
Datapath Cells for Null Convention Logic
Asynchronous Circuit Area Reduction

Dallas A. Phillips
Dept. of EECS

University of Cincinnati
Cincinnati, OH, USA

phillda@mail.edu

Pingxiuqi Chen
Dept. of EECS

University of Cincinnati
Cincinnati, OH, USA

chenp5@mail.edu

John M. Emmert
Dept. of EECS

University of Cincinnati
Cincinnati, OH, USA
john.emmert@uc.edu

Abstract—By desynchronizing digital data processing over
time, asynchronous circuits provide strong protection against
malicious side channel attacks. Asynchronous circuits also
mitigate digital substrate noise and thereby significantly improve
signal-to-noise ratios for sensitive analog and radio frequency
components for System-on-a-Chip applications. One main
drawback to asynchronous circuits is the significant (often more
than double) area required for their implementation. To improve
community acceptance of asynchronous design paradigms, we
propose a new set of datapath cells to significantly reduce the
area of asynchronous digital circuits. Our datapath cells have
both asynchronous and standard combinational input and output
capability. They serve as the basis for a design methodology that
converts standard synchronous sequential netlists into
asynchronous netlists, and they allow the user to tune or set the
level of asynchronous processing. Our approach uses standard,
commercial-off-the-shelf integrated circuit synthesis tools, and
thus, it does not require any special asynchronous synthesis tools.

Keywords—asynchronous, null convention logic, systems-on-a-
chip, noise reduction, NCL, obfuscation, security, assurance, trust

I. INTRODUCTION

Most fabricated designs are synchronous in nature and

require a global clock signal to simultaneously operate.

Synchronized power draws of standard circuits makes them

very vulnerable to side channel attacks that can expose

sensitive data [1]. This leads to methods such as Simple Power

Analysis (SPA) and Differential Power Analysis (DPA) to

reverse engineer the functionality of the circuit. This global

clock signal can also add unwanted power, and it can lead to

large inefficiencies.

Asynchronous circuits, which are circuits that do not

require a global clock signal to operate, are naturally more

secure and allow designers to implement the same circuit

functionality without exposing their design easily. One way of

implementing an asynchronous circuit is the use of null

convention logic (NCL) gates, which according to [2] is a

symbolically complete logic which expresses process
completely in terms of the logic itself and inherently and
conveniently expresses asynchronous digital circuits.
Designing with NCL gates gives a design more security and

assurance due to the dual rail design. NCL gates have two

separate wires, representing logic ‘0’ and ‘1’ respectively. Fant

and Brandt showed that with asynchronous registers and NCL

gates, a complete delay-insensitive design can be constructed.

[2]. Some technological companies have started more research

and designing with asynchronous designing, such as Intel and

IBM as shown by Nowick and Singh with the introduction of

globally asynchronous locally synchronous (GALS) circuits as

well as Networks-on-Chip (NoC) architectures [3]. One major

drawback to asynchronous designs is due to the large amount

of area required (at least twice as much compared to its

synchronous equivalent) as well as few modern designers

being trained to design using asynchronous techniques. We

propose the possibility of combining the assurance and trust

that asynchronous circuits provide with the optimized area of

synchronous circuits while also being able to reduce any

unwanted power during execution.

We propose a new altered design to these NCL gates, that

can take both synchronous and asynchronous inputs and

perform Boolean functionality in the same manner that would

be done in either fully synchronous or fully asynchronous

designs. These designs keep the return to zero (RTZ)

characteristic that is seen in asynchronous circuits, which

allows these new gates to keep the same security benefits as

asynchronous circuits. This RTZ design means that the circuit

will not execute until the asynchronous inputs have been set,

regardless of whether or not the inputs arrive at the gate

synchronously. These so called datapath cells can be inserted

into a current design directly replacing the timing critical path

or paths to add assurance to the design without compromising

significant area.

These gates were designed using techniques from both

synchronous and asynchronous methods as well simplifications

using simple Boolean Algebra minimization techniques. Their

designs add no extra delay to the circuit while adding in the

security benefits such that their executions are comparable to

an only synchronous equivalent design. Future implementation

will take a netlist and add these datapath gates into the critical

path or paths of a design autonomously such that designers will

be able to implement these gates and the security assurance

that comes with them without having to be trained in designing

asynchronously or giving up significant area requirements for

fully asynchronous designs.

The rest of this paper is set up as follows. Section II

describes some relevant previous work in the field that will

help to build the reasoning behind the designs of these datapath

gates. Section III describes the datapath gate design flow as

well as some examples. Section IV explains the simulation

This work was supported by the NSF Center for Hardware and Embedded
Systems Security and Trust under Grant 1916722.

results, and Section V features some conclusions as well as

future work with datapath gates.

