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1. Introduction

A fundamental problem in computational algebra is primary decomposition: given an ideal, find the 
associated primes, and express the ideal as an intersection of primary components. When the ideal is 
radical, this corresponds geometrically to decomposing an algebraic variety into a union of irreducible 
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Algorithms implemented in computer algebra systems (Gianni et al. (1988), Shimoyama and 
Yokoyama (1996), Eisenbud et al. (1992), Decker et al. (1999)) perform primary decomposition for 
ideals in polynomial rings by producing a set of ideal generators for each primary component. Al-
though providing generators is the most direct way to represent a primary ideal, in practice it is 
often infeasible to compute primary decomposition this way, e.g. due to the size of the generators. 
Thus it makes sense to seek an alternative approach to primary decomposition which can harness the 
power of numerical methods. The natural setting for this is numerical algebraic geometry (Sommese et 
al. (2005); Sommese and Wampler (2005)), which provides a suite of algorithms for computing with 
complex algebraic varieties using numerical techniques. For certain tasks, numerical methods may 
solve problems that are difficult for typical symbolic methods. As an example, numerical irreducible 
decomposition Sommese et al. (2001) has been used to decompose varieties that were outside the 
feasible range of symbolic algorithms; see for instance Bates and Oeding (2011); Hauenstein et al. 
(2018).

In contrast to the description by a set of generators, a primary ideal I can be described by two 
pieces of data: its minimal prime 

√
I (or geometrically, the variety V (I)), and the multiplicity structure

of I over 
√

I . One can describe the multiplicity structure of I via associated differential operators on 
V (I):

Definition 1.1. A set N of differential operators with polynomial coefficients is called a set of Noetherian 
operators for I if f ∈ I ⇐⇒ D • f ∈ √

I ∀D ∈ N .

The idea of representing a (primary) ideal in a polynomial ring via a dual set of differential op-
erators is both natural and classical, dating back to Macaulay (who introduced inverse systems in 
Macaulay (1916)) and Gröbner (1938). Since their introduction in Palamodov (1970), Noetherian oper-
ators have been sporadically studied in the literature: Oberst (1999), Sturmfels (2002), Nonkań (2013), 
and Cid-Ruiz et al. (2020). Symbolic algorithms to compute Noetherian operators were developed and 
implemented in Damiano et al. (2007) and Cid-Ruiz et al. (2020).

Our contribution consists of new algorithms to compute a set of Noetherian operators representing 
a primary ideal, as well as theoretical results leading up to them. We develop two algorithms: one 
using exact symbolic computation (Algorithm 1) and the other based on hybrid symbolic-numeric 
methods of numerical algebraic geometry (Algorithm 6).

Our symbolic algorithm follows a path started by Macaulay (1916) reducing the problem to linear 
algebra. The potential of this approach is that the body of work in this direction may be adapted 
to computation of Noetherian operators; for instance, optimizations of the algorithm as in Mourrain 
(1997) are possible. However, it is important to emphasize that the classical Macaulay dual space 
(inverse system) approach addresses the case of a rational point, to which there is no straightforward 
reduction in general. We define the local dual space, which coincides with Macaulay dual space in the 
case of a rational point, and develop the theory that underpins an algorithm analogous to the classical 
case.

Our numerical algorithm may solve problems that are out of reach for purely symbolic tech-
niques (cf. e.g. Example 4.7). Given an ideal with no embedded components, our numerical algorithm 
combined with numerical irreducible decomposition leads to numerical primary decomposition (Algo-
rithm 7): i.e. a numerical description of all components of the ideal, which e.g. enables a probabilistic 
membership test.

Numerical irreducible decomposition algorithms are efficient but set-theoretic in nature. In con-
trast, numerical detection of embedded components, studied in Leykin (2008); Krone and Leykin 
(2017b), is a rather difficult task. Our procedures for describing primary components via Noetherian 
operators assume that the associated primes of the ideal have already been discovered. Moreover, our 
algorithms rely on primes being isolated, i.e. not embedded (see Remark 3.5) and therefore do not 
address the problem of finding embedded components. Nevertheless, it will be interesting to study in 
the future whether Noetherian operators can make a contribution here.

The paper is organized as follows. Section 2 gives a gentle introduction to Noetherian operators 
and classical dual spaces. Section 3 generalizes the definition of a dual space to nonrational points and 
2
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develops theory that leads to a symbolic algorithm based on Macaulay matrices. Section 4 deals with 
specialization and interpolation of Noetherian operators, leading to a numerical algorithm for comput-
ing Noetherian operators as well as an algorithm for numerical primary decomposition. Section 4.1
proposes a hybrid algorithm that uses numerical information to accelerate the symbolic computa-
tion of Noetherian operators. Section 5 concludes with general properties of Noetherian operators for 
nonprimary ideals.

Algorithms are implemented in Macaulay2 (Grayson and Stillman, 2002), and the software is avail-
able on GitHub.1

2. Preliminaries

Let K be a field of characteristic 0 and R := K[x] = K[x1, . . . , xn] a polynomial ring over K. 
For numerical applications our focus will be on the case K = C, as implementations of numerical 
methods generally use floating point approximations of complex numbers to some fixed precision. On 
the other hand, our symbolic algorithms do not assume that K is algebraically closed. We often take 
K =Q in examples.

2.1. Sets of Noetherian operators

In Definition 1.1 we consider an ideal I ⊆ R and a set N of differential operators in

W R := R〈∂1, . . . , ∂n〉, where ∂i := ∂

∂xi
,

the noncommutative ring of differential operators with coefficients in R , known as the n-dimensional 
Weyl algebra over R . The differential operators ∂1, . . . , ∂n are K-linear endomorphisms of R satisfying 
the relations [∂i, x j] := ∂i x j − x j∂i = δi j .

Remark 2.1 (Ideal membership test). Let V (I) ⊆Kn be the affine variety defined by I . A set of Noethe-
rian operators N = {D1, . . . , Dr} for I gives a probabilistic test for determining if a polynomial f is in 
I or not, assuming an oracle for sampling a random point from V (I) (according to some reasonable 
distribution). The set {D1 • f , . . . , Dr • f } is contained in 

√
I if and only if f ∈ I . If p ∈V (I) is general, 

then (Di • f )(p) evaluates to zero for all i = 1, . . . , r if and only if f ∈ I .

If I = √
I is radical, then the singleton {1} is a set of Noetherian operators for I . The case of most 

interest is when I is primary, but not radical. In this case, a minimal set of Noetherian operators 
for I has more than one element. Although such a set need not be unique, its cardinality equals the 
multiplicity of I over 

√
I , which is the ratio e(I)/e(

√
I) of their Hilbert-Samuel multiplicities, see the 

proof of Theorem 4.1.

Example 2.2. Let I = ((x + y + 1)m) ⊆ K[x, y], a primary ideal. Then the sets N1 = {1, ∂x, . . . , ∂m−1
x }

and N2 = {1, ∂y, . . . , ∂m−1
y } are both minimal sets of Noetherian operators for I .

Note that the generator of I in expanded form consists of 
(m+2

2

)
monomials with integer coeffi-

cients that grow with m. On the other hand, both N1 and N2 are much simpler expressions of size 
m; moreover, either of them, together with the radical 

√
I = (x + y + 1), describes the ideal I fully.

For our numerical algorithm one may not even have generators for the radical of I available, 
which is the case in Example 4.7. Moreover, the input can be a set of generators of an ideal (for 
which I is a component) which are only available as black-box differentiable evaluation routines. We 
mention this here to preempt the common assumption in classical computational algebraic geometry 
that polynomials are always represented as sums of their monomial terms.

1 NoetherianOperators codebase: https://github .com /haerski /NoetherianOperators.
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2.2. Dual spaces

We start by reviewing the classical theory of Macaulay dual spaces. The dual space R∗ is by 
definition the K-vector space dual of R , i.e. the K-vector space of K-linear functionals R → K. 
Let p = (p1, . . . , pn) ∈ Kn be a K-rational point. The polynomials {(x − p)α := (x1 − p1)

α1 · · · (xn −
pn)αn }α∈Nn form a K-basis of R . Let evp : R → K denote the evaluation functional at p, and 
mp := (x1 − p1, . . . , xn − pn) the maximal ideal in R associated to the point p. Note that evp coincides 
with the natural surjection R � R/mp ∼=K.

Post-composing differential operators with the evaluation functional produces new functionals. Let 
∂p,i denote the functional evp ◦ ∂i , and for a multi-index α = (α1, . . . , αn) ∈Nn let

∂α
p : R → K

f �→ (evp ◦ ∂
α1
1 ◦ · · · ◦ ∂

αn
n )( f ).

The elements of R∗ can be expressed as formal power series in the ∂p,i , and we write R∗ :=
K�∂p� =K�∂p,1, . . . , ∂p,n�. The K-linear span of {∂α

p }α∈Nn will be denoted K[∂p].

Definition 2.3. Let I ⊆ R be an ideal. The orthogonal complement of I is the K-vector subspace of R∗

I⊥ := {D ∈ R∗ | D( f ) = 0 for all f ∈ I}.
If D is a K-vector subspace of R∗ , then the orthogonal complement of D is the K-vector subspace of 
R

D⊥ := { f ∈ R | D( f ) = 0 for all D ∈ D}.

Proposition 2.4. For any ideals I, J ⊆ R we have:

(1) I ⊆ J ⇐⇒ I⊥ ⊇ J⊥
(2) (I + J )⊥ = I⊥ ∩ J⊥
(3) I⊥⊥ = I .

