
2906 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 7, JULY 2022

THx2 Programmable Logic Block Architecture for
Clockless Asynchronous FPGAs

John M. Emmert , Senior Member, IEEE, Anvesh K. Perumalla, Student Member, IEEE,
Tristan J. Hudson , Student Member, IEEE, and Luis M. Concha

Abstract— To address some of the challenges of asynchronous
design, we propose a new, decomposable asynchronous logic block
architecture based on our THx2 programmable threshold cell,
and we use it to implement common threshold functions found
in asynchronous, null convention logic circuits. At a minimum,
programmable gate arrays require a programmable logic cell
that can implement a complete set of logic. It is well known
that a NAND function forms a complete set of logic, and in
null convention logic, the TH12 and TH22 threshold cells are
used to form a basic two-input NAND function. The THx2
threshold cell is capable of performing both TH12 and TH22
operations, so it too forms a complete set of logic. In this paper,
we present our eight-transistor mask-programmable gate array
logic cell, 16-transistor field-programmable gate array logic cell,
and new decomposable field-programmable gate array logic block
architecture, all based on the THx2 threshold cell and suitable
for implementing null convention logic asynchronous functions.
To minimize the THx2 threshold cell area for both TH12 and
TH22 modes, we designed a layout with common Euler paths
and no diffusion breaks for both modes. The highly compact
nature of the THx2 threshold cell–along with the symmetry of
the mask- and field-programmable gate array logic cells–made it
an ideal candidate for an asynchronous field-programmable logic
block structure. This paper is part of an ongoing project, and it
only addresses the programmable logic block architecture, not a
complete FPGA fabric.

Index Terms— Assurance, asynchronous, field-programmable
gate array, mask-programmable gate array, null convention logic,
programmable logic block, security, side-channel attacks, split
manufacturing, threshold gates, trust.

I. INTRODUCTION

SYNCHRONOUS or clocked integrated circuit (IC) sys-
tems are susceptible to side-channel attacks (SCAs), espe-

cially if they are fabricated at untrusted foundries where
malicious Trojan circuits can be inserted. A malicious agent
or entity can use these Trojan circuits to steal sensitive infor-
mation like secret keys by monitoring power consumption,
radiation, or other IC characteristics [1].

Manuscript received October 19, 2021; revised March 20, 2022; accepted
April 12, 2022. Date of publication April 28, 2022; date of current version
June 29, 2022. This work was supported in part by the National Science
Foundation (NSF) Center for Hardware and Embedded Systems Security and
Trust under Grant 1916722. This article was recommended by Associate
Editor E. Blokhina. (Corresponding author: John M. Emmert.)

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Cincinnati, Cincinnati, OH 45221 USA (e-mail:
john.emmert@uc.edu; perumaak@mail.uc.edu; hudsonts@mail.uc.edu;
luis.concha@uc.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2022.3168420.

Digital Object Identifier 10.1109/TCSI.2022.3168420

Fig. 1. Connections for TH12 and TH22 modes of the THx2 cell [5]–[7].

One approach that was previously shown to obfuscate syn-
chronized data leakage and mitigate SCAs is to use clockless
asynchronous digital design [2]–[4]. Clockless asynchronous
logic in the form of programmable gate array (PGA) tech-
nology offers a synergistic set of defenses against SCAs that
include unsynchronized, time distributed internal switching
and very regular physical structures that make it difficult to add
undetectable Trojans during IC fabrication. To simplify asyn-
chronous design and to improve capabilities, we developed
unique PGA logic structures based on our THx2 threshold cell
shown in Fig. 1 [5]–[7]. In Fig. 1, the dotted lines represent
programmable connections that enable the TH12 and TH22
modes of the THx2 threshold cell. To enable the TH12 mode
of THx2, the dotted lines labeled “12” are connected and the
line labeled “22” is disconnected, and the opposite connections
are made for the TH22 mode.

In this paper, we extend our previous work and present
a new field-programmable logic block (LB) architecture for
clockless asynchronous logic design. We leverage our compact
multi-mode programmable THx2 cell and describe the devel-
opment, operation, and analysis of asynchronous functional
structures: THx2 mask-programmable gate array (MPGA),
field-programmable gate array (FPGA) logic cell, and new,
unique decomposable FPGA asynchronous LB (ALB) archi-
tecture. Our ongoing work focuses on using our ALB structure
to implement a fully asynchronous FPGA. It should be noted
that this paper focuses on the ALB architecture, not the
complete asynchronous FPGA architecture. The paper is orga-
nized as follows: in section II, Background, we briefly cover
SCAs, asynchronous THmn threshold gates, null convention
logic (NCL), MPGAs, and decomposable FPGA LBs as they
apply here. In sections III, IV, V, and VI, we describe the

1549-8328 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Cincinnati. Downloaded on June 30,2022 at 14:19:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6074-535X
https://orcid.org/0000-0001-5594-4103

EMMERT et al.: THx2 PROGRAMMABLE LB ARCHITECTURE FOR CLOCKLESS ASYNCHRONOUS FPGAs 2907

development, operation, and analysis of the compact THx2
threshold cell, MPGA, FPGA asynchronous logic cell, and
new decomposable FPGA ALB, respectively, followed by
conclusions in section VII.

II. BACKGROUND

In this section we provide a brief overview of SCAs, asyn-
chronous THmn threshold logic gates, asynchronous NCL,
MPGAs, and decomposable FPGA LBs as they relate to the
new ALB structure and its application.

A. Side-Channel Attacks
One way to describe a Trojan circuit is as an extra circuit

added by the manufacturer during the IC fabrication process.
Trojan circuits can be used in a positive way to provide feed-
back to the manufacturer and designer on the manufacturing
process, but they can also be used maliciously to leak private or
secret information during normal IC operation. Several types
of Trojans have been developed that require minimal area
overhead and are very difficult to detect either during regular
IC testing or IC reverse engineering [8], [9].

Side-channel attacks indirectly monitor signal values by
exploiting existing circuitry or added (Trojan) circuitry to steal
secret or private information. With algorithmic or other system
implementation details, side-channel attacks can leverage elec-
tromagnetic radiation, temperature variations, power usage,
or other operational characteristics to allow an untrusted agent
or entity to indirectly extract private data during normal IC
operation. One common example used to steal secret keys is
a power based SCA that uses a malicious off-chip leakage
enabled side-channel (MOLES) Trojan circuit [10].

