals with communication from the
BYOD agents. It maintains the context database in memory
and also takes as input another JSON file which contains a
listing of resource objects and metadata about those resources
like TP addresses and application location. This mechanism
simulates an external connection between the CM and a system
or set of systems, which would provide that level of dynamic
resource context in a real-world situation.

Using the prototype instance of our BYOZ architecture,
our goals are to show that we can enable zero trust security
policy enforcement in dynamic BYOD environments. Our
prototype system can realize dynamic policy enforcement and
continuously authorize to meet these needs while following the
NIST standards for ZTA. To demonstrate these achievements,
we measure the performance overhead and impact on both the
network and system.

B. Performance Analysis

1) Network Performance Overhead: We performed an anal-
ysis of the overhead incurred in the network for the operation
of the BYOZ access flow. The first evaluation is measuring
the delay caused by the continuous context check when the
number of BYOD devices increases. As shown in Figure 6,
the continuous context check persists for a BYOD device so
long as it maintains an active flow to a resource. To ease this
management traffic pressure caused by the continuous context
check sessions, we designed a dynamic scaling function in the
controller based on our reliance on the MQTT protocol and,
precisely, the publish-subscribe (pub-sub) nature of communi-
cation. Each BYOD device connecting the network is issued
its own MQTT topic channel for communication. This not only
adds a layer of protection in the form of isolation, but we can
also scale the number of PDP processes necessary to subscribe
to all channels. In this way, a new PDP process will be running
for the policy match on a newly generated continuous context
check when a batch of new access requests arrives at the zero
trust controller. Therefore, if there is an influx in connections
and thus continuous context checks, this load can be dynami-
cally scaled as needed by the controller. It is important to note,
however, that our MQTT implementation was specific only to
our prototype, and overall BYOZ architecture would support
other means of communication.

Several reasons can cause a surge of continuous context
checks. One reason can be that a malicious user is trying
to generate many access requests to the controller. The PDP,
in concert with the CM, should be able to discern this as
abnormal behavior, given an understanding of normal con-
ditions in the network. The zero-trust controller will block
the traffic from this single device by detecting the abnormal
profile in the context. Another reason can be that there is a
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the number of BYOD devices increases.

surge devices that want to request access to a resource at the
same time due to some specific event within the network. We
have tested the second scenario with our demo system and
measured the time taken for the continuous context check.
We set up the time interval of the continuous context check
at 10 seconds. After the PDP grants access from one BYOD
device, the zero-trust controller will keep checking the context
of this approved BYOD device every 10 seconds. We also
tested our demo system with a different number of associated
devices and let them run for a long period of time. As shown
in Figure 7(e), when there comes up a big number of devices,
the process scaling mechanism will be triggered and it will
make sure the time delay is at a stable value and free of the
worry about a large quantities of devices influx into the system.
The continuous context check itself is a relatively lightweight
operation both in terms of resources and time.

2) System Performance Overhead: To measure the system
performance overhead imposed by the continuous context
check, we also tested the system overhead on both the BYOD
device and controller sides to measure the overhead of the
MDM agent sending the profile context to the CM and the
CM/PDP processing that context check.

We first performed this evaluation in the demo system using
Raspberry Pis because they are readily available to us and are
easy to configure for this type of testing and on-box analysis.
We simulated BYOD devices using the Raspberry Pi 3 Model
B+ equipped with 1.4GHz 64-bit quad-core processor, 1GB
of SRAM, and the Raspberry Pi 4 Model B+ equipped with
a quad-core 64-bit processor, 4GB of RAM. Both ran the
Raspbian operating system. We implemented our controller on
an Ubuntu Linux x64 VM with 2 processor cores and 4 GB of
memory. We ran the sysbench benchmark tool [43] before and
during the time when the BYOD devices send context profiles
to the CM. As shown in Figure 7(a), for the Raspberry 3 Model
B+, the CPU sysbench test only exhibited an increase of 0.05
ms after it runs the MDM agent and sends the context profile
to the CM on a continuous basis. This delay increases 0.04
ms for the Raspberry 4 Model B+.

We also used an LG Nexus 5 and a Google Pixel 4 to

measure the performance overhead imposed on the BYOD
device. LG Nexus 5 ran on Android 9 OS, and the Google
Pixel 4 ran on Android 12 OS. We ran the MDM agent
process on these two mobile phones and let them send the
context profile to the CM at an interval of 1 second. We
used the same controller from the previous experiment and
ran the Geekbenchmark5 [46] before and during the time
when the MDM agent sent context profiles to the CM. As
shown in Figures 7(b) and 7(c), the overheads for these two
devices are within a reasonable range, and the frequency of
sending the profile can be adjusted based on an administrator’s
risk profile. We found in both cases that there is negligible
performance impact caused by the MDM agent and the context
communication with the CM.

VII. CONCLUSIONS AND FUTURE WORK

Through a review of the literature related to ZTA and
BYOD, we have identified several exciting research challenges
and opportunities related to enabling ZTA-based BYOD use
cases. The unique requirements derived from our use cases
show a clear need for a novel set of policy languages that
allow high-level business intent to be rendered down to low-
level enforcement policy. The surrounding infrastructure that
must be built out can still be composed of specific technologies
for the various portions of an access control flow. This is,
of course, until solutions exist that can bridge the gap in
standardized communication and control interfaces within this
broader ZTA infrastructure.

To meet these needs, we introduced the BYOZ language
specification. We also designed a zero trust network archi-
tecture and system to meet the exacting needs of enterprise
BYOD use cases. Our architecture builds upon the NIST ZTA
standard and incorporates novel ideas from continuous authen-
tication & authorization to protect against specific enterprise
BYOD threats. We showed in our evaluation that while our
architecture on actual BYOD devices is MDM agent-based,
the performance overhead is negligible, making our system
feasible in existing enterprise environments.



There are many open areas to explore within ZTA, including
applications for 10T, cloud computing, and 5G/Next-G cellular
networks. Plus, we previously pointed out possibilities for
moving our implementation into the realm of SDN. We are
interested in the interactions of the CM and external systems
to provide additional context into the zero trust environment.
We also want to call out future work in the space of privacy
concerns for ZTA due to the nature of metadata that is
collected to process policy evaluations. Of keen interest to our
research are the privacy concerns related to zero trust, since it
is clear that a great deal of user metadata is required to make
effective policy decisions.
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