II. BACKGROUND

The relevant background material for this project comes

from efforts in the areas of asynchronous circuits, specifically

NCL gates and exploring their security benefits, as well as

different methods to convert some portion or the entirety of a

synchronous netlist to a functionally equivalent asynchronous

circuit.

A. Security Benefits of Asynchronous Circuits and NCL
Gates

The security benefits associated with asynchronous circuits

have long been known by academia with publications such as

[4]. Fournier, Moore, Li, Mullins and Taylor proved with an

early asynchronous smart card design that was tested using

DPA. In a synchronous circuit, the CMOS transistors leak

power which can lead to obfuscation of sensitive data that can

be recovered through DPA or Electro-magnetic emittance for

example.

B. NCL Gates

NCL gates are specifically good at mitigating these

potential data-leaking properties to prevent SCAs [5]. Since

synchronous circuits are all clocked at a simultaneous instant,

DPA is relatively easier since the power required for the entire

system is drawn at that moment. With NCL gates being a dual-

rail design, this allows for higher security impacts of the

system due to the relatively constant power draw resulting in

similar hamming weights as was shown by Wu. As Brandt and

Fant proved, a downside to NCL gates, despite all these

security benefits, is due to the area consumption compared to a

synchronous equivalent circuit. With the security advantages

that come with NCL gates, one might wonder why designers

do not fully implement asynchronous systems, which would

come with a greater assurance and trust that data leakage is less

likely. However, asynchronous circuits at minimum double the

area which may not be an optimal solution for most designs, as

well as the designers not being trained in asynchronous

designing techniques.

C. Converting Synchronous Circuits to Asynchronous
Circuits

Possible solutions to implement asynchronous circuit from

synchronous designs have been explored, such as [6] [7] [8].

Methods like those from Brej as well as Branover, Kol and

Ginosar, and Semba and Saito allow current designers to apply

asynchronous techniques and advantages, without having to

specifically design using asynchronous methods. These

applications have been created to convert synchronous netlists

to asynchronous circuits for the purpose of adding security to

a design. Semba and Saito compared the conversion on both

the RT-level as well as Gate-level. The results showed that

RTL conversion was better for energy consumption on

average about 11.3%. This means that all designs for our

project will convert all designs to RTL if possible, based off

this finding.

Branover, Kol and Ginosar found that area growth for a

synchronous circuit can be up to over 200 percent, with more

area growth occurring for smaller synchronous designs. They

also use Synopsys to synthesize a synchronous circuit then

convert post-synthetization. This is important because it

allows for an easier transition for traditional designs and

current synthetization tools to remain relevant rather than

having to redesign a new software tool specifically for

asynchronous designs. Our project will also operate on a

synthesized netlist then convert a portion of that design into

datapath gates according to the critical path(s) as well as a

value determined by the designer, which will be discussed

later.

The results from Brej, Branover and Kol and Ginosar, and

Semba and Saito all focus on converting the entire

synchronous netlist into an asynchronous one, which as

Branover, Kol and Ginosar proved can lead to huge area

requirements. However, there have been efforts to convert a

smaller portion of the entire synchronous netlist (based on a

timing critical path) [9]. Here, Park and Kim introduce the

idea of converting only critical paths to dual rail gates to

match existing standard cell library components instead of

implementing the asynchronous portions with dynamic logic

gates which is the traditional method of conversion. Our work

will not only convert a critical path or paths, which will lower

the required power and area needed while adding security, but

will also map our new gate designs to a library which can be

resynthesized to standard cells. Also, our project will allow

designers to control what percentage of the circuit they want

to convert, which will give more control to the designer on

how much area, speed and power will be consumed with

certain implementations of their design.

III. DATAPATH GATE DESIGN FLOW

A. Datapath Gate Design Methodology

The design method for our data path gates follows a simple

five step process as detailed in Table 1, which shows the

evolving Boolean equations that represent the pull-down

networks (PDNs) and pull-up networks (PUNs) of the CMOS

implementations described in two of our designs, for a two-

input AND gate and two-input OR gate equivalent (TH22 and

TH12, respectively). In these examples, we treat the A signal

as an asynchronous input, and B as a synchronous input. Also,

a key design requirement is that the gates should only execute

once a value on A has been set.

To design a datapath gate, start with the Boolean equation

for the function that needs to be converted. Step 1 requires

changing any minterm in the Boolean equation with an A to

A1. This will serve as the logic high wire in the datapath gate.

Any minterm that does not have an instance of A needs to be

AND with A0. This is a direct result of the requirement of

having the gate execute when the asynchronous input has been

set which is important considering the arrival timings could

vary with synchronous vs asynchronous inputs. Adding the A0

to any non-A term will ensure that the function will execute

only when the asynchronous input A has been set. Step 1

forms the equation on which the PDN of our logic high

implementation for our datapath gate will be based.