One way that has been shown to mitigate this type of SCA
is to leverage asynchronous circuit designs in order to desyn-
chronize or distribute (relative to time) power consumption
[2], [3]. This makes it difficult for the attacker to decipher
power data. Furthermore, researchers have demonstrated asyn-
chronous logic offers greater tamper-resistance to counteract
SCAs [3], [4]. Thus, an asynchronous FPGA/MPGA can be
used to mitigate SCAs.

B. Asynchronous THmn Threshold Gates and NCL

There are many types of asynchronous design tech-
niques ranging from locally clocked to completely clockless
[11]–[17]. Each has its own advantages and disadvantages.
One type of clockless asynchronous logic is NCL [12].
An NCL circuit implementation is self-timed because data
flows through NCL networks in waves [18]. A data wave
is only processed when all input data is available. Since
processing only occurs when data is available, there are no
timing assumptions, and thus NCL guarantees data sequencing
and correct data arrival at the receiver irrespective of various
gate, process, and wire delays [12]. The NCL circuit scheme
uses dual-rail, multi-wire encoding. One wire represents
a logic ‘1’ and one wire a logic ‘0.’ For example, a dual
rail signal A has a logic ‘1,’ A_1, wire and a logic ‘0,’ A_0,
wire.

To process the dual-rail signals, the backbone of NCL asyn-
chronous circuits is the threshold gate [12], [17]. The threshold

Fig. 2. Example THmn threshold gate symbol with n-inputs and threshold m.

gate has the property of hysteresis, and is denoted by THmn,
where the output of the gate is asserted (set) if the gate has
a valid DATA value on m (threshold) of its n-inputs. In other
words when its threshold is met, its output is asserted. The
output stays asserted (hysteresis) until all inputs go back to
NULL in its reset phase [12]. Fig. 2 shows a generic THmn
gate symbol. For practical implementation using only CMOS
transistors, a positive supply voltage (VDD or ‘1’) represents
a DATA value, and a negative supply voltage (GND, VSS,
or ‘0’) represents a NULL value. Our THx2 cell is capable
of implementing both TH12 and TH22 gates, thus forming a
complete set of logic [5]–[7]. It should be noted that besides
being clockless, NCL asynchronous circuits offer advantages
to SCA avoidance that include unsynchronized (distributed in
time) and low power consumption [3], [4].

C. Mask-Programmable Gate Arrays

Mask-programmable gate arrays form a special class of
application specific integrated circuits (ASICs), and they are
manufactured through a two-stage manufacturing process that
can take advantage of split manufacturing [19]–[24]. During
the first stage, all of the lower layers (wells, diffusion, diffusion
vias, poly, etc.) are fabricated. At this stage, a very compact
logic base cell is repeatedly replicated. A requirement of the
base cell is that it forms a complete set of logic, and that way,
by carefully wiring a set of base cells together, any digital
circuit or system can be formed. For conventional digital logic,
the most common base cell is the NAND gate. The NAND
gate forms a complete set of logic, so by wiring NAND gates
together, any digital circuit can be implemented.

For an MPGA circuit implementation, once stage one is
complete, a die or wafer with uncommitted base cells can be
shelved for later use. When a digital IC system is needed,
the base MPGA is taken off the shelf, and during the second
manufacturing stage the rest of the via and metal layers are
added to commit or wire together base cells to form the
desired digital system. This two-stage process allows stage
one to occur at one manufacturing facility, and stage two to
occur at a second manufacturing facility, thus providing the
extra layer of security available through split manufacturing.
We used our THx2 cell as a base cell for an asynchronous
MPGA architecture [6].

D. Field-Programmable Gate Array Logic Blocks

Field-programmable gate arrays or FPGAs can be simply
defined as reprogrammable ASICs, and their architectures and
basic components have been thoroughly studied [25]–[28].
Here, we limit our discussion to LB architectures as they apply
to our ALB architecture. Historically LBs implement digital
combinational logic functions of their inputs, and they often

Authorized licensed use limited to: University of Cincinnati. Downloaded on June 30,2022 at 14:19:59 UTC from IEEE Xplore. Restrictions apply.

2908 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 7, JULY 2022

Fig. 3. Example decomposable LB with two 3LUT logic cells.

contain a synchronous component in the form of a D flip-flop.
The portion of the LB that implements combinational logic
functions can generically be described as a functional unit
or logic cell. Ideally logic cells should be capable of imple-
menting a complete set of logic, and most conventional, non-
asynchronous commercially available FPGAs use one of three
basic logic cell types: look-up tables (LUT), multiplexors,
or programmable logic arrays. We present an asynchronous
logic cell based on our THx2 threshold cell. Our logic cell can
implement a complete set of logic, and the field programmable
version only requires one memory cell (MC) to program it [5].

Most commercially available LBs include multiple logic
cells. This enables them to implement either multiple or
larger logic functions. To make them even more utilitarian,
most LBs are also decomposable. Decomposability allows
multiple logic cells internal to a single LB to be combined to
implement larger logic gates with more inputs. Fig. 3 shows
an example decomposable LB composed of two, three-input
LUT logic cells (3LUTs). With the addition of a two-transistor
multiplexor, the two 3LUTs can be combined into a single
4LUT. The select input, S, of the multiplexor forms the most
significant address bit of the 4LUT, and as shown by the
dotted lines, the three address bits of the 3LUTs can be bitwise
connected to form the three least significant bits of the 4LUT
address. Our new, unique programmable ALB is based on a
decomposable structure that allows us to program not only
multiple THmn functions in a single ALB, but also to combine
THx2 logic cells to form larger THmn functions with more
inputs.

III. ASYNCHRONOUS THx2 THRESHOLD CELL

For additional background to our new ALB, in this section
we briefly describe the design, implementation, and analysis
of the THx2 logic cell or threshold gate [5]–[7]. A basic
requirement for PGA logic structures is a compact logic cell
that forms a complete set of logic. To address this requirement
for our ALB, we presented the transistor diagram of our THx2
cell that is capable of operating in either a TH12 or TH22
mode via simple connection changes in Fig. 1 [5]–[7].

The THx2 cell layout area was optimized by minimizing
diffusion breaks and determining common node positions for
both the TH12 and TH22 modes. To accomplish this, we used
Euler graphs and an attribute of the NMOS transistor in
the small feedback inverter in Fig. 1 [6], [7]. In the TH12
mode, the NMOS transistor in the small feedback inverter is
unnecessary, and by tying both its source and drain nodes

Fig. 4. Topological layouts of the THx2 threshold cell (a) and modes (b), (c).

