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Abstract

The root-associated microbiome (rhizobiome) affects plant health, stress tolerance, and nutrient
use efficiency. However, it remains unclear to what extent the composition of the rhizobiome is
governed by intraspecific variation in host plant genetics in the field and the degree to which
host plant selection can reshape the composition of the rhizobiome. Here we quantify the
rhizosphere microbial communities associated with a replicated diversity panel of 230 maize
(Zea mays L.) genotypes grown in agronomically relevant conditions under high N (+N) and low
N (-N) treatments. We analyze the maize rhizobiome in terms of 150 abundant and consistently
reproducible microbial groups and we show that the abundance of many root-associated
microbes is explainable by natural genetic variation in the host plant, with a greater proportion of
microbial variance attributable to plant genetic variation in -N conditions. Population genetic
approaches identify signatures of purifying selection in the maize genome associated with the
abundance of several groups of microbes in the maize rhizobiome. Genome-wide association
study was conducted using the abundance of microbial groups as rhizobiome traits, and
identified n = 622 plant loci that are linked to the abundance of n = 104 microbial groups in the
maize rhizosphere. In 62/104 cases, which is more than expected by chance, the abundance of
these same microbial groups was correlated with variation in plant vigor indicators derived from
high throughput phenotyping of the same field experiment. We provide comprehensive datasets
about the three-way interaction of host genetics, microbe abundance, and plant performance
under two N treatments to facilitate targeted experiments towards harnessing the full potential of

root-associated microbial symbionts in maize production.
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Introduction

Symbiotic relationships between plant hosts and root-associated microbes have been shaped
through natural selection over millions of years of coevolution (Limborg and Heeb, 2018), and
have been a driver of crop performance and yield in agricultural production since the beginning
of plant domestication (Yadav et al., 2018). Microbial actors in the rhizosphere have been
shown to promote plant growth (Saleem et al., 2019), improve nutrient use efficiency (Gomes et
al., 2018; Zhu et al., 2016), and reduce abiotic stress response (Hussain et al., 2018). The
promise of high throughput screens for plant growth promoting activity in isolated microbial
strains or synthetic communities (Singer et al., 2021; Yee et al., 2021) is the potential discovery
of microbial agents that can be used as seed or soil additives to improve crop performance
under field conditions. Promising results have been observed in controlled environments (Van
Gerrewey et al., 2020; Xi et al., 2020; Yu et al., 2021), but it remains a challenge to achieve
similar outcomes in crops under agriculturally relevant field conditions (Eida et al., 2017; Kaur et
al., 2020; Sessitsch et al., 2019). Many microbial inoculants struggle to compete with naturally
occurring microbes in the rhizosphere and rarely survive for extended periods of time in the field
(Piromyou et al., 2011). An improved understanding of how plants shape the composition of
their rhizobiomes under diverse field conditions would make it more feasible to identify
beneficial plant-microbe interactions that will be persistent and replicable in field environments.
Moreover, studying the effects of plant genetics on microbial communities may identify
opportunities to breed crop plants that recruit and maintain superior growth-conducive microbial

communities from the natural environment.

Few studies to date have addressed the relationship between plant genetics and rhizobiomes in
field settings, mainly because large-scale rhizosphere sampling (as opposed to leaf microbiome

sampling) and DNA sequence analysis of microbial communities in diverse plant hosts is time-
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consuming, expensive, and poses significant logistical and technical challenges. It has been
shown that plant genetics can explain variation in both root architecture (Bray and Topp, 2018)
and exudation (Monchgesang et al., 2016). If these factors in turn shape microbial communities
(Sasse et al., 2018), variation in the root-associated microbial groups (hereafter referred to as
rhizobiome traits) may also result from genetic factors. Recent studies suggested that the
variation in the composition of rhizobiomes is likely controlled by plant genetic factors (i.e.,
heritable) in maize (Peiffer et al., 2013), sorghum (Deng et al., 2021), and switchgrass
(Sutherland et al., 2021). However, to what extent these heritable microbes are affected by the
plant host and contribute to variation in the crop phenotype remains unclear. Like any other trait
under heritable genetic control, rhizobiome traits can be targeted in selective breeding
experiments. To explore this idea, previous efforts have been directed towards identifying plant
genetic loci that are associated with rhizobiome traits. Initial studies have shown that
rhizosphere microbial communities differ between distinct genotypes of the same host species,
which has been shown in a study on 27 maize genotypes (Peiffer et al., 2013; Walters et al.,
2018) and more recently, in a diversity panel of 200 sorghum lines (Deng et al., 2021). Genome-
wide association study (GWAS) has successfully revealed associations between plant genes
and rhizobiome traits at high-level measures of rhizosphere community dissimilarity (i.e., using
principal components) in an Arabidopsis diversity panel (Bergelson et al., 2019) or at order level
(derived from operational taxonomic units (OTUs)) in a sorghum diversity panel (Deng et al.,
2021). However, previous attempts at linking plant genes to the abundance of specific groups of
microbes have had limited success due to small population size, limited host genetic diversity,
or due to insufficient taxonomic resolution (Beilsmith et al., 2019; Liu et al., 2021). It was
observed previously (Zhu et al., 2016) that soil microbial communities drastically change in
response to N fertilization. In bulk soil, this is likely due to a direct effect of N application or lack
thereof. In rhizospheres, however, only a subset of the observed changes can be attributed to

direct effects of nitrogen (N) fertilization, while particular microbial groups may be subject to
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indirect effects induced by the plant host in response to N availability or deficiency (Meier et al.,
2021). A possible explanation for this could be that during most of the interval between maize
domestication and the present, beneficial plant-microbe interactions have evolved in low-input
agricultural systems characterized by relative scarcity of nutrients, predominantly nitrogen
(Brisson et al., 2019). This is in stark contrast to the modern agricultural environment that has
been the norm since the 1960s, in which plants are supplied with large quantities of inorganic N
fertilizer (Cao et al., 2018). As a consequence, previous selection pressure to retain traits
favorable under low N conditions, including plant growth-promoting microbes, has been largely
reduced in modern maize breeding programs (Haegele et al., 2013; Zhu et al., 2016). Thus, if a
microbial group is indeed under host genetic control and has an effect on plant fitness (i.e.,
promotes plant development or increases crop yield) under either N condition, we would expect

the rhizobiome trait to be under host selection.

