
1

Learning from Negative Links
He Jiang, Student Member, IEEE, and Haibo He, Fellow, IEEE

Abstract—Recently, graph convolutional networks (GCNs) and
their variants have achieved remarkable successes for the graph-
based semi-supervised node classification problem. With a GCN,
node features are locally smoothed based on the information
aggregated from their neighborhoods defined by the graph
topology. In most of the existing methods, the graph typologies
only contain positive links which are deemed as descriptions
for the feature similarity of connected nodes. In this paper, we
develop a novel GCN-based learning framework that improves
the node representation inference capability by including negative
links in a graph. Negative links in our method define the
inverse correlations for the nodes connected by them and are
adaptively generated through a neural network based generation
model. To make the generated negative links beneficial for the
classification performance, this negative link generation model is
jointly optimized with the GCN used for class inference through
our designed training algorithm. Experiment results show that
the proposed learning framework achieves better or matched
performance compared with current state-of-the-art methods on
several standard benchmark datasets.

Index Terms—Semi-supervised learning, graph-based learning,
graph convolutional networks.

I. INTRODUCTION

Real-world data of various domains can be modeled
by graphs due to their intrinsic nature of interconnection,
such as social networks, communication systems, and pro-
tein/molecule structures. Accordingly, graph-based data min-
ing techniques, which include node classification [1], link
prediction [2], and clustering [3], have plenty of practical
applications, e.g., recommendation [4], [5], network optimiza-
tion [6], [7], and community detection [8], [9], just to name
a few. In this paper, we focus on one of the fundamental
problems of graph mining, i.e., the semi-supervised node
classification, which concerns predicting node labels based on
graph topologies and node features.

Classic semi-supervised node classification approaches
largely depend on graph Laplacian regularization [1], [10],
[11]. Generally, a graph Laplacian regularization term is used
to smooth the label distribution for the whole graph, which
is supported by the assumption that the connected nodes are
likely to share the same label. In [1], an Gaussian random field
model is proposed for semi-supervised learning, where the
energy function is designed based on the graph Laplacian. An
iteration algorithm that propagates node labels is introduced in
[10], and a graph Laplacian regularization based optimization
framework is also developed to obtained the solution of
the iteration algorithm. Belkin et al. [11] present a semi-
supervised learning algorithm where the loss function contains

This work was supported by the National Science Foundation under grant
ECCS 1731672.

H. Jiang and H. He are with the Department of Electrical, Computer and
Biomedical Engineering, University of Rhode Island, Kingston, RI 02881
USA (e-mail:jiang he@uri.edu; haibohe@uri.edu).

two regularization terms with one controlling the classifier
complexity and the other smoothing the label distribution over
the graph.

Recently, convolutional neural networks have been gener-
alized to process graph-structured data, known as GCNs, and
have achieved tremendous successes across a wide range of
graph mining problems [12]–[14]. In a semi-supervised node
classification problem, a GCN is employed to learn effective
node representations. Popular models include GCN [15] and
graph attention networks (GAT) [16]. Compared with the
label similarity assumption practiced by the graph Laplacian
based methods, GCN-based approaches extend the similarity
assumption to node features. This idea is reflected by the way
of the feature inference procedure of GCNs, where the feature
vector of one node is updated by the weighted summation of
its neighbors’. This process smooths the node feature based
on its neighborhood and the coefficients of the neighbors
can be determined via different strategies. For instance, with
the GCN model of [15], the coefficients of the nodes are
completely calculated according to the node degrees, while
some other researchers believe that the neighbors of a node
possess different importances so that an attention mechanism
is introduced to adaptively assign the coefficients based on the
node features [16].

Numerous algorithms have been proposed to improve the
performance of GCNs. Adversarial training algorithms de-
veloped by [17]–[19] aims to utilize perturbations on node
features to improve the robustness of GCNs. In [17], a virtual
adversarial loss is built based on the KL divergence between
node label distribution calculated from the original graph and
the distribution calculated from the graph with node perturba-
tions. This loss is used as a regularization term of the overall
training loss function to improve the generalization perfor-
mance of GCNs. Besides the virtual adversarial loss, Feng et
al. [18] include a graph adversarial regularizer that encourages
the graph adversarial examples to be classified similarly to
the connected examples. An adversarially regularized graph
embedding learning algorithm is proposed by [19], which
aims to learn latent node codes that preserve graph topology
information. In [20], a variational expectationmaximization
algorithm is developed to enable the interactive learning of
two GCNs with one learning node representations and the
other modeling label dependencies. To learn disentangled
node features, a neighborhood routing mechanism is proposed
to assign the neighbors to different channels based on the
underlying factors [21]. There also exist some works that deem
the observed graph topology as a sample of the distribution
that models the probability of node connectivity [22], [23].
And, generative models are employed to generate different
graph topologies to train GCNs, such that the classification
performances are improved, especially when the training sam-

2

ples are very few. Interested readers can refer to [24] and [25]
for more detailed reviews of the GCN-based methods.

In most of the prior works, the GCN based methods are
designed to deal with the graphs only containing positive links
that are used to model the positive correlations of connected
nodes. In this paper, we assume negative correlations among
nodes also exist in a graph, which can be exploited to better
infer node features or labels. We propose a novel learning
framework that can generate meaningful negative links to
describe inverse correlations of node pairs. A negative link
is directed and specifies that the node at its head is the
negative neighbor of the node at its tail. And it is associated
with a negative weight to quantify the negative correlation.
Furthermore, a GCN model that is compatible with graphs
containing negative links is developed. In the feature propa-
gation process of our model, the negative neighbor of a node
is assigned with a negative coefficient which is determined by
the weight of the corresponding negative link. An optimization
algorithm is designed to enable the generated negative links
to improve the semi-supervised learning performance of the
GCN. We conduct thorough experiments on three benchmark
datasets. Results demonstrate that our proposed method is able
to outperform or match the performance of state-of-the-art
models in most settings.

Note that there exist some other works concerning GCNs for
graphs with negative links, such as [26] and [27]. However, the
negative links in their work, which are generated based on the
modeling strategies, have different semantics compared with
ours. The target graph datasets of these works contain negative
links inherently. For instance, in the Epinions dataset [28],
which is tested by both [26] and [27], negative links exist
originally and represent the ‘distrusting’ relationship of the
connected users/nodes. In contrast, our work focus on the
graphs that only contain positive links initially and negative
links are generated as auxiliaries to improve the GCN perfor-
mance. Therefore, our methods and these previous works have
completely different designs and applications. The rest of this
paper is organized as follows. In Section II, we review the
formulation of graph-based semi-supervise node classification
problem and the popular solutions. In Section III, we present
the proposed negative link generation mechanism and the
GCN model designed for the graphs with generated negative
links. The optimization algorithm for our model is introduced
in Section IV. Section V presents the experiment results to
validate the performance of our method. Finally, we conclude
our work in Section VI.