Note that R∗ has a natural R-module structure given by

f · � : R → K

g �→ �( f g)

for f , g ∈ R , � ∈ R∗ . The basis {(x − p)α}α of R acts on {∂α
p }α ⊆ R∗ in the following way:

(xi − pi) · ∂α
p = αi∂

α1
p,1 · · · ∂αi−1

p,i · · · ∂αn
p,n

We say that a K-subspace D ⊆ R∗ is closed under the R-action if D is an R-submodule of R∗ . In 
general, D is an R-submodule of R∗ iff D⊥ is an R-submodule of R , i.e. an ideal of R .

3. A symbolic approach via Macaulay matrices

3.1. Dual spaces at nonrational points

Next, we provide a generalization of dual spaces for nonrational points. For any R-algebra A, set 
W A := A ⊗R W R , where W R := R〈∂1, . . . , ∂n〉 is the Weyl algebra over R (as in Section 2.1). There is 
a natural action • : W R × R → R given by xi • f = xi f and ∂i • f = ∂ f

∂xi
, which induces a natural 

K-bilinear pairing

〈·, ·〉A : W A × R → A (1)
4
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This pairing is A-linear in the first argument, and makes the diagram

W R × R R

W A × R A

•

〈·,·〉A

commute. It can be viewed as follows: for any f ∈ R , 〈∂i, f 〉A is the image of ∂ f
∂xi

in A. We will often 
omit the subscript in 〈·, ·〉A when A is clear from context.

Definition 3.1. Let I ⊆ R be an R-ideal, and P ⊆ R a prime ideal with residue field κ(P ) := R P /P R P . 
The local dual space of I at P , denoted D P [I], is the K-vector subspace orthogonal to I with respect to 
the pairing 〈·, ·〉κ(P ) , that is

D P [I] := {D ∈ Wκ(P ) | 〈D, f 〉κ(P ) = 0 for all f ∈ I}.

This generalizes the definition of local dual spaces in Krone and Leykin (2017a). Note that by κ(P )-
linearity of 〈·, ·〉κ(P ) in the first argument, D P [I] is also a κ(P )-vector space. We call the R-module 
action induced by the κ(P )-vector space structure on D P [I] the left R-module action. We can also 
define a right R-module action on D P [I] analogous to the R-action on I⊥ , namely via

〈D · g, f 〉 = 〈D, g f 〉
for D ∈ D P [I] and f , g ∈ R . These actions give D P [I] the structure of a R-bimodule, cf. Cid-Ruiz et al. 
(2020) for a treatment along these lines. Analogous to Proposition 2.4, one has:

Proposition 3.2. Let I, J ⊆ R be ideals and P ⊆ R a prime. Then

(1) If I ⊆ J , then D P [I] ⊇ D P [ J ]
(2) D P [I + J ] = D P [I] ∩ D P [ J ]
(3) The following are equivalent:

(a) D P [I] �= 0
(b) 1 ∈ D P [I]
(c) I ⊆ P .

Proof. (3)((a) ⇒ (b)): This follows from the following facts: (i) D P [I] is closed under taking brackets 
[·, f ] with any f ∈ R , and (ii) [∂m

i , xi] = m∂m−1
i for any i, m. Thus if D P [I] �= 0, then (by iteratively 

taking brackets) it must also contain a nonzero operator of ∂-degree 0, and hence also 1 ∈ Wκ(P ) . �
Remark 3.3. When the prime corresponds to a rational point, Definition 3.1 agrees with the classical 
dual space: indeed, when P = mp , the K-vector spaces D P [I] and I⊥ ∩K[∂p] are naturally isomorphic.

We will show (Theorem 3.10) that one can obtain Noetherian operators for a primary ideal Q ⊆ R
by computing a κ(P )-basis of D√

Q [Q ]. A natural question that arises is, for a nonprimary ideal, 
whether one can compute Noetherian operators of a primary component without requiring generators 
of the primary component. This is indeed the case for isolated components:

Proposition 3.4. Let I ⊆ R be an ideal, let P ⊆ R be a minimal prime of I , and let Q be the P -primary 
component of I . Then D P [I] = D P [Q ].

Proof. We follow (Gianni and Mora, 1987, Theorem 7.31). The inclusion D P [Q ] ⊆ D P [I] follows from 
Proposition 3.2(1). For the opposite inclusion, we use the following characterization of the P -primary 
component Q :
5
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Q = { f ∈ R | ∃g ∈ R \ P such that g f ∈ I}. (2)

Given D ∈ D P [I], we show by induction on the ∂-degree of D that D ∈ D P [Q ]. If the ∂-degree is 
0, then D ∈ R . Let f ∈ Q , and choose g as in (2). Then 0 = 〈D, g f 〉 = g〈D, f 〉, hence 〈D, f 〉 = 0 (as 
g /∈ P ).

Now let the ∂-degree of D ∈ D P [I] be d > 0, and assume the result for ∂-degree < d. Let f ∈ Q \ I , 
and choose g as in (2). Note that the operator ρ := [D, g] = D · g − g · D is in D P [I] and the ∂-degree 
of ρ is < d (cf. the proof of Proposition 3.2). Then 0 = 〈D, g f 〉 = 〈D · g, f 〉 = g〈D, f 〉 + 〈ρ, f 〉. By 
induction 〈ρ, f 〉 = 0, so g〈D, f 〉 = 0, hence D ∈ D P [Q ]. �
Remark 3.5. Proposition 3.4 relies on P being a minimal prime of I , in multiple ways. If P is an 
embedded prime of I , then a P -primary component of I is never unique, and no such characterization 
as in (2) exists. Moreover, in this case D P [I] is infinite-dimensional as a K-vector space, so there does 
not exist a finite K-basis of D P [I] to represent the multiplicity structure of I .

3.2. Zero-dimensional primary ideals

Throughout this subsection, I denotes a zero-dimensional primary ideal in R =K[x], with P :=√
I .

3.2.1. Primary ideals over a rational point
The simplest case is when P = mp for some p ∈Kn . The duality for mp-primary ideals is summa-

rized in the following:

Theorem 3.6 (Marinari et al. (1993), Theorem 2.6). There is a bijection between mp-primary ideals I ⊆ R
and finite dimensional subspaces D ⊆K[∂p] closed under the right R-action. The correspondence is given by 
I �→ I⊥ and D �→D⊥ . Moreover dimK(I⊥) = deg(I) = dimK(R/I) and deg(D⊥) = dimK(D).

We describe how to obtain a set of Noetherian operators for an mp -primary ideal I . First, compute 
a dual basis D1, . . . , Dm of I⊥ , where Di ∈K[∂p,1, . . . , ∂p,n]. Let Ni ∈ W R be the Weyl algebra element 
obtained by replacing ∂p,i with ∂i . Then {N1, . . . , Nm} is a set of Noetherian operators for I: if f ∈ I , 
then 0 = Di( f ) = (Ni • f )(p), which implies Ni • f ∈ mp for all i. Conversely, if Ni • f ∈ mp for all i, 
then Di( f ) = 0 for all i, hence f ∈ I⊥⊥ = I .

3.2.2. Primary ideals over a nonrational point
Next, assume P �= mp for any p ∈Kn , i.e. P does not correspond to any K-rational point (this hap-

pens only when K is not algebraically closed). If K is the algebraic closure of K, then the extension 
PK of P to K[x1, . . . , xn] is still zero-dimensional and radical, but is no longer prime.

Proposition 3.7. Let P ⊆ R be a maximal ideal, and � ∈ R a linear form such that �(p) �= �(q) for all p �= q ∈
V (PK). Then:

(1) (Shape lemma) There exist univariate polynomials g, g1, . . . , gn over K such that

P = (g(�), x1 − g1(�), . . . , xn − gn(�)).

Furthermore, deg(gi) < deg(g) = deg(P ).
(2) For p ∈V (PK), the field κ(P ) = R/P is the smallest extension of K containing all coordinates of p.

Proof. (1) See e.g. (Gianni and Mora, 1987, Proposition 1.6) for a proof of the Shape Lemma.
(2) It follows from (1) that

κ(P ) = K[x1, . . . , xn]
(g(�), x1 − g1(�), . . . , xn − gn(�))

∼= K[�]
(g(�))

=: K(β),
6



J. Chen, M. Härkönen, R. Krone et al. Journal of Symbolic Computation 110 (2022) 1–23

�

where β is a solution to g(�) = 0. Thus V (PK) contains the point (g1(β), . . . , gn(β)) ∈ K
n

. On 
the other hand, the maximal ideal in K[x] associated to p contains a linear factor of g(�), so any 
subfield of K/K containing all coordinates of p contains an isomorphic copy of κ(P ). �

Let p ∈ V (PK) be as in Proposition 3.7.2, and let mp ⊆ κ(P )[x] be the associated maximal ideal, 
which is a minimal prime of Pκ(P ) that is now rational over the larger field κ(P ). Then κ(P ) = κ(mp), 
so Wκ(P ) = Wκ(mp) . This allows for comparison of local dual spaces at P and mp . Note however that 
even though κ(P ) = κ(mp), there are distinct pairings

〈_, _〉κ(P ) : κ(P )[∂] ×K[x] → κ(P )

〈_, _〉κ(mp) : κ(mp)[∂] × κ(P )[x] → κ(mp)

arising over different base rings K[x] and κ(P )[x]. However, they do agree on the restriction of 
κ(P )[x] to K[x], in the sense that 〈D, f 〉κ(P ) = 〈D, f 〉κ(mp) for f ∈K[x]. In particular:

Lemma 3.8. The κ(P )-vector spaces Dmp [Iκ(P )] and D P [I] are equal.

