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 23 

Abstract 24 

The root-associated microbiome (rhizobiome) affects plant health, stress tolerance, and nutrient 25 

use efficiency. However, it remains unclear to what extent the composition of the rhizobiome is 26 

governed by intraspecific variation in host plant genetics in the field and the degree to which 27 

host plant selection can reshape the composition of the rhizobiome. Here we quantify the 28 

rhizosphere microbial communities associated with a replicated diversity panel of 230 maize 29 

(Zea mays L.) genotypes grown in agronomically relevant conditions under high N (+N) and low 30 

N (-N) treatments. We analyze the maize rhizobiome in terms of 150 abundant and consistently 31 

reproducible microbial groups and we show that the abundance of many root-associated 32 

microbes is explainable by natural genetic variation in the host plant, with a greater proportion of 33 

microbial variance attributable to plant genetic variation in -N conditions. Population genetic 34 

approaches identify signatures of purifying selection in the maize genome associated with the 35 

abundance of several groups of microbes in the maize rhizobiome. Genome-wide association 36 

study was conducted using the abundance of microbial groups as rhizobiome traits, and 37 

identified n = 622 plant loci that are linked to the abundance of n = 104 microbial groups in the 38 

maize rhizosphere. In 62/104 cases, which is more than expected by chance, the abundance of 39 

these same microbial groups was correlated with variation in plant vigor indicators derived from 40 

high throughput phenotyping of the same field experiment. We provide comprehensive datasets 41 

about the three-way interaction of host genetics, microbe abundance, and plant performance 42 

under two N treatments to facilitate targeted experiments towards harnessing the full potential of 43 

root-associated microbial symbionts in maize production. 44 

 45 

 46 
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Introduction 47 

Symbiotic relationships between plant hosts and root-associated microbes have been shaped 48 

through natural selection over millions of years of coevolution (Limborg and Heeb, 2018), and 49 

have been a driver of crop performance and yield in agricultural production since the beginning 50 

of plant domestication (Yadav et al., 2018). Microbial actors in the rhizosphere have been 51 

shown to promote plant growth (Saleem et al., 2019), improve nutrient use efficiency (Gomes et 52 

al., 2018; Zhu et al., 2016), and reduce abiotic stress response (Hussain et al., 2018). The 53 

promise of high throughput screens for plant growth promoting activity in isolated microbial 54 

strains or synthetic communities (Singer et al., 2021; Yee et al., 2021) is the potential discovery 55 

of microbial agents that can be used as seed or soil additives to improve crop performance 56 

under field conditions. Promising results have been observed in controlled environments (Van 57 

Gerrewey et al., 2020; Xi et al., 2020; Yu et al., 2021), but it remains a challenge to achieve 58 

similar outcomes in crops under agriculturally relevant field conditions (Eida et al., 2017; Kaur et 59 

al., 2020; Sessitsch et al., 2019). Many microbial inoculants struggle to compete with naturally 60 

occurring microbes in the rhizosphere and rarely survive for extended periods of time in the field 61 

(Piromyou et al., 2011). An improved understanding of how plants shape the composition of 62 

their rhizobiomes under diverse field conditions would make it more feasible to identify 63 

beneficial plant-microbe interactions that will be persistent and replicable in field environments. 64 

Moreover, studying the effects of plant genetics on microbial communities may identify 65 

opportunities to breed crop plants that recruit and maintain superior growth-conducive microbial 66 

communities from the natural environment. 67 

 68 

Few studies to date have addressed the relationship between plant genetics and rhizobiomes in 69 

field settings, mainly because large-scale rhizosphere sampling (as opposed to leaf microbiome 70 

sampling) and DNA sequence analysis of microbial communities in diverse plant hosts is time-71 
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consuming, expensive, and poses significant logistical and technical challenges. It has been 72 

shown that plant genetics can explain variation in both root architecture (Bray and Topp, 2018) 73 

and exudation (Mönchgesang et al., 2016). If these factors in turn shape microbial communities 74 

(Sasse et al., 2018), variation in the root-associated microbial groups (hereafter referred to as 75 

rhizobiome traits) may also result from genetic factors. Recent studies suggested that the 76 

variation in the composition of rhizobiomes is likely controlled by plant genetic factors (i.e., 77 

heritable) in maize (Peiffer et al., 2013), sorghum (Deng et al., 2021), and switchgrass 78 

(Sutherland et al., 2021). However, to what extent these heritable microbes are affected by the 79 

plant host and contribute to variation in the crop phenotype remains unclear. Like any other trait 80 

under heritable genetic control, rhizobiome traits can be targeted in selective breeding 81 

experiments. To explore this idea, previous efforts have been directed towards identifying plant 82 

genetic loci that are associated with rhizobiome traits. Initial studies have shown that 83 

rhizosphere microbial communities differ between distinct genotypes of the same host species, 84 

which has been shown in a study on 27 maize genotypes (Peiffer et al., 2013; Walters et al., 85 

2018) and more recently, in a diversity panel of 200 sorghum lines (Deng et al., 2021). Genome-86 

wide association study (GWAS) has successfully revealed associations between plant genes 87 

and rhizobiome traits at high-level measures of rhizosphere community dissimilarity (i.e., using 88 

principal components) in an Arabidopsis diversity panel (Bergelson et al., 2019) or at order level 89 

(derived from operational taxonomic units (OTUs)) in a sorghum diversity panel (Deng et al., 90 

2021). However, previous attempts at linking plant genes to the abundance of specific groups of 91 

microbes have had limited success due to small population size, limited host genetic diversity, 92 

or due to insufficient taxonomic resolution (Beilsmith et al., 2019; Liu et al., 2021). It was 93 

observed previously (Zhu et al., 2016) that soil microbial communities drastically change in 94 

response to N fertilization. In bulk soil, this is likely due to a direct effect of N application or lack 95 

thereof. In rhizospheres, however, only a subset of the observed changes can be attributed to 96 

direct effects of nitrogen (N) fertilization, while particular microbial groups may be subject to 97 
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indirect effects induced by the plant host in response to N availability or deficiency (Meier et al., 98 

2021). A possible explanation for this could be that during most of the interval between maize 99 

domestication and the present, beneficial plant-microbe interactions have evolved in low-input 100 

agricultural systems characterized by relative scarcity of nutrients, predominantly nitrogen 101 

(Brisson et al., 2019). This is in stark contrast to the modern agricultural environment that has 102 

been the norm since the 1960s, in which plants are supplied with large quantities of inorganic N 103 

fertilizer (Cao et al., 2018). As a consequence, previous selection pressure to retain traits 104 

favorable under low N conditions, including plant growth-promoting microbes, has been largely 105 

reduced in modern maize breeding programs (Haegele et al., 2013; Zhu et al., 2016). Thus, if a 106 

microbial group is indeed under host genetic control and has an effect on plant fitness (i.e., 107 

promotes plant development or increases crop yield) under either N condition, we would expect 108 

the rhizobiome trait to be under host selection.  109 

 110 

In the present study, we evaluate the role that selection on plant genetic factors has played in 111 

shaping the maize rhizobiome under different N conditions. We employ the maize diversity 112 

panel, a set of maize lines selected for maximum representation of genetic diversity and growth 113 

in temperate latitudes (Flint-Garcia et al., 2005). This population has previously been used to 114 

determine the heritability of leaf microbiome traits and to perform genome-wide association 115 

studies (GWAS) on a number of different phenotypes (Wallace et al., 2018). We collected 116 

replicated data on the rhizobiome of 230 lines drawn from this panel when grown under either 117 

high N (+N) and low N (-N) conditions in the field. For 150 microbial groups present in the 118 

rhizosphere (referred to as “rhizobiome traits”), which were abundant and consistently 119 

reproducible, we quantify the degree to which variation is subject to plant genetic control, and 120 

test for evidence of selection under either or both N conditions. Using a set of 20 million high 121 

density single nucleotide polymorphisms (SNPs), we perform GWAS for each rhizobiome trait 122 

identifying genomic loci that are associated with one or more rhizobiome traits. Through 123 
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comparison with gene expression data generated for the same population, we determine 124 

whether genes near microbe-associated plant loci are preferentially expressed in root tissue. 125 

Lastly, we evaluate whether the abundance of each microbial group in the rhizosphere is 126 

correlated with plant performance traits measured in the field, and whether microbe abundance 127 

and plant performance depend on the allele variant at selected microbe-associated plant loci. 128 

The results presented in this study lay the groundwork for future endeavors to investigate the 129 

molecular mechanisms of specific plant-microbe interactions under agronomically relevant 130 

conditions. 131 

Results 132 

Characterization of the rhizobiome for diverse maize genotypes under two different N 133 

conditions 134 

Paired-end 16S sequencing of 3,313 rhizosphere samples from 230 replicated genotypes of the 135 

maize diversity panel (Flint-Garcia et al., 2005) were collected from field experiments conducted 136 

under both +N and -N conditions (Materials and Methods). At the time of sampling, visible 137 

phenotypic differences were observable between +N and -N plots as measured through aerial 138 

imaging (details are reported in Rodene et al., 2022 using the same experimental field). 139 

