Datapath Cells for Null Convention Logic
Asynchronous Circuit Area Reduction

Dallas A. Phillips
Dept. of EECS
University of Cincinnati
Cincinnati, OH, USA
phillda@mail.edu

Abstract—By desynchronizing digital data processing over
time, asynchronous circuits provide strong protection against
malicious side channel attacks. Asynchronous circuits also
mitigate digital substrate noise and thereby significantly improve
signal-to-noise ratios for sensitive analog and radio frequency
components for System-on-a-Chip applications. One main
drawback to asynchronous circuits is the significant (often more
than double) area required for their implementation. To improve
community acceptance of asynchronous design paradigms, we
propose a new set of datapath cells to significantly reduce the
area of asynchronous digital circuits. Our datapath cells have
both asynchronous and standard combinational input and output
capability. They serve as the basis for a design methodology that
converts standard synchronous sequential netlists into
asynchronous netlists, and they allow the user to tune or set the
level of asynchronous processing. Our approach uses standard,
commercial-off-the-shelf integrated circuit synthesis tools, and
thus, it does not require any special asynchronous synthesis tools.

Keywords—asynchronous, null convention logic, systems-on-a-
chip, noise reduction, NCL, obfuscation, security, assurance, trust

I. INTRODUCTION

Most fabricated designs are synchronous in nature and
require a global clock signal to simultaneously operate.
Synchronized power draws of standard circuits makes them
very vulnerable to side channel attacks that can expose
sensitive data [1]. This leads to methods such as Simple Power
Analysis (SPA) and Differential Power Analysis (DPA) to
reverse engineer the functionality of the circuit. This global
clock signal can also add unwanted power, and it can lead to
large inefficiencies.

Asynchronous circuits, which are circuits that do not
require a global clock signal to operate, are naturally more
secure and allow designers to implement the same circuit
functionality without exposing their design easily. One way of
implementing an asynchronous circuit is the use of null
convention logic (NCL) gates, which according to [2] is a
symbolically complete logic which expresses process
completely in terms of the logic itself and inherently and
conveniently expresses asynchronous digital circuits.
Designing with NCL gates gives a design more security and
assurance due to the dual rail design. NCL gates have two
separate wires, representing logic ‘0’ and ‘1’ respectively. Fant
and Brandt showed that with asynchronous registers and NCL

This work was supported by the NSF Center for Hardware and Embedded
Systems Security and Trust under Grant 1916722.

Pingxiugi Chen
Dept. of EECS
University of Cincinnati
Cincinnati, OH, USA
chenpS@mail.edu

John M. Emmert
Dept. of EECS
University of Cincinnati
Cincinnati, OH, USA
john.emmert@uc.edu

gates, a complete delay-insensitive design can be constructed.
[2]. Some technological companies have started more research
and designing with asynchronous designing, such as Intel and
IBM as shown by Nowick and Singh with the introduction of
globally asynchronous locally synchronous (GALS) circuits as
well as Networks-on-Chip (NoC) architectures [3]. One major
drawback to asynchronous designs is due to the large amount
of area required (at least twice as much compared to its
synchronous equivalent) as well as few modern designers
being trained to design using asynchronous techniques. We
propose the possibility of combining the assurance and trust
that asynchronous circuits provide with the optimized area of
synchronous circuits while also being able to reduce any
unwanted power during execution.

We propose a new altered design to these NCL gates, that
can take both synchronous and asynchronous inputs and
perform Boolean functionality in the same manner that would
be done in either fully synchronous or fully asynchronous
designs. These designs keep the return to zero (RTZ)
characteristic that is seen in asynchronous circuits, which
allows these new gates to keep the same security benefits as
asynchronous circuits. This RTZ design means that the circuit
will not execute until the asynchronous inputs have been set,
regardless of whether or not the inputs arrive at the gate
synchronously. These so called datapath cells can be inserted
into a current design directly replacing the timing critical path
or paths to add assurance to the design without compromising
significant area.