Proof. The inclusion Dmp [Iκ(P )] ⊆ D P [I] is clear since I = Iκ(P ) ∩ K[x]. For the other inclusion, let 
D ∈ D P [I]. Let κ(P ) be generated by {1, k2, . . . , ke} over K. If I = ( f1, . . . , fr), then Iκ(P ) is also 
generated by f1, . . . , fr in κ(P )[x]. Hence any element g ∈ Iκ(P ) is of the form g = ∑

i gi f i for some 
gi ∈ κ(P )[x], where the gi themselves are of the form gi = ∑

j gi, jk j for some gi, j ∈ K[x]. Then as 
gi, j f i ∈ I ⊂K[x],

〈D, g〉mp =
r∑

i=1

〈D, gi f i〉κ(mp) =
r∑

i=1

e∑
j=1

k j〈D, gi, j f i〉κ(mp) =
r∑

i=1

e∑
j=1

k j〈D, gi, j f i〉κ(P ) = 0.

Just as in Theorem 3.6, there is also a correspondence theorem given in Marinari et al. (1993) for 
zero-dimensional primary ideals that are not primary to a rational point.

Proposition 3.9 (Marinari et al. (1993), Proposition 2.7). Let P ⊆ K[x] be a maximal ideal, and assume P �=
mq for any q ∈ Kn. Let Pκ(P ) be the extension of P in κ(P )[x], and let mp be a minimal prime of Pκ(P ) (for 
some p ∈ κ(P )n). There is a bijection between P -primary ideals I ⊆ K[x] and finite dimensional subspaces 
D ⊆ κ(P )[∂p] closed under the right κ(P )[x]-action, given by

I �→ Dmp [Iκ(P )] ∼= {D ∈ κ(P )[∂p] | D( f ) = 0 for all f ∈ Iκ(P )} ∼= Q ⊥

D �→ { f ∈ κ(P )[x] | D( f ) = 0 for all D ∈ D} ∩K[x] ∼= D⊥ ∩K[x],
where Q ⊆ κ(P )[x] is the mp-primary component of Iκ(P ) .

Proposition 3.9 links our Definition 3.1 to the classical Macaulay dual spaces: the local dual space 
of I at P corresponds to a finite dimensional space of linear functionals over a field extension where 
P contains rational point solutions. The connection to Noetherian operators is described in the fol-
lowing:

Theorem 3.10. Let P ⊆ R be a maximal ideal, and I ⊆ R a P -primary ideal.

(1) If {Di}i spans D P [I] (as a κ(P )-vector space), then any preimages {Ni}i ⊆ W R of {Di}i is a set of Noethe-
rian operators for I .

(2) Conversely, if {Ni}i ⊆ W R is a set of Noetherian operators for I , then their images in Wκ(P ) span D P [I].

Proof. (1) One has Ni • f ∈ P ⇐⇒ 〈Di, f 〉 = 0 for f ∈ R . If f ∈ I , then 〈Di, f 〉 = 0, so Ni • f ∈ P for 
all i. Conversely, if f ∈ R \ I , then f /∈ Iκ(P ) , so 〈Di, f 〉 �= 0 for some i.
7
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(2) Let Di be the image of Ni in Wκ(P ) , and let D be the κ(P )-span of {Di}i . Then D ⊆ D P [I], and if 
D �= D P [I], then D⊥ � D P [I]⊥ = I by Proposition 3.9. Then any g ∈D⊥ \ I satisfies Ni • g ∈ P for 
all i, which is impossible since {Ni}i are Noetherian operators for I . �

Corollary 3.11. Let P ⊆ R be a maximal ideal, and I ⊆ R a P -primary ideal. The set {Ni}i ⊆ W R is a minimal 
set of Noetherian operators for I if and only if the set of their images {Di}i ⊆ Wκ(P ) is a basis of D P [I]. 
Conversely, the set {Di}i ⊆ Wκ(P ) is a basis of D P [I] if and only if any preimages {Ni}i ⊆ W R is a minimal set 
of Noetherian operators.

3.3. Positive dimensional primary ideals

Now suppose I ⊆ R is a primary ideal of arbitrary dimension d. Then there exists a set of d
variables in R which is algebraically independent in R/I . We refer to these as independent vari-
ables t := {t1, . . . , td}, the remaining variables as dependent variables x := {x1, . . . , xn−d}, and write 
R = K[t, x]. Since we have two types of variables, we also write the Weyl algebra W R = R[∂t , ∂x] :=
R[∂t1 , . . . , ∂td , ∂x1 , . . . , ∂xn−d ], where ∂xi , ∂t j correspond respectively to ∂

∂xi
, ∂

∂t j
. Note that after a generic 

linear change of coordinates, every subset of d variables in R is independent in R/I – this can avoid 
the step of computing an independent set of variables, at the cost of any structure present in the 
generators of I . Set U :=K[t] \ {0}, and S := U−1 R =K(t)[x], the localization of R at the multiplica-
tive set U . Let I S denote the extension of I to S , which is the ideal of S generated by the image of 
I under the (injective) localization map R → S . For any f ∈ S , there exists u ∈ U such that g := u f is 
in R – we call any such g a lift of f in R , and extend this notion to the inclusion W R ↪→ W S in the 
natural way.

Lemma 3.12. Let t be a maximal independent set of variables for I , and S =K(t)[x] as above. Then

(1) dim I S = 0,
(2) I S ∩ R = I ,
(3)

√
I S ∩ R = √

I .

Proof. The algebraic independence of t in R/I means exactly that the universal map K[t] → R/I is 
injective. Since t was maximal, none of the dependent variables x are transcendental over K[t], so 
localizing at U gives an integral extension K(t) ↪→ U−1(R/I) ∼= S/I S . Thus dim S/I S = 0, which is 
(i). Then (ii) and (iii) follow from the fact that I is primary with I ∩ U = ∅ (so also 

√
I ∩ U = ∅), 

together with the 1-1 correspondence of primary (resp. prime) ideals in a localization, see (Atiyah 
and Macdonald, 1969, Proposition 4.8(ii)). �

Since I S is zero-dimensional, we can compute a κ(P S)-basis of D P S [I S] as in Section 3.2, and 
recover a set of Noetherian operators for I from this basis:

Proposition 3.13. Let I ⊆ R be a primary ideal of dimension d, P = √
I , and S = K(t)[x] where t, x are 

independent resp. dependent variables for I .

(1) If {Di}i ⊆ W S is a set of Noetherian operators for I S, then any lift {Ni}i ⊆ W R of {Di}i is a set of Noethe-
rian operators for I .

(2) Conversely, if {Ni}i ⊆ W R is a set of Noetherian operators of I whose differential variables involve only ∂x
(and not ∂t ), then their images {Di}i ⊆ W S is a set of Noetherian operators for I S.

Proof. (1) For f ∈ S , one has Ni • f ∈ R for all i ⇐⇒ f ∈ R: ⇐ follows since the Ni have coefficients 
in R , and ⇒ follows since 1 ∈ D P S [I S] is in the span of {Di}i . Then by Lemma 3.12, f ∈ I =
I S ∩ R ⇐⇒ Ni • f ∈ P S ∩ R for all i ⇐⇒ Ni • f ∈ P for all i.
8
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(2) We show that f ∈ I S ⇐⇒ Ni • f ∈ P S for all i. For the forward direction, let f ∈ I S . Then f = g
u

for some g ∈ I , u ∈ U . For every i, we have that 1
s is a scalar with respect to Di (since Ni involves 

only ∂x), so Di • f = Ni•g
u ∈ P S , since Ni • g ∈ P .

Conversely, suppose f = g
u ∈ S (g ∈ R , u ∈ U ) is such that Ni • f ∈ P S for all i. Then g = u f in R

(since R ↪→ S is injective), so Ni • g = Ni • (u f ) = u(Ni • f ) ∈ P S ∩ R = P for all i. Hence g ∈ I , 
and thus f ∈ I S . �

3.4. Symbolic algorithms

In this subsection, we present algorithms to symbolically compute bases for local dual spaces, 
which yields Noetherian operators by Theorem 3.10 and Proposition 3.13. The method is a straight-
forward adaptation of the classical theory of Macaulay inverse systems involving Macaulay matrices.

As usual, we start with the zero-dimensional case. Let I be a zero-dimensional ideal in R = K[x]
and P a minimal prime of I . Given D ∈ Wκ(P ) , we say the ∂-degree of D is d if D is a degree d
polynomial in the ∂-variables with coefficients in κ(P ). We define the degree d truncated local dual 
spaces as

D(d)
P [I] := {D ∈ D P [I] | ∂-degree of D is ≤ d}.

As in Section 3.1 let κ(P ) be the residue field at the prime P , let p be a point in V (Pκ(P )) and 
mp the maximal ideal associated to p. By Lemma 3.8 and Proposition 3.9,

D P [I] = Dmp [Iκ(P )] = {D ∈ κ(P )[∂p] : D( f ) = 0 for all f ∈ Iκ(P )}.
Both {∂α}α∈Nn and {∂α

p }α∈Nn are bases for κ(P )[∂], and for D ∈ κ(P )[∂] the ∂-degree and ∂p -degree 
of D are equal.

Fix a ∂-degree d, and let C := {∂β | |β| ≤ d}, the set of all ∂-monomials of ∂-degree at most d. 
Pick a generating set { f1, . . . , fr} for I , and let F := {xα f i | i = 1, . . . , r, |α| < d}. For a fixed total 
ordering ≺ on ∂-monomials, we define the degree d Macaulay matrix M of dimension |F | × |C |, where 
the rows are indexed by F , and the columns are indexed by C and ordered according to ≺. The entry 
corresponding to the row xα f i and column ∂β of the Macaulay matrix is the value with respect to 
the pairing Equation (1), i.e.

Mα,i;β = 〈∂β, xα f i〉κ(P ) ∈ κ(P ).