II. BACKGROUND

A. Semi-supervised Node Classification

Let a graph be denoted by G = (V, E), where V =
{v1, v2, . . . , vN} is a finite set of nodes; E ⊆ V × V is the
link set. The link eij is represented by an ordered node pairs
(vi, vj). Additionally, the weights of links are specified by
a symmetric adjacency matrix A ∈ RN×N . The entry lie in
row i and column j, i.e., Aij , is the weight of eij . Generally,
Aij > 0 if (vi, vj) ∈ E ; otherwise, Aij = 0. If eij exists,
vj is called a neighbor of vi. The set of neighbors of vi is

denoted by Ni. For vi, there is a feature vector xi and a
label yi ∈ {1, 2, . . . , C} representing its class, where C is
the total number of the classes. In a semi-supervised node
classification problem, only a subset of nodes have the label
information. Without loss of generality, we assume the fist M
nodes, {v1, . . . , vM} , are labeled. Let F denote the set of
N × C matrices with non-negative entries. The one hot label
matrix of all nodes is defined as Y ∈ F , where Yij = 1 if
vi is labeled as yi = j; otherwise, Yij = 0. The learning
objective is to predict the classes of all unlabeled nodes. For
this problem, several graph Laplacian regularization based
approaches are proposed, which depends on the assumption
that two connected nodes are likely to share a common label
[10], [11]. For instance, in [10], the cost function is designed
as

Q(F) =1

2
(
N∑
i=1

∑
j∈Ni

Aij‖
1√
Dii

Fi −
1√
Djj

Fj‖2

+ µ
N∑
i=1

‖Fi − Yi‖2). (1)

In the equation above, F = [F1, . . . , FN]T; the C-
dimensional vector Fi is the classification of vi by labeling
yi = argmaxj≤C Fij ; and µ is a weighing factor. The first
term of the right hand side of Eq. (1) provides the Laplacian
regularization. By minimizing this term, the classification of
the connected nodes are smoothed over the graph. Here, graph
links are considered as descriptions of class similarities for the
connected nodes. Recently, some researchers believe that the
graph links can convey additional information besides the class
similarities. As a result, GCN-based methods are proposed,
which extend the similarities of the connected nodes from
labels to features, and have achieved significant breakthroughs.

B. GCN-based Solution

A GCN extracts node features through a stack of graph
convolutional layers. Denoting node features at layer l by
H(l) ∈ RN×K(l)

where K(l) is the feature dimension, the
computation formula of H(l) is

H(l) = σ(ÂH(l−1)W (l)) (2)

where Â is the “normalized” adjacency matrix; H(l−1) ∈
RN×K(l−1)

is the feature matrix of the previous layer; and
we have H(0) = X with X = [x1, . . . , xN]T; W (l) ∈
RK(l−1)×K(l)

is a trainable weight matrix; and σ(·) is an
element-wise nonlinear activation function. Eq. (2) can be
decomposed into three consecutive steps: feature propagation,
linear transformation, and nonlinear activation [29], which
are illustrated by Fig. 1. At the feature propagation step,
the feature vector of each node is smoothed by the features
of its neighbors, where the coefficients of the neighbors
are controlled by Â. Then, the smoothed node features are
transformed to a new feature space through the weight matrix
W (l). Finally, a nonlinear element-wise activation function,
σ(·), is applied and the output serves as the input of the next
layer. At the final layer, the nonlinear function is omitted to
generate input of the softmax classifier.

3

Linear transformation

Feature
propagation

Nonlinear
activation

X

H(l-1)

H(l)←H(l-1)W(l)

l=1…, L

softmax(H(L))

H(l) = X

H(l-1)←AH(l-1)

H(l)←σ(H(l))

P(Y)

˄

l-1 ← l

l=1…, Ll=1…, L

l = 0

Fig. 1. Computation procedure of a GCN. The GCN transforms the node
features through L graph convolutional layers and a softmax classifier is
applied on the final representation. At layer l, the input comes from the output
of layer l−1. Feature propagation is implemented by the matrix multiplication
between ‘normalized’ adjacency matrix and the node feature vectors to smooth
the node features. The smoothed feature vectors are still in the vector space of
the input. Through the weight matrix W (l), the node features are transformed
to the vector space of the output. The design of this figure is inspired by [29].

To improve the performance of this GCN framework, sev-
eral approaches are proposed from different perspectives. For
the GCN proposed by [15], the feature propagation matrix is
designed as

Â = D̃−1/2ÃD̃−1/2 (3)

where Ã = A+IN ; D̃ is the degree matrix of Ã; and IN is the
N×N identity matrix. In this way, Â is completely determined
by the adjacency matrix. Velikovi et al. [16] consider the nodes
within a neighborhood to be of different importances, and
they propose an adaptive attention mechanism to learn the
importances of the neighbors. Some researchers assume that
the original graph topology is not enough to describe the node
dependency. Accordingly, they deem the topology of a graph
as a random variable and learn the corresponding distribution
through graph generative models [22], [23]. Besides architec-
ture innovations, modifications on training algorithms are also
demonstrated to be beneficial to the performance of GCNs
[17], [18], [20].

III. NEGATIVE LINKS FOR NODE FEATURE INFERENCE

Most of the previous GCN-based methods locally smooth
the node feature by assigning the neighbors with positive co-
efficients, where a node is assumed to be positively correlated
with its neighbors. In this paper, propose a novel GCN learning
framework that improving the feature and label inference
capability by considering the nodes of inverse correlated
properties, called negative neighbors. As the original graph

contains positive links only, in this section, we first propose
a negative link generation model. Then, the GCN model
designed for graphs with positive links [15] is modified to
be compatible with the graph with negative links.

A. Negative Link Generation

To generate a negative link for a node, two questions need
to be answered: 1) which node is selected as the negative
neighbor, and 2) what is the weight of the negative link.
Consequently, our proposed negative link generation model
aims to solve these two questions for each vi. The generation
procedure is summarized by the following equations:

for j = 1, . . . , N

ωij =

{
−∞ if yi = yj

fθ(zi, zj) otherwise
(4)

i(−)c = argmax
j
{ωij |yj = c}, c = 1, 2, . . . , C (5)

i(−) = argmax
i
(−)
c

{ω
ii

(−)
c
}Cc=1 (6)

Aii(−) = −
exp(ωii(−))∑C
c=1 exp(ωii(−)

c
)
. (7)

In Eq. (4), ωij is a quantity measuring the potential of vj
being a negative neighbor for vi; zi and zj are the feature
representations of vi and vj ; fθ is a trainable function param-
eterized by θ; and ωij is constrained to be negative infinity
if vi and vj belong to a same class, which means we only
seek negative neighbors from different classes. Eq. (5) finds
the index of the nodes with highest ωij in each class, which
is denoted by i

(−)
c for class c. We consider v

i
(−)
c

as the
representative of the potential negative neighbors in class c.
Among the C representative negative neighbors (one for each
class), the final negative neighbor vi(−) is selected by Eq. (6).
The generated negative link connecting vi and vi(−) is denoted
by eii(−) , which is directed, i.e., from vi to vi(−) . And the
associated weight of this negative link Aii(−) is calculated
via Eq. (7), where a softmax function is implemented over
{ω

ii
(−)
1
, . . . , ω

ii
(−)
C

}.
In this way, other representative negative neighbors are used

as references to assess the connecting strength of eii(−) . And
the negative sign at the right hand side of Eq. (7) indicates
vi(−) is negatively correlated to vi. Another functionality of
Eq. (7) is that it normalizes the magnitude of the generated
negative links to (0, 1). In the original graph, the positive
links are weighted by 1; and since the positive links reveal
the ‘true’ structure of the data, it is reasonable to use the
magnitude of the positive link as the upper bound of the
generated negative links. Filling A at row i column i(−) with
Aii(−) for i = 1, . . . , N , the updated adjacency matrix is
denoted by A∗ which can be asymmetric because the negative
links are directed. It should be noted that a generated negative
link can possibly connect two nodes that have already been
connected with positive links, and if so, we substitute the
existing entry of A with Aii(−) . We implement this operation
due to the following two motivations. First, the positive links

4

are usually built based on the modeling strategy, and GCN-
based method use positive links to describe the similarities of
the connected nodes; however, this relationship can be noisy
which is also point out by [22], [23]. Second, in our method,
the optimization algorithm, which is introduced in the next
section, makes the generated negative links beneficial for the
node feature inference so that we will substitute the positive
link if it is conflicting with a generated negative link.