Fig. 5. 2-D array of THx2 cell for MPGA layout.

to G, we determined the following common Euler path for
the gate nodes of the PMOS and NMOS transistors for both
the TH12 and TH22 threshold gates: B , A, Z , Zb. This led
to the array-able topological layout of the THx2 cell shown
in Fig. 4(a). Fig. 4(b) and Fig. 4 (c) show added connections
for the TH12 and TH22 modes of the THx2 cell, respectively.
The transistor sizing in Fig. 4 is dependent on the target
technology node, and we show sizing for our tests below.
The THx2 threshold cell forms the basis for each of our
asynchronous PGA structures: MPGA, FPGA logic cell, and
decomposable ALB.

IV. ASYNCHRONOUS THx2 MPGA

The THx2 cell from section III readily migrates to a very
regular MPGA structure [6], [7]. The MPGA instantiation of
the THx2 cell not only provides a platform to take advantage
of asynchronous digital design to protect against SCAs, but
implementation as an MPGA provides additional protection as
well. Very regular MPGA structures and split manufacturing
at multiple fabrication facilities make it more difficult for
untrusted agents to insert unnoticed Trojans. We used the
highly compact and very array-able THx2 threshold cell shown
in Fig 4 as the basis for an MPGA architecture.

Fig. 5 shows the overlapping layout topology used to form
the highly compact asynchronous MPGA layout. It should be
noted that the Euler path topology and supply node location
allow three of four sides to overlap. To make use of the THx2
logic cell in an MPGA for implementing digital systems,
we also need a set of standard digital gates, or a library of
digital functions built around the THx2 cell. To accomplish
this, we created both a set of standard asynchronous logic gates
such as NAND, NOR, AND, OR, etc. and a set of standard
threshold gates such as TH12, TH22, TH13, TH23, TH33, etc.
As an example, in Fig. 6 (a) we show how the equations for the
logic ‘0’ output wire, Z_0, and the logic ‘1’ output wire, Z_1,
are determined for a common NCL NAND2 function using a
typical k-map structure [12]. The TH12, A + B , mode of the

Authorized licensed use limited to: University of Cincinnati. Downloaded on June 30,2022 at 14:19:59 UTC from IEEE Xplore. Restrictions apply.

EMMERT et al.: THx2 PROGRAMMABLE LB ARCHITECTURE FOR CLOCKLESS ASYNCHRONOUS FPGAs 2909

Fig. 6. Example THx2 NAND implementation: (a) Example wire connections
for the Z_1 (TH12 mode) and Z_0 (TH22 mode) NAND outputs, and
(b) Example k-map showing the dural-rail NCL Z_1 and Z_0 NAND function.

THx2 cell is used to implement the Z_1 output wire of the
NCL NAND2 output, and similarly, the TH22, A · B , mode
is used to implement the Z_0 output wire. In Fig. 6 (b) we
show the commitment of the two THx2 cells that form the
NCL NAND2 function. Since the NAND2 is a complete set of
logic, this also shows that the THx2 cell forms a complete set
of logic. Other common functions are formed in a similar way.
It should be noted that the library of functions we developed
can be used (if not optimally) with standard computer aided
design (CAD) tools to synthesize behavioral digital designs
or (more optimally) with specialized CAD tools that target
asynchronous designs. The lef, lib, gds2, etc. versions of the
cells are compatible with most standard commercial CAD
tools to synthesize and layout large digital systems or with
specialized CAD tools that specifically target asynchronous
designs.

V. ASYNCHRONOUS THx2 FPGA LOGIC CELL

Similar to the THx2 MPGA logic cell, the FPGA logic cell
is built around the THx2 threshold cell; however, instead of
committing to the TH12 or TH22 mode during fabrication,
we added eight extra transistors to make its mode program-
mable [5], [7]. The compact programmable THx2 FPGA logic
cell is shown in Fig. 7. For completeness, we briefly describe
the operation of the programmable THx2 FPGA logic cell.
A detailed development is provided in [5]. In Fig. 7, the
mode of THx2 is controlled by setting the value of M (and
by default, Mb). A value of M = ‘1’ sets the mode of the
THx2 cell to TH12, and a value of M = ‘0’ sets the mode to
TH22. The value of M is stored in a standard five-transistor
memory cell (Fig. 8). The number and type of each transistor
in Fig. 7 and Fig. 8 were carefully selected to provide a highly

Fig. 7. Transistor diagram of the FPGA THx2 logic cell.

Fig. 8. Five transistor memory cell used for the FPGA THx2 logic cell.

Fig. 9. Symbol for the FPGA THx2 logic cell with programming bit, M.

compact, programmable logic cell suitable for the tight, 2-D
arraying required by FPGAs.

The widths of the transistors in Fig. 7 need to be sized, and
the sizes are dependent on the target technology node. The
width of the NMOS transistor in the output inverter should
be minimized, and the PMOS should be large enough to keep
the rise time similar to the fall. The widths of the two PMOS
HOLD transistors should be set to minimum values since their
function is to HOLD the output when it is not transitioning.
At a minimum, the widths of the devices in the “set to DATA”
and “reset to NULL” sub-circuits in Fig. 7 need to be large
enough to overpower the PMOS HOLD transistors. Otherwise,
their size can be varied to provide faster switching time (larger
width) or vice versa.

VI. THx2 ASYNCHRONOUS FPGA LOGIC BLOCK (ALB)
The compact, multi-mode programmable THx2 FPGA logic

cell (shown in Fig. 7) forms the basic building block of the
new ALB. The symbol for the programmable logic cell with
programming bit M is shown in Fig. 9. Most commercially
available FPGAs include multiple logic cell functional units
in a single LB in order to reduce the number and size of
routing resources and overall FPGA IC area [25]–[28]. One
approach used in the past to determine the number of logic
cell inputs and total number of logic cell units in each LB

Authorized licensed use limited to: University of Cincinnati. Downloaded on June 30,2022 at 14:19:59 UTC from IEEE Xplore. Restrictions apply.

2910 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 7, JULY 2022

was by mapping benchmark (BM) LB circuits to experimental
and switch box models and optimizing equations that describe
circuit metrics like overall average FPGA IC area [28]. Given
the lack of standard asynchronous BM circuits and supporting
CAD tools, we focused on implementing as many standard
asynchronous THmn threshold functions and conventional
logic gate functions as possible in a single ALB.