In the present study, we evaluate the role that selection on plant genetic factors has played in
shaping the maize rhizobiome under different N conditions. We employ the maize diversity
panel, a set of maize lines selected for maximum representation of genetic diversity and growth
in temperate latitudes (Flint-Garcia et al., 2005). This population has previously been used to
determine the heritability of leaf microbiome traits and to perform genome-wide association
studies (GWAS) on a number of different phenotypes (Wallace et al., 2018). We collected
replicated data on the rhizobiome of 230 lines drawn from this panel when grown under either
high N (+N) and low N (-N) conditions in the field. For 150 microbial groups present in the
rhizosphere (referred to as “rhizobiome traits”), which were abundant and consistently
reproducible, we quantify the degree to which variation is subject to plant genetic control, and
test for evidence of selection under either or both N conditions. Using a set of 20 million high
density single nucleotide polymorphisms (SNPs), we perform GWAS for each rhizobiome trait

identifying genomic loci that are associated with one or more rhizobiome traits. Through
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comparison with gene expression data generated for the same population, we determine
whether genes near microbe-associated plant loci are preferentially expressed in root tissue.
Lastly, we evaluate whether the abundance of each microbial group in the rhizosphere is
correlated with plant performance traits measured in the field, and whether microbe abundance
and plant performance depend on the allele variant at selected microbe-associated plant loci.
The results presented in this study lay the groundwork for future endeavors to investigate the
molecular mechanisms of specific plant-microbe interactions under agronomically relevant

conditions.

Results

Characterization of the rhizobiome for diverse maize genotypes under two different N
conditions

Paired-end 16S sequencing of 3,313 rhizosphere samples from 230 replicated genotypes of the
maize diversity panel (Flint-Garcia et al., 2005) were collected from field experiments conducted
under both +N and -N conditions (Materials and Methods). At the time of sampling, visible
phenotypic differences were observable between +N and -N plots as measured through aerial
imaging (details are reported in Rodene et al., 2022 using the same experimental field).
Sequencing produced 216,681,749 raw sequence reads representing 496,738 unique amplicon
sequence variants (ASVs) (Materials and Methods). Raw reads were subjected to a series of
quality checks and abundance filters following a workflow for 16S sequencing data analysis by
(Callahan et al., 2016a), which resulted in a curated dataset of 3,626 ASVs for 3,306 samples,
and 105,745,986 total ASV counts (Supplementary File 1). This dataset includes ASVs that
are highly abundant across the maize diversity panel and reproducible in both years of
sampling. Constrained Principal Coordinates analysis calculated from the abundances of 3,626

ASVs shows divergence of samples collected under either -N or +N treatment (Figure 1A),
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which indicates that the microbiomes differ between these two experimental conditions

(PERMANOVA p-value for N treatment < 0.001).

An initial analysis looking at high-level rhizobiome traits (Principal Components and alpha
diversity metrics derived from the ASV table) shows the same pattern of divergent microbial
communities between N treatments, and in particular under the -N treatment there is evidence
for the association of plant genomic loci and microbiome composition (Figure 1 — figure
supplement 1). To study changes in rhizobiome composition more accurately, the final 3,626
ASVs were clustered into n = 150 distinct microbial groups (“rhizobiome traits”), spanning 19
major classes of rhizosphere microbiota (Figure 1B, Supplementary Files 2 & 3) using a
method previously described (Meier et al., 2021, Supplementary Methods). Of these
rhizobiome traits, 79/150 (52.7%) groups were significantly more abundant in samples collected
from the +N condition (t-test, p < 0.05), 53/150 (35.3%) significantly more abundant in samples
collected from the -N condition, and 18/150 (12.0%) showed no significant difference in
abundance between the two treatments. In several cases, more closely related microbial groups
exhibit shared patterns of differential abundance between N treatments (Figure 1 — figure

supplement 2A).

Rhizobiome traits are more heritable under -N conditions

The abundance of each of the 150 rhizobiome traits was assessed separately for +N and -N
conditions, and the heritability (proportion of total variance explicable by genetic factors) was
estimated using an approach following a previous study (Deng et al., 2021) (Materials and
Methods). Rhizobiome traits were comparatively more heritable under -N than +N conditions
(paired Student’s t-test, p = 0.021, Figure 1C). We found 34/150 (22.7%) microbial groups to be
significantly heritable (permutation test, p < 0.05, Materials and Methods) under both N

conditions, 18/150 (12%) only under +N conditions, and 27/150 (18%) only under -N conditions.
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Twelve rhizobiome traits exhibited estimated h? > 0.6 in both +N and -N conditions (Figure 1 —
figure supplement 3). These include 4 groups of ASVs assigned to the order Burkholderiales
(the genus Pseudoduganella, an unknown genus in the Comamonadaceae family, the family
A21b, and Burkholderia oklahomensis) and 2 groups in the Sphingomonadales order
(Sphingobium herbicidovorans 1 and an unknown genus in the Sphingomonadaceae family).
Notably, closely related microbial groups did not exhibit obvious patterns of shared high or low
estimated heritabilities (Figure 1B). As heritabilities and responses to treatments can vary
considerably within families, genera, and lower taxonomic ranks, this underscores the
importance of adequate taxonomic resolution when analyzing rhizosphere microbial
communities. We further observed that more abundant microbes in the rhizosphere also tend to
be more heritable. The correlation of relative abundance vs. heritability was r = 0.29 (Pearson’s
correlation test, p = 3.4x10) for +N and r = 0.39 (Pearson’s correlation test, p = 1.1x10°) for -N

(Figure 1 — figure supplement 2B).
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Figure 1: Diversity, phylogenetics, and heritability of rhizobiome traits. (A) Constrained ordination
analysis showing the largest two principal coordinates calculated from the abundances of 3,626 ASVs.
Each diamond represents one sample collected from plants under +N (blue) and -N (red) treatment,
respectively. Note the separation of N treatments along PCo1. (B) Phylogenetic tree of 150 taxonomic
groups of rhizosphere microbiota (“rhizobiome traits”) generated by clustering 3,626 ASVs. Families are
prefixed with “f_”, genus and species names are given where known. Numbers at tree tips indicate
distinct ASVs in each group. Label colors indicate heritability of each rhizobiome trait as in panel C. (C)
Heritability (h?) calculated for all 150 rhizobiome traits under +N and -N treatments. Green line indicates
linear regression with 95% confidence interval, r> = 0.104. Diagonal dashed line denotes identity. Grey
lines mark density of data points. Colors indicate whether traits are significantly heritable under either or

both N treatments, as determined through a permutation analysis using 1000 permutations.

Figure 1 — figure supplement 1: GWAS of high-level rhizobiome traits:

(A, B) The first 10 principal components were calculated for both the high N (left) and low N (right)
treatment using the best linear unbiased prediction (BLUPSs) of the log(relative abundance) of 3618
ASVs in 230 maize genotypes. Total variance explained was 60.8% for +N and 65.3% for -N.

(C) The largest contributors to PC1 differed between the two experimental conditions. Microbial groups
that account for at least 1% of total variance are annotated in the pie charts.

(D, E). Notable GWAS signals above the significance threshold (dashed red line) were observed in the -
N treatment for PC1 and the InvSimpson diversity metric (red arrows), indicating genomic loci that
affect high-level metrics of the rhizobiome. The other PCs and diversity metrics had no strong GWAS

signals and were not shown.

Figure 1 — figure supplement 2: Abundance and heritability of 150 microbial groups.

(A) Phylogenetic tree of 150 microbial groups. Colors indicate differential abundance between the +N

and -N treatment.