Sequencing produced 216,681,749 raw sequence reads representing 496,738 unique amplicon 140 

sequence variants (ASVs) (Materials and Methods).  Raw reads were subjected to a series of 141 

quality checks and abundance filters following a workflow for 16S sequencing data analysis by 142 

(Callahan et al., 2016a), which resulted in a curated dataset of 3,626 ASVs for 3,306 samples, 143 

and 105,745,986 total ASV counts (Supplementary File 1). This dataset includes ASVs that 144 

are highly abundant across the maize diversity panel and reproducible in both years of 145 

sampling. Constrained Principal Coordinates analysis calculated from the abundances of 3,626 146 

ASVs shows divergence of samples collected under either -N or +N treatment (Figure 1A), 147 
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which indicates that the microbiomes differ between these two experimental conditions 148 

(PERMANOVA p-value for N treatment < 0.001). 149 

 150 

An initial analysis looking at high-level rhizobiome traits (Principal Components and alpha 151 

diversity metrics derived from the ASV table) shows the same pattern of divergent microbial 152 

communities between N treatments, and in particular under the -N treatment there is evidence 153 

for the association of plant genomic loci and microbiome composition (Figure 1 – figure 154 

supplement 1). To study changes in rhizobiome composition more accurately, the final 3,626 155 

ASVs were clustered into n = 150 distinct microbial groups (“rhizobiome traits”), spanning 19 156 

major classes of rhizosphere microbiota (Figure 1B, Supplementary Files 2 & 3) using a 157 

method previously described (Meier et al., 2021, Supplementary Methods). Of these 158 

rhizobiome traits, 79/150 (52.7%) groups were significantly more abundant in samples collected 159 

from the +N condition (t-test, p < 0.05), 53/150 (35.3%) significantly more abundant in samples 160 

collected from the -N condition, and 18/150 (12.0%) showed no significant difference in 161 

abundance between the two treatments. In several cases, more closely related microbial groups 162 

exhibit shared patterns of differential abundance between N treatments (Figure 1 – figure 163 

supplement 2A).  164 

 165 

Rhizobiome traits are more heritable under -N conditions 166 

The abundance of each of the 150 rhizobiome traits was assessed separately for +N and -N 167 

conditions, and the heritability (proportion of total variance explicable by genetic factors) was 168 

estimated using an approach following a previous study (Deng et al., 2021) (Materials and 169 

Methods). Rhizobiome traits were comparatively more heritable under -N than +N conditions 170 

(paired Student’s t-test, p = 0.021, Figure 1C). We found 34/150 (22.7%) microbial groups to be 171 

significantly heritable (permutation test, p < 0.05, Materials and Methods) under both N 172 

conditions, 18/150 (12%) only under +N conditions, and 27/150 (18%) only under -N conditions. 173 
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Twelve rhizobiome traits exhibited estimated h2 > 0.6 in both +N and -N conditions (Figure 1 – 174 

figure supplement 3). These include 4 groups of ASVs assigned to the order Burkholderiales 175 

(the genus Pseudoduganella, an unknown genus in the Comamonadaceae family, the family 176 

A21b, and Burkholderia oklahomensis) and 2 groups in the Sphingomonadales order 177 

(Sphingobium herbicidovorans 1 and an unknown genus in the Sphingomonadaceae family). 178 

Notably, closely related microbial groups did not exhibit obvious patterns of shared high or low 179 

estimated heritabilities (Figure 1B). As heritabilities and responses to treatments can vary 180 

considerably within families, genera, and lower taxonomic ranks, this underscores the 181 

importance of adequate taxonomic resolution when analyzing rhizosphere microbial 182 

communities. We further observed that more abundant microbes in the rhizosphere also tend to 183 

be more heritable. The correlation of relative abundance vs. heritability was r = 0.29 (Pearson’s 184 

correlation test, p = 3.4x10-4) for +N and r = 0.39 (Pearson’s correlation test, p = 1.1x10-6) for -N 185 

(Figure 1 – figure supplement 2B). 186 
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Figure 1: Diversity, phylogenetics, and heritability of rhizobiome traits. (A) Constrained ordination 

analysis showing the largest two principal coordinates calculated from the abundances of 3,626 ASVs. 

Each diamond represents one sample collected from plants under +N (blue) and -N (red) treatment, 

respectively. Note the separation of N treatments along PCo1. (B) Phylogenetic tree of 150 taxonomic 

groups of rhizosphere microbiota (“rhizobiome traits”) generated by clustering 3,626 ASVs. Families are 

prefixed with “f_”, genus and species names are given where known. Numbers at tree tips indicate 

distinct ASVs in each group. Label colors indicate heritability of each rhizobiome trait as in panel C. (C) 

Heritability (h2) calculated for all 150 rhizobiome traits under +N and -N treatments. Green line indicates 

linear regression with 95% confidence interval, r2 = 0.104. Diagonal dashed line denotes identity. Grey 

lines mark density of data points. Colors indicate whether traits are significantly heritable under either or 

both N treatments, as determined through a permutation analysis using 1000 permutations. 

 

Figure 1 – figure supplement 1: GWAS of high-level rhizobiome traits: 

(A, B) The first 10 principal components were calculated for both the high N (left) and low N (right) 

treatment using the best linear unbiased prediction (BLUPs) of the log(relative abundance) of 3618 

ASVs in 230 maize genotypes. Total variance explained was 60.8% for +N and 65.3% for -N. 

(C) The largest contributors to PC1 differed between the two experimental conditions. Microbial groups 

that account for at least 1% of total variance are annotated in the pie charts. 

(D, E). Notable GWAS signals above the significance threshold (dashed red line) were observed in the -

N treatment for PC1 and the InvSimpson diversity metric (red arrows), indicating genomic loci that 

affect high-level metrics of the rhizobiome. The other PCs and diversity metrics had no strong GWAS 

signals and were not shown. 

 

Figure 1 – figure supplement 2: Abundance and heritability of 150 microbial groups. 

(A) Phylogenetic tree of 150 microbial groups. Colors indicate differential abundance between the +N 

and -N treatment.  
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(B) The mean abundance (mean BLUP of log(relative abundance) across 230 maize genotypes) of 

each microbial group was plotted against the heritability score in the +N and -N treatment. A positive 

correlation is observed in both environments, indicating that more abundant microbes in the 

rhizosphere also tend to be more heritable. 

 

Figure 1 – figure supplement 3: Annotations of heritable microbial groups. (A) The 12 most 

heritable microbial groups with heritability > 0.6 (drawn lines) under both N conditions were annotated 

by name. (B) Taxonomy of the 12 most heritable groups. 

 

 

Rhizobiome traits are related with plant fitness and predominantly under purifying 187 

selection 188 

Under the hypothesis that the rhizobiome traits have effects on plant fitness, we sought to 189 

estimate the selection gradients under different N treatments (Lande and Arnold 1983). To 190 

reduce biases due to environmental covariances (Rausher 1992), the standardized BLUP 191 

values of the microbial traits were fitted into the fitness function (See Materials and Methods). 192 

For the selection gradient estimation, the canopy coverage (CC) obtained from UAV imaging 193 

was used as a proxy for plant fitness. As a result, we identified 58 unique rhizobiome traits 194 

exhibiting significant linear selection gradients (bootstrapping p-value < 0.05) under +N (28 195 

traits) and -N (46 traits) treatments (Figure 2 – figure supplement 1). Additionally, 4 196 

rhizobiome traits showed significant quadratic selection gradients (+N: Luteolibacter 197 

pohnpeiensis (-2.627913e-05, p-value = 0.044), -N: Blastococcus (8.516159e-06, p-value = 198 

0.03), Pseusomonas umsongensis (-2.003792e-05, p-value = 0.04), Chthoniobacter flavus (-199 

5.807404e-05, p-value = 0.028)). 200 

  201 
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Selection acting on rhizobiome traits can happen either by purging deleterious alleles (purifying 202 

selection) or by elevating the frequencies of advantageous alleles (positive selection). To 203 

evaluate the mode of selection at the genomic level, a Bayesian-based method (Genome-wide 204 

Complex Trait Bayesian analysis, or GCTB) was used to test for each rhizobiome trait 205 

(Materials and Methods). A set of n = 834,975 independent SNPs was used to estimate their 206 

effects on 150 rhizobiome traits as well as 17 conventional plant traits collected from the same 207 

population in the same field experiments (Materials and Methods, Supplementary File 4). 208 

Using the relationship between effects of non-zero SNPs and their minor allele frequencies 209 

(MAFs) as a proxy for the signature of selection (Zeng et al., 2018), the S parameter was jointly 210 

estimated from the GCTB analysis for rhizobiome traits and plant traits. According to Zeng 211 

(Zeng et al., 2018), if S = 0 (i.e., the posterior distribution of S is insignificantly different from 212 

zero), the SNP effect is independent of MAF, suggesting a neutral selection. If there is selection 213 

acting on the trait, the SNP effect can be positively (S > 0) or negatively (S < 0) related to MAF, 214 

indicating positive and purifying selection, respectively. 215 

 216 

We report 10 rhizobiome traits that showed both significant linear selection gradients and 217 

significant S parameters (Figure 2A). Under these stringent criteria, 9 rhizobiome traits show 218 

evidence of purifying selection under +N or under -N. One microbial group (Bacillus fumarioli) 219 

showed positive S values indicating that this trait might have been a target of positive selection. 220 