A. THx2 Decomposable Programmable ALB Development
We considered several topologies with various numbers of

THx2 logic cells and input and output combinations. While
they are not asynchronous BM circuits, the topology we
developed is partially based on analysis of the ISCAS ‘89
and ’99 BM circuits (also known as the ITC ’99 BM circuits)
[29], [30]. We tabulated the total number of combinational
gates with two, three, four, and five-inputs and gate types for
each of the BM circuits, and we used the general structure of
the NCL implementation of those gates to drive the structure
of our ALB. In addition to conventional, standard gates found
in the non-asynchronous BM circuits, we also targeted an
architecture that supports the standard THmn threshold gates
found in most common asynchronous libraries [12]. While
supporting the most common THmn gates, an additional goal
was to enable the THmn gates that appeared most often in the
BM circuits so that it is possible to implement them without
having to combine multiple ALBs together.

We analyzed a total of 58 conventional circuits from the
ISCAS ‘89 and ’99 BM circuits. On average there were
11,900 two-input, 795 three-input, 349 four-input, and
149 five-input gates in each BM circuit. Statistically, 90.2%
were two-input, 6.0% were three-input, 2.6% were four-input,
and 1.1% were five-input logic gates. By combining we see
96.2% of the logic gates were two or three-input gates.
In addition, the analysis of the ‘89 and ’99 ISCAS BM circuits
showed that the majority of the logic gates were simple gates
like AND, OR, NAND, and NOR. These basic gates are imple-
mentable with NCL THmn threshold gates of the form TH1n
and THnn, where n is also the number of logic gate inputs.
Our decomposable ALB architecture shown in Fig. 10 is
designed to optimize the number of these simple logic gates
per ALB. We considered even combinations of THx2 logic
cells in each ALB to accommodate the fact that input and
output signals for NCL logic gates are multi-rail with both a
logic ‘1’ and ‘0’ wire and driving threshold circuit. The ALB
in Fig. 10 can implement two simple, two-input NCL logic
gates with dual-rail input and output signals or one simple,
three-input NCL logic gate. Overall, approximately 96% of
the logic gates in the BM circuits can be implemented in a
single ALB without requiring external routing.

Besides the ISCAS BM circuits, we also analyzed the
standard set of THmn threshold gates found in most asyn-
chronous libraries [31]. We set the number of THx2 logic
cells to four in order to accommodate as many of the standard
THmn threshold gates as possible in a single ALB using as
little external routing as possible. The ALB in Fig. 10 can
implement four, two-input THm2 threshold gates and two,
three-input THm3 threshold gates. A programming example is
shown later in section VI, and Tables I and II provide a general

Fig. 10. Topology of the decomposable asynchronous FPGA LB or ALB.

description of how to program the THx2 decomposable ALB
to implement several standard logic gates and THmn threshold
gates using only a single THx2 ALB. There are a total of
27 fundamental standard NCL gates that are widely used [31].
Each one of these 27 functions can be represented using THx2
gates. As our ALB is made of four THx2 cells, 67% of these
standard NCL gates can be represented using one ALB and
100% of them can be implemented using at most two ALBs.

B. Programming the THx2 Decomposable ALB

Fig. 10 shows the basic topology of the FPGA ALB.
In Fig. 10, the mode of the ALB is set through the concate-
nated multiplexor select signals, S = {S1S0}, and four, THx2
FPGA logic cell programming memory cell (MC) values,
M0–M3.

In Fig. 10, an MC value of ‘1’ enables the TH12 mode
of the FPGA logic cell, and a value of ‘0’ enables the TH22
mode. By setting the concatenated select signal, S, to “11,” the
four FPGA logic cells operate independently as four separate
THx2 cells, and by setting the MCs to appropriate values, one
ALB can implement two independent, two-input simple NCL
logic gates like AND2, OR2, NAND2, and NOR2. It should
be noted that the concept of inversion for NCL logic gates
is captured in the routing of the circuit. An inverted signal
is implemented by crossing the logic ‘1’ and logic ‘0’ wires,
so no additional circuitry is required to implement inverted
or noninverted signals. For example, the exact same TH12
and TH22 gates can be used to implement an AND2 and a

Authorized licensed use limited to: University of Cincinnati. Downloaded on June 30,2022 at 14:19:59 UTC from IEEE Xplore. Restrictions apply.

EMMERT et al.: THx2 PROGRAMMABLE LB ARCHITECTURE FOR CLOCKLESS ASYNCHRONOUS FPGAs 2911

TABLE I

EXAMPLE MODE SETTINGS FOR COMMON ALB NCL LOGIC GATES

NAND2. The only difference between the two instantiations
is the logic ‘1’ and ‘0’ output wires are swapped to achieve
the inverted functionality.

C. THx2 ALB Circuit Operation

To demonstrate operation of the new THx2 ALB and
Table I, we program the MC firmware and concatenated
multiplexor switches, S, of a single ALB to implement two
simple NCL logic functions: NAND2 and OR2. The ALB in
Fig. 10 is broken into two parts. The first part, with MCs
M0 and M1, is programmed to implement a two-input NCL
NAND2 gate, and the second part with MCs M2 and M3,
is programmed to implement a two-input NCL OR2 gate.
To set the ALB to implement two separate, two-input logic
gates, we set S = “11.” In this multiplexor select mode, the
THx2 Zk outputs are functions of the Ij input signal values
and Mk MC values as follows:

0. Z0 = THx2(I0, I1, M0)
1. Z1 = THx2(I2, I3, M1)
2. Z2 = THx2(I4, I5, M2)
3. Z3 = THx2(I6, I7, M3)
Tables I and II show some common logic functions and

THmn threshold gates found in most NCL asynchronous
libraries. They describe the number of instantiations for the
gates in a single ALB and the S and M settings for the

TABLE II

EXAMPLE MODE SETTINGS FOR COMMON
ALB THmn THRESHOLD GATES

functions. The first column of both Tables lists the number
of instances and the logic or threshold gate type. The second
column gives the settings for the concatenated multiplexor
select signals, S = {S1S0}, that set the inputs to each
THx2 cell in the ALB. The third column describes the input
signal assignments for each THx2 input, Ij; the MC mode
settings, Mj; and the THx2 output, Zj, assignments and the
corresponding form of the equation assigned to the outputs.
It should be noted that it is possible to mix modes by carefully
mixing the gate types programmed to each individual THx2

Authorized licensed use limited to: University of Cincinnati. Downloaded on June 30,2022 at 14:19:59 UTC from IEEE Xplore. Restrictions apply.

2912 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 7, JULY 2022

Fig. 11. Example NCL NAND2 and OR2 function using the basic ALB.

cell. The highlighted green section in Table I selects different
input signal assignments.