According to Eq. (4) and (5), the proposed negative gen-
eration process requires node labels, which are not available
for the nodes outside the training set. Under this situation,
we employ a GCN as an inference or recognition model to
provide an estimation of the class for the unlabeled nodes. We
denote this GCN by gψ(X,A) where ψ is the weights; X is the
node feature matrix; and A is the adjacency matrix. Moreover,
this GCN can also be used to extract node representations
simultaneously. An implementation scheme of our proposed
negative link generation procedure is depicted in Fig. 2.
With this architecture, the graph data is first input to the
GCN to estimate the label distribution and to extract node
representations. The labels of the nodes outside the training
set can be sampled from the obtained distribution. The node
feature representations, {zi}Ni=1, are set to the output feature of
the last layer of the GCN. Then, a three-layer fully connected
neural network is employed as the instantiation of fθ(zi, zj),
and the input is designed as [zT

i , z
T
j], i.e. the concatenation of

the paired feature representation vectors. The obtained {ωij}
is used to generate negative links through Eq. (5)-(7). We
illustrate the generated negative links with red dashed lines
in Fig. 2.

Remark 1: This negative link generation process is similar
to the latent space model (LSM), which is usually employed to
generate positive links [23], [30]. The parameters of the LSM
in these previous works are trained to maximize the likelihood
of the observed positive link. However, as there are no original
negative links in the graph, the parameter of our generation
model is trained based on the node classification performance,
which is elaborated in the next section.

We expect that the generated negative links are beneficial
for the inference capability of gψ . Naturally, the generated
negative links should be evaluated through gψ(X,A

∗) that
requires gψ to be compatible with A∗. However, as A∗ is asym-
metric and contains negative elements, most of the previous
GCN models, designed for graphs with positive symmetric
adjacency matrices, cannot be applied directly. Thus, in the
remaining part of this section, we present the modifications
on the GCN model of [15] to make it compatible with both
the original graph and the graph with negative links.

B. Graph Convolution with Negative Links

Our proposed GCN model is developed by modifying the
GCN introduced by [15], which is prevalent due to its stable
performance and simplicity. The feature updating rule at layer
l of the modified model is described by

H(l) = Â∗σ(H(l−1)W (l)) (8)

Â∗ = D̃
−1/2
out Ã∗D̃

−1/2
in (9)

where Ã∗ = A∗ + IN ; D̃in and D̃out are the ‘modified’
indegree matrix and outdegree matrix of Ã∗. D̃in and D̃out
are diagonal matrices and the i-th diagonal elements of these
two matrices are (D̃in)ii =

∑
j |Ã∗ji| and (D̃out)ii =

∑
j |Ã∗ij |,

respectively. Here, we use the term ‘modified’ because with
the original definition in graph theory, the indegree matrix and
the outdegree matrix are calculated based on the value of the
entries of an adjacency matrix rather than the absolute value.

Eq. (9) defines the specific form of Â∗, which concerns
the coefficients assigned to the neighbors when smoothing
node features. When smoothing the feature vector of vi, the
coefficients of its neighbors are specified by the i-th row of
A∗ and we have

hi ←
1√

(D̃out)ii

(
hi√
(D̃in)ii

+
∑
j∈Ni

A∗ij
hj√
(D̃in)jj

). (10)

In this procedure, a node sends out it feature information
through both negative links and positive links. The quantity
of the information send out along a link is proportional to the
magnitude of this link. Thus, the indegree of a node measures
how much information is sent to the other nodes. To make the
nodes with different indegrees have a comparable influence
on the whole graph, the feature vectors are first normalized
by the corresponding node indegrees. This normalization is
important for the graph with generated negative links since
a node may be the negative neighbor of many other nodes.
Then, a node vi aggregates the normalized features from both
positive neighbors and negative neighbors. To keep the scale
of the feature vector, the aggregated feature information is
normalized by the node outdegree before being used to update
hi.

Remark 2: Eq. (9) can be deemed as a generalized form
of Eq. (3) because when applying Eq. (9) to a graph with no
negative link, Â∗ will automatically reduce to Â. Therefore,
the modified GCN is also applicable to the original graph that
contains no negative links.

Eq. (8) specifies the feature transformation procedure from
layer l−1 to layer l. With the feature transformation designed
by [15], namely, Eq. (2), Â is multiplied with H(l−1) first,
which means the input of each layer is smoothed. However,
in our method, we smooth the node feature at the feature
space of the output. In this way, the GCN output of one
node is directly affected by the neighbors and the effects of
negative links can be more explicitly identified. Furthermore,
we found that this modification does not significantly impact
the GCN performance for the graph without the generated
negative links based on the empirical results shown in Table I.
In this experiment, we build two GCNs which share the

TABLE I
NODE CLASSIFICATION ACCURACIES (IN PERCENT) OF THE ORIGINAL

PROPAGATION MODEL AND OUR MODIFIED PROPAGATION MODEL ON THE
GRAPH WITHOUT GENERATED NEGATIVE LINKS

Propagation model Cora Citeseer Pubmed

H(l) = σ(ÂH(l−1)W (l)) 81.4 70.0 77.6
H(l) = Âσ(H(l−1)W (l)) 81.5 70.1 77.6

same architecture (two layers, 16 hidden units, and ReLU

5

GCN
g
ψ
(X, A)

Negative link
generation:
Eq. (4)-(7)

1

3

4

2
7

5

6

8

1 2 43 5 6 7 8

1
2

4
3

5
6

7
8

1

3

4

2
7

5

6

8 {ω
ij
}

1

3

4

2
7

5

6

8

f
θ
(z

i
, z

j
)

˄

{e
ii
(-)} ω

ij

x1

x
2

x4

x5

x
3

x6

x8

x
7

z
1
,y

1

z
2
,y

2

z
4
,y

4

z
5
,y

5

z
3
,y

3

z
6
,y

6

z
8
,y

8

z7,y7

˄

˄

˄
˄

˄

[z
i
T, z

j
T]

A*

A

Fig. 2. Illustration of the proposed negative link generation process. The GCN estimates the classes for unlabeled nodes (ŷi) based on the original graph and
extracts the node representation vector (zi) for each node. A fully connected neural network is used to calculate ωij and its input is set to the concatenation of
the node representation vectors. The red squares reflect the magnitude of {ωij}. And a square colored with dark red indicates a large value of the corresponding
ωij . A generated negative link is represented by the red dashed line, which specifies that the node at its head is a negative neighbor of the node at its tail.

activation [31]). The feature propagation models of them are
set to Eq. (2) and Eq. (8), respectively. With identical training
parameters and initial weights, these two GCNs are trained on
three benchmark datasets, i.e., Cora, Citeseer and Pubmed [32]
that are specifically introduced in Section V-A. The average
test performances of ten independent trials are reported in
Table I, which are very close to each other. However, this
modification is important to our proposed method, which will
be discussed thoroughly in Section V-C.

