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Abstract—By desynchronizing digital data processing over 
time, asynchronous circuits provide strong protection against 
malicious side channel attacks. Asynchronous circuits also 
mitigate digital substrate noise and thereby significantly improve 
signal-to-noise ratios for sensitive analog and radio frequency 
components for System-on-a-Chip applications. One main 
drawback to asynchronous circuits is the significant (often more 
than double) area required for their implementation. To improve 
community acceptance of asynchronous design paradigms, we 
propose a new set of datapath cells to significantly reduce the 
area of asynchronous digital circuits. Our datapath cells have 
both asynchronous and standard combinational input and output 
capability. They serve as the basis for a design methodology that 
converts standard synchronous sequential netlists into 
asynchronous netlists, and they allow the user to tune or set the 
level of asynchronous processing. Our approach uses standard, 
commercial-off-the-shelf integrated circuit synthesis tools, and 
thus, it does not require any special asynchronous synthesis tools.  

Keywords—asynchronous, null convention logic, systems-on-a-
chip, noise reduction, NCL, obfuscation, security, assurance, trust 

I. INTRODUCTION 

Most fabricated designs are synchronous in nature and 

require a global clock signal to simultaneously operate. 

Synchronized power draws of standard circuits makes them 

very vulnerable to side channel attacks that can expose 

sensitive data [1]. This leads to methods such as Simple Power 

Analysis (SPA) and Differential Power Analysis (DPA) to 

reverse engineer the functionality of the circuit. This global 

clock signal can also add unwanted power, and it can lead to 

large inefficiencies.  

Asynchronous circuits, which are circuits that do not 

require a global clock signal to operate, are naturally more 

secure and allow designers to implement the same circuit 

functionality without exposing their design easily. One way of 

implementing an asynchronous circuit is the use of null 

convention logic (NCL) gates, which according to [2] is a 

symbolically complete logic which expresses process 
completely in terms of the logic itself and inherently and 
conveniently expresses asynchronous digital circuits. 
Designing with NCL gates gives a design more security and 

assurance due to the dual rail design. NCL gates have two 

separate wires, representing logic ‘0’ and ‘1’ respectively. Fant 

and Brandt showed that with asynchronous registers and NCL 

gates, a complete delay-insensitive design can be constructed. 

[2]. Some technological companies have started more research 

and designing with asynchronous designing, such as Intel and 

IBM as shown by Nowick and Singh with the introduction of 

globally asynchronous locally synchronous (GALS) circuits as 

well as Networks-on-Chip (NoC) architectures [3]. One major 

drawback to asynchronous designs is due to the large amount 

of area required (at least twice as much compared to its 

synchronous equivalent) as well as few modern designers 

being trained to design using asynchronous techniques. We 

propose the possibility of combining the assurance and trust 

that asynchronous circuits provide with the optimized area of 

synchronous circuits while also being able to reduce any 

unwanted power during execution.  

We propose a new altered design to these NCL gates, that 

can take both synchronous and asynchronous inputs and 

perform Boolean functionality in the same manner that would 

be done in either fully synchronous or fully asynchronous 

designs. These designs keep the return to zero (RTZ) 

characteristic that is seen in asynchronous circuits, which 

allows these new gates to keep the same security benefits as 

asynchronous circuits. This RTZ design means that the circuit 

will not execute until the asynchronous inputs have been set, 

regardless of whether or not the inputs arrive at the gate 

synchronously. These so called datapath cells can be inserted 

into a current design directly replacing the timing critical path 

or paths to add assurance to the design without compromising 

significant area.  

These gates were designed using techniques from both 

synchronous and asynchronous methods as well simplifications 

using simple Boolean Algebra minimization techniques. Their 

designs add no extra delay to the circuit while adding in the 

security benefits such that their executions are comparable to 

an only synchronous equivalent design. Future implementation 

will take a netlist and add these datapath gates into the critical 

path or paths of a design autonomously such that designers will 

be able to implement these gates and the security assurance 

that comes with them without having to be trained in designing 

asynchronously or giving up significant area requirements for 

fully asynchronous designs. 

The rest of this paper is set up as follows. Section II 

describes some relevant previous work in the field that will 

help to build the reasoning behind the designs of these datapath 

gates. Section III describes the datapath gate design flow as 

well as some examples. Section IV explains the simulation 
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results, and Section V features some conclusions as well as 

future work with datapath gates. 