10
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(B) The mean abundance (mean BLUP of log(relative abundance) across 230 maize genotypes) of
each microbial group was plotted against the heritability score in the +N and -N treatment. A positive
correlation is observed in both environments, indicating that more abundant microbes in the

rhizosphere also tend to be more heritable.

Figure 1 — figure supplement 3: Annotations of heritable microbial groups. (A) The 12 most
heritable microbial groups with heritability > 0.6 (drawn lines) under both N conditions were annotated

by name. (B) Taxonomy of the 12 most heritable groups.

Rhizobiome traits are related with plant fithess and predominantly under purifying
selection

Under the hypothesis that the rhizobiome traits have effects on plant fitness, we sought to
estimate the selection gradients under different N treatments (Lande and Arnold 1983). To
reduce biases due to environmental covariances (Rausher 1992), the standardized BLUP
values of the microbial traits were fitted into the fitness function (See Materials and Methods).
For the selection gradient estimation, the canopy coverage (CC) obtained from UAV imaging
was used as a proxy for plant fitness. As a result, we identified 58 unique rhizobiome traits
exhibiting significant linear selection gradients (bootstrapping p-value < 0.05) under +N (28
traits) and -N (46 traits) treatments (Figure 2 — figure supplement 1). Additionally, 4
rhizobiome traits showed significant quadratic selection gradients (+N: Luteolibacter
pohnpeiensis (-2.627913e-05, p-value = 0.044), -N: Blastococcus (8.516159e-06, p-value =
0.03), Pseusomonas umsongensis (-2.003792e-05, p-value = 0.04), Chthoniobacter flavus (-

5.807404e-05, p-value = 0.028)).

11
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Selection acting on rhizobiome traits can happen either by purging deleterious alleles (purifying
selection) or by elevating the frequencies of advantageous alleles (positive selection). To
evaluate the mode of selection at the genomic level, a Bayesian-based method (Genome-wide
Complex Trait Bayesian analysis, or GCTB) was used to test for each rhizobiome trait
(Materials and Methods). A set of n = 834,975 independent SNPs was used to estimate their
effects on 150 rhizobiome traits as well as 17 conventional plant traits collected from the same
population in the same field experiments (Materials and Methods, Supplementary File 4).
Using the relationship between effects of non-zero SNPs and their minor allele frequencies
(MAFs) as a proxy for the signature of selection (Zeng et al., 2018), the S parameter was jointly
estimated from the GCTB analysis for rhizobiome traits and plant traits. According to Zeng
(Zeng et al., 2018), if S = 0 (i.e., the posterior distribution of S is insignificantly different from
zero), the SNP effect is independent of MAF, suggesting a neutral selection. If there is selection
acting on the trait, the SNP effect can be positively (S > 0) or negatively (S < 0) related to MAF,

indicating positive and purifying selection, respectively.

We report 10 rhizobiome traits that showed both significant linear selection gradients and
significant S parameters (Figure 2A). Under these stringent criteria, 9 rhizobiome traits show
evidence of purifying selection under +N or under -N. One microbial group (Bacillus fumarioli)
showed positive S values indicating that this trait might have been a target of positive selection.
Relative to rhizobiome traits, plant leaf traits and nutrient traits were both more likely to exhibit
evidence of selection within this maize population. Three out of 15 plant leaf traits, i.e., leaf area
(LA), leaf fresh weight (FW), and leaf dry weight (DW) (Materials and Methods), exhibited S >
0 values under the +N condition, consistent with positive selection, while only one of the three
exhibited a slightly negative S value in the -N condition and in that case exhibited a pattern
consistent with weak purifying selection (Figure 2B). Note that the three leaf-related traits are

not independent. The pairwise correlation coefficients are 0.92, 0.91, and 0.94, for LA and FW,

12
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LA and DW, FW and DW, respectively. Of the 11 micronutrient traits evaluated, 9/11 and 4/11

showed significantly negative S values in trait data collected under +N and -N conditions,

respectively. From the same GCTB analysis, estimates of the number of SNPs with non-zero

effects were substantially lower for rhizobiome traits than for conventional plant traits, whereas

the differences were insignificant between the two N treatments for both rhizobiome and plant

traits (Figure 2C). Using these non-zero effect SNPs, we plotted their minor allele frequency vs.

the minor allele effect. As expected, in the case of positive selection (Bacillus fumarioli), we

observed a skew towards higher MAF and in the case of purifying selection

(f_Comamonadaceae Unknown Genus), a skew towards lower MAF (Figure 2D).

A

f_Comamonadaceae Unknown Genus -

@

Logyg(Nonzero SNPs)

Bacillus fumarioli 4
f_ WD2101 soil group

Sphingoaurantiacus -
Ellin6067
Burkholderia pseudomallei 4
Pseudomonas umsongensis -
Salmonella bongori 1
Delftia tsuruhatensis -
Flavobacterium anatoliense -

Plant Traits Rhizobiome Trails[
L]
L ]
at®
- a1 o
La @]
o ‘ 3
®
L]
L 2 L]
o
L]
] &
LN HN LN

Minor Allele Effect

B

l—loﬂ_' LA '_1.10*
meh FW - o1 o
——
I—.ﬁ:_‘ DW + '_._':l—.—u
K ——
b & 4 ]
e Eg P M'Ir" treatment
L I Ca- =
gt | Zn{—eo— - < +N
HH : 81 I --- ‘N
e : N - = =N
I Mg - i g B —
% I Cui @& |
L o) ! Mn4 9 ;
3 2 44 0 32 10 2

0.008

0.006 +

0.004 4

0.002 1

0.000 4

Selection [S]

Bacillus fumarioli

f_Comamonadaceae Unknown Genus

° 0.00020 4

0.00015 4

0.00010 4

e 0.00005 4

0.0

J
0.00000 4

04 0.6 0.0

Allele 1 Frequency

0.2 0.4 0.6

13



237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

Figure 2: Population parameters estimated from genome-wide SNPs for plant and rhizobiome
traits. Selection coefficients (S value) of rhizobiome (A) and plant (B) traits calculated for both N
treatments using genome-wide independent SNPs. A negative S value indicates negative (purifying)
selection, and a positive S value indicates positive (directional) selection. Traits are shown that show
significant selection under one or both N treatments. (C) Number of SNPs showing non-zero effects for
both plant and rhizobiome traits. (D) Examples of positive (Bacillus fumarioli) and purifying selection
(f_Comamonadaceae Unknown Genus) showing minor allele effect vs. allele 1 frequency with data

skew to the right and to the left, respectively.