So far we have introduced the proposed negative link
generation mechanism and the modified GCN model for the
graph with negative links. In the next section, we design an
optimization algorithm to train our model.

IV. PROPOSED LEARNING FRAMEWORK

There are two sets of parameters in our model that need to
be trained, which are the weights of gψ and the weights of fθ.
In this section, we first present the loss function design and the
training algorithm. Then, an analytic discussion is provided to
further explain our method.

A. Loss Function and Optimization

With our model, the label distribution for each node can be
estimated based on the original graph as well as the graph with
generated negative links. The class distribution calculated by
gψ(X,A) is denoted as Ŷ ∈ F with Ŷic being the probability
of vi belonging to class c. And the class probability matrix is
written as Ŷ ∗ ∈ F if it is calculated by gψ(X,A∗). Note that
Ŷ ∗ depends on both ψ and θ while Ŷ is only related to ψ.

The cross-entropy loss of Ŷ and Ŷ ∗ over the labeled
samples is

`1(θ, ψ) = −
M∑
i=1

C∑
c=1

Yic log Ŷic −
M∑
i=1

C∑
c=1

Yic log Ŷ
∗
ic. (11)

By minimizing `1(θ, ψ) using the gradient for θ, the negative
link generation model is tuned to assign large weights to the
negative links that are beneficial for reducing the supervised
loss. When updating ψ based on `1(θ, ψ), the inference
function gψ(X,A) is tuned to make more accurate prediction
on the labeled nodes. Meanwhile, ψ is also trained to deal
with the graph with negative links since the supervised loss
of Ŷ ∗ provides the gradient for ψ as well. Besides Eq. (11),
we also add the following cross entropy between the Y ∗ and
Y over the unlabeled samples as the other part of the training
loss:

`2(θ, ψ) = −
N∑

i=M+1

C∑
c=1

Ŷic log Ŷ
∗
ic. (12)

The significance of Eq. (12) can be explained from two
aspects. First, with `2(θ, ψ), the utilization efficiency of the
generated negative links can be largely improved. If the train-
ing loss is set to `1(θ, ψ), only a small part of the generated
negative links can be utilized for model training, which are
the ones within the receptive field of the labeled nodes, while
if `2(θ, ψ) is also included, all the generated negative links
participate in the optimization since `1(θ, ψ) and `2(θ, ψ)
jointly cover all nodes in the graph. Second, `2(θ, ψ) enables
the inference function gψ(X,A) to learn from the generated
negative links. Minimizing `2(θ, ψ), the difference between Ŷ
and Ŷ ∗ are reduced. In this process, the inference function
gψ(X,A) is trained to generate similar label distribution to
Ŷ ∗ which is inferred based on the graph containing negative
links.

In a semi-supervised learning problem, there are usually
many more unlabeled nodes than the labeled nodes such that
`2(θ, ψ) can be considerably larger than `1(θ, ψ). Therefore,
the overall loss function of our model is set to

L(ψ, θ) = 1

M
`1(ψ, θ) +

α

N −M
`2(ψ, θ) (13)

6

Algorithm 1 Training Algorithm
Input: A, X , {yi}M1
Parameter: ψ, θ
Output: Prediction of {yi}NM+1

1: while training() do
2: Calculate Ŷ through gψ(X,A)
3: Sampling {yi}Ni=M+1 based on Ŷ
4: Uniformly sampling T nodes in each class as potential

negative neighbors
5: Generate A∗ through Eq.(4)-(7)
6: Calculate L(ψ, θ) through Eq. (11)-(13)

7: Update (ψ, θ) with (
∂L(ψ, θ)
∂ψ

,
∂L(ψ, θ)
∂θ

)

8: end while
9: Calculate Ŷ with gψ(X,A)

10: ŷi = argmaxj≤C Ŷij for i =M + 1, . . . , N
11: return {ŷi}NM+1

where `1(ψ, θ) and `2(ψ, θ) are normalized by the involved
node numbers to make them comparable; and α is a hyper-
parameter that controls the portions of these two terms. With
the loss function of Eq. (13), the model can be trained by
the backpropagation algorithm. However, when generate A∗,
the generation process of Eq. (4)-(7) searches the negative
neighbors for one node from the whole graph, which can be
of low efficiency. To reduce the computation complexity, we
set the search space to a small subset of the nodes rather than
the whole graph. Specifically, in the negative link generation
process, after obtaining the estimation of the node classes, we
randomly sample T nodes (T � N) in each class, which
are used as the potential negative neighbors for that class.
The reason for this operation is that there are no ground-truth
negative neighbors for one node, and it is unlikely to find a
very special negative neighbor by searching the whole graph.
Consequently, the optimization procedure of our model can be
summarized by Algorithm. 1. Note that at the early stage of
the algorithm, it is possible that the nodes been assigned to
a class is less than T because gψ is not well trained and can
generate very biased classification. In this case, we duplicate
the nodes in that class until the total number is greater than
T such that the consistency of our algorithm can be kept.

Our algorithm updates ψ and θ simultaneously based on the
gradients of Eq. (13). This follows the optimization approach
applied by [33], which solves the semi-supervised learning
problem for non graph-structured data. An alternative way
to optimize a model that contains two sets of parameters
is updating these two parameters iteratively. However, this
approach can increase the complexity of model implementa-
tion and introduce more hyperparameters that need tuning, for
instance, the length of the iteration. In most cases, this iterative
optimization approach is preferred to be avoided. For instance,
in [34], even if the trainable parameters have the min-max re-
lationship, the authors still avoid the iterative training process
by utilizing a gradient reversal layer. Therefore, we apply the
joint optimization instead of the iterative optimization scheme.
In this way, the weights of fθ(·) do suffer some oscillations,

but it does not affect the stability of the GCN model, which is
shown in Fig. 3. The details are provided in Section V.B. And
the objective of our method is not to generate negative links,
instead, we aim to improve the performance of the inference
GCN model by the generated negative links. Therefore, the
joint optimization scheme is reasonable for our model.

B. Discussion

In our method, the final predictions of the node labels are
provided by the inference model i.e., gψ(X,A), which takes
the original graph as input, and the generated negative links are
used to provide extra information to improve the performance
of the inference function. Similar approaches can be found in
prior works, such as [20] and [23]. In [20], the proposed model
contains two GCNs with one inferring the node labels based
on the node features and the other one providing the label
dependencies that is utilized to improve the performance of the
inference model. In [23], a link generation model is proposed
where a fully connected neural network is used to generate
labels for each node at first, and then the node features and
the generated labels are together employed to generate the
links. This process is trained to maximize the likelihood of the
observed links and minimize the likelihood of the nonexistent
links. With the approach of [23], a GCN-based recognition
model is used to predict the labels of the nodes, which is
trained based on the labeled nodes as well as the node labels
generated by the fully connected neural network of the link
generation process.

Unlike the GCNs [26], [27] designed for the signed graph,
which has separate kernels for positive links and negative
links, the positive links and the negative links operate on
the common node features. This is because the negative links
generated by our method represent a negative correlation of
the features of the connected nodes. Moreover, the generated
negative links are utilized to improve the performance of the
inference model as the weights of the GCN is trained on both
the original graph and the graph with generated negative links.
If we introduce another specialized kernel for the negative
links, the generated negative links cannot be informative for
the inference model and the connection between the generated
negative links and the inference model cannot be built. This
is also the reason that our method can not be applied to the
signed graphs. The negative links in a signed graph can convey
complex relations [26]. Applying our model directly to the
signed graph will treating the negative links as the negation
of positive links, which is an incorrect assumption [35].