Any D = ∑
|β|≤d vβ∂β ∈ Wκ(P ) is specified by its coefficient (column) vector v = (vβ)β . Every entry of 

M v is of the form 〈D, g〉 for some g ∈ I , so every element in the truncated local dual space D(d)
P [I]

corresponds to a vector in the kernel of the Macaulay matrix. To show the reverse, we need the 
following:

Lemma 3.14. With notation as above,

D(d)
P [I] = D P [I + P d+1].

Proof. First we show that

D P [P d+1] = D(d)
P [0] = spanκ(P ){∂β

p : |β| ≤ d}.
Indeed, since Pκ(P ) is a product of maximal ideals, localizing Pκ(P ) at mp gives D P [P d+1] =
Dmp [md+1

p ], by Lemma 3.8. If |α| > d and |β| ≤ d, then 〈∂β
p , (x − p)α〉 = 0, so D(d)

P [0] ⊆ Dmp [md+1
p ]

(as md+1
p is spanned over κ(P ) by {(x − p)α | |α| > d}). Conversely, if D has ∂p -degree > d then it has 

a nonzero term cα∂α
p with |α| > d. Then 〈D, (x − p)α〉 = α!cα �= 0, hence D /∈ Dmp [md+1

p ].
Applying Proposition 3.2(2) then yields

D P [I + P d+1] = D P [I] ∩ D P [P d+1] = D P [I] ∩ D(d)
P [0] = D(d)

P [I]. �

9
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Proposition 3.15. With notation as above, let {v(k)}k be a basis of the kernel of the degree d Macaulay matrix, 
and let Dk := ∑

β v(k)
β ∂β . Then {Dk}k is a basis for the truncated local dual space D(d)

P [I].

Proof. Let D ∈ D(d)
P [I]. We can write D = ∑

|β|≤d vβ∂β for some vector v = (vβ)β . Clearly v ∈ ker M , 
so v = ∑

k ck v(k) , which implies D = ∑
k ck Dk .

Conversely, we must show that Dk is in D(d)
P [I] for each k. The set

{xα f i | |α| < d, i = 1, . . . , r} ∪ {(x − p)β f i | |β| ≥ d, i = 1, . . . , r}
spans Iκ(P ) . By construction, 〈Dk, xα f i〉 = 0 for all |α| < d. Note that each f i vanishes at p, so f i ∈ mp . 
For each j, the term x j − p j is also in mp . If |β| ≥ d then (x − p)β f i ∈ md+1

p . Since the ∂-degree of Dk

is at most d, Dk ∈ Dmp [md+1
p ] by Lemma 3.14. So 〈Dk, (x − p)β f i〉 = 0. Therefore Dk ∈ Dmp [md+1

p ] ∩
D P [I] = D(d)

P [I]. �
It is clear that D(1)

P [I] ⊆ D(2)
P [I] ⊆ · · · , and since the local dual space is finite dimensional, this 

chain will stabilize to D P [I] after a finite number of steps. Furthermore, as the D(d)
p [I] are closed un-

der the right R-action, the chain stabilizes when dimκ(P ) D(d)
P [I] = dimκ(P ) D(d+1)

P [I]. In view of Propo-
sition 3.4, we thus arrive at Algorithm 1, which computes Noetherian operators for the P -primary 
component of I via kernels of successively larger Macaulay matrices. The kernels are represented by 
matrices with entries in κ(P ), which we can lift to R to obtain the coefficients of our Noetherian op-
erators. The algorithm computes the local dual space, and then constructs Noetherian operators from 
a basis thereof, so the output Noetherian operators will depend on a choice of basis of the local dual 
space. In our Macaulay2 implementation, we always choose a basis in reduced column echelon form.

Algorithm 1 Compute Noetherian operators symbolically in dimension zero.
Input I = ( f1, . . . , fr) a zero-dimensional ideal, P a minimal prime of I , ≺ an ordering on monomials ∂β

Output A set of Noetherian operators for the P -primary component of I
1: procedure NoetherianOperatorsZero(I, P )
2: K ← ∅
3: d ← 0 � d corresponds to the degree bound
4: repeat
5: d ← d + 1
6: F ← vector with entries xα f i , where |α| < d, i = 1, 2, . . . , r
7: C ← vector with entries ∂β = ∂

β1
x1 · · · ∂βn

xn , where |β| ≤ d, in the order given by ≺
8: M ← the Macaulay matrix with entries 〈∂β, xα f i〉κ(P ) (rows indexed by F , columns by C )
9: Kd ← ker M

10: until dim Kd = dim Kd−1 � Stop when the dimension of the kernel stabilizes
11: K ← ColReduce(Kd) � Rewrites the generators of Kd in a reduced column echelon form
12: return preimage of C T K in W R � Preimage of the surjection W R → Wκ(P ) .
13: end procedure

For the general case, if I is positive-dimensional, we can use Proposition 3.13 to reduce to the zero 
dimensional case, yielding Algorithm 2.

Algorithm 2 Compute Noetherian operators symbolically in positive dimension.
Input I ⊆ K[t, x] an ideal, where t, x are independent and dependent variables for I respectively, P a minimal prime of I , ≺

an ordering on monomials ∂β
x

Output A set of Noetherian operators for the P -primary component of I
1: procedure NoetherianOperators(I, P )
2: S ←K(t)[x]
3: K ← NoetherianOperatorsZero(I S, P S)

4: return preimage of K in W R � Preimage of the map W R → W S induced by localization.
5: end procedure
10
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Remark 3.16. Algorithm 1 describes how to find dual spaces (and therefore Noetherian operators) 
using Macaulay matrices. As mentioned in the introduction, this is not the only dual space algorithm. 
We present it here because it is the most general and simplest to describe. The algorithm of Mourrain 
(1997) instead uses antidifferentiation to find dual space basis elements of each degree from the 
previous degree elements, and it has better run time when the dimension of the dual space in each 
degree is low. That paper focuses on the case when the coefficient field is C but the algorithm can 
be applied any time the prime P is a rational point. We do not know of a way to generalize it to 
nonrational points. In our code, the default strategy is antidifferentiation when the point is rational 
and Macaulay matrices when it is not.

Example 3.17. Consider the 1-dimensional primary ideal Q = ((x2
1 − x3)

2, x2 − x3(x2
1 − x3)) ⊆ R =

Q[x1, x2, x3]. Its radical is P = (x2
1 − x3, x2), and we may choose x1, x2 as the dependent variables 

and x3 as the independent variable. Thus in S = Q(x3)[x1, x2], Q S is a zero-dimensional primary 
ideal whose radical is P S . In degree 1, the Macaulay matrix has a 2-dimensional kernel. In degree 2, 
the Macaulay matrix is

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ∂x1 ∂x2 ∂2
x1

∂x1 ∂x2 ∂2
x2

(x2
1−x3)2 0 0 0 8 x3 0 0

(x2−x3(x2
1−x3)) 0 −2 x3x1 1 −2 x3 0 0

x1(x2
1−x3)2 0 0 0 8 x3x1 0 0

x1(x2−x3(x2
1−x3)) 0 −2 x2

3 x1 −6 x3x1 1 0
x2(x2

1−x3)2 0 0 0 0 0 0
x2(x2−x3(x2

1−x3)) 0 0 0 0 −2 x3x1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

with entries in S/P S . Performing linear algebra in the field S/P S , we see that the kernel of M is 
generated by (1, 0, 0, 0, 0, 0)T and (0, 1, 2x1x3, 0, 0, 0)T . Since the dimension of the kernel did not 
increase, we terminate the loop in Algorithm 1 and conclude that {1, ∂x1 + 2x1x3∂x2 } is a set of 
Noetherian operators for Q .

Contrary to the algorithm in Cid-Ruiz et al. (2020), our algorithm does not go through the punctual 
Hilbert scheme. To make this clear, we perform a parallel computation following (Cid-Ruiz et al., 2020, 
Algorithm 3.8). Write F := κ(P ). The point in the punctual Hilbert scheme corresponding to Q is the 
ideal

I = 〈y1, y2〉2 + γ (Q ) · F[y1, y2],
where γ is the inclusion map

γ : R ↪→ F[y1, y2],
x1 �→ y1 + x1
x2 �→ y2 + x2
x3 �→ x3

Here I = (y1 − 1/(2x1x3)y2, y2
2). A basis for I⊥ can be computed using e.g. the classical Macaulay 

matrix method. The degree 2 Macaulay matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ∂x1 ∂x2 ∂2
x1

∂x1 ∂x2 ∂2
x2

(y1−1/(2x1x3)y2) 0 1 −1
2 x1x3

0 0 0
y2

2 0 0 0 0 0 2
y1(y1−1/(2x1x3)y2) 0 0 0 2 −1

2 x1x3
0

y1 y2
2 0 0 0 0 0 0

y2(y1−1/(2x1x3)y2) 0 0 0 0 1 −1
x1x3

y2 y2
2 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

with entries in F , and, as expected, its kernel corresponds to the Noetherian operators {1, ∂x1 +
2x1x3∂x2 }.
11
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Example 3.18. We compute a primary decomposition using our symbolic algorithm. Consider the ra-
tional normal scroll S(2, 2) ⊆ P 5 given by the prime ideal

P := I2

([
x0 x1 x3 x4
x1 x2 x4 x5

])
⊆K[x0, . . . , x5]

which has codimension 3 and degree 4. We can take x1, x3, x4 as the dependent variables, and 
x0, x2, x5 as independent variables.