Figure 2 — figure supplement 1: Rhizobiome traits exhibit significant linear selection gradients

(bootstrapping p-value < 0.05) under +N and -N treatments

Genes underlying microbe-associated plant loci are preferentially expressed in root
tissue

The observation that many rhizobiome traits are both under significant host genetic control and
targets of selection suggests it may be possible to detect individual large effect loci controlling
rhizobiome traits. To investigate this, we performed GWAS using each of the 150 rhizobiome
traits. This analysis was done separately for the -N and +N conditions, as N deficiency induces
dramatic changes in plant metabolism, including changes in root gene expression (Singh et al.,
2022) and root exudation (Zhu et al., 2016), and because N applied to the field directly impacts
soil and rhizosphere microbiomes (Meier et al., 2021). We focused on “hotspots” along the
genome where we find the highest cumulative density of significant associations between SNPs
and any rhizobiome traits under either N treatment, because morphological (i.e., root
architecture) or physiological (root exudation) changes may simultaneously affect several

rhizobiome traits. For this purpose, we split the maize genome into 10 kb genomic windows and
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tallied the number of significant (p < 10-72) GWAS signals in each window. This analysis
revealed 622 genomic regions containing at least one significant GWAS signal, and we refer to
these regions as microbe-associated plant loci (MAPLs) (Materials and Methods). We report
these MAPLs alongside nearby genes in Supplementary File 5. 104 out of 150 microbial

groups were associated with at least one of the 622 loci.

To reduce false discoveries, we decided to discuss a subset of 119 MAPLs here, that had at
least two significant GWAS signals. Among these 119 MAPLs, 69 were observed under +N
treatment and 50 under -N treatment (Figure 3A, Supplementary File 5). Of the 150
rhizobiome traits evaluated here, 35 were associated with at least one of the 119 MAPLSs, with
21 rhizobiome traits associated with 69 MAPLs under the +N treatment and 17 rhizobiome traits
with 50 MAPLs under the -N treatment. 3 rhizobiome traits (f_Chitinophagaceae Unknown
Genus, Sphingoaurantiacus, and f_Vicinamibacteraceae) showed significant associations under
both N treatments, albeit with different plant loci. No loci were found that had associations with
rhizobiome traits under both N treatments, which is expected as GWAS analyses were done
separately for different N treatments and the microbial groups studied here were partly

distinguished based on differential abundance in response to N treatments.

We hypothesized that many plant genes underlying MAPL hotspots may exert control over the
rhizosphere microbiome via changes in root physiology, architecture, and exudate composition
(Vandenkoornhuyse et al., 2015) and may therefore be preferentially expressed in root tissue.
Transcribed sequences of 97 gene models were completely contained within £10 kb of the 119
MAPL hotspots identified here, where 114/119 MAPLs contained between 1 and 5 genes. We
evaluated the expression of these MAPL genes relative to the overall patterns exhibited by all
genes outside the MAPL regions in seven tissues using published expression data from the

same maize population (Kremling et al., 2018). Expression data was available in this dataset for
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73 out of 97 MAPL genes across 298 maize genotypes from tissue samples collected at
germination and during flowering time. These MAPL genes, when compared to (n = 29,771)
other genes available in the dataset, show on average significantly higher expression in the

germinating root, the germinating shoot, and the third leaf base (Figure 3B).

To complement the gene expression data provided by Kremling et. al, we selected 4 diverse
and well characterized maize genotypes (K55, W153R, B73, and SD40). Plants were grown in a
controlled greenhouse environment under standard N and N deficient conditions and gene
expression was analyzed in roots and shoots of two-week old seedlings (for details refer to Xu
et al, 2022). In agreement with the dataset provided by Kremling et al, significantly higher
expression of 97 MAPL genes was observed in root but not leaf tissue compared to (n = 44,049)
other genes available in this dataset (Figure 3C). No strong physiological response to N
deficiency was expected for 2-week-old seedlings and no significant differences were observed

in the pattern of MAPL gene expression between the two N treatments.

Collectively, these data are consistent with the hypothesis that rhizobiomes are at least in part

genetically controlled by the host plant in a process mediated by plant gene expression.
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Figure 3: Microbe associated plant loci (MAPLs) contain genes expressed in roots. (A) GWAS of

150 rhizobiome traits reveals microbe-associated plant loci across the maize genome. Dashed line

indicates the -log10(p) = 7.2 significance level for GWAS signals. Circles on top of peaks at each MAPL

indicate the number of rhizobiome traits associated with each locus. Each MAPL is annotated with the

associated rhizobiome trait(s) that showed significant GWAS signals. (B) Mean gene expression of 73

MAPL genes and 29,771 other genes in seven tissue types, measured in 298 genotypes of the maize

diversity panel (Kremling et al., 2018). (C) Mean gene expression of 97 MAPL genes and 44,049 other

genes in two tissue types, measured in the present study in four maize genotypes under +N and -N

treatments.
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Heritable and adaptively selected rhizobiota are associated with plant phenotypes

We investigated the correlation of microbe abundance with 17 plant traits, including leaf
physiology, leaf micronutrient traits, and traits extracted from aerial images (Materials and
Methods) to identify potential plant phenotypic consequences of variation in the abundance of
specific rhizosphere microbes. Several rhizobiome traits were significantly correlated (p < 0.01)
with measures of plant performance, such as leaf area, leaf dry weight and fresh weight, and
with several measures of leaf micronutrients such as nitrogen, sulfur, and phosphorus (Figure 4
— figure supplement 1). The trait that was most strongly linked to microbe abundance was leaf
canopy coverage (CC). In total, 62 microbial groups — more than expected by chance
(permutation test, p < 0.001) — were significantly (Pearson correlation test, p < 0.01) associated
with CC (marked in Figure 4 in green for positive correlation and in red for negative correlation).
30 microbial groups under +N and 35 under -N were positively correlated with CC. 14 groups
under +N and 12 under -N were negatively correlated with CC. 15 microbial groups were
associated with CC under +N treatment, 18 under -N treatment, and 29 showed a significant
association under both N treatments (Figure 4A). Under both N treatments, we observe an
association between heritability and the correlation with CC, which was statistically significant
(Pearson correlation coefficient r = 0.39, p = 4x10°) for +N and even more significant (r = 0.49,

p = 1.7x10-°) under the -N condition (Figure 4B).
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Figure 4: Heritable microbial groups tend to be correlated with whole plant canopy coverage. (A)
Distribution of statistical significance and correlation values for the relationship between canopy
coverage (CC) and each of 150 microbial groups under either +N or -N conditions. Dashed line
indicates significance level (p = 0.01). (B) Relationship between the estimated heritability of individual

rhizobiome traits and correlation of the same individual rhizobiome traits with variation in CC. Dashed

line indicates significance level (p = 0.01).

Figure 4 - figure supplement 1: Correlation of microbe abundance with 17 agronomic and

micronutrient traits under +N (blue) and -N (red) conditions. Each dot represents one of 150
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rhizobiome traits. X axis shows correlation with agronomic trait (r value), y axis shows significance,
dashed line shows p=0.01 level of significance. CC_Aug12, EXG_Aug12: canopy coverage and excess
green index measured on Aug. 12, 2019; CHL.: chlorophyll content, DW: dry weight, FW: fresh weight,
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Figure 4 - figure supplement 2: Microbial traits that correlate with canopy coverage.
Venn diagram shows a total 62 microbial traits that correlate with canopy coverage either under +N, -N
or both treatments. For the 62 listed rhizobiome traits, colored dots summarize various statistics that

indicate association with the host plant genetics and performance.