The proposed negative link generation process creates one
negative link for each node, which is conservative. In our
current work, we do not generate multiple negative links
for one node since there is no prior statistic model for the
number of negative links and it is relatively safe to just
generate the one that we are most confident about. Although
experiment results in Section V-B demonstrate that our method
can achieve state-of-the-art performance in most settings, a
generation mechanism that creates multiple negative links for
one node still deserves consideration, which is planned for
future work.

7

The inference function gψ(X,A) is a GCN working on the
original graph and the computation complexity of layer l is
O(|E|K(l)K(l−1)) where |E| is the total number of the links in
the original graph [15]. For the graph with generated negative
links, the total link number is |E|+N as there is one negative
link for each node. Thus, the computation complexity for the
layer l of gψ(X,A∗) is O((|E| + N)K(l)K(l−1)) which is
slightly higher than that of gψ(X,A) due to the increasing of
the link number. The original computation cost for generating
negative links is O(N2) since we need to compute ωij for
1 ≤ i, j ≤ N . But, in our proposed training algorithm,
it is effectively lowered to O(NT) by randomly sampling
the potential negative neighbors. And since usually we have
N � T , the computation cost for negative link generation is
significantly reduced.

Our method can be alternatively regarded as a data-
augmentation technique since the weights of the GCN, i.e.,
ψ, is trained based on both the graph with negative links and
the original graph. In this way, the GCN is trained on more
data so that the generalization performance can be effectively
enhanced. From this perspective, our method shares some
similarities with the adversarial training algorithms [17], [18].
In a adversarial training algorithms, besides the supervised loss
of the original training data, the loss function also contains
the divergence between the prediction based on the original
data and the prediction based on the data with adversarial
perturbations. The adversarial perturbations are added on the
node features to provide data augmentation. In comparison,
our method achieves the data augmentation by modifying the
graph topology, i.e., adding negative links.

Note that our method is different from the negative sampling
method applied by [36] and [37]. The negative sampling
method is proposed in [38], which is used to solve the word
representation learning problem. In this problem, the objective
is to learn an effective word representation that can be used
to make a prediction for the target word based on the context.
Specifically, the prediction function can be written as

p(w|c) = exp(vT
wvc)∑W

i=1 exp(v
T
i vc)

where p(w|c) denotes the probability of the target word(w)
occurring in the context (c), vw is the representation of w,
vc is the representation of c, and the denominator is the
partition function(the summation over the whole vocabulary).
To learn high-quality word representations, the likelihood of
the training set should be maximized. But since the partition
function in the denominator involves the calculation over the
whole vocabulary, the computation and the optimization can
be expensive. In this case, the negative sampling method is
proposed as an approximation [38]. The key idea is to use
some sampled non-target data to approximate the effect of the
partition function. When applying this method to the graph
representation learning [36], [37], the context is the node
neighbors, the original partition function is calculated over the
whole graph, and the corresponding negative samples are the
non-connected nodes. Interested readers can refer to [39] for
a detailed review of the negative sampling method. However,
in our method, the negative link of a node defines a negative

neighbor of this node, whose features are negatively corre-
lated. Moreover, similar to the word representation learning
problem, the negative sampling method is usually applied to
unsupervised graph representation learning. For instance, the
GraphSage [37] model only includes the negative sampling
term in the loss function when it is applied to the unsupervised
learning problem. While our method is designed for the semi-
supervised learning problem and the training node labels are
necessary for our method.

V. EXPERIMENTS

In this section, we empirically assess the performance of our
proposed method on three widely used benchmark datasets in
different settings. Moreover, we also design some auxiliary
experiments to analyze our model.

A. Experiment Settings

We test the performance of our method on three citation
networks, i.e., Cora, Citeseer, and Pubmed [32]. In these
datasets, nodes represent documents that are categorized into
different classes; the feature of a node is a bag-of-words
vector; and two nodes are connected by a bidirectional link
if either one occurs in the citation list of the other. The basic
statistics of these three citation networks are listed in Table II.
For each dataset, 20 labels per class are provided for training;

TABLE II
DATASET STATISTICS

Datasets Nodes Links Features Classes

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19717 44338 500 3

500 labels are used for validation, and 1000 labels are used
for testing. We strictly follow the data split protocol of [40],
which is commonly applied by most of the prior methods. The
performance of the GCN models are evaluated based on the
testing accuracy in different settings. The following compara-
tive methods are included for the performance evaluation:
• GCN [15]: it is the basic form of GCN where the feature

propagation coefficients of the neighbors are determined
by the graph topology.

• GAT [16]: it assigns different coefficients to the neighbors
of a node based on their features in the feature smoothing
process.

• Bayesian GCN [22]: this method generates multiple graph
topologies and utilizes the generated topologies to infer
the node labels with a Bayesian approach.

• LSM-GAT and SBM-GCN [23]: it trains the generative
models (LSM and SBM) based on the observed graph
topology, and the node labels created by the generative
model is exploited to improve the performance of the
GCN-based recognition model.

• DisenGCN [21]: it aims to extract node features that
belong to disentangled channels; at each channel, the
node feature is jointly determined by the feature vectors
of the neighborhood and the coefficient of a neighbor

8

reflects the extent of they being connected due to this
channel.

• GMNN [20]: this model consists of two GCNs with one
functioning as the recognition function and the other
being used to model the label dependencies; these two
GCNs learns interactively through the unlabeled nodes.

• O-BVAT [17]: it creates adversarial training samples by
adding random perturbations on node features, and the
GCN is trained on the adversarial samples to improve
the generalization performance.

• GGP-X [41]: it is a graph Gaussian process that infers
the node feature based on the neighbors with a Bayesian
approach.

• GIL [42]: this method infers the label of a query node
based on the nodes in the reference set; the similarity
score between a query node and a reference node is
calculated according to their properties, which is used
to evaluate the probability of sharing the same label.

In all experiments, the hyperparameters of our model are
kept the same. The GCN in our model consists of two layers
(L = 2) with 16 hidden units, i.e. K(1) = 16. The ReLU
activation function is applied at the output of the first layer.
Dropout [43] is applied at the input of the two layers and
the dropout rate is set to 0.5. These parameters above follow
the classic settings of prior works [15], [17], [20], [22].
fθ(zi, zj) is instantiated by a three-layer fully connected neural
network, where the sigmoid activation function is applied at
the hidden layer and there is no activation function at the
output layer. The hidden units number K(f) for fθ(zi, zj), the
sampling volume T for each class in Algorithm 1, and the
coefficient α in Eq. (13) are jointly searched according to the
classification performance on the validation set of Cora. The
search space is specified as follows: K(f) ∼ [8, 16, 32, 64],
D ∼ [32, 64, 128, 256], α ∼ [0.6, 0.8, 1.0, 1.2, 1.4]. According
to the average validation accuracy of 20 trials in each setting,
these parameters are set to K(f) = 16, T = 128, α = 0.8.
The RMSProp optimizer [44] is employed to train the model
where the initial learning rate and the weight decay coefficient
are set to 0.05 and 5e-4, respectively.