Consider the ideal I generated by the following three polynomials:

f1 := x4
1 − 2x0x2

1x2 + x2
0x2

2 + x1x2x3x4 − x0x2x2
4 − x2

1x3x5 + x0x1x4x5

f2 := x4
1 − 2x0x2

1x2 + x2
0x2

2 + x1x2x3x4 − x2
1x2

4 − x0x2x3x5 + x0x1x4x5

f3 := x2
2x3x4 − x1x2x2

4 + x4
4 − x1x2x3x5 + x2

1x4x5 − 2x3x2
4x5 + x2

3x2
5

This ideal was constructed to be a complete intersection defined by suitable linear combinations of 
generators of P 2. Our goal is to compute a primary decomposition of I . Using Macaulay2 v1.15 on an 
Intel® Core™ i7-1065G7 CPU, the command primaryDecomposition I did not terminate within 
9 hours. On the other hand, minimalPrimes I quickly returns the primes

P1 = (x5, x4, x2
1 − x0x2),

P2 = (x4, x3, x2
1 − x0x2),

P3 = (x2, x1, x2
4 − x3x5),

P4 = (x1, x0, x2
2x3x4 + x4

4 − 2x3x2
4x5 + x2

3x2
5),

P5 = (x2
4 − x3x5, x2x4 − x1x5, x1x4 − x0x5, x2x3 − x0x5, x1x3 − x0x4, x2

1 − x0x2)

Note that P5 = P is the prime ideal of the original rational normal scroll. The primes Pi have 
dimension 3 and degrees (2, 2, 2, 4, 4) respectively. We then run Algorithm 2 for the ideal I and each 
minimal prime Pi . Noetherian operators for the P1-primary component of I are

N1,1 = 1

N1,2 = x1∂x4 + x2∂x5

N1,3 = ∂x1

N1,4 = x1x2
3∂

2
x1

+ 4x2
0x2∂

2
x4

+ 8x0x1x2∂x4∂x5 + 4x0x2
2∂

2
x5

− 8x0x3∂x4

For the P2-primary component, we get Noetherian operators

N2,1 = 1

N2,2 = x1∂x3 + x2∂x4

N2,3 = ∂x1

N2,4 = x1x2
5∂

2
x1

+ 4x0x2
2∂

2
x3

+ 8x1x2
2∂x3∂x4 + 4x3

2∂
2
x4

+ 8x1x5∂x3

For the P3-primary component, we get Noetherian operators

N3,1 = 1

N3,2 = ∂x4

N3,3 = x4∂x1 + x5∂x2

N3,4 = x2
3x5∂

2
x1

+ 2x3x4x5∂x1∂x2 + x3x2
5∂

2
x2

− 2x0x4∂x1

N3,5 = x2
3x4x5∂

3
x + 3x2

3x2
5∂

2
x ∂x2 + 3x3x4x2

5∂x1∂
2
x + x3x3

5∂
3
x
1 1 2 2

12
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− 6x0x3x5∂
2
x1

− 6x0x4x5∂x1∂x2 + 6x3x4∂x1

N3,6 = −27x3
3x4x5∂

4
x1

− 108x3
3x2

5∂
3
x1

∂x2 − 162x2
3x4x2

5∂
2
x1

∂2
x2

− 108x2
3x3

5∂x1∂
3
x2

− 27x3x4x3
5∂

4
x2

+ 324x0x2
3x5∂

3
x1

+ 648x0x3x4x5∂
2
x1

∂x2 + 324x0x3x2
5∂x1∂

2
x2

+ (−324x2
0x4 − 648x2

3x4)∂
2
x1

− 648x2
3x5∂x1∂x2 + 81x2

0x5∂
2
x4

+ 1944x0x3∂x1

For the P4-primary component, we get Noetherian operators

N4,1 = 1

For the P -primary component, we get Noetherian operators

N5,1 = 1,

N5,2 = ∂x4 ,

N5,3 = ∂x3 ,

N5,4 = ∂x1 ,

N5,5 = 2x0x5∂x1∂x3 + x0x2∂
2
x3

+ x2x4∂x1∂x4 ,

N5,6 = x4
2x2

5∂
2
x1

+ (−8x5
2x4 + 4x3

2x4x2
5 + 32x0x2

2x3
5 − 8x0x5

5)∂x1∂x3

+ (−4x5
2x5 + 16x3

2x4x2
5 + 2x3

2x3
5 − 4x2x4x4

5)∂x1∂x4 + (4x4
2x2

5 − x2
2x4

5)∂
2
x4

,

N5,7 = −x4
2x4x5∂

2
x1

+ (8x0x4
2x5 − 32x0x2

2x4x2
5 − 4x0x2

2x3
5 + 8x0x4x4

5)∂x1∂x3

+ (4x5
2x4 − 2x3

2x4x2
5 − 16x0x2

2x3
5 + 4x0x5

5)∂x1∂x4 + (8x0x3
2x2

5 − 2x0x2x4
5)∂x3∂x4 ,

N5,8 = (−8x11
2 x4x3

5 − 8x0x8
2x6

5 + 6x0x6
2x8

5 − x0x4
2x10

5 )∂3
x1

+ (96x0x11
2 x3

5 + 96x0x9
2x4x4

5 − 48x0x9
2x5

5 − 120x0x7
2x4x6

5 + 48x0x5
2x4x8

5

− 6x0x3
2x4x10

5 )∂2
x1

∂x3

+ (384x0x10
2 x4x3

5 − 96x0x8
2x4x5

5 + 384x2
0x7

2x6
5 − 384x2

0x5
2x8

5 + 120x2
0x3

2x10
5

− 12x2
0x2x12

5 )∂x1∂
2
x3

+ (128x0x13
2 x4 − 384x2

0x10
2 x3

5 − 512x2
0x8

2x4x4
5 + 288x2

0x8
2x5

5

+ 768x2
0x6

2x4x6
5 − 48x2

0x6
2x7

5 − 416x2
0x4

2x4x8
5 + 96x2

0x2
2x4x10

5 − 8x2
0x4x12

5 )∂3
x3

+ (48x12
2 x4x2

5 − 24x10
2 x4x4

5 + 48x0x9
2x5

5 − 60x0x7
2x7

5 + 24x0x5
2x9

5 − 3x0x3
2x11

5 )∂2
x1

∂x4

+ (384x0x10
2 x4

5 + 384x0x8
2x4x5

5

− 96x0x8
2x6

5 − 384x0x6
2x4x7

5 + 120x0x4
2x4x9

5 − 12x0x2
2x4x11

5 )∂x1∂x3∂x4

+ (192x0x13
2 x5 − 576x0x11

2 x4x2
5 + 432x0x9

2x4x4
5 − 768x2

0x8
2x5

5

− 72x0x7
2x4x6

5 + 1152x2
0x6

2x7
5 − 624x2

0x4
2x9

5 + 144x2
0x2

2x11
5 − 12x2

0x13
5 )∂2

x3
∂x4

+ (96x11
2 x4x3

5 − 24x9
2x4x5

5 + 96x0x8
2x6

5 − 96x0x6
2x8

5 + 30x0x4
2x10

5 − 3x0x2
2x12

5 )∂x1∂
2
x4

+ (192x14
2 x4 − 192x0x11

2 x3
5 − 384x0x9

2x4x4
5 + 144x0x9

2x5
5 + 576x0x7

2x4x6
5

− 24x0x7
2x7

5 − 312x0x5
2x4x8

5 + 72x0x3
2x4x10

5 − 6x0x2x4x12
5 )∂x3∂

2
x4

+ (64x14
2 x5 − 64x0x9

2x5
5 + 96x0x7

2x7
5 − 52x0x5

2x9
5 + 12x0x3

2x11
5 − x0x2x13

5 )∂3
x4

+ (24x10
2 x4

5 + 24x8
2x4x5

5 − 18x6
2x4x7

5 + 3x4
2x4x9

5)∂
2
x1

+ (768x13
2 x4 − 96x11

2 x4x2
5 + 768x0x10

2 x3
5 + 48x9

2x4x4
5

− 672x0x8
2x5

5 + 216x0x6
2x7

5 − 48x0x4
2x9

5 + 6x0x2
2x11

5 )∂x1∂x3
13
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+ (384x13
2 x5 + 384x11

2 x4x2
5 − 144x11

2 x3
5

− 432x9
2x4x4

5 + 48x9
2x5

5 + 204x7
2x4x6

5 − 54x5
2x4x8

5 + 6x3
2x4x10

5 )∂x1∂x4

From this we deduce that if Q is the P -primary component of I , then the multiplicity of Q over 
P is 8. Note that this is consistent with the fact that 2(4) + 2(4) + 2(6) + 4(1) + 4(8) = deg I = 43. 
Furthermore, as the set of Noetherian operators of Q contains the set of Noetherian operators of 
P 2, namely {1, ∂x1 , ∂x3 , ∂x4 }, we see that Q is strictly contained in P 2. We can also see that the P2-
primary component is radical.

4. A numerical approach via interpolation

Keeping notation from Section 3.3, let I ⊆K[t, x] be a primary ideal of dimension d, where t and 
x are sets of independent and dependent variables for I respectively. Let {N1, . . . , Nm} be a set of 
Noetherian operators for I as in Proposition 3.13, and write

Ni :=
∑
α

fα,i(t, x)∂α
x .

Fix a point (t0, x0) ∈ V (I) on the variety of I . We denote by Ni(t0, x0) the specialized Noetherian 
operator

Ni(t0, x0) =
∑
α

fα,i(t0, x0)∂
α
x ∈ K[∂x].

Theorem 4.1. Assume K = K. Let {N1, . . . , Nm} be a minimal set of Noetherian operators of a primary ideal 
I , and let (x0, t0) ∈V (I). If t0 is general, then

spanK{N1(t0, x0), . . . , Nm(t0, x0)} = Dm(t0,x0)
[I + (t − t0)].