These gates were designed using techniques from both
synchronous and asynchronous methods as well simplifications
using simple Boolean Algebra minimization techniques. Their
designs add no extra delay to the circuit while adding in the
security benefits such that their executions are comparable to
an only synchronous equivalent design. Future implementation
will take a netlist and add these datapath gates into the critical
path or paths of a design autonomously such that designers will
be able to implement these gates and the security assurance
that comes with them without having to be trained in designing
asynchronously or giving up significant area requirements for
fully asynchronous designs.

The rest of this paper is set up as follows. Section II
describes some relevant previous work in the field that will
help to build the reasoning behind the designs of these datapath
gates. Section III describes the datapath gate design flow as
well as some examples. Section IV explains the simulation

results, and Section V features some conclusions as well as
future work with datapath gates.

II. BACKGROUND

The relevant background material for this project comes
from efforts in the areas of asynchronous circuits, specifically
NCL gates and exploring their security benefits, as well as
different methods to convert some portion or the entirety of a
synchronous netlist to a functionally equivalent asynchronous
circuit.

A. Security Benefits of Asynchronous Circuits and NCL
Gates

The security benefits associated with asynchronous circuits
have long been known by academia with publications such as
[4]. Fournier, Moore, Li, Mullins and Taylor proved with an
early asynchronous smart card design that was tested using
DPA. In a synchronous circuit, the CMOS transistors leak
power which can lead to obfuscation of sensitive data that can
be recovered through DPA or Electro-magnetic emittance for
example.

B. NCL Gates

NCL gates are specifically good at mitigating these
potential data-leaking properties to prevent SCAs [5]. Since
synchronous circuits are all clocked at a simultaneous instant,
DPA is relatively easier since the power required for the entire
system is drawn at that moment. With NCL gates being a dual-
rail design, this allows for higher security impacts of the
system due to the relatively constant power draw resulting in
similar hamming weights as was shown by Wu. As Brandt and
Fant proved, a downside to NCL gates, despite all these
security benefits, is due to the area consumption compared to a
synchronous equivalent circuit. With the security advantages
that come with NCL gates, one might wonder why designers
do not fully implement asynchronous systems, which would
come with a greater assurance and trust that data leakage is less
likely. However, asynchronous circuits at minimum double the
area which may not be an optimal solution for most designs, as
well as the designers not being trained in asynchronous
designing techniques.

C. Converting Synchronous Circuits to Asynchronous
Circuits

Possible solutions to implement asynchronous circuit from
synchronous designs have been explored, such as [6] [7] [8].
Methods like those from Brej as well as Branover, Kol and
Ginosar, and Semba and Saito allow current designers to apply
asynchronous techniques and advantages, without having to
specifically design wusing asynchronous methods. These
applications have been created to convert synchronous netlists
to asynchronous circuits for the purpose of adding security to
a design. Semba and Saito compared the conversion on both
the RT-level as well as Gate-level. The results showed that
RTL conversion was better for energy consumption on
average about 11.3%. This means that all designs for our
project will convert all designs to RTL if possible, based off
this finding.

Branover, Kol and Ginosar found that area growth for a
synchronous circuit can be up to over 200 percent, with more
area growth occurring for smaller synchronous designs. They
also use Synopsys to synthesize a synchronous circuit then
convert post-synthetization. This is important because it
allows for an easier transition for traditional designs and
current synthetization tools to remain relevant rather than
having to redesign a new software tool specifically for
asynchronous designs. Our project will also operate on a
synthesized netlist then convert a portion of that design into
datapath gates according to the critical path(s) as well as a
value determined by the designer, which will be discussed
later.

The results from Brej, Branover and Kol and Ginosar, and
Semba and Saito all focus on converting the entire
synchronous netlist into an asynchronous one, which as
Branover, Kol and Ginosar proved can lead to huge area
requirements. However, there have been efforts to convert a
smaller portion of the entire synchronous netlist (based on a
timing critical path) [9]. Here, Park and Kim introduce the
idea of converting only critical paths to dual rail gates to
match existing standard cell library components instead of
implementing the asynchronous portions with dynamic logic
gates which is the traditional method of conversion. Our work
will not only convert a critical path or paths, which will lower
the required power and area needed while adding security, but
will also map our new gate designs to a library which can be
resynthesized to standard cells. Also, our project will allow
designers to control what percentage of the circuit they want
to convert, which will give more control to the designer on
how much area, speed and power will be consumed with
certain implementations of their design.