We summarize the relationship of the analyses conducted in this study under either N treatment
for the 62 microbial groups that are correlated with CC. 44/62 (71%) are heritable and 13/62 (21%)
are under selection under either or both N treatments (Figure 4 — figure supplement 2

). 56/62 (90%) show strong GWAS signals in 174/467 (39%) of the MAPLs identified here,
which contain 255/395 (65%) of possibly microbe-associated genes. Two microbial groups,
f_Comamonadaceae Unknown Genus and Sphingoaurantiacus, are of particular interest as
they overlap in all performed assays, showing evidence of heritability and selection, a strong
GWAS signal in associated plant genomic loci positive correlation with canopy coverage. The

complete summary data for all 150 microbial groups are available in Supplementary File 3.

Overall, our data show a clear trend that the 62 microbial groups associated with plant
performance also tend to be associated with host genetics, and the datasets provided here can
be used to design more targeted experiments to confirm associations of rhizosphere microbial

groups with plant genetics and performance on a case-by-case basis.
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Allelic differences at microbe-associated plant loci predict microbe abundance

We identified several strong GWAS signals that link plant genomic loci to rhizobiome traits
(Figure 3A). Such signals indicate that the pattern of SNPs at a given locus (i.e., the genetic
architecture) has a large magnitude of effect attached to the abundance of the associated
microbial groups. Next, we sought to determine whether a particular allele (either the major or
the minor variant) in our maize population is associated with an increased or decreased

abundance of the corresponding microbe.

The unknown genus in the Comamonadaceae family mentioned above, while unnamed and
uncharacterized, shows high heritability under both N treatments (h? = 0.610 under +N, and
0.651 under -N, Figure 1B & 1C), and shows evidence of being under purifying selection under
-N (Figure 2A & 2D). Under the same environmental conditions, a significant MAPL controlling
variation in microbial abundance is detectable on maize chromosome 10 (Figure 3A and Figure
5A). This same rhizobiome trait is among those that are positively correlated with CC under
both -N (r = 0.347, p = 5.313x10) and +N (r = 0.314, p = 3.845x10-%) (Figure 4A). A total of five
annotated gene models are located near the peak of significant SNP markers that define the
chromosome 10 MAPL for this rhizobiome trait (Figure 5A & 5B). A linkage disequilibrium block
was observed between 23.90 and 23.96 MB on maize chromosome 10, spanning the set of
significantly associated SNPs and three candidate genes Zm00001d023838, Zm00001d023839
and Zm00001d023840 (Figure 5C). In accordance with Figure 3C, these genes are
preferentially expressed in roots (Figure 5 — figure supplement 1). As described above, the
abundance of the f_Comamonadaceae genus was significantly correlated with variation in CC,
shown here for the -N treatment (Figure 5D). Next, we used the haplotype information at the
target SNP to mark genotypes that carry the major allele or the minor allele, respectively, and

the abundance of the f_Comamonadaceae genus was significantly higher in rhizosphere
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samples collected from maize genotypes carrying the major allele than in samples collected

from maize genotypes carrying the minor allele (Figure 5E). However, CC was not significantly

different between maize genotypes carrying either the major or minor allele of the chromosome

10 MAPL (Figure 5F).
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Figure 5: Abundance of heritable, adaptively selected microbes depends on allelic differences at

MAPLs. (A) Results of a genome wide association study conducted using values for the rhizobiome
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trait (f_Comamonadaceae Unknown Genus) observed for ~230 maize lines grown under nitrogen
deficient conditions. Alternating colors differentiate the 10 chromosomes of maize. Dashed line
indicates a statistical significance cutoff of -log10(p) = 7.2. (B) Zoomed in visualization of the region
containing the peak observed on chromosome 10. (C) Linkage disequilibrium among SNP markers
genotyped within this region, calculated using genotype data from 271 lines (D) Correlation plot of
microbe abundance vs. canopy coverage (CC). Each point represents a maize genotype. Differences in
microbe abundance (E) and CC (F) are marked between genotypes carrying the major allele (gold) vs

the minor allele (purple) at the target SNP (red arrow in panel A and B).

Figure 5 — figure supplement 1: Genes at MAPL are preferentially expressed in roots.
Gene expression in leaf tissue vs roots of three genes at chr 10 locus in main text Figure 5. Maize
genotypes are the same as in main text Figure 3C. Genes Zm00001d023838 and Zm00001d023839

show significantly higher expression in roots.

The example discussed here shows a three-way association of the abundance of a particular microbial
group in the rhizosphere, a corresponding locus on the maize genome, and plant performance in the field.
The datasets provided alongside this publication contain several such associations and may serve as the
basis for more targeted experiments to establish a direction of causation between microbe abundance
and plant performance, and to shed light on the genetic mechanisms that shape symbiotic relationships

between the plant host and associated rhizosphere microbes.
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Discussion

This study profiled the rhizosphere inhabiting microbiota of several hundred maize genotypes
under agronomically relevant field conditions. Through a 16S rDNA-sequencing based
approach, we identified a set of 150 reproducible rhizobiome traits based on 3,626 ASVs that
were highly abundant and consistently reproducible in this maize diversity panel. The
phylogenetic tree in Figure 1B may deviate from the consensus microbial phylogeny since only
the 350bp ribosomal V4 region was used to establish the relationship between groups, and
more accurate phylogenetic clustering should be considered in future studies with emphasis on
the evolution of plant-microbe associations. In total, 79 out of the 150 rhizobiome traits (52%)
showed significant evidence of being influenced by host plant genotype in one or more
environmental conditions. The estimated heritability of rhizobiome traits in this study ranged
from 0 to 0.757 for the +N treatment (mean 0.320) and from 0 to 0.839 for the -N treatment
(mean 0.352). A comparable study of the rhizobiomes in a sorghum diversity panel estimated
similar values (Deng et al., 2021). A previous study on the same maize diversity panel (Wallace
et al., 2018) investigated the heritability of 185 individual OTUs and 196 higher taxonomic units
measured in the leaf microbiome. The study reported only 2 OTUs and 3 higher taxonomic
groups showing significant heritability using the same permutation test we employed in this
study. This may indicate that plant genetics have a stronger influence on rhizosphere colonizing
microbes than on leaf colonizing microbes. One reason for this may be that there is a direct
pathway for plant-to-microbe communication via root exudates (Doornbos et al., 2012). In
contrast, no equivalent exchange of chemical information has been reported above ground, with

the possible exception of aerial root mucilage (Van Deynze et al., 2018).