Relative to rhizobiome traits, plant leaf traits and nutrient traits were both more likely to exhibit 221 

evidence of selection within this maize population. Three out of 15 plant leaf traits, i.e., leaf area 222 

(LA), leaf fresh weight (FW), and leaf dry weight (DW) (Materials and Methods), exhibited S > 223 

0 values under the +N condition, consistent with positive selection, while only one of the three 224 

exhibited a slightly negative S value in the -N condition and in that case exhibited a pattern 225 

consistent with weak purifying selection (Figure 2B). Note that the three leaf-related traits are 226 

not independent. The pairwise correlation coefficients are 0.92, 0.91, and 0.94, for LA and FW, 227 
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LA and DW, FW and DW, respectively. Of the 11 micronutrient traits evaluated, 9/11 and 4/11 228 

showed significantly negative S values in trait data collected under +N and -N conditions, 229 

respectively. From the same GCTB analysis, estimates of the number of SNPs with non-zero 230 

effects were substantially lower for rhizobiome traits than for conventional plant traits, whereas 231 

the differences were insignificant between the two N treatments for both rhizobiome and plant 232 

traits (Figure 2C). Using these non-zero effect SNPs, we plotted their minor allele frequency vs. 233 

the minor allele effect. As expected, in the case of positive selection (Bacillus fumarioli), we 234 

observed a skew towards higher MAF and in the case of purifying selection 235 

(f_Comamonadaceae Unknown Genus), a skew towards lower MAF (Figure 2D). 236 

 



 

14 

Figure 2: Population parameters estimated from genome-wide SNPs for plant and rhizobiome 

traits. Selection coefficients (S value) of rhizobiome (A) and plant (B) traits calculated for both N 

treatments using genome-wide independent SNPs. A negative S value indicates negative (purifying) 

selection, and a positive S value indicates positive (directional) selection. Traits are shown that show 

significant selection under one or both N treatments. (C) Number of SNPs showing non-zero effects for 

both plant and rhizobiome traits. (D) Examples of positive (Bacillus fumarioli) and purifying selection 

(f_Comamonadaceae Unknown Genus) showing minor allele effect vs. allele 1 frequency with data 

skew to the right and to the left, respectively. 

 

Figure 2 – figure supplement 1: Rhizobiome traits exhibit significant linear selection gradients 

(bootstrapping p-value < 0.05) under +N and -N treatments 

 237 

 238 

Genes underlying microbe-associated plant loci are preferentially expressed in root 239 

tissue 240 

The observation that many rhizobiome traits are both under significant host genetic control and 241 

targets of selection suggests it may be possible to detect individual large effect loci controlling 242 

rhizobiome traits. To investigate this, we performed GWAS using each of the 150 rhizobiome 243 

traits. This analysis was done separately for the -N and +N conditions, as N deficiency induces 244 

dramatic changes in plant metabolism, including changes in root gene expression (Singh et al., 245 

2022) and root exudation (Zhu et al., 2016), and because N applied to the field directly impacts 246 

soil and rhizosphere microbiomes (Meier et al., 2021). We focused on “hotspots” along the 247 

genome where we find the highest cumulative density of significant associations between SNPs 248 

and any rhizobiome traits under either N treatment, because morphological (i.e., root 249 

architecture) or physiological (root exudation) changes may simultaneously affect several 250 

rhizobiome traits. For this purpose, we split the maize genome into 10 kb genomic windows and 251 
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tallied the number of significant (p < 10-7.2) GWAS signals in each window. This analysis 252 

revealed 622 genomic regions containing at least one significant GWAS signal, and we refer to 253 

these regions as microbe-associated plant loci (MAPLs) (Materials and Methods). We report 254 

these MAPLs alongside nearby genes in Supplementary File 5. 104 out of 150 microbial 255 

groups were associated with at least one of the 622 loci. 256 

 257 

To reduce false discoveries, we decided to discuss a subset of 119 MAPLs here, that had at 258 

least two significant GWAS signals. Among these 119 MAPLs, 69 were observed under +N 259 

treatment and 50 under -N treatment (Figure 3A, Supplementary File 5).  Of the 150 260 

rhizobiome traits evaluated here, 35 were associated with at least one of the 119 MAPLs, with 261 

21 rhizobiome traits associated with 69 MAPLs under the +N treatment and 17 rhizobiome traits 262 

with 50 MAPLs under the -N treatment. 3 rhizobiome traits (f_Chitinophagaceae Unknown 263 

Genus, Sphingoaurantiacus, and f_Vicinamibacteraceae) showed significant associations under 264 

both N treatments, albeit with different plant loci. No loci were found that had associations with 265 

rhizobiome traits under both N treatments, which is expected as GWAS analyses were done 266 

separately for different N treatments and the microbial groups studied here were partly 267 

distinguished based on differential abundance in response to N treatments. 268 

 269 

We hypothesized that many plant genes underlying MAPL hotspots may exert control over the 270 

rhizosphere microbiome via changes in root physiology, architecture, and exudate composition 271 

(Vandenkoornhuyse et al., 2015) and may therefore be preferentially expressed in root tissue. 272 

Transcribed sequences of 97 gene models were completely contained within ±10 kb of the 119 273 

MAPL hotspots identified here, where 114/119 MAPLs contained between 1 and 5 genes. We 274 

evaluated the expression of these MAPL genes relative to the overall patterns exhibited by all 275 

genes outside the MAPL regions in seven tissues using published expression data from the 276 

same maize population (Kremling et al., 2018). Expression data was available in this dataset for 277 
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73 out of 97 MAPL genes across 298 maize genotypes from tissue samples collected at 278 

germination and during flowering time. These MAPL genes, when compared to (n = 29,771) 279 

other genes available in the dataset, show on average significantly higher expression in the 280 

germinating root, the germinating shoot, and the third leaf base (Figure 3B). 281 

 282 

To complement the gene expression data provided by Kremling et. al, we selected 4 diverse 283 

and well characterized maize genotypes (K55, W153R, B73, and SD40). Plants were grown in a 284 

controlled greenhouse environment under standard N and N deficient conditions and gene 285 

expression was analyzed in roots and shoots of two-week old seedlings (for details refer to Xu 286 

et al, 2022). In agreement with the dataset provided by Kremling et al, significantly higher 287 

expression of 97 MAPL genes was observed in root but not leaf tissue compared to (n = 44,049) 288 

other genes available in this dataset (Figure 3C). No strong physiological response to N 289 

deficiency was expected for 2-week-old seedlings and no significant differences were observed 290 

in the pattern of MAPL gene expression between the two N treatments. 291 

 292 

Collectively, these data are consistent with the hypothesis that rhizobiomes are at least in part 293 

genetically controlled by the host plant in a process mediated by plant gene expression. 294 

 295 
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Figure 3: Microbe associated plant loci (MAPLs) contain genes expressed in roots. (A) GWAS of 

150 rhizobiome traits reveals microbe-associated plant loci across the maize genome. Dashed line 

indicates the -log10(p) = 7.2 significance level for GWAS signals. Circles on top of peaks at each MAPL 

indicate the number of rhizobiome traits associated with each locus. Each MAPL is annotated with the 

associated rhizobiome trait(s) that showed significant GWAS signals. (B) Mean gene expression of 73 

MAPL genes and 29,771 other genes in seven tissue types, measured in 298 genotypes of the maize 

diversity panel (Kremling et al., 2018). (C) Mean gene expression of 97 MAPL genes and 44,049 other 

genes in two tissue types, measured in the present study in four maize genotypes under +N and -N 

treatments. 
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 296 

Heritable and adaptively selected rhizobiota are associated with plant phenotypes 297 

We investigated the correlation of microbe abundance with 17 plant traits, including leaf 298 

physiology, leaf micronutrient traits, and traits extracted from aerial images (Materials and 299 

Methods) to identify potential plant phenotypic consequences of variation in the abundance of 300 

specific rhizosphere microbes. Several rhizobiome traits were significantly correlated (p < 0.01) 301 

with measures of plant performance, such as leaf area, leaf dry weight and fresh weight, and 302 

with several measures of leaf micronutrients such as nitrogen, sulfur, and phosphorus (Figure 4 303 

– figure supplement 1). The trait that was most strongly linked to microbe abundance was leaf 304 

canopy coverage (CC). In total, 62 microbial groups – more than expected by chance 305 

(permutation test, p < 0.001) – were significantly (Pearson correlation test, p < 0.01) associated 306 

with CC (marked in Figure 4 in green for positive correlation and in red for negative correlation). 307 

30 microbial groups under +N and 35 under -N were positively correlated with CC. 14 groups 308 

under +N and 12 under -N were negatively correlated with CC. 15 microbial groups were 309 

associated with CC under +N treatment, 18 under -N treatment, and 29 showed a significant 310 

association under both N treatments (Figure 4A). Under both N treatments, we observe an 311 

association between heritability and the correlation with CC, which was statistically significant 312 

(Pearson correlation coefficient r = 0.39, p = 4x10-6) for +N and even more significant (r = 0.49, 313 

p = 1.7x10-9) under the -N condition (Figure 4B). 314 

 315 
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Figure 4: Heritable microbial groups tend to be correlated with whole plant canopy coverage. (A) 

Distribution of statistical significance and correlation values for the relationship between canopy 

coverage (CC) and each of 150 microbial groups under either +N or -N conditions. Dashed line 

indicates significance level (p = 0.01). (B) Relationship between the estimated heritability of individual 

rhizobiome traits and correlation of the same individual rhizobiome traits with variation in CC. Dashed 

line indicates significance level (p = 0.01). 