III. DATAPATH GATE DESIGN FLOW

A. Datapath Gate Design Methodology

The design method for our data path gates follows a simple
five step process as detailed in Table 1, which shows the
evolving Boolean equations that represent the pull-down
networks (PDNs) and pull-up networks (PUNs) of the CMOS
implementations described in two of our designs, for a two-
input AND gate and two-input OR gate equivalent (TH22 and
TH12, respectively). In these examples, we treat the 4 signal
as an asynchronous input, and B as a synchronous input. Also,
a key design requirement is that the gates should only execute
once a value on A4 has been set.

To design a datapath gate, start with the Boolean equation
for the function that needs to be converted. Step 1 requires
changing any minterm in the Boolean equation with an 4 to
Al. This will serve as the logic high wire in the datapath gate.
Any minterm that does not have an instance of 4 needs to be
AND with A0. This is a direct result of the requirement of
having the gate execute when the asynchronous input has been
set which is important considering the arrival timings could
vary with synchronous vs asynchronous inputs. Adding the 40
to any non-4 term will ensure that the function will execute
only when the asynchronous input 4 has been set. Step 1

forms the equation on which the PDN of our logic high
implementation for our datapath gate will be based.

Step 2 takes the resulting equation that was formed in Step
1 and changes every AND to OR and vice versa. Note, this is
different than inverting the equation because the logic of the
signals (inputs) themselves has not changed, only the logical
relationship between the signals (inputs). This forms the PUN
of our datapath gate for the logic high implementation.

In Steps 3 and 4, we take the equation from Step 1 and

fully invert it. After inversion, we change Al to A0 and

A0 to AI. This is functionally the same thing, except in
asynchronous designs there exists a RTZ which means that
Al can happen during both the set or reset phases. To stay

consistent with only executing during the set phase of the
asynchronous input, these are converted. The resulting
equation in Step 4 forms the PDN of the logic low
implementation for our datapath gate.

Finally, Step 5 is similar to Step 2, where we change AND
to OR and vice versa, except this time we start with the
resulting equation from Step 4. This forms the PUN for the
logic low implementation. After these simple 5 steps have
been completed, a CMOS gate can be designed similar to the
ones seen in Figures la and 1b.

Designs have been produced for all the NCL gate
equivalents according to Figure 1. For gates which have
weighted inputs, such as TH24w2, the datapath gate design
differs based on which input is treated as asynchronous, so
weighted gates will have several implementations to consider
for conversion.

TABLE 1. FIVE STEP PROCESS TO CONVERT BOOLEAN EQUATION TO

DATAPATH LOGIC.
2-input AND 2-input OR
(TH22) (TH12)
Boolean Eq. A*B A+B
Step 1 (F1, PDN) Al *B Al + A0*B
Step 2 (F1, PUN) Al+B Al * (A0 +B)
Step 3 AT +B | AT *(A0TB)
Step 4 (FO, PDN) A0+ B AO*(A1+B)
Step 5 (FO, PUN) AQ * E A0+ Al*f

Transistor Transistor Count
Count (static)

Boolean

(semi-static)

TH12 A+ B 6 6
TH22 AB 12 8
TH13 A+B+C 8 8
TH23 AB + AC + BC 18 12
‘TH33 ABC 16 10
TH23w2 A+ BC 14 10
TH33w2 AB + AC 14 10
TH14 A+B+C+D 10 10
TH24 AB+ AC+ AD+ BC + 26 16
BD+CD
TH34 ABC + ABD + ACD + BCD 24 16
TH44 ABCD 20 12
TH24w2 A+ BC+BD+CD 20 14
TH34w2 AB+ AC+ AD+ BCD 22 15
TH44w2 ABC + ABD + ACD 23 15
TH34w3 A+ BCD 18 12
TH44w3 AB+ AC+AD 16 12
TH24w22 | A+ B+CD 16 12
TH34w22 AB+ AC+ AD+ BC+ BD 22 14
TH44w22 AB+ ACD + BCD 22 14
TH54w22 | ABC + ABD 18 12
TH34w32 | A+ BC + BD 17 12
TH54w32 | AB + ACD 20 12
TH44w322 | AB + AC + AD + BC 20 14
TH54w322 | AB + AC + BCD 21 14
‘THxor0 AB+CD 20 12
‘THand0 AB+ BC + AD 19 13
TH24comp | AC + BC + AD + BD 18 12

Figure 1. List of NCL gates, their Boolean functions, and number of
transistors required to implement.