II. BACKGROUND 

The relevant background material for this project comes 

from efforts in the areas of asynchronous circuits, specifically 

NCL gates and exploring their security benefits, as well as 

different methods to convert some portion or the entirety of a 

synchronous netlist to a functionally equivalent asynchronous 

circuit.  

A. Security Benefits of Asynchronous Circuits and NCL 
Gates  

The security benefits associated with asynchronous circuits 

have long been known by academia with publications such as 

[4]. Fournier, Moore, Li, Mullins and Taylor proved with an 

early asynchronous smart card design that was tested using 

DPA. In a synchronous circuit, the CMOS transistors leak 

power which can lead to obfuscation of sensitive data that can 

be recovered through DPA or Electro-magnetic emittance for 

example.  

B. NCL Gates  

NCL gates are specifically good at mitigating these 

potential data-leaking properties to prevent SCAs [5]. Since 

synchronous circuits are all clocked at a simultaneous instant, 

DPA is relatively easier since the power required for the entire 

system is drawn at that moment. With NCL gates being a dual-

rail design, this allows for higher security impacts of the 

system due to the relatively constant power draw resulting in 

similar hamming weights as was shown by Wu. As Brandt and 

Fant proved, a downside to NCL gates, despite all these 

security benefits, is due to the area consumption compared to a 

synchronous equivalent circuit. With the security advantages 

that come with NCL gates, one might wonder why designers 

do not fully implement asynchronous systems, which would 

come with a greater assurance and trust that data leakage is less 

likely. However, asynchronous circuits at minimum double the 

area which may not be an optimal solution for most designs, as 

well as the designers not being trained in asynchronous 

designing techniques.  

C. Converting Synchronous Circuits to Asynchronous 
Circuits 

Possible solutions to implement asynchronous circuit from 

synchronous designs have been explored, such as [6] [7] [8]. 

Methods like those from Brej as well as Branover, Kol and 

Ginosar, and Semba and Saito allow current designers to apply 

asynchronous techniques and advantages, without having to 

specifically design using asynchronous methods. These 

applications have been created to convert synchronous netlists 

to asynchronous circuits for the purpose of adding security to 

a design. Semba and Saito compared the conversion on both 

the RT-level as well as Gate-level. The results showed that 

RTL conversion was better for energy consumption on 

average about 11.3%. This means that all designs for our 

project will convert all designs to RTL if possible, based off 

this finding.  

Branover, Kol and Ginosar found that area growth for a 

synchronous circuit can be up to over 200 percent, with more 

area growth occurring for smaller synchronous designs. They 

also use Synopsys to synthesize a synchronous circuit then 

convert post-synthetization. This is important because it 

allows for an easier transition for traditional designs and 

current synthetization tools to remain relevant rather than 

having to redesign a new software tool specifically for 

asynchronous designs. Our project will also operate on a 

synthesized netlist then convert a portion of that design into 

datapath gates according to the critical path(s) as well as a 

value determined by the designer, which will be discussed 

later. 

The results from Brej, Branover and Kol and Ginosar, and 

Semba and Saito all focus on converting the entire 

synchronous netlist into an asynchronous one, which as 

Branover, Kol and Ginosar proved can lead to huge area 

requirements. However, there have been efforts to convert a 

smaller portion of the entire synchronous netlist (based on a 

timing critical path) [9]. Here, Park and Kim introduce the 

idea of converting only critical paths to dual rail gates to 

match existing standard cell library components instead of 

implementing the asynchronous portions with dynamic logic 

gates which is the traditional method of conversion. Our work 

will not only convert a critical path or paths, which will lower 

the required power and area needed while adding security, but 

will also map our new gate designs to a library which can be 

resynthesized to standard cells. Also, our project will allow 

designers to control what percentage of the circuit they want 

to convert, which will give more control to the designer on 

how much area, speed and power will be consumed with 

certain implementations of their design.  

 

III. DATAPATH GATE DESIGN FLOW 

A. Datapath Gate Design Methodology 

The design method for our data path gates follows a simple 

five step process as detailed in Table 1, which shows the 

evolving Boolean equations that represent the pull-down 

networks (PDNs) and pull-up networks (PUNs) of the CMOS 

implementations described in two of our designs, for a two-

input AND gate and two-input OR gate equivalent (TH22 and 

TH12, respectively). In these examples, we treat the A signal 

as an asynchronous input, and B as a synchronous input. Also, 

a key design requirement is that the gates should only execute 

once a value on A has been set.  