 

Figure 4 - figure supplement 1: Correlation of microbe abundance with 17 agronomic and 

micronutrient traits under +N (blue) and -N (red) conditions. Each dot represents one of 150 
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rhizobiome traits. X axis shows correlation with agronomic trait (r value), y axis shows significance, 

dashed line shows p=0.01 level of significance. CC_Aug12, EXG_Aug12: canopy coverage and excess 

green index measured on Aug. 12, 2019; CHL: chlorophyll content, DW: dry weight, FW: fresh weight, 

LA: leaf area. 

 

Figure 4 - figure supplement 2: Microbial traits that correlate with canopy coverage. 

Venn diagram shows a total 62 microbial traits that correlate with canopy coverage either under +N, -N 

or both treatments. For the 62 listed rhizobiome traits, colored dots summarize various statistics that 

indicate association with the host plant genetics and performance. 

 

 

We summarize the relationship of the analyses conducted in this study under either N treatment 316 

for the 62 microbial groups that are correlated with CC. 44/62 (71%) are heritable and 13/62 (21%) 317 

are under selection under either or both N treatments (Figure 4 – figure supplement 2 318 

). 56/62 (90%) show strong GWAS signals in 174/467 (39%) of the MAPLs identified here, 319 

which contain 255/395 (65%) of possibly microbe-associated genes. Two microbial groups, 320 

f_Comamonadaceae Unknown Genus and Sphingoaurantiacus, are of particular interest as 321 

they overlap in all performed assays, showing evidence of heritability and selection, a strong 322 

GWAS signal in associated plant genomic loci positive correlation with canopy coverage.  The 323 

complete summary data for all 150 microbial groups are available in Supplementary File 3.  324 

 325 

Overall, our data show a clear trend that the 62 microbial groups associated with plant 326 

performance also tend to be associated with host genetics, and the datasets provided here can 327 

be used to design more targeted experiments to confirm associations of rhizosphere microbial 328 

groups with plant genetics and performance on a case-by-case basis. 329 

 330 
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Allelic differences at microbe-associated plant loci predict microbe abundance 331 

 332 

We identified several strong GWAS signals that link plant genomic loci to rhizobiome traits 333 

(Figure 3A). Such signals indicate that the pattern of SNPs at a given locus (i.e., the genetic 334 

architecture) has a large magnitude of effect attached to the abundance of the associated 335 

microbial groups. Next, we sought to determine whether a particular allele (either the major or 336 

the minor variant) in our maize population is associated with an increased or decreased 337 

abundance of the corresponding microbe. 338 

 339 

The unknown genus in the Comamonadaceae family mentioned above, while unnamed and 340 

uncharacterized, shows high heritability under both N treatments (h2 = 0.610 under +N, and 341 

0.651 under -N, Figure 1B & 1C), and shows evidence of being under purifying selection under 342 

-N (Figure 2A & 2D). Under the same environmental conditions, a significant MAPL controlling 343 

variation in microbial abundance is detectable on maize chromosome 10 (Figure 3A and Figure 344 

5A). This same rhizobiome trait is among those that are positively correlated with CC under 345 

both -N (r = 0.347, p = 5.313x10-6) and +N (r = 0.314, p = 3.845x10-5) (Figure 4A). A total of five 346 

annotated gene models are located near the peak of significant SNP markers that define the 347 

chromosome 10 MAPL for this rhizobiome trait (Figure 5A & 5B). A linkage disequilibrium block 348 

was observed between 23.90 and 23.96 MB on maize chromosome 10, spanning the set of 349 

significantly associated SNPs and three candidate genes Zm00001d023838, Zm00001d023839 350 

and Zm00001d023840 (Figure 5C). In accordance with Figure 3C, these genes are 351 

preferentially expressed in roots (Figure 5 – figure supplement 1). As described above, the 352 

abundance of the f_Comamonadaceae genus was significantly correlated with variation in CC, 353 

shown here for the -N treatment (Figure 5D). Next, we used the haplotype information at the 354 

target SNP to mark genotypes that carry the major allele or the minor allele, respectively, and 355 

the abundance of the f_Comamonadaceae genus was significantly higher in rhizosphere 356 
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samples collected from maize genotypes carrying the major allele than in samples collected 357 

from maize genotypes carrying the minor allele (Figure 5E). However, CC was not significantly 358 

different between maize genotypes carrying either the major or minor allele of the chromosome 359 

10 MAPL (Figure 5F).  360 

 

Figure 5: Abundance of heritable, adaptively selected microbes depends on allelic differences at 

MAPLs. (A) Results of a genome wide association study conducted using values for the rhizobiome 
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trait (f_Comamonadaceae Unknown Genus) observed for ~230 maize lines grown under nitrogen 

deficient conditions. Alternating colors differentiate the 10 chromosomes of maize. Dashed line 

indicates a statistical significance cutoff of -log10(p) = 7.2. (B) Zoomed in visualization of the region 

containing the peak observed on chromosome 10. (C) Linkage disequilibrium among SNP markers 

genotyped within this region, calculated using genotype data from 271 lines (D) Correlation plot of 

microbe abundance vs. canopy coverage (CC). Each point represents a maize genotype. Differences in 

microbe abundance (E) and CC (F) are marked between genotypes carrying the major allele (gold) vs 

the minor allele (purple) at the target SNP (red arrow in panel A and B). 

 

Figure 5 – figure supplement 1: Genes at MAPL are preferentially expressed in roots. 

Gene expression in leaf tissue vs roots of three genes at chr 10 locus in main text Figure 5. Maize 

genotypes are the same as in main text Figure 3C. Genes Zm00001d023838 and Zm00001d023839 

show significantly higher expression in roots. 

 

 

 

 361 

 362 

The example discussed here shows a three-way association of the abundance of a particular microbial 363 

group in the rhizosphere, a corresponding locus on the maize genome, and plant performance in the field. 364 

The datasets provided alongside this publication contain several such associations and may serve as the 365 

basis for more targeted experiments to establish a direction of causation between microbe abundance 366 

and plant performance, and to shed light on the genetic mechanisms that shape symbiotic relationships 367 

between the plant host and associated rhizosphere microbes. 368 
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Discussion 369 

This study profiled the rhizosphere inhabiting microbiota of several hundred maize genotypes 370 

under agronomically relevant field conditions. Through a 16S rDNA-sequencing based 371 

approach, we identified a set of 150 reproducible rhizobiome traits based on 3,626 ASVs that 372 

were highly abundant and consistently reproducible in this maize diversity panel. The 373 

phylogenetic tree in Figure 1B may deviate from the consensus microbial phylogeny since only 374 

the 350bp ribosomal V4 region was used to establish the relationship between groups, and 375 

more accurate phylogenetic clustering should be considered in future studies with emphasis on 376 

the evolution of plant-microbe associations. In total, 79 out of the 150 rhizobiome traits (52%) 377 

showed significant evidence of being influenced by host plant genotype in one or more 378 

environmental conditions. The estimated heritability of rhizobiome traits in this study ranged 379 

from 0 to 0.757 for the +N treatment (mean 0.320) and from 0 to 0.839 for the -N treatment 380 

(mean 0.352). A comparable study of the rhizobiomes in a sorghum diversity panel estimated 381 

similar values (Deng et al., 2021). A previous study on the same maize diversity panel (Wallace 382 

et al., 2018) investigated the heritability of 185 individual OTUs and 196 higher taxonomic units 383 

measured in the leaf microbiome. The study reported only 2 OTUs and 3 higher taxonomic 384 

groups showing significant heritability using the same permutation test we employed in this 385 

study. This may indicate that plant genetics have a stronger influence on rhizosphere colonizing 386 

microbes than on leaf colonizing microbes. One reason for this may be that there is a direct 387 

pathway for plant-to-microbe communication via root exudates (Doornbos et al., 2012). In 388 

contrast, no equivalent exchange of chemical information has been reported above ground, with 389 

the possible exception of aerial root mucilage (Van Deynze et al., 2018). 390 

 391 

We observed relatively higher heritability for rhizobiome traits quantified from plants grown in 392 

the -N treatment than under the +N treatment. This outcome is consistent with a model where 393 
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the partnerships between microbiomes and plants were established in natural and early 394 

agricultural systems which were predominantly N limited (Brisson et al., 2019). N insufficiency in 395 

maize induces dramatic changes in physiology (Ciampitti et al., 2013), gene expression (Chen 396 

et al., 2011; Singh et al., 2022), root architecture (Gaudin et al., 2011) and root exudation 397 