Proof. We first show that Dm(t0,x0)
[(t − t0)] =K[∂x]. The inclusion ⊇ is clear. For the opposite inclu-

sion, we first note that every element D ∈ Dm(t0,x0)
[(t − t0)] can be written in the form

D =
∑
α,β

cα,β∂α
x ∂

β
t ,

where cα,β ∈K, α ∈Nn−d , β ∈Nd , and only finitely many of the cα,β are nonzero. We need to show 
that for all β such that β1 + · · · + βd > 0 we have cα,β = 0. Assume this is not the case. Since the 
local dual space is closed under the right R-action, we can repeatedly act on D from the right with 
elements of the form (ti − (t0)i) and (xi − (x0)i) to obtain an operator D ′ ∈ Dm(t0,x0)

[(t − t0)] that has 
degree 1 in ∂t -variables and degree 0 in ∂x-variables. More precisely, we get an operator

D ′ = c0 +
d∑

i=1

ci∂ti ,

where c j ∈K, j = 0, . . . , d, and ci �= 0 for at least one i = 1, . . . , d. In this case however, we have

〈D ′, (ti − (t0)i)〉 = ci �= 0,

which is a contradiction.
With this, Proposition 3.2 yields that

Dm(t ,x )
[I + (t − t0)] = Dm(t ,x )

[I] ∩ Dm(t ,x )
[(t − t0)] = Dm(t ,x )

[I] ∩K[∂x].
0 0 0 0 0 0 0 0

14
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Since t0 ∈ Kd is general, the specializations {N1(t0, x0), . . . , Nm(t0, x0)} are K-linearly indepen-
dent in Dm(t0,x0)

[I + (t − t0)]. Thus, to prove the theorem, it suffices to show that dimK Dm(t0,x0)
[I +

(t − t0)] = m, where m = m(I, P ) is the multiplicity of I over P .
Set R0 := Rm(t0,x0)

, the localization of R at the maximal ideal m(t0,x0) , I0 := I R0, P0 := P R0, and

J0 := (I + (t − t0))R0 = I0 + (t − t0)R0,

which is primary to the maximal ideal in R0. Then

dim Dm(t0,x0)
[I + (t − t0)] = dim Dm(t0,x0)

[ J0] = dimK R0/ J0

by Theorem 3.6. On the other hand, (t −t0)R0 is a parameter ideal for R0/I0 and R0/P0. By generality 
of t0 again, Bertini’s Theorem gives that t − t0 forms a regular sequence on R0/I0, and P0 + (t −
t0) is radical, which implies P0 + (t − t0) = m(t0,x0) . Thus, for general t0, (Eisenbud, 2013, Exercise 
12.11(d),(e)) implies that

m(I, P ) = m(I0, P0) = e((t − t0), R0/I0)

e((t − t0), R0/P0)
= e((t − t0), R0/I0) = dimK R0/ J0

as desired (here e(q, M) is the Hilbert-Samuel multiplicity of the parameter ideal q on a module 
M). �

Using the above result we obtain a numerical algorithm that computes Noetherian operators spe-
cialized at points, described in Algorithm 3. This algorithm is very similar to the symbolic algorithm 
for computing Noetherian operators, the only difference being that the Macaulay matrix is evaluated 
at a point. The column reduction in step 11 is used to construct a basis consistent with the one com-
puted in the symbolic algorithm. More precisely, for a fixed ordering ≺, the numerical matrix K (p) in 
Algorithm 3 is precisely the symbolic matrix K in Algorithm 1 evaluated at the point p. Thus if the 
output of NoetherianOperators(I, P ) is {N1(t, x), . . . , Nm(t, x)}, then the output of NoetherianOp-

eratorsAtPoint(I, (t0, x0)) will be {N1(t0, x0), . . . , Nm(t0, x0)}. In general, Algorithm 3 will be faster 
than Algorithm 2, as computations in the former are done in the base field κ(m(t0,x0)) = K rather 
than in κ(P ), which is an extension of the rational function field in t .

Algorithm 3 Compute specializations of Noetherian operators at a point.
Input I ⊆ K[t, x] an ideal, where t, x are independent and dependent variables for I respectively, P a minimal prime of I , ≺

an ordering on monomials ∂γ
x , and p ∈V (P )

Output A set of Noetherian operators for the P -primary component of I , specialized at p
1: procedure NoetherianOperatorsAtPoint(I, p)
2: K ← ∅
3: d ← 0 � d corresponds to the degree bound
4: repeat
5: d ← d + 1
6: F ← vector with entries xαtβ f i , where |α + β| < d, i = 1, 2, . . . , r
7: C ← vector with entries ∂γ

x , where |γ | ≤ d, in the order given by ≺
8: M ← the Macaulay matrix with entries (∂γ

x • (xαtβ f i))(p) (rows indexed by F , columns by C )
9: Kd ← ker M

10: until dim Kd = dim Kd−1 � Stop when the dimension of the kernel stabilizes
11: K (p) ← ColReduce(Kd) � Rewrites generators of Kd in reduced column echelon form 
12: return C T K (p)

13: end procedure

Remark 4.2. Suppose ideal I ⊆ R =K[t, x] has a visible P -primary component Q , and a procedure is 
given for choosing a random point in V (P ). Algorithm 3 gives a probabilistic algorithm for checking if 
a set N = {N1(t, x), . . . , Nm(t, x)} is a set of Noetherian operators for Q as follows. Choose a random 
point p ∈V (P ) and use the algorithm to compute a set of Noetherian operators N ′ for Q specialized 
at p. Then check if N ′ has the same span as N(p) = {N1(p), . . . , Nm(p)}.
15
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To see that this algorithm works, if N is a set of Noetherian operators then N(p) must match N ′
for any choice of p ∈ V (P ). Conversely, suppose that N is not a set of Noetherian operators for Q . 
Then either there is f ∈ Q and Ni such that Ni • f /∈ P or there is f /∈ Q such that Ni • f ∈ P for 
all i = 1, . . . , m. In the former case, since P is prime, the set of points p for which Ni • f (p) �= 0 is 
Zariski dense in V (P ). For a randomly selected point p ∈ V (P ), Ni(p) is not the specialization at p
of a Noetherian operator for Q . In the latter case f /∈ Q implies f /∈ Q Rmp for any p ∈V (P ) since Q
is primary. Because f is orthogonal to N(p), N(p) is not the specialization at p of a set of Noetherian 
operators for Q .

4.1. A hybrid approach

One of the bottlenecks in the performance of Algorithm 2 is working with a large Macaulay ma-
trix over the field S/P S , where S = Q(t)[x]. On the other hand, Algorithm 3 performs the same 
computations over C, which is much faster. In particular, Algorithm 3 computes an evaluated set of 
Noetherian operators, which reveals the monomial support in ∂x of a valid set of Noetherian opera-
tors. This information can then be used to optimize the size of the Macaulay matrix and symbolically 
produce a set of Noetherian operators in a fraction of the time taken by Algorithm 2.

Let I = ( f1, . . . , fr) ⊆ K[t, x] be unmixed, P a minimal prime, and p ∈ V (P ) ⊆ Kn a rational 
point on the variety of P . Let N ′ = {D1(p), . . . , Dm(p)} be the output of Algorithm 3, i.e. a reduced 
set of specialized Noetherian operators. Let Di(p) = ∑

β∈B ci,β (p)∂
β
x , where B ⊂ Nn is finite and let 

di = deg Di be the ∂x-degree of the operator. Clearly, the vector (cβ(x, t))|β|≤d is in the kernel of the 
degree d Macaulay matrix Md .

Let M be the submatrix of Md obtained by keeping only columns corresponding to ∂β
x with β ∈ B . 

The vector (cβ(x, t))β∈B is in the kernel of M , and because the operators are reduced, the kernel is 
one-dimensional. Thus in order to find a symbolic representation of the operator Di(x, t), it suffices 
to find the kernel of the matrix M over κ(P S).

One can further optimize the procedure by starting with fewer rows than necessary, and adding 
rows until the kernel becomes one-dimensional. Since rows are indexed by xα f j for all |α| < di and 
j = 1, 2, . . . , r, one could for example run the algorithm for |α| < 0, 1, . . . , di until the dimension of 
the kernel is 1. This method is implemented in Algorithm 4.

Algorithm 4 Hybrid computation of Noetherian operators.
Input I = ( f1, . . . , fr) an unmixed ideal, P a minimal prime of I , a point p ∈V (P )

Output A set of Noetherian operators for the P -primary component of I
1: procedure HybridNoetherianOperators(I, P , p)
2: N ′ ← NoehterianOperatorsAtPoint(I,p)
3: N ← ∅
4: for all D ′ ∈ N ′ do
5: C ← vector with entries ∂β

x = ∂
β1
x1 · · · ∂βn

xn for each ∂β
x appearing in D ′ .