For the TH12 mode, Z = A + B , of a THx2 cell, the
MC M value is set to ‘1,’ and similarly for the TH22 mode,
Z = A · B , the MC value M is set to ‘0.’ As shown in
Fig. 11, for the NCL NAND2 example, we assign the dual
rail X and Y inputs to I0 – I3 and the F output to Z0 and
Z1. To program the NCL NAND2 function, F_1 = X_0 +
Y _0 and F_0 = X_1 · Y _1, we set M0M1 = “10” implies F :
F_1 = TH12(X_0, Y_0, ‘1’) and F_0 = THx2(X_1, Y_1, ‘0’).
Similarly, for the NCL OR2 function, G_1 = W_1 +Z_1 and
G_0 = W_0 •Z_0, we set M2M3 = “01” implies G: G_1 =
TH12(W_1, Z_1, ‘1’) and G_0 = THx2(W_0, Z_0, ‘0’).

Fig. 11 shows the final IO connections and firmware pro-
gramming for the NCL NAND2 and OR2 examples. More
details on how to use THmn gates to form standard logic
gates like AND, OR, NAND, NOR, XOR, etc. are found
in [12], [31].

D. THx2 ALB Test

To demonstrate the spice simulation of the ALB, we pro-
grammed the firmware (Fig. 10) to instantiate the NAND2
and OR2 NCL logic functions shown in Fig. 11 by writing M
(M0M1M2M3) = “1010” to the MCs. The spice simulations in
Fig. 12 and Fig. 13 show the output waveforms for the NAND2
and OR2, respectively. We used the freely available TSMC
250 nm SCMOS technology [32] and 45nm FreePDK kit [33]
to perform our analysis. For 250nm technology, we used
minimum length, L = 2λ, and width, W = 3λ, for all of
our transistors except for two pull down NMOS transistors,
A and M , in THx2 logic cell, where we set W = 4λ,

Fig. 12. ALB simulation for NCL NAND2 function.

Fig. 13. ALB simulation for NCL OR2 function.

in order to make the effective resistance of the path similar
to that of B . It should be noted that for any target technology
node, transistor sizing can be further optimized to improve
timing; however, our focus was only on demonstrating ALB
functionality. The worst-case delay path in Fig. 10 (I0 →
Z0 → Z1 → Z3) of our ALB using 250nm technology with
VDD = 2.5V is 9.1671e-10 sec (1.09 GHz).

Similarly, for 45nm technology, we used minimum length,
L = 2λ, and width, W = 3λ, for all of our transistors
except five NMOS transistors in the pulldown network in
THx2 logic cell, where we set W = 4λ, to have enough signal
strength to reach the proper output. Also, for this 45nm process
node, multiplexor 2 × 1 is designed as transmission gate
model instead of pass transistors, by adding 2 more additional
PMOS transistors to be able to have enough threshold to reach
to the next stage with proper signal conditioning. We per-
formed various corner case analysis using this process node.

Authorized licensed use limited to: University of Cincinnati. Downloaded on June 30,2022 at 14:19:59 UTC from IEEE Xplore. Restrictions apply.

EMMERT et al.: THx2 PROGRAMMABLE LB ARCHITECTURE FOR CLOCKLESS ASYNCHRONOUS FPGAs 2913

The worst-case delay of our ALB with VDD = 1.0V is in
between 1.86e-10 to 2.97e-10 sec that is 5.37GHz to 3.37GHz.

For the NAND2 mode (Fig. 12), we set the inputs, I0 =
X_0, I1 = Y _0, I2 = X_1, and I3 = Y _1 to NULL (‘0’)
to reset the outputs, Z_0 = F_1 and Z_1 = F_0, to NULL
(‘0’). Then we cycled through all sequence combinations of
the inputs, X and Y , set to DATA and NULL.

Fig. 12 (a) shows the input sequence and expected output
sequence in tabular form, and Fig. 12 (b) shows the actual
input and output waveforms of the simulation. The output
verified that anytime all input values were set to NULL, the
output was also NULL. The first test case for the NAND2 was
XY = “00,” where we expected a NAND2 output of F = ‘1.’
For the dual-rail NCL NAND2, we applied DATA values to
the logic ‘0’ inputs, X_0 and Y _0, of the NAND2 function,
and we saw the expected DATA value on the F_1 NAND2
output and NULL value on the F_0 NAND2 output. We then
cycled the inputs back to all NULL values to reset the outputs
back to NULL values. The next test case we applied was
XY = “01,” where we expected a NAND2 output of F = ‘1.’
For the dual-rail NCL NAND2, we applied a DATA value to
the logic ‘0’ input, X_0, and a DATA value to the logic ‘1’
input, Y _1, of the NAND2 function, and we saw the expected
DATA value on the F_1 NAND2 output and NULL value on
the F_0 NAND2 output. Again, we cycled the inputs back to
all NULL values to reset the outputs back to NULL values.
The third test case we applied was XY = “10,” where we again
expected a NAND2 output of F = ‘1.’ For the dual-rail NCL
NAND2, we applied a DATA value to the logic ‘1’ input,
X_1, and a DATA value to the logic ‘0’ input, Y _0, of the
NAND2 function, and we saw the expected DATA value on
the F_1 NAND2 output and NULL value on the F_0 NAND2
output. Again, we cycled the inputs back to all NULL values to
reset the outputs back to NULL values. Finally, we applied the
XY = “11” test case where we expected a NAND2 output of
F = ‘0.’ For the dual-rail NCL NAND2, we applied DATA
values to the logic ‘1’ inputs, X_1 and Y _1, of the NAND2
function, and we saw as soon as both logic ‘1’ inputs have
DATA on them, the F_0 output switched to the expected
DATA value and the F_1 output remained NULL. Again,
we cycled the inputs back to all NULL values to reset the
outputs back to NULL values.

Similarly, for the OR2 mode (Fig. 13), we set the inputs,
I4 = W_0, I5 = Z_0, I6 = W_1, and I7 = Z_1 to NULL
(‘0’) to reset the outputs, Z_3 = G_1 and Z_2 = G_0 to
NULL (‘0’). Then we cycled through all combinations of the
inputs, W and Z , set to DATA and NULL. Fig. 13(a) shows the
input sequence and expected output sequence in tabular form,
and Fig. 13 (b) shows the actual input and output waveforms
of the simulation. The output verified that anytime all input
values were set to NULL, the output was also NULL. For the
first test case of the OR2, WZ = “00,” we expected an OR2
output of G = ‘0.’ For the dual-rail NCL OR2, we applied
DATA values to the logic ‘0’ inputs, W_0 and Z_0, and we
saw the expected DATA value on G_0 and NULL value on
G_1. We then reset all inputs back to NULL to reset the
outputs. The next test case we applied was WZ = “01,” where

we expected G = ‘1.’ For the dual-rail NCL OR2, we applied
DATA values to inputs W_0 and Z_1, and we saw the expected
DATA value on the G_1 and NULL value on the G_0. Again,
we reset all inputs back to NULL to reset the outputs. The
next test case we applied was WZ = “10,” where we expected
G = ‘1.’ For the dual-rail NCL OR2, we applied DATA values
to inputs W_1 and Z_0, and we saw the expected DATA value
on the G_1 and NULL value on the G_0. Finally, we applied
WZ = “11,” where we expected G = ‘1.’ For the dual-rail NCL
OR2, we applied DATA values to inputs W_1 and Z_1, and
we saw the expected DATA value on the G_1 and NULL value
on the G_0. Last, we cycled the inputs back to all NULLs to
reset the outputs back to NULL values.