(Baudoin et al., 2003; Haase et al., 2007; Zhu et al., 2016). Consistent with this, N fertilization or 398 

the lack thereof has substantial consequences on plant-microbe associations. In this study, 12% 399 

of rhizobiome traits were only significantly heritable under the +N treatment, and 18% only 400 

under the -N condition, and GWAS revealed plant-microbe associations at different genomic loci 401 

depending on the N treatment. Previous observations have also reported that rhizosphere 402 

microbial communities are highly sensitive to environmental conditions, in particular to N 403 

deficiency (Meier et al., 2021; Zhu et al., 2016). This finding emphasizes the need to optimize 404 

microbial communities not only for a specific host but also for specific levels of N fertilization. 405 

 406 

Our results suggest that the capacity of maize plants to encourage or discourage colonization of 407 

the rhizosphere by specific microbiota has been a target of selection. The BayesS method 408 

leverages the relationship between the variance of SNP effects and MAF as a proxy of 409 

natural selection in the distant past. This method detects signatures of natural selection on 410 

SNPs associated with microbiome traits but is not directly indicative of selection acting on 411 

the particular microbes. Indeed, we observed purifying selection acting on genetic variants 412 

associated with the abundance of 9 rhizosphere traits, 7 in the +N and 7 -N environment, 413 

respectively. Several rhizosphere denizens whose abundance showed evidence of being a 414 

target of purifying selection in the host genome have been linked to plant growth promoting 415 

activities, most notably Pseudomonas (Otieno et al., 2015; Preston, 2004) and Burkholderia 416 

(Bernabeu et al., 2015; Kurepin et al., 2015). Bacillus fumarioli, which showed evidence of 417 

positive selection, has previously been observed in plant rhizospheres, particularly in maize 418 
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(Garbeva et al., 2008), and several strains of Bacillus plant growth promoting activities (Kumar 419 

et al., 2012). Notably, not all traits that are heritable are expected to be under selection, as traits 420 

can be heritable, i.e., transmitted from one generation to the next, without impacting the fitness 421 

or performance of offspring individuals under the conditions under which recent natural and/or 422 

artificial selection has occurred. To further approve the beneficial effects of the microbes on 423 

the plant fitness, additional functional analyses (i.e., inoculation experiments) are warranted, 424 

and that naturally occurring microbe-plant symbiosis may be harnessed for further crop 425 

improvement. 426 

 427 

Among the 150 rhizobiome traits analyzed here, 62 showed a significant correlation with 428 

measurements of canopy coverage collected from the same field experiment. In particular, the 429 

observed link between heritability of microbes and correlation with plant performance may 430 

indicate a symbiotic relationship of the host plant and root-associated microbes. However, while 431 

our data show correlations between microbe abundance and plant phenotypes, further 432 

experiments are required to determine the direction of causation and investigate potential 433 

mechanisms by which microbe abundance could influence phenotypic changes in the host. We 434 

observe that the majority of rhizobiome traits that are correlated with canopy coverage are both 435 

heritable and associated with one or more microbe-associated plant loci (MAPLs), and genes 436 

linked to variation in rhizobiome traits via GWAS were highly expressed in roots across 437 

genotypes in multiple independent gene expression datasets. This suggests a number of 438 

potential mechanisms for host plant genotypes to influence the composition of the rhizobiome.  439 

For example, two of the three genes associated with the MAPL highlighted in Figure 5 440 

(Zm0001d023838 and Zm0001d023839) are preferentially expressed in roots (Figure 5 – figure 441 

supplement 1). According to MaizeGDB, both are protein coding genes that have not yet been 442 

characterized in maize. Known Zm0001d023838 orthologs in Arabidopsis encode AUXILIN-443 
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LIKE1 and AUXILIN-LIKE2, and overexpression of auxilin-like proteins in Arabidopsis has been 444 

shown to inhibit endocytosis in root hair cells (Ezaki et al., 2006). Overexpression of auxilin-like 445 

proteins has also been shown to confer resistance to root-borne bacterial pathogens in rice 446 

(Park et al., 2017). This indicates a possible link between root hair physiology and an altered 447 

microbiome. Although substantial further experimentation and study remains necessary, 448 

adjusting the expression of particular MAPL genes identified here may be an avenue to directly 449 

influence and engineer the abundance of targeted microbial groups in the rhizosphere to the 450 

benefit of the plant.  451 

 452 

We evaluated associations between rhizobiome traits and a number of whole plant phenotypes. 453 

The maize diversity panel has been and continues to be utilized in field experiments to 454 

determine the genetic basis of many phenotypes across diverse environments. The datasets 455 

generated here link the abundance of 150 microbial groups in the rhizosphere to genetic 456 

variation in 230 genotypes across two N treatments. Combining these public datasets with plant 457 

phenotypes collected from the same genotypes in additional environments may lead to the 458 

identification of other cases where MAPLs are associated with variation in plant phenotypes or 459 

plant performance. The results presented in this study add to an increasing body of evidence 460 

that microbial communities are actively and dynamically shaped by host plant genetic variation 461 

and may serve as the foundation for future research into particular plant-microbe relationships 462 

that may be harnessed to sustainably increase crop productivity and resilience to abiotic stress. 463 

 464 

 465 
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Materials and Methods 466 

Field and experimental design 467 

In this study, 230 maize (Zea mays subsp. mays) lines from the maize diversity panel (Flint-468 

Garcia et al., 2005) were planted in May of 2018 and 2019 in a rain-fed experimental field site at 469 

the University of Nebraska-Lincoln’s Havelock Farm (N 40.853, W 96.611). In both years, the 470 

experiment followed commercial maize. Individual entries consisted of 2 row, 5.3 m long plots 471 

with 0.75 m alleyways between sequential plots, 75 cm spacing between rows, and 15 cm 472 

spacing between sequential plants. In each year, the experimental field was divided into 4 473 

quadrants and the complete set of genotypes was planted in each quadrant following an 474 

incomplete block design (Supplementary Methods, Figure 6). N fertilizer (urea) was applied at 475 

the rate of 168 kg/ha to two diagonally opposed quadrants before planting, while two quadrants 476 

were left unfertilized (-N treatment).  477 

 478 

Rhizobiome sample preparation and sequencing 479 

In 2018, n = 304 rhizosphere samples were collected from 28 maize genotypes (2 samples per 480 

subplot, 2 replicated plots per genotype and N treatment); and in 2019, n = 3,009 samples were 481 

collected from 230 genotypes (3 samples per subplot, 2 replicated plots per genotype and N 482 

treatment), listed in Supplementary File 1. Eight weeks after planting (2018: July 10 and 11; 483 

2019: July 30, 31 and August 1), plant roots were dug up to a depth of 30 cm and rootstocks 484 

were manually shaken to remove and discard loosely adherent bulk soil. For each plant, all 485 

roots thus exposed were cut into 5 cm pieces and homogenized, and 20-30 ml randomly 486 

selected root material (with adherent rhizosphere soil) was collected to generate the 487 

rhizosphere samples (Supplementary Methods). DNA was isolated using the MagAttract 488 

PowerSoil DNA KF Kit (Qiagen, Hilden, Germany) and the KingFisher Flex Purification System 489 
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(Thermo Fisher, Waltham, MA, USA). DNA sequencing was performed using the Illumina MiSeq 490 

platform at the University of Minnesota Genomics Center (Minneapolis, MN, USA). In brief, 491 

2x350 bp stretches of 16S rDNA spanning the V4 region were amplified using 492 

V4_515F_Nextera and V4_806R_Nextera primers, and the sequencing library was prepared as 493 

described by Gohl (Gohl et al., 2016).  494 

 495 

Raw read processing and construction of microbiome dataset 496 

Paired-end 16S sequencing reads from 3,313 samples were processed in R 3.5.2 using the 497 

workflow described by Callahan (Callahan et al., 2016a), which employs the package dada2 498 

1.10.1(Callahan et al., 2016b). Taxonomy was assigned to amplicon sequence variants (ASVs) 499 

using the SILVA database version 138 (Yilmaz et al., 2014) as the reference. Raw ASV reads 500 

were subjected to a series of filters to produce a final ASV table with biologically relevant and 501 

reproducible 16S sequences (Supplementary File 1). For the constrained ordination (CAP) 502 

analysis performed here, the weighted Unifrac distance metric was used with model distance ~ 503 

year + genotype + nitrogen + block + sp + spb.  Only ASVs that were highly abundant and 504 

repeatedly observed in both years of sampling were considered for downstream analysis. ASVs 505 

were clustered into 150 groups of rhizosphere microbes at the family, genus, and species level 506 

based on 16S sequence similarity and the response of individual ASVs to experimental factors 507 

(see supplementary methods).  508 

Heritability estimation 509 

Heritability (h2) of rhizobiome traits was calculated separately for +N and -N conditions using 510 

maize genotypes in the 2019 dataset for which balanced data was available. For each of the 511 

150 rhizobiome traits, combined ASV counts were normalized by converting to relative 512 

abundance and subsequent natural log transformation. Using these transformed values, h2 was 513 

estimated following Deng et al. (Deng et al., 2021) for each rhizobiome trait using R package 514 



 