6: d ← 0
7: repeat
8: d ← d + 1
9: R ← vector with entries xα f i , where |α| < d, i = 1, 2, . . . , r

10: M ← the matrix with entries 〈∂β
x , xα f i〉κ(P S) (rows indexed by F , columns by C )

11: K ← ker M
12: until dim K = 1
13: D ← C T K
14: N ← N ∪ {D}
15: end for
16: return lift of N in W R

17: end procedure

Example 4.3. Consider the primary ideal I = (x2, y2 − xt) ⊆ Q[t, x, y], and S = Q(t)[x, y]. Let p =
(1, 0, 0). Algorithm 3 reveals that the reduced set of Noetherian operators specialized at p are 
{1, ∂y, 12 ∂2

y + ∂x, 16 ∂3
y + ∂x∂y}. To find the operator corresponding unevaluated operator corresponding 
16
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to 1
6 ∂3

y + ∂x∂y for example, it suffices to find the kernel of the following submatrix of the Macaulay 
matrix

⎡
⎢⎢⎢⎢⎢⎣

∂x∂y ∂3
y

x2 0 0
y2−xt 0 0
x(x2) 0 0

x(y2−xt) 0 0
y(x2) 0 0

y(y2−xt) −t 6

⎤
⎥⎥⎥⎥⎥⎦

over κ(
√

I S). The kernel is 1-dimensional and generated by (1, t/6), so we conclude that 1
6 ∂3

y + ∂x∂y

is the Noetherian operator t
6 ∂3

y + ∂x∂y evaluated at the point (0, 0, 1). We repeat the procedure with 
all other operators to obtain the complete set of Noetherian operators {1, ∂y, t

2 ∂2
y + ∂x, t

6 ∂3
y + ∂x∂y}.

If we had used Algorithm 2 we would have had to compute the kernel of the degree 4 Macaulay 
matrix, which has size (40 × 15).

Example 4.4. Consider the Noetherian operators N5,1, . . . , N5,8 for the P -primary component in Exam-
ple 3.18. The largest Noetherian operator has degree 3, which means that we have to compute the ker-
nel of the degree 4 Macaulay matrix, which has dimensions (252 × 35). Over the field κ(P S) = S/P S , 
where S = Q(x0, x2, x5)[x1, x3, x4], this takes about 2 minutes. In contrast, computing the kernel of 
the evaluated Macaulay matrix over C takes about 0.4 seconds.

Following Algorithm 4, we note that the largest matrix we need to deal with has dimensions 
(12 × 13), which allows us to obtain the same Noetherian operators in about 1 second.

4.2. Reconstructing a set of Noetherian operators from sampled points

Given an ideal I and an oracle for sampling points on an isolated component V of V (I), we seek 
to produce a set of Noetherian operators describing the primary ideal Q corresponding to V . One 
way to supply such an oracle is via numerical irreducible decomposition (Sommese et al., 2001) to 
construct a witness set for each isolated component. The witness set for V can then be used to sample 
points on V , as described in Sommese et al. (2005).

Another instance in which such an oracle can be obtained is when the variety V of interest is 
expressed as the image of a known rational map from another variety W for which one has a witness 
set, ϕ : W V (cf. pseudo-witness set from Hauenstein and Sommese (2010)). In this case points 
sampled from W can be mapped forward to points on V . In particular when W = Km , sampling 
points on Km , and therefore on V , is trivial.

As in Algorithm 2, let I ⊆ K[t, x] be P -primary, S = K(t)[x], and K a basis for the kernel of the 
Macaulay matrix over S in Algorithm 1. The entries of K are coefficients of elements in D P S [I S], 
which live in the residue field κ(P S) = S/P S , and are represented by polynomials in x with coef-
ficients which are rational functions in t . On the other hand, entries of K (p) in Algorithm 3 are 
evaluations of the aforementioned rational functions at a point p, and live in K. We now seek to 
recover K from a sampled set of evaluations K (p1), . . . , K (p�), via interpolation of rational functions.

Example 4.5. Let I = (x2, y2 − tx) be an ideal in C[t, x, y]. Here t is an independent variable, and 
x, y are dependent. We sample four points (1, 0, 0), (2, 0, 0), (3, 0, 0), (4, 0, 0) on the variety V (I). 
Running Algorithm 3 gives four differential operators with constant coefficients for each point, shown 
in Table 1.

Interpolating each coefficient, we conclude that the coefficient of ∂x in the third operator and 
the coefficient of ∂x∂y in the fourth one can be both chosen to be 1

t . Hence we get a set of four 
Noetherian operators

1, ∂y,
1

2
∂2

y + 1

t
∂y,

1

6
∂3

y + 1

t
∂x∂y,
17
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Table 1
Specialized Noetherian operators at different points.

(t, x, y) Operator 1 Operator 2 Operator 3 Operator 4

(1,0,0) 1 ∂y
1
2 ∂2

y + ∂x
1
6 ∂3

y + ∂x∂y

(2,0,0) 1 ∂y
1
2 ∂2

y + 1
2 ∂x

1
6 ∂3

y + 1
2 ∂x∂y

(3,0,0) 1 ∂y
1
2 ∂2

y + 1
3 ∂x

1
6 ∂3

y + 1
3 ∂x∂y

(4,0,0) 1 ∂y
1
2 ∂2

y + 1
4 ∂x

1
6 ∂3

y + 1
4 ∂x∂y

and after clearing denominators, we get

1, ∂y, t∂2
y + 2∂y, t∂3

y + 6∂x∂y.

This result is confirmed to be correct by computing Noetherian operators symbolically, e.g. via Algo-
rithm 2.

The interpolation procedure is described as follows: we wish to find a rational function f (t,x)
g(t,x)

such 
that f (pi)/g(pi) = ci for all i = 1, . . . , �. Choose an ansatz for f , g of the form f = ∑

(α,β)∈A fα,βtαxβ , 
and g = ∑

(α,β)∈B gα,βtαxβ , where A, B ⊆ Zn≥0, with the fα,β, gα,β to be determined. Then for each 
point pi we get a linear equation∑

(α,β)∈A

fα,β p(α,β)

i − ci

∑
(α,β)∈B

gα,β p(α,β)

i = 0, (3)

where p(α,β)

i is the monomial tαxβ evaluated at the point pi . Since in (3) we are solving f (pi) −
ci g(pi) = 0, a possible solution obtained from the algorithm may correspond to a rational function 
f /g where both f , g ∈ √

I . For this reason, we remove the solutions where the numerator or the 
denominator vanishes on a generic point in V (I). This method is described in Algorithm 5.

Algorithm 5 Multivariate rational function interpolation.

Input A sequence of points p = (pi) and values v = (vi); row vectors �n, �d specifying the monomials appearing in the numerator 
and denominator

Output A rational function f /g such that f (pi )
g(pi )

= vi for all i, and where f and g have monomial support in �n and �d respectively

1: procedure RationalInterpolation(p, v, �n, �d)
2: N ← matrix, whose ith row is the vector �n evaluated at pi

3: D ← matrix, whose ith row is the vector −vi�d evaluated at pi

4: M ← (
N D

)
5: K ← ker(M)

6: for all columns k in K do
7: k f ← first Length(�n) entries of k
8: kg ← last Length(�d) entries of k
9: f ← �nx f

10: g ← �dxg

11: if f (p0) = 0 or g(p0) = 0 then
12: remove column k from K
13: end if
14: end for
15: if K is empty then
16: return error � No suitable rational functions found
17: end if
18: x f ← first Length(�n) entries of any vector in K

19: xg ← last Length(�d) entries of any vector in K
20: f ← �nx f

21: g ← �dxg

22: return f
g

23: end procedure
18
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Remark 4.6. One has freedom to choose any plausible ansatz for f , g . For instance one can take 
all rational functions in t and x with degrees of numerators and denominators bounded by some 
constant k. Then any sufficiently large k is guaranteed to capture the operators we seek. This is the 
method used in our Macaulay2 implementation.

Other types of ansatzes for coefficients of operators are possible: for instance, one can choose a 
generating set of monomials in x for the residue field κ(P S) as an extension of K(t), together with a 
degree bound on numerators and denominators of rational functions in t .

Combining the subroutines in Algorithms 3 and 5, we obtain Algorithm 6, the main numerical 
algorithm for computing Noetherian operators. The algorithm takes as input an ideal and an oracle 
for sampling points on V (I), and outputs a set of Noetherian operators with interpolated rational 
function coefficients.

Algorithm 6 Compute Noetherian operators numerically via interpolation.
Input I ⊆K[t, x] an ideal, p = (pi) a sequence of points in V (P ) where P is an isolated prime of I
Output A set of Noetherian operators for the P -primary component of I
1: procedure NumericalNoetherianOperators(I, p)

2: for all i = 1, 2, . . . do
3: Ni ← NoetherianOperatorsAtPoint(I, pi )
4: end for
5: for all terms cα∂α appearing in elements of N1 do � cα ∈K
6: vi ← cα for the corresponding term cα∂α in Ni for all i
7: d ← 0
8: repeat
9: �n ←monomials xαtβ such that |α + β| ≤ d.

10: �d ← monomials tγ such that |γ | ≤ d
11: fα/gα ←RationalInterpolation(p, v, �n, �d)
12: d ← d + 1
13: until interpolation succeeds
14: end for
15: return the set of operators N1 in which each term cα∂α is replaced by fα

gα
∂α

16: end procedure

Finally, combining Algorithm 6 with an existing numerical irreducible decomposition procedure 
yields Algorithm 7, a numerical primary decomposition algorithm for unmixed ideals.

Algorithm 7 Numerical primary decomposition for unmixed ideals.
Input I ⊆K[t, x] an unmixed ideal
Output A list of irreducible components of V (I) and a set of Noetherian operators for each primary component of I

1: procedure NumericalPrimaryDecomposition(I)
2: N V ← NumericalIrreducibleDecomposition(I)
3: output ← {}
4: for W in N V do
5: p ← sample(W )

6: N ← NumericalNoetherianOperators(I, p)

7: output ← append(output, {W , N})
8: end for
9: return output

10: end procedure

Example 4.7. Next, we illustrate a numerical primary decomposition using Algorithm 6. Let J be the 
ideal of the K3 carpet over the scroll S(3, 3) ⊆ P 7, i.e.