The simulation outputs all corresponded to the expected
values for the NCL NAND2 and OR2 logic functions, and thus
validated the THx2 ALB for these two modes. Other similar
simulations validate the other modes shown in Tables I and II.

E. THx2 Decomposable ALB Analysis

The ALB topology shown in Fig. 17 can be implemented
using MCs to store the Sj values, or the Sj values could be
routed and set at runtime for a dynamically reconfigurable
ALB option. Assuming MCs are included for programming
S0 and S1, the four THx2 FPGA logic cell version of the
ALB requires 80 transistors, 4 × 16 = 64 for the four THx2
FPGA logic cells, 6 transistors for the three multiplexors, and
10 transistors for the two MCs to program S0 and S1.

F. Comparison of the ALB

Similar research has been performed to develop pro-
grammable asynchronous FPGAs and asynchronous logic
blocks [34]. To perform a fully comparative asynchronous
FPGA analysis would require a comprehensive set of asyn-
chronous BM circuits and CAD tools shown to optimally
map the BM circuits to the asynchronous FPGA architectures.
While future work includes development of a full FPGA based
on our THx2 ALB architecture, in this work we are only
presenting the ALB. We were able to qualitatively and to a
limited extent quantitatively compare our ALB architecture to
that of a previously presented asynchronous LB [34].

The functional block in [34] implements any function of
four variables and supports carry generation. Its functional
unit consists of address decoder—converts four inputs into
1by16 encoded addresses to access LUT, asynchronous LUT
(ALUT), and XOR output stage. Its ALUT consists of 16 LUT
elements, virtual ground inverter, two PMOS pre-charge tran-
sistors, and two output inverters.

The number of transistors required to implement the ALUT
in [34] is 184, which is significantly higher than our ALB,
which consists of 80 transistors (86 for lower technology
nodes such as 45nm due to transmission gate logic applied
to mux-2 × 1). On a foundational level, their four input
LUT structure is similar to traditional Xilinx LUT except the
output is divided into dual rails, thus making it a pseudo-
asynchronous FPGA. In our case, the ALB structure is used
to implement any of the traditional clockless NCL THmn

Authorized licensed use limited to: University of Cincinnati. Downloaded on June 30,2022 at 14:19:59 UTC from IEEE Xplore. Restrictions apply.

2914 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 7, JULY 2022

gates, making it fully asynchronous and ideal for clockless,
handshake based asynchronous circuits. The earlier work done
in [34] is pioneering relative to asynchronous FPGAs, and
their research laid the groundwork for our simpler, scalable,
decomposable ALB. Again, in this paper we only present
the asynchronous ALB and not a full asynchronous FPGA
architecture. Our future work includes addition of interconnect
logic, BM circuits, and supporting CAD tools to complete a
fully Asynchronous FPGA.

There have also been proposals to use existing synchro-
nous FPGAs to implement asynchronous designs [35], [36].
Their implementations are very resource heavy. For example,
a conventional FPGA requires a minimum of 152 transistors
for each 4-input LUT (where the SRAM memory cells are
based on the 5-transistor model). For a single TH12 threshold
gate, one 4-input LUT or 152 transistors is required, and
that can be compared to 16 transistors for our programmable
THx2 cell. Again, our work focuses on efficient cells for
NCL asynchronous FPGAs, and conventional FPGAs were not
designed for asynchronous circuit implementations.

It should also be noted that multiple copies of our basic
ALB can be included in a single LB to increase the number of
possible THmn threshold logic gates and complete NCL logic
gates that can be implemented in a single LB. For example,
while we can currently implement a four-input NCL logic gate
using our basic ALBs shown in Fig. 11, two of these Fig. 10
units in a single LB would enable a complete four-input NCL
AND, OR, NAND, or NOR gate in a single LB.

Researchers have used quantitative benchmark circuits
available at OpenCores to analyze their FPGA prototypes
[34], [37], [38]. Our future work includes implementing those
BMs on a fully asynchronous FPGA for comparison. We will
also explore the existing CAD tools such as VPR (an open-
source place and route tool for FPGA research) and ACT
(an asynchronous circuit toolkit) to further develop our asyn-
chronous MPGA/FPGA structures [39]–[41].

VII. SUMMARY AND CONCLUSION

There are several advantages to clockless asynchronous dig-
ital design [12]. Some examples include: 1) the asynchronous
nature of clockless logic reduces opportunities for power,
electromagnetic radiation, temperature, and other SCAs, and
digital noise reduction for sensitive, mixed-signal ICs; 2) data
is processed at average speed versus the worst-case clock
speed for synchronous sequential circuits; and 3) the difficult
clock-routing step is eliminated from the IC design flow. Some
common drawbacks include increased logic area, dual rail
wires for all signal nets, and lack of specialized CAD tools
specifically for mapping and optimizing asynchronous circuits.
Given the high number of routing layers in state-of-the-art IC
fabrication nodes, dual rail wires required by asynchronous
techniques like NCL logic is less of a problem; However,
to make asynchronous design more acceptable and common-
place, drawbacks like increased logic area and the need for
specialized CAD tools should be addressed. Overall, it needs
to be easier to implement asynchronous logic technologies
like NCL.

To better enable simple implementation of asynchronous
NCL circuits we have presented PGA structures based on our
eight transistor THx2 threshold logic cell. The main advantage
of the THx2 threshold cell is it forms a complete set of logic,
making it capable of implementing complete digital systems.
Since the eight transistor THx2 cell is so compact and easy to
array, it is very amenable to MPGA structures. Also, since the
majority of most combinational digital logic circuits are based
on two-input gates (as demonstrated by the ISCAS ’89 and ’99
BM circuits), the asynchronous MPGA based on the THx2
cell offers an ideal area efficient, SCA mitigating platform for
circuit implementation.