30 

sommer 4.1.0 (Covarrubias-Pazaran, 2016). In short, h2 is the amount of variance explained by 515 

the genotype term (Vgenotype) divided by the variance of the genotype and the error (Vgenotype + 516 

Verror/n), where n = 6 is the total number of samples (i.e., 2 replicates x 3 samples per replicate) 517 

used in this dataset. Heritability was tested for significance using a permutation test.  For each 518 

trait the genotype labels of microbial abundance data were shuffled 1,000 times, and the 519 

distribution of heritabilities calculated from these shuffled datasets were used to assess the 520 

likelihood of observing the heritabilities calculated from the correctly labeled data under a null 521 

hypothesis of no host genetic control.   522 

 523 

Calculation of selection gradient and estimation of genetic architecture parameters 524 

We estimated the fitness function relating the fitness-related trait, i.e., canopy coverage 525 

collected on August 22 (see section “Phenotyping of plant traits”), to the abundance of the 526 

microbial groups with a generalized additive model (GAM). To reduce biases due to 527 

environmental covariances (Rausher, 1992), we employed the BLUP values for both the 528 

rhizobiome traits and the fitness-related trait.  Then, we obtained linear and quadratic selection 529 

gradients from the fitted GAM models using an R package (Morrissey and Sakrejda, 2013). We 530 

ran a total of 300 univariate models (150 microbial groups x 2 N treatments).  531 

For the rhizobiome traits, a Bayesian-based method (Zeng et al., 2018) was used to estimate 532 

genetic architecture parameters simultaneously, including polygenicity (i.e., proportion of SNPs 533 

with non-zero effects), SNP effects, and the relationship between SNP effect size and minor 534 

allele frequency. For the analysis, genotypic data of the maize diversity panel was obtained from 535 

the Panzea database and uplifted to the B73_refgen_v4 (Bukowski et al., 2018; Woodhouse et 536 

al., 2021). To account for SNP linkage disequilibrium (LD), a set of 834,975 independent SNPs 537 

(MAF >= 0.01) were retained by pruning SNPs in LD (window size 100 kb, step size 100 SNPs, 538 

r2 ≥ 0.1) using the PLINK1.9 software (Chang et al., 2015). In the analysis, the “BayesS” method 539 

was used with a chain length of 410,000 and the first 10,000 iterations as burnin. 540 
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 541 

Genome-wide association study 542 

We chose to use the best linear unbiased prediction (BLUP) of the natural log transformed 543 

relative abundance of ASV counts as the dependent variable for the GWAS analysis. Since only 544 

a fraction of genotypes were sampled from the 2018 field experiment, only sample data 545 

collected in 2019 was used for the BLUP calculation. A BLUP value was calculated for each 546 

microbial group and each treatment using R package lme4 (Bates et al., 2015). In the analysis, 547 

the following model was fitted to the data: Y ~ (1|genotype) + (1|block) + (1|split plot) + (1|split 548 

plot block) + error, where Y represents a rhizobiome trait (ln(ASV count of a microbial group / 549 

total ASV count in sample)) (Supplementary Methods, Figure 6). GWAS was performed 550 

separately for each rhizobiome trait and for both the +N and -N treatment using GEMMA 0.98 551 

(Zhou and Stephens, 2012) with a set of 21,714,057 SNPs (MAF >= 0.05) (Bukowski et al., 552 

2018). In the GWAS model, the first three principal components and the kinship matrices were 553 

fitted to control for the population structure and genetic relatedness, respectively. To mitigate 554 

false discoveries of GWAS, Bonferroni corrections were applied based on the effective number 555 

of independent SNPs (or effective SNP number) (Li et al., 2012). The effective SNP number for 556 

the genetic marker set and population employed in this study was determined to be N = 769,690 557 

independent markers as described previously (Rodene et al., 2022). Using an alpha value of 558 

0.05, we determined a significance threshold of -log10(0.05/769,690) = 7.2. 559 

 560 

RNA sequence analysis 561 

Gene expression was analyzed using two independent datasets. The first dataset was obtained 562 

from Kremling (Kremling et al., 2018) and included RNA sequencing data from 7 different maize 563 

tissue types. The second RNA sequencing dataset was generated from root and leaf tissue 564 

collected 14 days after germination from both +N and -N treated pots using 4 genotypes from 565 
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the maize diversity panel. Libraries were sequenced using the Illumina Novaseq 6000 platform 566 

with 150 bp paired-end reads. Sequencing reads were mapped to the B73 reference genome 567 

(AGPv4) (Jiao et al., 2017; Schnable et al., 2009) and gene expression was quantified using 568 

Rsubread (Liao et al., 2019). 569 

 570 

Phenotyping of plant traits 571 

A total of 17 plant traits were measured in the 2019 field experiment. First, 15 leaf physiological 572 

traits were measured on the same days the rhizobiome samples were collected, and included 573 

leaf area (LA), chlorophyll content (CHL), dry weight (DW), fresh weight (FW), as well as 574 

concentrations of the elements B, Ca, Cu, Fe, K, Mg, Mn, N, P, S, and Zn. Measurement of the 575 

leaf traits was carried out as previously described (Ge et al., 2019). Two aerial imaging traits, 576 

canopy coverage (CC) and excess green index (ExG), were collected on August 12, 2019, 11-577 

13 days after rhizobiome sample collection (Rodene et al., 2021). 578 

 579 

Availability of data and materials 580 

The sequencing data reported in this publication (3,313 samples) can be accessed via the 581 

following five Sequence Read Archive (SRA) accession numbers: PRJNA771710, 582 

PRJNA771712, PRJNA771711, PRJNA685208, PRJNA685228 (summarized under the 583 

umbrella BioProject PRJNA772177). Scripts used to analyze the data are available on GitHub 584 

(https://github.com/jyanglab/Maize_Rhizobiome_2022). 585 
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Appendix 794 

Supplementary Methods 795 

Field and experimental Design 796 

The experimental field was divided into 4 quadrants, which were separated and surrounded by a 797 

buffer of an industrial hybrid genotype (B73xMo17) (Figure 6). The complete set of genotypes 798 

was planted in each quadrant where possible. Each quadrant was in turn divided into 4 split 799 

plots and a subset of the maize association panel was randomly assigned to each split plot 800 

based on the distributions of flowering time and plant height. Phenotypes were divided at the 801 

median value to create 4 flowering time / height categories: early/tall, late/tall, early/short, and 802 

late/short. Each split plot was further divided into 3 split plot blocks, and each split plot block 803 

was divided into 21 subplots in 3 ranges and 7 columns. Thus 252 subplots were available in 804 

each quadrant of the field. In each of 12 split plot blocks per quadrant, a t least one subplot was 805 
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randomly selected and assigned the hybrid genotype (B73xMo17) to be used as a check to test 806 

for differences between geographical field locations. two check genotypes (B73xMo17 and 807 

B37xMo17) were used in 2018, and a single check genotype (B73xMo17) was used in 2019. 808 

Plant growth across the field was determined uniform within quadrants using the checks as 809 

reported in a sister study on the same experimental field (Rodene et al., 2022). Any subplots 810 

across the field that remained empty due to seed unavailability were filled with the check 811 

genotype as well. 812 

In 2018, dry N fertilizer (urea) was applied to two diagonally opposed quadrants before planting 813 

at the rate of 140 kg/ha (+N treatment) while two quadrants were left unfertilized (-N treatment).  814 

In 2019, liquid N fertilizer (urea) was applied at the rate of 168 kg/ha. Both N treatments were 815 

thus represented in a northern block (NW and NE quadrants) and in a southern block (SW and 816 

SE quadrant).  We assigned the blocks this way because of a 3 m increase in elevation from the 817 

north end of the field to the south end. 818 

 819 

 820 

 821 

 822 

 823 
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Figure 6: Field experimental design. (A) Up to 230 maize genotypes were represented in each of 4 

quadrants in 2 replicate blocks. Quadrants were planted in 6 ranges and divided into 4 split plots. Each 

split plot was divided into 3 split plot blocks, and each split plot block was divided into 21 subplots for a 

total of 252 subplots per quadrant. (B) Each 1.5m (5 ft) x 6m (20 ft) subplot (experimental unit) 

consisted of two rows of 36 maize plants of the same genotype, with a spacing of 75 cm (30 in) 

between rows and 15 cm (6 in) between plants. (C) Photomosaic of the 2019 field at flowering time. N 

fertilizer was applied to the NE and SW quadrants before planting. (D) 128 subplots across the field 

(marked in red) were planted with a check genotype (B73xMo17) in order to be able to quantify and 

control for spatial variation. 