J := (x2
1 − x0x2, x1x2 − x0x3, x2

2 − x1x3, x2 y0 − 2x1 y1 + x0 y2, x3 y0 − 2x2 y1 + x1 y2,

x2 y1 − 2x1 y2 + x0 y3, x3 y1 − 2x2 y2 + x1 y3, y2
1 − y0 y2, y1 y2 − y0 y3, y2

2 − y1 y3)
19
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in the ring Q[x0, . . . , x3, y0, . . . , y3]. Let I be the ideal of a generic complete intersection of quadrics 
containing the carpet, generated by 5 random Q-linear combinations of the 10 generators of J .

Neither primaryDecomposition I nor minimalPrimes I terminated within 9 hours. How-
ever, a numerical irreducible decomposition reveals that I has two minimal primes, of dimension 3 
and degrees (6, 20) respectively. We then run Algorithm 7 on the witness sets.

Let Q be the component primary to the degree 6 minimal prime of I . We obtain

N Q ,1 = 1

N Q ,2 = x3 y1

0.333333
∂y0 + x2 y3

0.5
∂y1 + x3 y3∂y2

as Noetherian operators for Q . The component primary to the degree 20 minimal prime (which de-
fines a generic link of the K3 carpet) has Noetherian operators {1}, i.e. is radical. For timing: the 
numerical irreducible decomposition took under 2 seconds, and computing Noetherian operators took 
under a second in total.

As the degree 6 minimal prime obtained from the numerical irreducible decomposition is the scroll 
S(3, 3) (being of minimal degree), i.e. 

√
Q = √

J , a natural question that arises is whether Q is in fact 
equal to J . We may verify this by directly computing Noetherian operators of J using Algorithm 2, 
obtaining

N J ,1 = 1

N J ,2 = 3y1∂y0 + 2y2∂y1 + y3∂y2

Although the Noetherian operators for J and the Noetherian operators for Q look different, the co-
efficients are equal up to multiplication by x3 on the minimal prime of interest, which is the scroll 
(note that x3 y2 − y3x2 lies in 

√
J ). This confirms that Q = J .

Example 4.8. One can also run Algorithm 7 on Example 3.18: using a reasonable number of points 
quickly yields partial information about the Noetherian operators displayed above, such as the multi-
plicity. The caveat is that some of the rational functions have large degree (for example denominators 
of N1,6 have degree 6), so interpolating those coefficients will take correspondingly longer times.

5. General properties of Noetherian operators

Thus far, we have focused our attention on primary ideals. As we have seen, this is enough for the 
purpose of numerical primary decomposition, cf. Algorithm 7. Nonetheless, Definition 1.1 makes sense 
for arbitrary (i.e. not necessarily primary) ideals. In this last section, to expand the theoretical frame-
work of Noetherian operators, we discuss various properties and behaviors of Noetherian operators 
for arbitrary ideals. First, we record how Noetherian operators vary under linear coordinate changes.

Proposition 5.1. Let R :=K[x1, . . . , xn] =K[x], and let ϕ be a K-linear automorphism of R given by ϕ(x) :=
Ax for some A ∈ GLn(K). Define a K-linear automorphism of the Weyl algebra W R =K[x]〈∂〉 by

ψ :
(

x
∂

)
�→

(
Ax

(A−1)T ∂

)
.

If I ⊆ R is an ideal, and D1, . . . , Dr is a set of Noetherian operators for I , then ψ(D1), . . . , ψ(Dr) is a set of 
Noetherian operators for ϕ(I) ⊆ R.

Proof. For f ∈ R , one has

f ∈ ϕ(I) ⇐⇒ ϕ−1( f ) ∈ I ⇐⇒ Di • ϕ−1( f ) ∈ √
I ∀i = 1, . . . , r

⇐⇒ ϕ(Di • ϕ−1( f )) ∈ √
ϕ(I) ∀i = 1, . . . , r,
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since 
√

ϕ(I) = ϕ(
√

I), as ϕ is a K-linear automorphism of R . Writing Di = ∑
α pα∂α , we have ϕ(Di •

ϕ−1( f )) = ϕ((
∑

α pα∂α) • ϕ−1( f )) = ∑
α ϕ(pα)ϕ(∂α • ϕ−1( f )), so it suffices to show that ϕ(∂α •

ϕ−1( f )) = ψ(∂α) • f for any f ∈ R . By linearity, it suffices to check this when f = xβ is a monomial, 
i.e. we must show ϕ(∂α • ϕ−1(xβ)) = ψ(∂α) • xβ for all α, β ∈Nn .

We first consider the case where α, β are standard basis vectors, i.e. ∂α = ∂x j and xβ = xi for 
some i, j ∈ {1, . . . , n}. Then ϕ

(
∂x j • ϕ−1(xi)

) = ϕ
(
∂x j • ∑n

k=1(A−1)i,kxk
) = ϕ

(
(A−1)i, j

) = (A−1)i, j =(∑n
k=1(A−1)k, j∂xk

) • xi = ψ(∂x j ) • xi .
To show that this extends to arbitrary β , note that both ϕ

(
∂x j • ϕ−1( )

)
and ψ(∂x j ) • ( ) are both 

differential operators, which must satisfy the product rule, so if these agree on every variable xi then 
they agree on every monomial xβ . To extend to arbitrary α, note that ψ preserves multiplication in 
W by definition, so

ϕ
(
∂x j ∂xk • ϕ−1( )

) = ϕ
(
∂x j • ϕ−1ϕ

(
∂xk • ϕ−1( )

))
= ϕ

(
∂x j • ϕ−1(ψ(∂xk ) • ( ))

)
= ψ(∂x j ) • ψ(∂xk • ( ))

= ψ(∂x j )ψ(∂xk • ( ))

= ψ(∂x j ∂xk ) • ( )

hence inductively ϕ
(
∂α • ϕ−1( )

) = ψ(∂α) • ( ) for any α. �
Next, we give a construction for a global set of Noetherian operators for an unmixed ideal:

Proposition 5.2. Let I be an unmixed ideal, with a minimal primary decomposition I = q1 ∩ . . . ∩ qr , and let 
Ni be a set of Noetherian operators for qi for i = 1, . . . , r. For D ∈ ⋃

i Ni , choose hD ∈
⋂

D /∈N j

√
q j \

⋃
D∈Ni

√
qi . 

Then N := {hD D | D ∈ ⋃
i Ni} is a set of Noetherian operators for I .

Proof. First, note that if 
⋂

D /∈N j

√
q j ⊆

⋃
D∈Ni

√
qi for some D , then 

⋂
D /∈N j

√
q j ⊆ √

qi for some i by prime 

avoidance, and then √q j ⊆ √
qi for some i �= j, contradicting the unmixedness assumption on I . Thus 

choices of hD always exist.
Suppose f ∈ I , and choose D ∈ ⋃

i Ni . For any i with D ∈ Ni , we have f ∈ qi =⇒ D • f ∈ √
qi . By 

choice of hD , this implies hD D • f ∈
⎛
⎝ ⋂

D∈Ni

√
qi

⎞
⎠ ∩

⎛
⎝ ⋂

D /∈N j

√
q j

⎞
⎠ = √

I .

Conversely, suppose f /∈ I . Then WLOG f /∈ q1, so there exists D1 ∈ N1 such that D1 • f /∈ √
q1. 

Since also hD1 /∈ √
q1 and 

√
q1 is prime, this means hD1 D1 • f /∈ √

q1, and thus hD1 D1 • f /∈ √
I . �

Finally, we consider the question of recovering 
√

I from the data of I and Noetherian operators for 
I . Fix a finite generating set G of I and a set of Noetherian operators N of I . We consider the ideal 
N(G) := (D • g | D ∈ N, g ∈ G) obtained by applying operators in N to the generating set G . Note that 
since G generates I , one has N(G) = (D • f | D ∈ N, f ∈ I) – in particular, N(G) does not depend on 
the choice of G , and one always has N(G) ⊆ √

I by definition. However, even if I is primary, N(G)

need not equal 
√

I:

Example 5.3. Let I = ((xy − z2)2) ⊆ C[x, y, z]. Then N = {1, ∂y} is a set of Noetherian operators of 
I . Applying N to the single generator of I yields N(G) = ((xy − z2)2, 2x(xy − z2)), which is strictly 
contained in 

√
I = (xy − z2).
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However, the issue in Example 5.3 was that N(G) was not unmixed (whereas radical ideals are 
evidently unmixed), which turns out to be the only obstruction:

Proposition 5.4. If I = (G) is primary, and N is a set of Noetherian operators for I constructed as in Proposi-
tion 3.13(1), then the unmixed part of N(G) is 

√
I .

Proof. Let P = √
I . Since WLOG 1 is in the K-span of N , we have I ⊆ N(G) ⊆ P , which implies that √

N(G) = P . Let Q be the unmixed part of N(G), which is the P -primary component of N(G).
First consider the case dim I = 0, so that Q = N(G), the dual space D P [P ] is spanned by {1}, and 

N ⊆ D P [I]. Suppose that Q �= P , so that dimκ(P ) D P [Q ] > 1, hence D P [Q ] contains a nonzero element 
p of ∂-degree ≥ 1. For each D ∈ N , the operator p ◦ D is an element of D P [I] (since D • f ∈ Q for 
all f ∈ I). Choosing some D ∈ N of maximal degree gives that p ◦ D is outside the linear span of N . 
Therefore D P [I] is strictly larger than the span of N , contradicting Corollary 3.11.

If now I is primary of any dimension, then by the same procedure as in Section 3.3 we may invert 
a maximal set of independent variables to obtain a zero-dimensional ideal I S . By Proposition 3.13(2), 
the set N gives a set of Noetherian operators for I S . Then the reasoning in the zero-dimensional case 
above shows that Q S = P S , which implies Q = P . �
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