We observed relatively higher heritability for rhizobiome traits quantified from plants grown in

the -N treatment than under the +N treatment. This outcome is consistent with a model where
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the partnerships between microbiomes and plants were established in natural and early
agricultural systems which were predominantly N limited (Brisson et al., 2019). N insufficiency in
maize induces dramatic changes in physiology (Ciampitti et al., 2013), gene expression (Chen
et al., 2011; Singh et al., 2022), root architecture (Gaudin et al., 2011) and root exudation
(Baudoin et al., 2003; Haase et al., 2007; Zhu et al., 2016). Consistent with this, N fertilization or
the lack thereof has substantial consequences on plant-microbe associations. In this study, 12%
of rhizobiome traits were only significantly heritable under the +N treatment, and 18% only
under the -N condition, and GWAS revealed plant-microbe associations at different genomic loci
depending on the N treatment. Previous observations have also reported that rhizosphere
microbial communities are highly sensitive to environmental conditions, in particular to N
deficiency (Meier et al., 2021; Zhu et al., 2016). This finding emphasizes the need to optimize

microbial communities not only for a specific host but also for specific levels of N fertilization.

Our results suggest that the capacity of maize plants to encourage or discourage colonization of
the rhizosphere by specific microbiota has been a target of selection. The BayesS method
leverages the relationship between the variance of SNP effects and MAF as a proxy of
natural selection in the distant past. This method detects signatures of natural selection on
SNPs associated with microbiome traits but is not directly indicative of selection acting on
the particular microbes. Indeed, we observed purifying selection acting on genetic variants
associated with the abundance of 9 rhizosphere traits, 7 in the +N and 7 -N environment,
respectively. Several rhizosphere denizens whose abundance showed evidence of being a
target of purifying selection in the host genome have been linked to plant growth promoting
activities, most notably Pseudomonas (Otieno et al., 2015; Preston, 2004) and Burkholderia
(Bernabeu et al., 2015; Kurepin et al., 2015). Bacillus fumarioli, which showed evidence of

positive selection, has previously been observed in plant rhizospheres, particularly in maize
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(Garbeva et al., 2008), and several strains of Bacillus plant growth promoting activities (Kumar
et al., 2012). Notably, not all traits that are heritable are expected to be under selection, as traits
can be heritable, i.e., transmitted from one generation to the next, without impacting the fitness
or performance of offspring individuals under the conditions under which recent natural and/or
artificial selection has occurred. To further approve the beneficial effects of the microbes on
the plant fitness, additional functional analyses (i.e., inoculation experiments) are warranted,
and that naturally occurring microbe-plant symbiosis may be harnessed for further crop

improvement.

Among the 150 rhizobiome traits analyzed here, 62 showed a significant correlation with
measurements of canopy coverage collected from the same field experiment. In particular, the
observed link between heritability of microbes and correlation with plant performance may
indicate a symbiotic relationship of the host plant and root-associated microbes. However, while
our data show correlations between microbe abundance and plant phenotypes, further
experiments are required to determine the direction of causation and investigate potential
mechanisms by which microbe abundance could influence phenotypic changes in the host. We
observe that the maijority of rhizobiome traits that are correlated with canopy coverage are both
heritable and associated with one or more microbe-associated plant loci (MAPLs), and genes
linked to variation in rhizobiome traits via GWAS were highly expressed in roots across
genotypes in multiple independent gene expression datasets. This suggests a number of
potential mechanisms for host plant genotypes to influence the composition of the rhizobiome.
For example, two of the three genes associated with the MAPL highlighted in Figure 5
(Zm0001d023838 and Zm0001d023839) are preferentially expressed in roots (Figure 5 — figure
supplement 1). According to MaizeGDB, both are protein coding genes that have not yet been

characterized in maize. Known Zm0001d023838 orthologs in Arabidopsis encode AUXILIN-
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LIKE1 and AUXILIN-LIKE2, and overexpression of auxilin-like proteins in Arabidopsis has been
shown to inhibit endocytosis in root hair cells (Ezaki et al., 2006). Overexpression of auxilin-like
proteins has also been shown to confer resistance to root-borne bacterial pathogens in rice
(Park et al., 2017). This indicates a possible link between root hair physiology and an altered
microbiome. Although substantial further experimentation and study remains necessary,
adjusting the expression of particular MAPL genes identified here may be an avenue to directly
influence and engineer the abundance of targeted microbial groups in the rhizosphere to the

benefit of the plant.

We evaluated associations between rhizobiome traits and a number of whole plant phenotypes.
The maize diversity panel has been and continues to be utilized in field experiments to
determine the genetic basis of many phenotypes across diverse environments. The datasets
generated here link the abundance of 150 microbial groups in the rhizosphere to genetic
variation in 230 genotypes across two N treatments. Combining these public datasets with plant
phenotypes collected from the same genotypes in additional environments may lead to the
identification of other cases where MAPLs are associated with variation in plant phenotypes or
plant performance. The results presented in this study add to an increasing body of evidence
that microbial communities are actively and dynamically shaped by host plant genetic variation
and may serve as the foundation for future research into particular plant-microbe relationships

that may be harnessed to sustainably increase crop productivity and resilience to abiotic stress.
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Materials and Methods

Field and experimental design

In this study, 230 maize (Zea mays subsp. mays) lines from the maize diversity panel (Flint-
Garcia et al., 2005) were planted in May of 2018 and 2019 in a rain-fed experimental field site at
the University of Nebraska-Lincoln’s Havelock Farm (N 40.853, W 96.611). In both years, the
experiment followed commercial maize. Individual entries consisted of 2 row, 5.3 m long plots
with 0.75 m alleyways between sequential plots, 75 cm spacing between rows, and 15 cm
spacing between sequential plants. In each year, the experimental field was divided into 4
quadrants and the complete set of genotypes was planted in each quadrant following an
incomplete block design (Supplementary Methods, Figure 6). N fertilizer (urea) was applied at
the rate of 168 kg/ha to two diagonally opposed quadrants before planting, while two quadrants

were left unfertilized (-N treatment).

Rhizobiome sample preparation and sequencing

In 2018, n = 304 rhizosphere samples were collected from 28 maize genotypes (2 samples per
subplot, 2 replicated plots per genotype and N treatment); and in 2019, n = 3,009 samples were
collected from 230 genotypes (3 samples per subplot, 2 replicated plots per genotype and N
treatment), listed in Supplementary File 1. Eight weeks after planting (2018: July 10 and 11;
2019: July 30, 31 and August 1), plant roots were dug up to a depth of 30 cm and rootstocks
were manually shaken to remove and discard loosely adherent bulk soil. For each plant, all
roots thus exposed were cut into 5 cm pieces and homogenized, and 20-30 ml randomly
selected root material (with adherent rhizosphere soil) was collected to generate the
rhizosphere samples (Supplementary Methods). DNA was isolated using the MagAttract

PowerSoil DNA KF Kit (Qiagen, Hilden, Germany) and the KingFisher Flex Purification System
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(Thermo Fisher, Waltham, MA, USA). DNA sequencing was performed using the Illumina MiSeq
platform at the University of Minnesota Genomics Center (Minneapolis, MN, USA). In brief,
2x350 bp stretches of 16S rDNA spanning the V4 region were amplified using

V4 _515F Nextera and V4_806R_Nextera primers, and the sequencing library was prepared as

described by Gohl (Gohl et al., 2016).