B. Critical Path Selection/Insertion Techniques

In order to convert a design, a critical path has to be
identified such that a smaller portion of the design is
asynchronous rather than converting one hundred percent of
the circuit which is area inefficient. Park and Kim identify
timing critical paths by starting at each primary output of the
circuit and then use a backtracking algorithm to ensure that the
longest timing critical paths are extracted. They also declare
any sub-path in the critical path as also critical.

Pipeline based designs have also been converted based on
a critical path [10]. The timing critical path is determined
again by the slowest path in a pipeline stage and use
synchronizing logic gates instead of conventional logic gates
to solve the data-dependency problem of logic gates. This
means that the critical paths between two consecutive pipeline
stages could differ because of different input patterns or paths
being early triggered from outputs of the previous pipeline
stage.

Even with the possibility of converting any function from
synchronous to asynchronous, paths that pass through both
synchronous and asynchronous gates need to be carefully
considered to ensure that functionality is not lost on any
transitional path between gates. When transitioning from the
output of an asynchronous gate to the input of a synchronous
gate, the logic ‘7’ signal from the output can be directly placed
in the input of the synchronous gate since it represents the
entire functionality in all cases and does not add any extra
parasitics to convert. The transition from the output of a
synchronous gate to the input of an asynchronous gate is
slightly more complex. According to Park and Kim all sub-
paths of critical paths are also considered critical, which
means in the backtracking algorithm for a small combinational
circuit this could end up converting the entire or at least a
significant portion of the design, which is not ideal in terms of
area conservation.

Since the NULL wave does not translate well to a
synchronous signal, converting from the output of a
synchronous gate to an asynchronous input is much more

complex.. In the case of Park and Kim, they converted the
memory components to asynchronous using the handshaking
method, which means that this special case of conversion was
avoided. However, for this project we are only dealing with
the combinational circuit conversion. One possible solution
resembles the design of a D-type flip-flop where the input
signal, D, is branched off into two inputs internal to the flip
flop. One of those branches is the direct input, and the other is
the inverted input before the actual latch or memory
implementation starts. Branching off a synchronous input into
an inverted and non-inverted branch to represent the logic ‘1’
and logic ‘0’ wires in an asynchronous circuit would ensure
that both wires are not the same value simultaneously,
particularly both set to logic HIGH, which is not possible in
asynchronous gates. However, adding the inverter to one of
the branches will add slight delay to the circuit, which means
for a transitioning input value, there exists a very minute
period where both wires are the same value. This will have to
be taken into consideration to ensure that incorrect output
values are not recorded during this transitioning period.

C. Gate Sizing

An important step to designing the datapath gates was
determining the appropriate sizes of each transistor. Incorrect
sizes could lead to loss of functionality due to a transistor not
being able to set the proper output value. Note that only
widths of the transistors were altered, all lengths were kept at
the same size. According to the example transistor diagrams in
Figure 2, the reversely oriented inverters, G2, were set at
minimal size for all datapath gates. The forward-oriented
inverters, G, were doubled relative to a minimally sized
inverter. This was also kept constant for every datapath gate
design. The PUN and PDN of every design were sized
according to the longest existing path in the design either from
VDD or GND to the input of the forward oriented inverter. For
example, in Figures 2c and 2d, for the OR gate there exists a
path of two transistors (either 40 and B in the PDN of Figure
2d, or A1 and A0/B in the PUN of Figure 2c). In this case,
since the longest path is two transistors, the widths of all
transistors in both the PDNs and PUNs were doubled relative
to the forward oriented inverter (4x the width of a minimally
sized transistor).