B. Node Classification Performance
The node classification performance of our method is evalu-

ated by the testing accuracy with different experiment settings.
With the first setting, we use the samples of the training set
to train our model and the validation set is utilized to early
stop the training. This setting is applied by numerous previous
works and the comparison with these methods is shown in
Table III. The performance of the comparative methods are
directly copied from the original literature and the results
of our model are the average classification accuracies of 50
trials. In Table III, the result with a bold marker is the best
performance on that dataset. We can see that our method
achieves the best performance on all datasets. Moreover, the
performances of our model on Cora and Citeseer past t-test
with the significance level of 0.001 compared with the second-
best methods, which are marked by ‘?’ in Table III. On
Pubmed, the p-value for the t-test of our method is 0.002.

TABLE III
CLASSIFICATION ACCURACIES (%) WITH THE STANDARD DATA SPLIT.

THE BOLD MARKER DENOTES THE BEST PERFORMANCE ON THAT
DATASET, AND THE STAR MARKER (?) MEANS THE BEST ALGORITHM
PASTS T-TEST COMPARED WITH THE SECOND-BEST ALGORITHM WITH

THE SIGNIFICANCE LEVEL OF 0.001. THE (±) ERROR BAR DENOTES THE
STANDARD DEVIATION AND FOR SOME OF THE METHODS, THIS TERM IS

OMITTED FOR NOT BEING REPORTED BY THE ORIGINAL LITERATURE.

Algorithm Cora Citeseer Pubmed

GCN 81.5 70.3 79.0
GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3
Bayesian GCN 81.2 ± 0.8 72.2 ± 0.6 76.6 ± 0.7
LSM GAT 82.9 ± 0.3 73.1 ±0.5 77.6 ± 0.7
SBM GCN 82.9 ± 0.3 74.0 ± 0.3 77.4± 0.4
DisenGCN 83.7 73.4 80.5
GMNN 83.7 73.1 81.8
O-BVAT 83.6 ± 0.5 74.0 ± 0.6 79.9 ± 0.4
Ours ?84.4 ± 0.5 ?74.8 ± 0.4 82.2 ± 0.5

The second experiment setting allows us to use the samples
in the validation set for training, which is also adopted by
the following two papers: [41] (GGP-X) and [42] (GIL). We
compare our method with the results claimed in these two
papers. Since we use the validation set to train our model,
we no longer do early stopping during training. Instead, we
train our model for 200 epochs in each trial and report the
average results of 50 trials in Table IV. It can be observed
that our method outperforms others for all three datasets and
the improvements are statistically significant.

TABLE IV
CLASSIFICATION ACCURACIES (%) WITH VALIDATION SET BEING

UTILIZED FOR TRAINING. THE BOLD MARKER AND THE STAR MARKER
(?) ARE CONSISTENT WITH THE DEFINITIONS IN TABLE III

Algorithm Cora Citeseer Pubmed

GGP-X 84.7 75.6 82.4
GIL 86.2 74.1 83.1
Ours ?87.1 ± 0.4 ?76.5 ± 0.3 ?84.0± 0.4

We also test our method under the data-scarce situation
where the training sample is reduced to the half, i.e., ten
samples for each class. This experiment setting is also applied
by [22] (Bayesian GCN) and [23] (LSM-GAT and SBM-
GCN). In this experiment, we randomly select 10 samples
for each class to create a reduced-label training set. Then
10 independent trials are conducted for this training set. We
repeat this process five times, such that 50 trials in total
are implemented with the reduced-label setting. The average
testing accuracies are reported in Table V. We can see that our
method significantly outperforms the other two algorithms.

TABLE V
CLASSIFICATION ACCURACIES (%) WITH REDUCED-LABEL TRAINING.
THE BOLD MARKER AND THE STAR MARKER (?) ARE CONSISTENT

WITH THE DEFINITIONS IN TABLE III.

Algorithm Cora Citeseer Pubmed

Bayesian GCN 76.6 ± 0.8 70.8 ± 0.6 72.3 ± 0.8
LSM-GAT 79.2 ± 0.4 69.1 ± 0.4 69.9 ± 0.3
SBM-GCN 78.0 ± 0.2 70.3 ± 0.6 71.0 ± 0.4
Ours ?82.5 ± 0.9 ?71.8 ± 0.7 ?75.0 ± 0.6

9

C. Model Analysis

Now we conduct some auxiliary experiments to analyze
our method. In our model, the parameter of the negative link
generator (θ) and the GCN model (ψ), are jointly trained.
To verify the stableness of our model, we plot the evolution
trajectories of the weights for the GCN model and the negative
link generator during the training on the Cora dataset, which
is shown in Fig. 3. We sampled three components from ψ and
θ respectively and plot the corresponding trajectories in Fig. 3
(a) and (b). From Fig.3 (b), it can be observed that the negative

0 25 50 75 100 125 150 175 200
training step

4

2

0

2

4

we
ig

ht
s

(a)

0 25 50 75 100 125 150 175 200
training step

0.5

0.0

0.5

1.0

1.5

we
ig

ht
s

(b)

Fig. 3. Evolution of the sampled weights in our model during the training
on Cora: (a) sampled weights from ψ; (b) sampled weights from θ.

link generator suffers certain oscillations. The possible reason
is that the negative neighbors for each node are generated
through random sampling in our training process. However, the
weights of the GCN model evolve smoothly, which is shown
in Fig. 3 (a). This phenomenon can be explained as: there is
only one generated link for each node and the effect of the
negative links is much less than the original positive links;
second, the generated negative links are normalized through
Eq. (7), and accordingly, the fluctuation from the generator
can be attenuated for the GCN.

In our model, the feature propagation operation is moved
from the input to the output for each layer. This modification
has little influence when the GCN deals with the original
graph where there are no negative links, validated by Table I.
However, this modification is important for our method. To
demonstrate this point, we implement our method with both
the original propagation model and our modified propagation
model. The average testing results of 10 independent trials
on three benchmark datasets are reported in Table VI. It
can be observed that the modified feature propagation model
consistently improves the performance of our method over the
three datasets.

TABLE VI
COMPARISON OF NODE CLASSIFICATION ACCURACIES (%) OF OUR

METHOD UNDER DIFFERENT FEATURE PROPAGATION MODEL

Propagation model Cora Citeseer Pubmed

H(l) = σ(Â∗H(l−1)W (l)) 83.6 ± 0.5 72.9 ± 0.6 81.6 ± 0.4
H(l) = Â∗σ(H(l−1)W (l)) 84.4 ± 0.5 74.8 ± 0.4 82.2 ± 0.5

In our method, the label distribution calculated by gψ(X,A)
and the label distribution calculated by gψ(X,A

∗) are regu-
larized to be similar to each other by minimizing their cross
entropy over the unlabeled nodes, which means these two
models learn interactively. If we substitute Ŷ ∗ with Ŷ for
Eq. (11) and (12), our method will convert to a self-training
algorithm [45], which annotates the unlabeled nodes with its
prediction and use these annotated nodes to train itself. The
comparison of our method and the self-training counterpart
is shown in Table VII. We see that our method is able to
generate better results than the self-training algorithm, which
demonstrates the benefit of the negative links.