 824 

Rhizobiome sample preparation and sequencing 825 

In 2018, rhizosphere samples were collected from 28 genotypes. These include, B73, the 826 

roothairless3 mutant of B73 (Hochholdinger et al., 2008), two check hybrids (B73xMo17 and 827 

B37xMo17) and a subset of the Buckler-Goodman panel including 16 parent lines of the nested 828 
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association mapping population (NAM) described by (McMullen et al., 2009). 8 weeks after 829 

planting, 2 subsamples per genotype were collected per quadrant and 12 subsamples for 830 

checks, where each subsample was taken from the combined root material of two adjacent 831 

plants. This resulted in a total of 26*4*2 +2*4*12 = 304 samples. In 2019, rhizosphere samples 832 

were collected in triplicates from all 1008 subplots within 3 days, 8 weeks after planting, when 833 

the majority of plants had reached the tasseling stage. One of the two rows in each subplot was 834 

randomly selected, and 3 individual randomly selected plants within the row (subsamples) were 835 

sacrificed for rhizosphere collection. As a small fraction of subplots had poor germination and/or 836 

no surviving plants on the day of sampling, the final number of rhizosphere samples collected 837 

was 3009. Rhizosphere samples were placed on ice immediately after collection and shipped to 838 

the lab to be processed on the same day. 839 

 840 

To wash the tightly adherent rhizosphere soil layer off the roots, tubes were filled up to the 40 ml 841 

mark with autoclaved PBS buffer (46 mM NaH2PO4, 60 mM Na2HPO4, 0.02% Silwet-77), and 842 

shaken horizontally at 8000 rpm for 30s. Rhizosphere suspension was filtered through a 100 μm 843 

nylon cell strainer (Celltreat Scientific Products, Pepperell, MA, USA) into a fresh 50 ml tube to 844 

capture root debris and large soil particles. Rhizosphere samples were frozen in suspension at -845 

20°C until further processing. DNA was isolated from rhizosphere soil using the MagAttract 846 

PowerSoil DNA KF Kit (Qiagen, Hilden, Germany) and purified using the KingFisher Flex 847 

Purification System (Thermo Fisher, Waltham, MA, USA) with minor modifications to the 848 

protocol: Rhizosphere samples that were kept in suspension were thawed on ice, pelleted soil 849 

was resuspended by inverting tubes, and 500 μl soil suspension was added to the 96-well 850 

sample plates. To avoid cross contamination of wells during pipetting, plates were sealed 851 

beforehand with parafilm and the cover was pierced with the pipette tip to transfer the 852 

rhizosphere suspension into the intended well. Two plates were prepared at a time and 853 

centrifuged for 10 min at 4000 x g to pellet soil. Supernatant was carefully removed with a 854 
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multichannel pipette and 96-well plates with approximately 100-250 mg rhizosphere soil per well 855 

were frozen at -20°C until further processing. On the day of DNA isolation, the bead mill 856 

substrate was added to the frozen soil pellets, soil was thawed on ice and the remainder of the 857 

protocol was followed as per the manufacturer’s instructions. We recommend this modified 858 

procedure for large numbers of samples as it is cleaner, faster, and better reproducible than 859 

scooping soil from pellets in sample tubes. Concentration of isolated DNA was measured 860 

fluorometrically with the QuantiFluor dsDNA System (Promega, Madison, WI, USA) as per the 861 

manufacturer’s instructions. DNA isolation was repeated for any samples that failed to reach a 862 

concentration of at least 1 ng/μl. 863 

 864 

A 350 bp stretch of 16S rDNA spanning the V4 region was amplified using V4_515F_Nextera 865 

(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA) and 866 

V4_806R_Nextera 867 

(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTAAT) primers 868 

on several Illumina MiSeq runs. Oligonucleotide PCR blockers (PNA Bio INC, Thousand Oaks, 869 

CA, USA) targeting mitochondrial and chloroplast sequences were applied in the primary V4 870 

amplification to reduce amplification of templates derived from the plant host. Up to 128 871 

barcoded samples were pooled per sequencing run. In total, 304 samples in 2018 and 3009 872 

samples in 2019 were sequenced on the same Illumina MiSeq machine. 873 

 874 

Raw read processing and construction of microbiome dataset 875 

Cluster computing resources at the UNL Holland Computing Center were used for 876 

computationally demanding steps. To construct the microbiome dataset, 350 bp raw sequencing 877 

reads were trimmed using filterAndTrim() at 240 bp (forward reads) and 200 bp (reverse reads), 878 

respectively. Amplicon sequence variants (ASVs) were inferred using dada() and forward and 879 

reverse reads were merged with mergePairs(). A sequence table was generated using 880 
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makeSequenceTable() and chimaeras were removed using removeBimeraDenovo(). Taxonomy 881 

was assigned to ASVs with assignTaxonomy() using the SILVA database version 138 (Yilmaz et 882 

al., 2014) as a reference. SILVA was our taxonomy of choice because it is a relatively large 16S 883 

sequence database compared to alternative databases, it is regularly maintained and updated 884 

and it is widely used in ecological research, making our results comparable to other 16S 885 

studies. (Balvočiūtė and Huson, 2017). Taxonomic training data formatted for DADA2 886 

(silva_nr99_v138_wSpecies_train_set.fa.gz) was obtained from 887 

https://zenodo.org/record/3986799#.X3zmypNKh24, as referenced by 888 

https://benjjneb.github.io/dada2/training.html on GitHub. 16S reads and sample data were 889 

prepared in an R Phyloseq object for further processing. 890 

Raw ASV reads were subjected to a series of filters to produce a final ASV table with 891 

biologically relevant 16S sequences: 892 

1) Removed chimaeric 16S reads using removeBimeraDenovo() 893 

2) Removed sequences with <20 total observations  894 

3) Removed sequences that did not map to either Bacteria or Archaea 895 

4) Removed chloroplast sequences 896 

5) Removed mitochondrial sequences 897 

6) Removed ASVs that were not observed in at least 5% (166) of all samples 898 

7) Removed ASVs that were not observed in both years 2018 and 2019 899 

8) Removed 53 out of 160 genera and families that had fewer than 5 unique ASVs and 7 900 

samples with < 100 ASV counts 901 

 902 

 903 

Step 6 resulted in 4,632 common ASVs that were detected in at least 5% of the samples, 904 

representing 120,004,239 of the raw reads. Constrained ordination and PERMANOVA analyses 905 

of the 4,632 ASVs identified a strong effect of N treatment as well as other experimental factors 906 
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on ASV abundance (Figure 7). This observation is consistent with previous observations that 907 

environmental factors play an important role in determining the composition of the root 908 

associated microbiome diversity (Floc’h et al., 2020; Meier et al., 2021; Schlatter et al., 2020). 909 

Of the 4,632 common ASVs, 3,728 (or 80.5%) were highly abundant and observed in samples 910 

collected from both the 2018 and 2019 growing seasons (step 7). Removing ASVs that could 911 

not be repeatedly observed in multiple years reduced the complexity of the data set by 19.5% at 912 

the cost of a 2.3% loss in diversity (Shannon diversity reduced from 6.4 to 6.3, Figure 7 – 913 

figure supplement 1). Finally, removing taxa (genus or family) with less than 5 observed ASVs 914 

yielded a dataset of 3,626 ASVs, 3,306 samples, and 105,745,986 total ASV counts. This final 915 

core microbiome encompasses <1% of initial ASVs and ~50% of initial observations. The ASV 916 

table from step 8 was converted to relative abundances and values were transformed with the 917 

natural logarithm. A phylogenetic tree was constructed from the final set of 3626 ASVs using 918 

mafft v. 7.404 (Katoh and Standley, 2013) for multiple alignment and fasttree v. 2.1 (Price et al., 919 

2010) and the phylogenetic tree was attached to the phyloseq object and plotted using the 920 

ggtree R package (Yu, 2020). 921 

 922 
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Figure 7: PERMANOVA results. It was calculated from the log(relative abundance) of 4,632 ASVs. Each 

dot represents a sample. Genotypes common to 2018 and 2019 panel are marked in grey. 

 

Figure 7 - figure supplement 1: Retaining ASVs observed in both years reduces dataset 

complexity with minimal loss of diversity. (A) Intermediate set of ASVs after prevalence filtering 

contains 4,632 ASVs, of which 904 were exclusively found in 2019. (B) Comparison of the Shannon 

diversity between the total set (4632 ASVs, purple) and the shared set (3728 ASVs, gold) reveals a 

2.29% loss in diversity: Median(Shannon3728)/Median(Shannon4632) = 0.9771. 

 

 

 923 
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Clustering of ASVs into microbial groups 924 

ASVs were clustered into groups of rhizosphere microbes at the family, genus, and species 925 

level using a procedure described previously (Meier et al., 2021). First, the 3,626 ASVs in the 926 

present study were grouped at the family level (the lowest taxonomic rank for which all ASVs 927 

were successfully annotated) and the phylogenetic tree derived from 16S V4 alignment was 928 

plotted alongside taxonomic annotation at the genus and species level. Because the ASVs are 929 

derived from short reads and may constitute variations not covered in the SILVA database, 930 

annotation at the genus and species level was often not possible. To close these gaps and form 931 

biologically meaningful groups of ASVs at low taxonomic ranks with better confidence, we 932 

examined the overall abundance of each ASV as well as the differential abundance in response 933 

to the N treatment alongside the sequence-based clustering. The premise here is that ASVs 934 

derived from biologically closely related individual microbes are similarly abundant in our 935 

dataset and respond similarly to the N treatment imposed on the field, in addition to similar 16S 936 

sequences due to common ancestry. An example is given in Figure 8 with a subset of ASVs 937 

assigned to the Burkholderiaceae family. The plots used to determine all 150 microbial groups 938 

in this study are available in Supplementary File 6. 939 

 940 
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Figure 8: Microbial groups are derived from taxonomic data and experimental data. An example 

is given using a subset of the ASVs in the Burkholderiaceae family. (A) Phylogenetic clustering of ASVs 

based on 16S V4 alignment. ASVs are annotated at the genus and species level using the SILVA 

database. Note that for some ASVs, annotation at the species level is missing, although the 

phylogenetic tree suggests divergent groups at the species level. Overall abundance in the dataset (B) 

of each ASV and differential abundance in response to the N treatment (C) were used in tandem with 

sequence-based clustering to group ASVs with similar features into microbial groups at sub-genus 

resolution (labeled in green). 