VDD VDD

a) b)

IV. SIMULATION RESULTS

Once the datapath gates were designed using our five-step
process, they were constructed and simulated using H-Spice,
as well as WaveView from Synopsys to visualize the
simulation results. Two example simulations are shown in
Figure 3. These simulations represent the datapath equivalent
of a 2-input AND (Figure 3a) and 2-input OR (Figure 3b)
where in both cases signal 4 is treated as the asynchronous
input to the gate and B is the synchronous signal. The
waveforms are set up as follows: the top (green) signal is 40
input, the second (yellow) is the 4/ input. The third (light
blue) is the synchronous B signal, and finally the fourth (red)
and fifth (purple) signals are the logic high and logic low
outputs, respectively. These simulations show full
functionality for an exhaustively tested design. The key result
is that outputs are never set during a NULL wave (i.e. 4/ and
A0 are both logic low) as well as both outputs, logic high and
logic low, are never set high simultaneously. This result is
critical in preserving the functionality of the circuit while
keeping the RTZ characteristic of asynchronous circuits.

V. CONCLUSIONS

This work has shown an alternative method to designing NCL
gates which are able to function in hybrid circuits. These
datapath gates through simulation results from HSpice proved
to be delay-insensitive (DI), meaning the unsynchronized
arrivals of inputs will not affect the functionality of the gate
itself. We have shown a design methodology for
implementing these datapath gates based on combinational
Boolean logic equations. These datapath gates can be used to
convert a portion of a synchronous netlist, based on a critical
path or paths, such that area overhead is kept as minimal as
possible, while maintaining Boolean functionality as well as
introducing the security advantages that NCL gates provide.

REFERENCES

[11 P. Kocher, J. Jaffe, and B. Jun, “Introduction to Differential Power
Analysis and Related Attacks,” 1998.

[2] K. M. Fant and S. A. Brandt, "NULL Convention Logic/sup TM/: a
complete and consistent logic for asynchronous digital circuit
synthesis," Proceedings of International Conference on Application
Specific Systems, Architectures and Processors: ASAP '96, 1996, pp.
261-273.

[3] S. M. Nowick and M. Singh, "Asynchronous Design—Part 1: Overview

VDD

d)

Figure 2: CMOS Designs for Datapath Gates (TH22 and TH12)

(4]

[3]

(6]
(7]

a)

b)

Figure 3: HSpice waveform simulation results via WaveView for a TH22 (a) and TH12 (b) equivalent datapath gate.

and Recent Advances," in IEEE Design & Test, vol. 32, no. 3, pp. 5-18,
June 2015

Fournier J.J.A., Moore S., Li H., Mullins R., Taylor G. (2003) Security
Evaluation of Asynchronous Circuits. In: Walter C.D., Ko¢ C.K., Paar
C. (eds) Cryptographic Hardware and Embedded Systems - CHES 2003.
CHES 2003. Lecture Notes in Computer Science, vol 2779. Springer,
Berlin, Heidelberg.

Wu, Jun, "Null Convention Logic applications of asynchronous design

in nanotechnology and cryptographic security" (2012). Doctoral
Dissertations. 1971.
C.F. Brej, “An automatic synchronous to asynchronous circuit

convertor”, 11th UK Asynchronous Forum, 2001.

A. Branover, R. Kol and R. Ginosar, "Asynchronous design by
conversion: converting synchronous circuits into asynchronous ones,"

(8]

]

[10]

Proceedings Design, Automation and Test in Europe Conference and
Exhibition, 2004, pp. 870-875 Vol.2.

S. Semba and H. Saito, "Comparison of RTL Conversion and GL
Conversion from Synchronous Circuits to Asynchronous Circuits," 2019
IEEE International Symposium on Circuits and Systems (ISCAS), 2019,
pp. 1-4

H. Park and T. Kim, "Synthesizing Asynchronous Circuits toward
Practical Use," 2016 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), 2016, pp. 47-52

Z. Xia, S. Ishihara, M. Hariyama and M. Kameyama, "Dual-rail/single-
rail hybrid logic design for high-performance asynchronous circuit,"
2012 IEEE International Symposium on Circuits and Systems (ISCAS),
2012, pp. 3017-3020