To design a datapath gate, start with the Boolean equation 

for the function that needs to be converted. Step 1 requires 

changing any minterm in the Boolean equation with an A to 

A1. This will serve as the logic high wire in the datapath gate. 

Any minterm that does not have an instance of A needs to be 

AND with A0. This is a direct result of the requirement of 

having the gate execute when the asynchronous input has been 

set which is important considering the arrival timings could 

vary with synchronous vs asynchronous inputs. Adding the A0 

to any non-A term will ensure that the function will execute 

only when the asynchronous input A has been set. Step 1 



forms the equation on which the PDN of our logic high 

implementation for our datapath gate will be based.  

Step 2 takes the resulting equation that was formed in Step 

1 and changes every AND to OR and vice versa. Note, this is 

different than inverting the equation because the logic of the 

signals (inputs) themselves has not changed, only the logical 

relationship between the signals (inputs). This forms the PUN 

of our datapath gate for the logic high implementation.  

In Steps 3 and 4, we take the equation from Step 1 and 

fully invert it. After inversion, we change A1  to A0 and 

A0  to A1. This is functionally the same thing, except in 

asynchronous designs there exists a RTZ which means that 

A1  can happen during both the set or reset phases. To stay 

consistent with only executing during the set phase of the 

asynchronous input, these are converted. The resulting 

equation in Step 4 forms the PDN of the logic low 

implementation for our datapath gate.  

Finally, Step 5 is similar to Step 2, where we change AND 

to OR and vice versa, except this time we start with the 

resulting equation from Step 4. This forms the PUN for the 

logic low implementation. After these simple 5 steps have 

been completed, a CMOS gate can be designed similar to the 

ones seen in Figures 1a and 1b.  

Designs have been produced for all the NCL gate 

equivalents according to Figure 1. For gates which have 

weighted inputs, such as TH24w2, the datapath gate design 

differs based on which input is treated as asynchronous, so 

weighted gates will have several implementations to consider 

for conversion.  

 

TABLE 1. FIVE STEP PROCESS TO CONVERT BOOLEAN EQUATION TO 
DATAPATH LOGIC. 

 

 2-input AND 

(TH22) 

2-input OR  

(TH12) 

Boolean Eq. A * B A + B 

Step 1 (F1, PDN)  A1 * B A1 + A0*B 

Step 2 (F1, PUN) A1 + B A1 * (A0 +B) 

Step 3 A1   + B   A1  *( A0 + B  ) 

Step 4 (F0, PDN) A0 + B   A0 * (A1 + B  ) 

Step 5 (F0, PUN) A0 * B   A0 + A1* B   

 

 
 

Figure 1. List of NCL gates, their Boolean functions, and number of 
transistors required to implement. 

B. Critical Path Selection/Insertion Techniques  

In order to convert a design, a critical path has to be 

identified such that a smaller portion of the design is 

asynchronous rather than converting one hundred percent of 

the circuit which is area inefficient. Park and Kim identify 

timing critical paths by starting at each primary output of the 

circuit and then use a backtracking algorithm to ensure that the 

longest timing critical paths are extracted. They also declare 

any sub-path in the critical path as also critical.  

Pipeline based designs have also been converted based on 

a critical path [10]. The timing critical path is determined 

again by the slowest path in a pipeline stage and use 

synchronizing logic gates instead of conventional logic gates 

to solve the data-dependency problem of logic gates. This 

means that the critical paths between two consecutive pipeline 

stages could differ because of different input patterns or paths 

being early triggered from outputs of the previous pipeline 

stage.  

Even with the possibility of converting any function from 

synchronous to asynchronous, paths that pass through both 

synchronous and asynchronous gates need to be carefully 

considered to ensure that functionality is not lost on any 

transitional path between gates. When transitioning from the 

output of an asynchronous gate to the input of a synchronous 

gate, the logic ‘1’ signal from the output can be directly placed 

in the input of the synchronous gate since it represents the 

entire functionality in all cases and does not add any extra 

parasitics to convert. The transition from the output of a 

synchronous gate to the input of an asynchronous gate is 

slightly more complex.  According to Park and Kim all sub-

paths of critical paths are also considered critical, which 

means in the backtracking algorithm for a small combinational 

circuit this could end up converting the entire or at least a 

significant portion of the design, which is not ideal in terms of 

area conservation.  