Raw read processing and construction of microbiome dataset

Paired-end 16S sequencing reads from 3,313 samples were processed in R 3.5.2 using the
workflow described by Callahan (Callahan et al., 2016a), which employs the package dada2
1.10.1(Callahan et al., 2016b). Taxonomy was assigned to amplicon sequence variants (ASVs)
using the SILVA database version 138 (Yilmaz et al., 2014) as the reference. Raw ASV reads
were subjected to a series of filters to produce a final ASV table with biologically relevant and
reproducible 16S sequences (Supplementary File 1). For the constrained ordination (CAP)
analysis performed here, the weighted Unifrac distance metric was used with model distance ~
year + genotype + nitrogen + block + sp + spb. Only ASVs that were highly abundant and
repeatedly observed in both years of sampling were considered for downstream analysis. ASVs
were clustered into 150 groups of rhizosphere microbes at the family, genus, and species level
based on 16S sequence similarity and the response of individual ASVs to experimental factors

(see supplementary methods).

Heritability estimation

Heritability (h?) of rhizobiome traits was calculated separately for +N and -N conditions using
maize genotypes in the 2019 dataset for which balanced data was available. For each of the
150 rhizobiome traits, combined ASV counts were normalized by converting to relative
abundance and subsequent natural log transformation. Using these transformed values, h? was

estimated following Deng et al. (Deng et al., 2021) for each rhizobiome trait using R package
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sommer 4.1.0 (Covarrubias-Pazaran, 2016). In short, h? is the amount of variance explained by
the genotype term (Vgenotype) divided by the variance of the genotype and the error (Vgenotype +
Verror/N), where n = 6 is the total number of samples (i.e., 2 replicates x 3 samples per replicate)
used in this dataset. Heritability was tested for significance using a permutation test. For each
trait the genotype labels of microbial abundance data were shuffled 1,000 times, and the
distribution of heritabilities calculated from these shuffled datasets were used to assess the
likelihood of observing the heritabilities calculated from the correctly labeled data under a null

hypothesis of no host genetic control.

Calculation of selection gradient and estimation of genetic architecture parameters

We estimated the fithess function relating the fitness-related trait, i.e., canopy coverage
collected on August 22 (see section “Phenotyping of plant traits”), to the abundance of the
microbial groups with a generalized additive model (GAM). To reduce biases due to
environmental covariances (Rausher, 1992), we employed the BLUP values for both the
rhizobiome traits and the fitness-related trait. Then, we obtained linear and quadratic selection
gradients from the fitted GAM models using an R package (Morrissey and Sakrejda, 2013). We
ran a total of 300 univariate models (150 microbial groups x 2 N treatments).

For the rhizobiome traits, a Bayesian-based method (Zeng et al., 2018) was used to estimate
genetic architecture parameters simultaneously, including polygenicity (i.e., proportion of SNPs
with non-zero effects), SNP effects, and the relationship between SNP effect size and minor
allele frequency. For the analysis, genotypic data of the maize diversity panel was obtained from
the Panzea database and uplifted to the B73_refgen_v4 (Bukowski et al., 2018; Woodhouse et
al., 2021). To account for SNP linkage disequilibrium (LD), a set of 834,975 independent SNPs
(MAF >= 0.01) were retained by pruning SNPs in LD (window size 100 kb, step size 100 SNPs,
r?> 2 0.1) using the PLINK1.9 software (Chang et al., 2015). In the analysis, the “BayesS” method

was used with a chain length of 410,000 and the first 10,000 iterations as burnin.
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Genome-wide association study

We chose to use the best linear unbiased prediction (BLUP) of the natural log transformed
relative abundance of ASV counts as the dependent variable for the GWAS analysis. Since only
a fraction of genotypes were sampled from the 2018 field experiment, only sample data
collected in 2019 was used for the BLUP calculation. A BLUP value was calculated for each
microbial group and each treatment using R package Ime4 (Bates et al., 2015). In the analysis,
the following model was fitted to the data: Y ~ (1|genotype) + (1|block) + (1|split plot) + (1|split
plot block) + error, where Y represents a rhizobiome trait (In(ASV count of a microbial group /
total ASV count in sample)) (Supplementary Methods, Figure 6). GWAS was performed
separately for each rhizobiome trait and for both the +N and -N treatment using GEMMA 0.98
(Zhou and Stephens, 2012) with a set of 21,714,057 SNPs (MAF >= 0.05) (Bukowski et al.,
2018). In the GWAS model, the first three principal components and the kinship matrices were
fitted to control for the population structure and genetic relatedness, respectively. To mitigate
false discoveries of GWAS, Bonferroni corrections were applied based on the effective number
of independent SNPs (or effective SNP number) (Li et al., 2012). The effective SNP number for
the genetic marker set and population employed in this study was determined to be N = 769,690
independent markers as described previously (Rodene et al., 2022). Using an alpha value of

0.05, we determined a significance threshold of -log10(0.05/769,690) = 7.2.

RNA sequence analysis

Gene expression was analyzed using two independent datasets. The first dataset was obtained
from Kremling (Kremling et al., 2018) and included RNA sequencing data from 7 different maize
tissue types. The second RNA sequencing dataset was generated from root and leaf tissue

collected 14 days after germination from both +N and -N treated pots using 4 genotypes from
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the maize diversity panel. Libraries were sequenced using the lllumina Novaseq 6000 platform
with 150 bp paired-end reads. Sequencing reads were mapped to the B73 reference genome
(AGPv4) (Jiao et al., 2017; Schnable et al., 2009) and gene expression was quantified using

Rsubread (Liao et al., 2019).

Phenotyping of plant traits

A total of 17 plant traits were measured in the 2019 field experiment. First, 15 leaf physiological
traits were measured on the same days the rhizobiome samples were collected, and included
leaf area (LA), chlorophyll content (CHL), dry weight (DW), fresh weight (FW), as well as
concentrations of the elements B, Ca, Cu, Fe, K, Mg, Mn, N, P, S, and Zn. Measurement of the
leaf traits was carried out as previously described (Ge et al., 2019). Two aerial imaging traits,
canopy coverage (CC) and excess green index (ExG), were collected on August 12, 2019, 11-

13 days after rhizobiome sample collection (Rodene et al., 2021).

Availability of data and materials

The sequencing data reported in this publication (3,313 samples) can be accessed via the
following five Sequence Read Archive (SRA) accession numbers: PRIJNA771710,
PRJUNA771712, PRINA771711, PRINA685208, PRINA685228 (summarized under the
umbrella BioProject PRINA772177). Scripts used to analyze the data are available on GitHub

(https://github.com/jyanglab/Maize_Rhizobiome_2022).
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Appendix

Supplementary Methods

Field and experimental Design

The experimental field was divided into 4 quadrants, which were separated and surrounded by a
buffer of an industrial hybrid genotype (B73xMo17) (Figure 6). The complete set of genotypes
was planted in each quadrant where possible. Each quadrant was in turn divided into 4 split
plots and a subset of the maize association panel was randomly assigned to each split plot
based on the distributions of flowering time and plant height. Phenotypes were divided at the
median value to create 4 flowering time / height categories: early/tall, late/tall, early/short, and
late/short. Each split plot was further divided into 3 split plot blocks, and each split plot block
was divided into 21 subplots in 3 ranges and 7 columns. Thus 252 subplots were available in

each quadrant of the field. In each of 12 split plot blocks per quadrant, a t least one subplot was
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randomly selected and assigned the hybrid genotype (B73xMo17) to be used as a check to test
for differences between geographical field locations. two check genotypes (B73xMo17 and
B37xMo17) were used in 2018, and a single check genotype (B73xMo17) was used in 2019.
Plant growth across the field was determined uniform within quadrants using the checks as
reported in a sister study on the same experimental field (Rodene et al., 2022). Any subplots
across the field that remained empty due to seed unavailability were filled with the check
genotype as well.