While the time required to fabricate an MPGA is signif-
icantly shorter than a standard ASIC, it is still sometimes
a limiting factor. Our 16 transistor FPGA logic cell and
new 80 transistor ALB offer a faster alternative to MPGA
NCL asynchronous circuit implementation. The THx2 ALB
is decomposable and very area efficient. It can instantiate
the most commonly used logic gates and THmn threshold
gates in a single ALB, and decomposition enables multiple
gates per ALB. This results in near 100% utilization for
most ISCAS BM circuits. While the MPGA architecture is
fairly complete, we are currently working on a programmable
interconnect structure, switch box, and connector box topology
to complete the FPGA fabric. Once finished, the complete
digital asynchronous FPGA implementation technology will
provide the basis for quick testing and prototyping of NCL
asynchronous circuits. When compared to other digital circuit
technologies, FPGAs can quickly support and satisfy most
prototyping and even implementation platform needs. When
you combine FPGA technology with the protection provided
by asynchronous circuits against malicious attacks and low
power advantages, the asynchronous FPGA becomes a good
choice for many applications. Our future work also includes
a set of optimization and mapping tools to allow behavioral
type designs to be directly mapped to our asynchronous PGA
structures and then evaluating side-channel resistance of our
design.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proc.
Annu. Int. Cryptol. Conf. Springer, 1999, pp. 388–397.

[2] S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor,
“Improving smart card security using self-timed circuits,” in Proc.
8th Int. Symp. Asynchronous Circuits Syst., Silver Spring, MD, USA,
Apr. 2002, pp. 211–218.

[3] J. J. Fournier, S. Moore, H. Li, R. Mullins, and G. Taylor, “Security
evaluation of asynchronous circuits,” in Cryptographic Hardware and
Embedded Systems–(CHES), vol. 2779. Berlin, Germany: Springer,
2003, pp. 137–151, doi: 10.1007/978-3-540-45238-6_12.

[4] K.-S. Chong et al., “Side-channel-attack resistant dual-rail
asynchronous-logic AES accelerator based on standard library cells,”
in Proc. Asian Hardw. Oriented Secur. Trust Symp. (AsianHOST),
Dec. 2019, pp. 1–7.

[5] J. M. Emmert, A. Perumalla, and L. Concha, “An asynchronous FPGA
THx2 programmable cell for mitigating side-channel attacks,” in Proc.
IEEE 63rd Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2020,
pp. 840–843.

[6] J. M. Emmert and A. Perumalla, “An asynchronous MPGA THx2 cell
and architecture for mitigating side-channel attacks,” in Proc. IEEE Nat.
Aerosp. Electron. Conf. (NAECON), Jul. 2019, pp. 232–235.

[7] J. M. Emmert, “Systems and methods for asynchronous programmable
gate array devices,” U.S. Patent Appl. 2 020 033 681 A1, Dec. 2020.

Authorized licensed use limited to: University of Cincinnati. Downloaded on June 30,2022 at 14:19:59 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/978-3-540-45238-6_12

EMMERT et al.: THx2 PROGRAMMABLE LB ARCHITECTURE FOR CLOCKLESS ASYNCHRONOUS FPGAs 2915

[8] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Des. Test Comput., vol. 27, no. 1,
pp. 10–25, Jan./Feb. 2010.

[9] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware trojan
attacks: Threat analysis and countermeasures,” Proc. IEEE, vol. 102,
no. 8, pp. 1229–1247, Aug. 2014, doi: 10.1109/JPROC.2014.2334493.

[10] L. Lin, W. Burleson, and C. Parr, “MOLES: Malicious off-chip leakage
enabled by side-channels,” in IEEE/ACM Int. Conf. Comput.-Aided
Design-Dig. Tech. Papers, Nov. 2009, pp. 117–122.

[11] R. Sridhar, “Asynchronous design techniques,” in Proc. 5th Annu. IEEE
Int. ASIC Conf. Exhibit, Sep. 1992, pp. 296–300.

[12] K. Fant and S. Brandt, “NULL Convention Logic: A complete and
consistent logic for asynchronous digital circuit synthesis,” in Proc. Int.
Conf. Appl. Specific Syst., Archit. Processors, Aug. 1996, pp. 261–273.

[13] S. Hauck, “Asynchronous design methodologies: An overview,” Proc.
IEEE, vol. 83, no. 1, pp. 69–93, Jan. 1995, doi: 10.1109/5.362752.

[14] S. M. Nowick and M. Singh, “Asynchronous design—Part 1: Overview
and recent advances,” IEEE Des. Test, vol. 32, no. 3, pp. 5–18, Jun. 2015,
doi: 10.1109/MDAT.2015.2413759.

[15] S. M. Nowick and M. Singh, “Asynchronous design—Part 2: Sys-
tems and methodologies,” IEEE Des. Test, vol. 32, no. 3, pp. 19–28,
Jun. 2015, doi: 10.1109/MDAT.2015.2413757.

[16] M. Alain, “The design of an asynchronous microprocessor,” Tech. Rep.,
1989.

[17] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, “Asyn-
chronous design using commercial HDL synthesis tools,” in Proc. 6th
Int. Symp. Adv. Res. Asynchronous Circuits Syst. (ASYNC), Apr. 2000,
pp. 114–125, doi: 10.1109/ASYNC.2000.836983.

[18] S. C. Smith, R. F. DeMara, J. S. Yuan, D. Ferguson, and D. Lamb,
“Optimization of NULL convention self-timed circuits,” Integration,
vol. 37, no. 3, pp. 135–165, 2004, doi: 10.1016/j.vlsi.2003.12.004.

[19] C. Abraham and S. Chiao, “The FPGA to MPGA ASIC conversion
process,” in Proc. 40th Midwest Symp. Circuits Syst. Dedicated Memory
Professor Mac Van Valkenburg, vol. 2, Aug. 1997, pp. 1426–1429, doi:
10.1109/MWSCAS.1997.662351.

[20] D. Marple and L. Cooke, “An MPGA compatible FPGA architecture,”
in Proc. IEEE Custom Integr. Circuits Conf., May 1992, p. 4, doi:
10.1109/CICC.1992.591107.

[21] L. Pileggi et al., “Exploring regular fabrics to optimize the performance-
cost trade-off,” in Proc. 40th Conf. Design Autom. (DAC), 2003,
pp. 782–787.