TABLE VII
COMPARISON OF NODE CLASSIFICATION ACCURACIES (%) WITH

SELF-TRAINING

Algorithm Cora Citeseer Pubmed

Self-training 82.8 ± 0.4 73.0 ± 0.5 80.6 ± 0.4
Ours 84.4 ± 0.5 74.8 ± 0.4 82.2 ± 0.5

The next experiment aims to inspect the learning process of
the negative link generation model. For this purpose, we check
the weights of the generated negative links during the training
process, which is illustrated by Fig. 4. In this figure, each
boxplot shows the statistic of the magnitudes of negative links
generated in 10 consecutive training epochs, where the box
specifies the first quartile and the third quartile; the orange bar
in the box shows the median; the whiskers under and above the
box extend to the minimum and the maximum; and the green
triangle indicates the mean. For the Cora dataset, there are
six representatives (v

i
(−)
c

) of the potential negative neighbors
for a node since the total class number is seven and we do
not seek negative neighbors from the same class. If ωij for
all potential negative neighbors are similar, the magnitude of
the generated negative link will be low and the minimum is
0.167. This corresponds to the situation where our negative
link generation model cannot tell which potential neighbor
is better than the others. From Fig. 4(a), we see that at the
beginning, the weights of the generated negative links are very
low while as the training going, the generated links tend to
have large weights which indicates our model learns to find
the special node among other potential negative neighbors. A
similar phenomenon can be found for the Citeseer dataset from
Fig. 4(b). However, base on Fig. 4(c), the learning procedure
is not ideal for the Pubmed dataset, which may also be the
potential reason for the limited performance improvement of
our method on this dataset. It is possible that learning a
negative link pattern is more difficult on Pubmed since it has
many more nodes and edges, which can consequently lead to

10

more complex node relations.

1-
10

11
-2

0

21
-3

0

31
-4

0

41
-5

0

51
-6

0

61
-7

0

71
-8

0

81
-9

0

91
-1

00

Epoch number

0.2
0.3
0.4
0.5
0.6
0.7
0.8

W
ei

gh
t m

ag
ni

tu
de

s
of

 g
en

er
at

ed
 li

nk
s

(a)

1-
10

11
-2

0

21
-3

0

31
-4

0

41
-5

0

51
-6

0

61
-7

0

71
-8

0

81
-9

0

91
-1

00

Epoch number

0.2
0.3
0.4
0.5
0.6
0.7
0.8

W
ei

gh
t m

ag
ni

tu
de

s
of

 g
en

er
at

ed
 li

nk
s

(b)

1-
10

11
-2

0

21
-3

0

31
-4

0

41
-5

0

51
-6

0

61
-7

0

71
-8

0

81
-9

0

91
-1

00

Epoch number

0.5

0.6

0.7

0.8

0.9

W
ei

gh
t m

ag
ni

tu
de

s
of

 g
en

er
at

ed
 li

nk
s

(c)

Fig. 4. Boxplots of the magnitude statistics of generated negative links in
every 10 consecutive training epochs for three datasets: (a) Cora, (b) Citeseer,
(c) Pubmed. The box specifies the first quartile and the third quartil. The
orange bar in the box shows the median. The whiskers under and above the
box extend to the minimum and the maximum. The green triangle indicates
the mean.

We present the visualization of the node feature extracted by
the first layer of our GCN model for the testing samples. The
corresponding t-SNE [46] embedding is plotted in Fig. 5. For
the three datasets, the node feature extracted by our model is
plotted at the right column of three subfigures with Fig. 5(a),
Fig. 5(c), and Fig. 5(c) respectively corresponding to Cora,
Citeseer, and Pubmed. We also provide the visualizations of
the features extracted by the GCN model from [15] as a
comparison, which lie at the left column in Fig. 5. In each
subfigure, the nodes of different classes are represented by
different colors. It can be observed that for Cora and Citeseer,
our method is able to extract more discriminative features
than the GCN baseline. For Pubmed, the improvement is
not that obvious. This phenomenon is consistent with the
observation from Fig. 4(c). Thus, improving the performance
of our method on large scale datasets will be the focus of our
future work.

We also modify our model to apply it on the link predic-
tion task. For this purpose, we apply the inner product link
prediction model introduced by [47]:

Âij = σ(zTi zj) (14)

where Âij is the probability of the link between node i and
node j exists, σ(·) is the sigmoid function, and zT

i zj is the

40 20 0 20 40

40

20

0

20

40 20 0 20 40
40

20

0

20

40

60

(a)

40 20 0 20 40

20

0

20

40 20 0 20 40

40

20

0

20

40

(b)

20 0 20 40

40

20

0

20

40

40 20 0 20
60

40

20

0

20

40

(c)

Fig. 5. T-SNE embedding plot of the feature extracted by the first layer of
the GCNs on three datasets: (a) Cora, (b) Citeseer, (c) Pubmed. The plots lie
at the left column exhibit the node features extracted by the original GCN
model of [15]. The plots lie at the right column exhibit the node features
extracted by our model.

inner product of the node features. It can be observed that
the link prediction only depends on the node feature with this
prediction model. Thus, a good performance also denotes the
high quality of the learned features. To apply our model to link
prediction task, the loss function of our model is modified as

J (ψ, θ) = L(ψ, θ) +
∑
Aij∈A

Aij log(Âij) (15)

where the first term is the loss of Eq. (13) and the second
term denotes the cross entropy loss of the predicted links.
We follow the dataset modification scheme of [47] for the
evaluation of the link prediction performance. Specifically, 5%
links are removed from the original citation dataset and these
links are used as validation set; another 10 % links are removed
and used as the test set. In the test and validation sets, we
also randomly sample some unconnected node pairs as the
non-edges case and the number of non-edges case is equal
to the corresponding edge number. The experiment results
are listed in Table VIII. It can be observed that our method
performs better comparing the link prediction model based
on the standard GCN model [47] (GAE) on the Cora and
Citeseer dataset. And since we apply the inner product link
prediction model and the prediction is only determined by the
node features, this demonstrate that our method can generate
better nodes features, which is the major purpose of our work.

11

TABLE VIII
LINK PREDICTION RESULTS FOR THE CITATION NETWORK. AUC IS THE AREA UNDER THE ROC CURVE AND AP REPRESENTS THE AVERAGE PRECISION

SCORES

Algorithm Cora Citeseer Pubmed
AUC AP AUC AP AUC AP

GAE 91.0± 0.02 92.0 ± 0.03 89.5 ± 0.04 89.9 ± 0.05 96.4 ± 0.00 96.5 ± 0.00
Ours 91.5 ± 0.02 92.6 ± 0.02 90.4 ± 0.02 91.5 ± 0.01 96.3 ± 0.01 96.5 ± 0.01

VI. CONCLUSION

Most of the previous GCN-based methods for semi-
supervised node classification depends on the positive cor-
relation of the connected nodes. In this paper, we have
introduced a novel learning approach that learns to infer node
labels by further considering the inverse correlated nodes. A
trainable negative link generation model has been proposed to
generate negative links that are beneficial for the classification
performance. To avoid searching neighbors from the whole
dataset, which is of high computation cost, we have designed
a high-efficiency training algorithm that randomly searches
negative neighbors in a small subset of nodes. Currently, our
method conservatively generates one neighbor of each node
while a generation mechanism that creates multiple negative
links for one node is planned for future work. Experiments on
three widespread benchmark datasets have demonstrated that
our method can generate better or competitive performance
compared with state-of-the-art methods. We have found that
the performance improvement of our method on the large scale
dataset appears limited compared with the performance on the
small dataset. Therefore, we will also focus on improving our
method on large scale datasets in the future.