In this example, the genus Ralstonia constitutes a monophyletic cluster of ASVs which were all 

successfully assigned to the species R. pickettii (A). This uniform group is also reflected in relatively 

uniform abundance (B) and positive response to N treatment (C). On the other hand, most ASVs in the 

Burkholderia genus could not be annotated at the species level, even though the phylogeny suggests 

at least 4 distinct groups below the genus level. The first group, Burkholderia insecticola was identified 

at the species level without fail and once again, this is reflected in uniform abundances as well as a 
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consistently negative response to N treatment. Within the next cluster two ASVs are assigned to 

Paraburkholderia caffeinilytica, and we assigned all other ASVs in the same cluster to the same 

species because they showed consistent abundance and response to treatment. In the remaining two 

clusters, no ASVs could be annotated at the species level, hence we assigned a number to the 

unassigned species (Burkholderia sp 1 and sp 2). Experimental data confirms that the two clusters 

should be treated as separate microbial groups because Burkholderia sp 2 is roughly 10 times as 

abundant as Burkholderia sp 1 and we observe opposite responses to N treatment. 

 

 941 

Heritability estimation  942 

To calculate heritability (h2), read counts from 3 subsamples were pooled for each subplot. 943 

Combined counts were then normalized by converting to relative abundance and subsequent 944 

natural log transformation, which yielded a subplot-level measure of microbial abundance, 945 

replicated in 2 blocks. The following linear mixed model was used with all random effects: Y = 946 

genotype + block + error. Y is the log-transformed relative abundance of each microbial group in 947 

each subplot-level sample, the blocks and subplots are as outlined in (Figure 6). Heritability 948 

was tested for significance using a permutation test in which microbial abundance data for each 949 

trait was shuffled and heritability calculated anew 1000 times. p-values indicating heritability 950 

were calculated by tallying the number of permutation h2 scores exceeding the observed h2 and 951 

dividing by the number of permutations. Traits with a p-value < 0.05 were deemed “heritable” 952 

under either or both N treatments.  953 

 954 

Estimation of genetic architecture parameters 955 

SNPs in high linkage disequilibrium (LD) were pruned using the “indep-pairwise” command of 956 

with a LD threshold of r2 = 0.1. In the GCTB analysis, the BayesS model was used with the 957 

chain length of 410,000 and burnin 10,000. One example command used for the GCTB analysis 958 
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is “gctb –bfile 282_GCTB_G --pheno gctb_blup_stdN_150_tax_groups.txt --mpheno 28 --out 959 

Results_HN/asv_000013 --bayes S --pi 0.05 --hsq 0.5 --S 0 --wind 0.1 --chain-length 410000 --960 

burn-in 10000”. 961 

 962 

Genome-wide association study 963 

GWAS was performed using GEMMA 0.98 (Zhou and Stephens, 2012) with the following 964 

parameters: gemma-0.98 -bfile {snp_file} -k {kinship_matrix} -c {pca_file} -p {traits_file} -lmm 1 -965 

n {trait_num} -outdir {outdir_path} -o T{trait_num} -miss 0.9 -r2 1 -hwe 0 -maf 0.01'). Blup values 966 

were summarized in a trait matrix (214 genotypes x 150 traits) for all 150 rhizobiome traits and 967 

for all 214 maize genotypes for which high quality SNP data was available. To conserve disk 968 

space, SNP information was only retained in each ASV if a response at p_wald < 10–2 was 969 

observed. To identify genomic loci with high counts of significant SNPs, the genome was split 970 

into bins of 10 kbp, and the number of significant SNP signals at a threshold of p_wald < 10–5  971 

was counted for each bin.  972 

 973 

Datasets 974 

 975 

The datasets generated in this study are available as supplementary datasets: 976 

Supplementary File 1: Feature table (3,306 samples by 3,626 ASVs) from which our results 977 

were generated, alongside the sample metadata collected in this study. 978 

Supplementary File 2: Taxonomically annotated list of 3,626 16S sequences that comprise the 979 

core maize microbiome used for this analysis and may serve as a reference to identify the same 980 

maize-associated ASVs in future experiments.  981 

Supplementary File 3: List of the 150 microbial groups defined in this study alongside relevant 982 

summary statistics, such as abundance, heritability, selection coefficients, and correlations with 983 

plant traits under both N treatments. 984 
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Supplementary File 4: List of 229 Buckler-Goodman maize genotypes with the corresponding 985 

measurements of all 17 plant and 150 rhizobiome traits analyzed here under both N treatments. 986 

Sample-level data is published for aerial imaging (Rodene et al., 2022). 987 

Supplementary File 5: List of 622 plant loci (10 kb genomic regions) that exhibit significant 988 

association with one or more microbial groups, including the IDs of nearby (+/- 10 kb) genes. 989 

Supplementary File 6: Plots of phylogeny, abundance and response to N treatment for all 990 

microbial families present in this dataset, with clustering of ASVs into the microbial groups used 991 

here. 992 

 993 

 994 

 995 

 996 
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Figure Supplements997 

 998 
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Figure 1 – figure supplement 1: GWAS of high-level rhizobiome traits: 

(A, B) The first 10 principal components were calculated for both the high N (left) and low N (right) 

treatment using the best linear unbiased prediction (BLUPs) of the log(relative abundance) of 3618 

ASVs in 230 maize genotypes. Total variance explained was 60.8% for +N and 65.3% for -N. 

(C) The largest contributors to PC1 differed between the two experimental conditions. Microbial groups 

that account for at least 1% of total variance are annotated in the pie charts. 

(D, E). Notable GWAS signals above the significance threshold (dashed red line) were observed in the -

N treatment for PC1 and the InvSimpson diversity metric (red arrows), indicating genomic loci that 

affect high-level metrics of the rhizobiome. The other PCs and diversity metrics had no strong GWAS 

signals and were not shown. 

 999 

 1000 
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Figure 1 – figure supplement 2: Abundance and heritability of 150 microbial groups. 
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(A) Phylogenetic tree of 150 microbial groups. Colors indicate differential abundance between the +N 

and -N treatment.  

(B) The mean abundance (mean BLUP of log(relative abundance) across 230 maize genotypes) of 

each microbial group was plotted against the heritability score in the +N and -N treatment. A positive 

correlation is observed in both environments, indicating that more abundant microbes in the 

rhizosphere also tend to be more heritable. 
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Figure 1 – figure supplement 3: Annotations of heritable microbial groups. (A) The 12 most 

heritable microbial groups with heritability > 0.6 (drawn lines) under both N conditions were annotated 

by name. (B) Taxonomy of the 12 most heritable groups. 
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Figure 2 – figure supplement 1: Rhizobiome traits exhibit significant linear selection gradients 

(bootstrapping p-value < 0.05) under +N and -N treatments 
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Figure 4 - figure supplement 1: Correlation of microbe abundance with 17 agronomic and 

micronutrient traits under +N (blue) and -N (red) conditions. Each dot represents one of 150 

rhizobiome traits. X axis shows correlation with agronomic trait (r value), y axis shows significance, 

dashed line shows p=0.01 level of significance. CC_Aug12, EXG_Aug12: canopy coverage and excess 

green index measured on Aug. 12, 2019; CHL: chlorophyll content, DW: dry weight, FW: fresh weight, 

LA: leaf area. 
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Figure 4 - figure supplement 2: Microbial traits that correlate with canopy coverage. 

Venn diagram shows a total 62 microbial traits that correlate with canopy coverage either under +N, -N 

or both treatments. For the 62 listed rhizobiome traits, colored dots summarize various statistics that 

indicate association with the host plant genetics and performance. 
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Figure 5 – figure supplement 1: Genes at MAPL are preferentially expressed in roots. 

Gene expression in leaf tissue vs roots of three genes at chr 10 locus in main text Figure 5. Maize 

genotypes are the same as in main text Figure 3C. Genes Zm00001d023838 and Zm00001d023839 

show significantly higher expression in roots. 
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Figure 7 - figure supplement 1: Retaining ASVs observed in both years reduces dataset 

complexity with minimal loss of diversity. (A) Intermediate set of ASVs after prevalence filtering 

contains 4,632 ASVs, of which 904 were exclusively found in 2019. (B) Comparison of the Shannon 

diversity between the total set (4632 ASVs, purple) and the shared set (3728 ASVs, gold) reveals a 

2.29% loss in diversity: Median(Shannon3728)/Median(Shannon4632) = 0.9771. 
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