Step 2 takes the resulting equation that was formed in Step

1 and changes every AND to OR and vice versa. Note, this is

different than inverting the equation because the logic of the

signals (inputs) themselves has not changed, only the logical

relationship between the signals (inputs). This forms the PUN

of our datapath gate for the logic high implementation.

In Steps 3 and 4, we take the equation from Step 1 and

fully invert it. After inversion, we change A1 to A0 and

A0 to A1. This is functionally the same thing, except in

asynchronous designs there exists a RTZ which means that

A1 can happen during both the set or reset phases. To stay

consistent with only executing during the set phase of the

asynchronous input, these are converted. The resulting

equation in Step 4 forms the PDN of the logic low

implementation for our datapath gate.

Finally, Step 5 is similar to Step 2, where we change AND

to OR and vice versa, except this time we start with the

resulting equation from Step 4. This forms the PUN for the

logic low implementation. After these simple 5 steps have

been completed, a CMOS gate can be designed similar to the

ones seen in Figures 1a and 1b.

Designs have been produced for all the NCL gate

equivalents according to Figure 1. For gates which have

weighted inputs, such as TH24w2, the datapath gate design

differs based on which input is treated as asynchronous, so

weighted gates will have several implementations to consider

for conversion.

TABLE 1. FIVE STEP PROCESS TO CONVERT BOOLEAN EQUATION TO
DATAPATH LOGIC.

 2-input AND

(TH22)

2-input OR

(TH12)

Boolean Eq. A * B A + B

Step 1 (F1, PDN) A1 * B A1 + A0*B

Step 2 (F1, PUN) A1 + B A1 * (A0 +B)

Step 3 A1 + B A1 *(A0 + B)

Step 4 (F0, PDN) A0 + B A0 * (A1 + B)

Step 5 (F0, PUN) A0 * B A0 + A1* B

Figure 1. List of NCL gates, their Boolean functions, and number of
transistors required to implement.

B. Critical Path Selection/Insertion Techniques

In order to convert a design, a critical path has to be

identified such that a smaller portion of the design is

asynchronous rather than converting one hundred percent of

the circuit which is area inefficient. Park and Kim identify

timing critical paths by starting at each primary output of the

circuit and then use a backtracking algorithm to ensure that the

longest timing critical paths are extracted. They also declare

any sub-path in the critical path as also critical.

Pipeline based designs have also been converted based on

a critical path [10]. The timing critical path is determined

again by the slowest path in a pipeline stage and use

synchronizing logic gates instead of conventional logic gates

to solve the data-dependency problem of logic gates. This

means that the critical paths between two consecutive pipeline

stages could differ because of different input patterns or paths

being early triggered from outputs of the previous pipeline

stage.

Even with the possibility of converting any function from

synchronous to asynchronous, paths that pass through both

synchronous and asynchronous gates need to be carefully

considered to ensure that functionality is not lost on any

transitional path between gates. When transitioning from the

output of an asynchronous gate to the input of a synchronous

gate, the logic ‘1’ signal from the output can be directly placed

in the input of the synchronous gate since it represents the

entire functionality in all cases and does not add any extra

parasitics to convert. The transition from the output of a

synchronous gate to the input of an asynchronous gate is

slightly more complex. According to Park and Kim all sub-

paths of critical paths are also considered critical, which

means in the backtracking algorithm for a small combinational

circuit this could end up converting the entire or at least a

significant portion of the design, which is not ideal in terms of

area conservation.

Since the NULL wave does not translate well to a

synchronous signal, converting from the output of a

synchronous gate to an asynchronous input is much more

complex.. In the case of Park and Kim, they converted the

memory components to asynchronous using the handshaking

method, which means that this special case of conversion was

avoided. However, for this project we are only dealing with

the combinational circuit conversion. One possible solution

resembles the design of a D-type flip-flop where the input

signal, D, is branched off into two inputs internal to the flip

flop. One of those branches is the direct input, and the other is

the inverted input before the actual latch or memory

implementation starts. Branching off a synchronous input into

an inverted and non-inverted branch to represent the logic ‘1’

and logic ‘0’ wires in an asynchronous circuit would ensure

that both wires are not the same value simultaneously,

particularly both set to logic HIGH, which is not possible in

asynchronous gates. However, adding the inverter to one of

the branches will add slight delay to the circuit, which means

for a transitioning input value, there exists a very minute

period where both wires are the same value. This will have to

be taken into consideration to ensure that incorrect output

values are not recorded during this transitioning period.