Since the NULL wave does not translate well to a 

synchronous signal, converting from the output of a 

synchronous gate to an asynchronous input is much more 



complex.. In the case of Park and Kim, they converted the 

memory components to asynchronous using the handshaking 

method, which means that this special case of conversion was 

avoided. However, for this project we are only dealing with 

the combinational circuit conversion. One possible solution 

resembles the design of a D-type flip-flop where the input 

signal, D, is branched off into two inputs internal to the flip 

flop. One of those branches is the direct input, and the other is 

the inverted input before the actual latch or memory 

implementation starts. Branching off a synchronous input into 

an inverted and non-inverted branch to represent the logic ‘1’ 

and logic ‘0’ wires in an asynchronous circuit would ensure 

that both wires are not the same value simultaneously, 

particularly both set to logic HIGH, which is not possible in 

asynchronous gates. However, adding the inverter to one of 

the branches will add slight delay to the circuit, which means 

for a transitioning input value, there exists a very minute 

period where both wires are the same value. This will have to 

be taken into consideration to ensure that incorrect output 

values are not recorded during this transitioning period.  

C. Gate Sizing  

An important step to designing the datapath gates was 

determining the appropriate sizes of each transistor. Incorrect 

sizes could lead to loss of functionality due to a transistor not 

being able to set the proper output value. Note that only 

widths of the transistors were altered, all lengths were kept at 

the same size. According to the example transistor diagrams in 

Figure 2, the reversely oriented inverters, G2, were set at 

minimal size for all datapath gates. The forward-oriented 

inverters, G1, were doubled relative to a minimally sized 

inverter. This was also kept constant for every datapath gate 

design. The PUN and PDN of every design were sized 

according to the longest existing path in the design either from 

VDD or GND to the input of the forward oriented inverter. For 

example, in Figures 2c and 2d, for the OR gate there exists a 

path of two transistors (either A0 and B in the PDN of Figure 

2d, or A1 and A0/B in the PUN of Figure 2c). In this case, 

since the longest path is two transistors, the widths of all 

transistors in both the PDNs and PUNs were doubled relative 

to the forward oriented inverter (4x the width of a minimally 

sized transistor).   

 

 

 

 

IV. SIMULATION RESULTS 

Once the datapath gates were designed using our five-step 

process, they were constructed and simulated using H-Spice, 

as well as WaveView from Synopsys to visualize the 

simulation results. Two example simulations are shown in 

Figure 3. These simulations represent the datapath equivalent 

of a 2-input AND (Figure 3a) and 2-input OR (Figure 3b) 

where in both cases signal A is treated as the asynchronous 

input to the gate and B is the synchronous signal. The 

waveforms are set up as follows: the top (green) signal is A0 

input, the second (yellow) is the A1 input. The third (light 

blue) is the synchronous B signal, and finally the fourth (red) 

and fifth (purple) signals are the logic high and logic low 

outputs, respectively. These simulations show full 

functionality for an exhaustively tested design. The key result 

is that outputs are never set during a NULL wave (i.e. A1 and 

A0 are both logic low) as well as both outputs, logic high and 

logic low, are never set high simultaneously. This result is 

critical in preserving the functionality of the circuit while 

keeping the RTZ characteristic of asynchronous circuits.  

 

V. CONCLUSIONS 

This work has shown an alternative method to designing NCL 

gates which are able to function in hybrid circuits. These 

datapath gates through simulation results from HSpice proved 

to be delay-insensitive (DI), meaning the unsynchronized 

arrivals of inputs will not affect the functionality of the gate 

itself. We have shown a design methodology for 

implementing these datapath gates based on combinational 

Boolean logic equations. These datapath gates can be used to 

convert a portion of a synchronous netlist, based on a critical 

path or paths, such that area overhead is kept as minimal as 

possible, while maintaining Boolean functionality as well as 

introducing the security advantages that NCL gates provide.  
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Figure 3: HSpice waveform simulation results via WaveView for a TH22 (a) and TH12 (b) equivalent datapath gate. 
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