REFERENCES

[1] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in Proceedings of the
20th International conference on Machine learning (ICML-03), 2003,
pp. 912–919.

[2] M. Al Hasan and M. J. Zaki, “A survey of link prediction in social
networks,” in Social network data analytics. Springer, 2011, pp. 243–
275.

[3] K. Zhan, C. Zhang, J. Guan, and J. Wang, “Graph learning for multiview
clustering,” IEEE transactions on cybernetics, vol. 48, no. 10, pp. 2887–
2895, 2017.

[4] F. Monti, M. Bronstein, and X. Bresson, “Geometric matrix completion
with recurrent multi-graph neural networks,” in Advances in Neural
Information Processing Systems, 2017, pp. 3697–3707.

[5] F. Xiong, X. Wang, S. Pan, H. Yang, H. Wang, and C. Zhang, “Social
recommendation with evolutionary opinion dynamics,” IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 2018.

[6] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Advances in
Neural Information Processing Systems, 2017, pp. 6348–6358.

[7] H. He and H. Jiang, “Deep learning based energy efficiency optimization
for distributed cooperative spectrum sensing,” IEEE Wireless Communi-
cations, vol. 26, no. 3, pp. 32–39, 2019.

[8] L. Yang, X. Cao, D. Jin, X. Wang, and D. Meng, “A unified semi-
supervised community detection framework using latent space graph
regularization,” IEEE transactions on cybernetics, vol. 45, no. 11, pp.
2585–2598, 2014.

[9] Z. Chen, X. Li, and J. Bruna, “Supervised community detection with
line graph neural networks,” arXiv preprint arXiv:1705.08415, 2017.

[10] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” in Advances in neural information
processing systems, 2004, pp. 321–328.

[11] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
Journal of machine learning research, vol. 7, no. Nov, pp. 2399–2434,
2006.

[12] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
arXiv preprint arXiv:1812.04202, 2018.

[13] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey
of graph embedding: Problems, techniques, and applications,” IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 9, pp.
1616–1637, 2018.

[14] X. Zhou, F. Shen, L. Liu, W. Liu, L. Nie, Y. Yang, and H. T.
Shen, “Graph convolutional network hashing,” IEEE transactions on
cybernetics, 2018.

[15] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[17] Z. Deng, Y. Dong, and J. Zhu, “Batch virtual adversarial training for
graph convolutional networks,” arXiv preprint arXiv:1902.09192, 2019.

[18] F. Feng, X. He, J. Tang, and T.-S. Chua, “Graph adversarial training:
Dynamically regularizing based on graph structure,” IEEE Transactions
on Knowledge and Data Engineering, 2019.

[19] S. Pan, R. Hu, S.-f. Fung, G. Long, J. Jiang, and C. Zhang, “Learning
graph embedding with adversarial training methods,” IEEE transactions
on cybernetics, 2019.

[20] M. Qu, Y. Bengio, and J. Tang, “Gmnn: Graph markov neural networks,”
arXiv preprint arXiv:1905.06214, 2019.

[21] J. Ma, P. Cui, K. Kuang, X. Wang, and W. Zhu, “Disentangled graph con-
volutional networks,” in International Conference on Machine Learning,
2019, pp. 4212–4221.

[22] Y. Zhang, S. Pal, M. Coates, and D. Ustebay, “Bayesian graph convo-
lutional neural networks for semi-supervised classification,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019,
pp. 5829–5836.

[23] J. Ma, W. Tang, J. Zhu, and Q. Mei, “A flexible generative framework
for graph-based semi-supervised learning,” in Advances in Neural Infor-
mation Processing Systems, 2019, pp. 3276–3285.

[24] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, 2020.

[25] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[26] T. Derr, Y. Ma, and J. Tang, “Signed graph convolutional networks,” in
2018 IEEE International Conference on Data Mining (ICDM). IEEE,
2018, pp. 929–934.

[27] X. Shen and F.-L. Chung, “Deep network embedding for graph represen-
tation learning in signed networks,” IEEE transactions on cybernetics,
2018.

[28] P. Massa and P. Avesani, “Controversial users demand local trust metrics:
An experimental study on epinions. com community,” in AAAI, 2005,
pp. 121–126.

[29] F. Wu, T. Zhang, A. H. d. Souza Jr, C. Fifty, T. Yu, and K. Q.
Weinberger, “Simplifying graph convolutional networks,” arXiv preprint
arXiv:1902.07153, 2019.

[30] P. D. Hoff, A. E. Raftery, and M. S. Handcock, “Latent space approaches
to social network analysis,” Journal of the american Statistical associ-
ation, vol. 97, no. 460, pp. 1090–1098, 2002.

[31] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

[32] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI magazine, vol. 29,
no. 3, pp. 93–93, 2008.

12

[33] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-
supervised learning with deep generative models,” in Advances in neural
information processing systems, 2014, pp. 3581–3589.

[34] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavi-
olette, M. Marchand, and V. Lempitsky, “Domain-adversarial training
of neural networks,” The journal of machine learning research, vol. 17,
no. 1, pp. 2096–2030, 2016.

[35] J. Tang, X. Hu, and H. Liu, “Is distrust the negation of trust? the value
of distrust in social media,” in Proceedings of the 25th ACM conference
on Hypertext and social media, 2014, pp. 148–157.

[36] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[37] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” arXiv preprint arXiv:1706.02216, 2017.

[38] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” arXiv
preprint arXiv:1310.4546, 2013.

[39] Z. Yang, M. Ding, C. Zhou, H. Yang, J. Zhou, and J. Tang, “Understand-
ing negative sampling in graph representation learning,” in Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020, pp. 1666–1676.

[40] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” arXiv preprint
arXiv:1603.08861, 2016.

[41] Y. C. Ng, N. Colombo, and R. Silva, “Bayesian semi-supervised learning
with graph gaussian processes,” in Advances in Neural Information
Processing Systems, 2018, pp. 1683–1694.

[42] C. Xu, Z. Cui, X. Hong, T. Zhang, J. Yang, and W. Liu, “Graph
inference learning for semi-supervised classification,” arXiv preprint
arXiv:2001.06137, 2020.

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[44] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
networks for machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[45] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability
of co-training,” in Proceedings of the ninth international conference on
Information and knowledge management, 2000, pp. 86–93.

[46] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[47] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

He Jiang (S’17) received the B.S. degree from North
China Electric Power University, Beijing, China, in
2012, the M.S. degree from the School of Electrical
and Electronics Engineering, Huazhong University
of Science and Technology, Wuhan, China, in 2015,
and the Ph.D. degree in electrical engineering from
University of Rhode Island in 2021. His research
interests include adaptive dynamic programming,
reinforcement learning, optimal control, machine
learning, data mining, and various applications.

Haibo He (SM’11-F’18) received the B.S. and M.S.
degrees in electrical engineering from the Huazhong
University of Science and Technology in 1999 and
2002, respectively, and the Ph.D. degree in elec-
trical engineering from Ohio University in 2006.
He is currently the Robert Haas Endowed Chair
Professor at the Department of Electrical, Computer,
and Biomedical Engineering, University of Rhode
Island. His research interests include computational
intelligence, machine learning, data mining, and
various applications. He is currently the Editor-in-

Chief of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND
LEARNING SYSTEMS.