C. Gate Sizing

An important step to designing the datapath gates was

determining the appropriate sizes of each transistor. Incorrect

sizes could lead to loss of functionality due to a transistor not

being able to set the proper output value. Note that only

widths of the transistors were altered, all lengths were kept at

the same size. According to the example transistor diagrams in

Figure 2, the reversely oriented inverters, G2, were set at

minimal size for all datapath gates. The forward-oriented

inverters, G1, were doubled relative to a minimally sized

inverter. This was also kept constant for every datapath gate

design. The PUN and PDN of every design were sized

according to the longest existing path in the design either from

VDD or GND to the input of the forward oriented inverter. For

example, in Figures 2c and 2d, for the OR gate there exists a

path of two transistors (either A0 and B in the PDN of Figure

2d, or A1 and A0/B in the PUN of Figure 2c). In this case,

since the longest path is two transistors, the widths of all

transistors in both the PDNs and PUNs were doubled relative

to the forward oriented inverter (4x the width of a minimally

sized transistor).

IV. SIMULATION RESULTS

Once the datapath gates were designed using our five-step

process, they were constructed and simulated using H-Spice,

as well as WaveView from Synopsys to visualize the

simulation results. Two example simulations are shown in

Figure 3. These simulations represent the datapath equivalent

of a 2-input AND (Figure 3a) and 2-input OR (Figure 3b)

where in both cases signal A is treated as the asynchronous

input to the gate and B is the synchronous signal. The

waveforms are set up as follows: the top (green) signal is A0

input, the second (yellow) is the A1 input. The third (light

blue) is the synchronous B signal, and finally the fourth (red)

and fifth (purple) signals are the logic high and logic low

outputs, respectively. These simulations show full

functionality for an exhaustively tested design. The key result

is that outputs are never set during a NULL wave (i.e. A1 and

A0 are both logic low) as well as both outputs, logic high and

logic low, are never set high simultaneously. This result is

critical in preserving the functionality of the circuit while

keeping the RTZ characteristic of asynchronous circuits.

V. CONCLUSIONS

This work has shown an alternative method to designing NCL

gates which are able to function in hybrid circuits. These

datapath gates through simulation results from HSpice proved

to be delay-insensitive (DI), meaning the unsynchronized

arrivals of inputs will not affect the functionality of the gate

itself. We have shown a design methodology for

implementing these datapath gates based on combinational

Boolean logic equations. These datapath gates can be used to

convert a portion of a synchronous netlist, based on a critical

path or paths, such that area overhead is kept as minimal as

possible, while maintaining Boolean functionality as well as

introducing the security advantages that NCL gates provide.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Introduction to Differential Power

Analysis and Related Attacks,” 1998.
[2] K. M. Fant and S. A. Brandt, "NULL Convention Logic/sup TM/: a

complete and consistent logic for asynchronous digital circuit
synthesis," Proceedings of International Conference on Application
Specific Systems, Architectures and Processors: ASAP '96, 1996, pp.
261-273.

[3] S. M. Nowick and M. Singh, "Asynchronous Design—Part 1: Overview

Figure 2: CMOS Designs for Datapath Gates (TH22 and TH12)

a) b) c) d)

and Recent Advances," in IEEE Design & Test, vol. 32, no. 3, pp. 5-18,
June 2015

[4] Fournier J.J.A., Moore S., Li H., Mullins R., Taylor G. (2003) Security
Evaluation of Asynchronous Circuits. In: Walter C.D., Koç Ç.K., Paar
C. (eds) Cryptographic Hardware and Embedded Systems - CHES 2003.
CHES 2003. Lecture Notes in Computer Science, vol 2779. Springer,
Berlin, Heidelberg.

[5] Wu, Jun, "Null Convention Logic applications of asynchronous design
in nanotechnology and cryptographic security" (2012). Doctoral
Dissertations. 1971.

[6] C.F. Brej, “An automatic synchronous to asynchronous circuit
convertor”, 11th UK Asynchronous Forum, 2001.

[7] A. Branover, R. Kol and R. Ginosar, "Asynchronous design by
conversion: converting synchronous circuits into asynchronous ones,"

Proceedings Design, Automation and Test in Europe Conference and
Exhibition, 2004, pp. 870-875 Vol.2.

[8] S. Semba and H. Saito, "Comparison of RTL Conversion and GL
Conversion from Synchronous Circuits to Asynchronous Circuits," 2019
IEEE International Symposium on Circuits and Systems (ISCAS), 2019,
pp. 1-4

[9] H. Park and T. Kim, "Synthesizing Asynchronous Circuits toward
Practical Use," 2016 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), 2016, pp. 47-52

[10] Z. Xia, S. Ishihara, M. Hariyama and M. Kameyama, "Dual-rail/single-
rail hybrid logic design for high-performance asynchronous circuit,"
2012 IEEE International Symposium on Circuits and Systems (ISCAS),
2012, pp. 3017-3020

Figure 3: HSpice waveform simulation results via WaveView for a TH22 (a) and TH12 (b) equivalent datapath gate.

a) b)