[22] K. Vaidyanathan, R. Liu, E. Sumbul, Q. Zhu, F. Franchetti, and
L. Pileggi, “Efficient and secure intellectual property (IP) design with
split fabrication,” in Proc. IEEE Int. Symp. Hardware-Oriented Secur.
Trust (HOST), May 2014, pp. 13–18, doi: 10.1109/HST.2014.6855561.

[23] J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing
secure?” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2013,
pp. 1259–1264, doi: 10.7873/DATE.2013.261.

[24] K. Xiao, D. Forte, and M. M. Tehranipoor, “Efficient and secure split
manufacturing via obfuscated built-in self-authentication,” in Proc. IEEE
Int. Symp. Hardw. Oriented Secur. Trust (HOST), May 2015, pp. 14–19,
doi: 10.1109/HST.2015.7140229.

[25] S. Trimberger, Field Programmable Gate Array Technology. Springer,
1994.

[26] (2021). [Online]. Available: https://www.xilinx.com
[27] (2021). [Online]. Available: https://www.altera.com
[28] J. Rose et al., “Architecture of field-programmable gate arrays,” Proc.

IEEE, vol. 81, no. 7, pp. 1013–1029, Jul. 1993.
[29] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks

and first ATPG results,” IEEE Des. Test Comput., vol. 17, no. 3,
pp. 44–53, Jul./Sep. 2000.

[30] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Proc. IEEE Int. Symp. Circuits Syst.,
May 1989, pp. 1929–1934.

[31] S. Smith and J. Di, Designing Asynchronous Circuits Using NULL
Convention Logic (NCL). Morgan & Claypool, 2009.

[32] NCSU Cadence Design Kit. [Online]. Available: https://www.eda.
ncsu.edu/wiki/NCSU_CDK

[33] NCSU FreePDK45. [Online]. Available: https://eda.ncsu.edu/
freepdk/freepdk45/

[34] J. Teifel and R. Manohar, “Highly pipelined asynchronous FPGAs,” in
Proc. ACM/SIGDA 12th Int. Symp. Field Program. Gate Arrays (FPGA),
New York, NY, USA, 2004, pp. 133–142, doi: 10.1145/968280.968300.

[35] C. Pham-Quoc and A.-V. Dinh-Duc, “New approaches to design asyn-
chronous circuits on FPGAs,” in Proc. Int. Conf. Adv. Technol. Commun.,
Oct. 2009, pp. 63–67, doi: 10.1109/ATC.2009.5349341.

[36] Q. T. Ho, J. Rigaud, L. Fesquet, M. Renaudin, and R. Rolland,
“Implementing asynchronous circuits on LUT based FPGAs,” in
Proc. 12th Int. Conf. Field Program. Logic Appl. Berlin, Germany:
Springer-Verlag, 2002, pp. 36–46.

[37] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2,
pp. 203–215, Feb. 2007, doi: 10.1109/TCAD.2006.884574.

[38] OpenCores. [Online]. Available: https://opencores.org/
[39] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool

for FPGA research,” in Proc. 7th Int. Workshop Field Program. Logic
Appl. (FPL), Berlin, Germany: Springer-Verlag, 1997, pp. 213–222.

[40] S. Ataei et al., “An open-source EDA flow for asynchronous
logic,” IEEE Des. Test, vol. 38, no. 2, pp. 27–37, Apr. 2021, doi:
10.1109/MDAT.2021.3051334.

[41] R. Manohar, “An open source design flow for asynchronous cir-
cuits,” in Proc. Government Microcircuit Appl. Crit. Technol. Conf.
(GOMACTech), Mar. 2019.

John M. (Marty) Emmert (Senior Member, IEEE)
was born in Lexington, KY, USA. He received the
B.Sc. degree in electrical engineering from the Uni-
versity of Kentucky, the M.Sc. degree in electrical
engineering from the Air Force Institute of Tech-
nology, and the Ph.D. degree in computer science
and engineering from the University of Cincinnati.
He is currently a Professor with the Department
of Electrical Engineering and Computer Science,
University of Cincinnati, and the Director of the
NSF Center for Hardware and Embedded Systems

Security and Trust (CHEST) I/UCRC. He is also a Graduate of the Air War
College and a retired Colonel from the U.S. Air Force Reserves.

Anvesh K. Perumalla (Student Member, IEEE)
received the M.Sc. degree in electrical engineering
from Wright State University and the Ph.D. degree in
computer engineering from the University of Cincin-
nati. He is currently a Post-Doctoral Researcher
with the Department of Electrical Engineering and
Computer Science, University of Cincinnati. His
current research focus is on hardware security topics,
such as physically unclonable functions, counterfeit
IC detection, FPGA reverse engineering, and asyn-
chronous circuit design methodologies.

Tristan J. Hudson (Student Member, IEEE)
received the M.Sc. degree in computer engineer-
ing from the University of Cincinnati, where he
is currently pursuing the Ph.D. degree with the
Department of Electrical Engineering and Computer
Science. His research focus on FPGAs, hardware
security and trust, and asynchronous digital design.

Luis M. Concha was born in Dayton, OH, USA.
He received the B.Sc. and M.Sc. degrees in electrical
engineering from Wright State University. He is
currently the Managing Director of the NSF Center
for Hardware and Embedded Systems Security and
Trust (CHEST) I/UCRC. Before that, he served for
32 years as an Air Force Civil Servant in a wide
range of engineering and leadership roles at the Air
Force Research Laboratory and the Air Force Life
Cycle Management Center. He is a Graduate of the
Air War College and an Excellence in Government

Senior Fellow. He has been awarded the Air Force Outstanding Civilian Career
Medal.

Authorized licensed use limited to: University of Cincinnati. Downloaded on June 30,2022 at 14:19:59 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JPROC.2014.2334493
http://dx.doi.org/10.1109/5.362752
http://dx.doi.org/10.1109/MDAT.2015.2413759
http://dx.doi.org/10.1109/MDAT.2015.2413757
http://dx.doi.org/10.1109/ASYNC.2000.836983
http://dx.doi.org/10.1016/j.vlsi.2003.12.004
http://dx.doi.org/10.1109/MWSCAS.1997.662351
http://dx.doi.org/10.1109/CICC.1992.591107
http://dx.doi.org/10.1109/HST.2014.6855561
http://dx.doi.org/10.7873/DATE.2013.261
http://dx.doi.org/10.1109/HST.2015.7140229
http://dx.doi.org/10.1145/968280.968300
http://dx.doi.org/10.1109/ATC.2009.5349341
http://dx.doi.org/10.1109/TCAD.2006.884574
http://dx.doi.org/10.1109/MDAT.2021.3051334