In 2018, dry N fertilizer (urea) was applied to two diagonally opposed quadrants before planting
at the rate of 140 kg/ha (+N treatment) while two quadrants were left unfertilized (-N treatment).
In 2019, liquid N fertilizer (urea) was applied at the rate of 168 kg/ha. Both N treatments were
thus represented in a northern block (NW and NE quadrants) and in a southern block (SW and
SE quadrant). We assigned the blocks this way because of a 3 m increase in elevation from the

north end of the field to the south end.
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Figure 6: Field experimental design. (A) Up to 230 maize genotypes were represented in each of 4
quadrants in 2 replicate blocks. Quadrants were planted in 6 ranges and divided into 4 split plots. Each
split plot was divided into 3 split plot blocks, and each split plot block was divided into 21 subplots for a
total of 252 subplots per quadrant. (B) Each 1.5m (5 ft) x 6m (20 ft) subplot (experimental unit)
consisted of two rows of 36 maize plants of the same genotype, with a spacing of 75 cm (30 in)
between rows and 15 cm (6 in) between plants. (C) Photomosaic of the 2019 field at flowering time. N
fertilizer was applied to the NE and SW quadrants before planting. (D) 128 subplots across the field
(marked in red) were planted with a check genotype (B73xMo17) in order to be able to quantify and

control for spatial variation.

824

825 Rhizobiome sample preparation and sequencing

826 In 2018, rhizosphere samples were collected from 28 genotypes. These include, B73, the
827  roothairless3 mutant of B73 (Hochholdinger et al., 2008), two check hybrids (B73xMo17 and

828 B37xMo17) and a subset of the Buckler-Goodman panel including 16 parent lines of the nested
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association mapping population (NAM) described by (McMullen et al., 2009). 8 weeks after
planting, 2 subsamples per genotype were collected per quadrant and 12 subsamples for
checks, where each subsample was taken from the combined root material of two adjacent
plants. This resulted in a total of 26*4*2 +2*4*12 = 304 samples. In 2019, rhizosphere samples
were collected in triplicates from all 1008 subplots within 3 days, 8 weeks after planting, when
the majority of plants had reached the tasseling stage. One of the two rows in each subplot was
randomly selected, and 3 individual randomly selected plants within the row (subsamples) were
sacrificed for rhizosphere collection. As a small fraction of subplots had poor germination and/or
no surviving plants on the day of sampling, the final number of rhizosphere samples collected
was 3009. Rhizosphere samples were placed on ice immediately after collection and shipped to

the lab to be processed on the same day.

To wash the tightly adherent rhizosphere soil layer off the roots, tubes were filled up to the 40 mli
mark with autoclaved PBS buffer (46 mM NaH2P0O4, 60 mM Na2HPO4, 0.02% Silwet-77), and
shaken horizontally at 8000 rpm for 30s. Rhizosphere suspension was filtered through a 100 um
nylon cell strainer (Celltreat Scientific Products, Pepperell, MA, USA) into a fresh 50 ml tube to
capture root debris and large soil particles. Rhizosphere samples were frozen in suspension at -
20°C until further processing. DNA was isolated from rhizosphere soil using the MagAttract
PowerSoil DNA KF Kit (Qiagen, Hilden, Germany) and purified using the KingFisher Flex
Purification System (Thermo Fisher, Waltham, MA, USA) with minor modifications to the
protocol: Rhizosphere samples that were kept in suspension were thawed on ice, pelleted soil
was resuspended by inverting tubes, and 500 pl soil suspension was added to the 96-well
sample plates. To avoid cross contamination of wells during pipetting, plates were sealed
beforehand with parafilm and the cover was pierced with the pipette tip to transfer the
rhizosphere suspension into the intended well. Two plates were prepared at a time and

centrifuged for 10 min at 4000 x g to pellet soil. Supernatant was carefully removed with a
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multichannel pipette and 96-well plates with approximately 100-250 mg rhizosphere soil per well
were frozen at -20°C until further processing. On the day of DNA isolation, the bead mill
substrate was added to the frozen soil pellets, soil was thawed on ice and the remainder of the
protocol was followed as per the manufacturer’s instructions. We recommend this modified
procedure for large numbers of samples as it is cleaner, faster, and better reproducible than
scooping soil from pellets in sample tubes. Concentration of isolated DNA was measured
fluorometrically with the QuantiFluor dsDNA System (Promega, Madison, WI, USA) as per the
manufacturer’s instructions. DNA isolation was repeated for any samples that failed to reach a

concentration of at least 1 ng/pl.

A 350 bp stretch of 16S rDNA spanning the V4 region was amplified using V4_515F _Nextera
(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA) and

V4 _806R_Nextera
(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTAAT) primers
on several lllumina MiSeq runs. Oligonucleotide PCR blockers (PNA Bio INC, Thousand Oaks,
CA, USA) targeting mitochondrial and chloroplast sequences were applied in the primary V4
amplification to reduce amplification of templates derived from the plant host. Up to 128
barcoded samples were pooled per sequencing run. In total, 304 samples in 2018 and 3009

samples in 2019 were sequenced on the same lllumina MiSeq machine.

Raw read processing and construction of microbiome dataset

Cluster computing resources at the UNL Holland Computing Center were used for
computationally demanding steps. To construct the microbiome dataset, 350 bp raw sequencing
reads were trimmed using filterAndTrim() at 240 bp (forward reads) and 200 bp (reverse reads),
respectively. Amplicon sequence variants (ASVs) were inferred using dada() and forward and

reverse reads were merged with mergePairs(). A sequence table was generated using
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makeSequenceTable() and chimaeras were removed using removeBimeraDenovo(). Taxonomy
was assigned to ASVs with assignTaxonomy() using the SILVA database version 138 (Yilmaz et
al., 2014) as a reference. SILVA was our taxonomy of choice because it is a relatively large 16S
sequence database compared to alternative databases, it is regularly maintained and updated
and it is widely used in ecological research, making our results comparable to other 16S
studies. (Balvociuté and Huson, 2017). Taxonomic training data formatted for DADA2
(silva_nr99 v138 wSpecies_train_set.fa.gz) was obtained from
https://zenodo.org/record/3986799#.X3zmypNKh24, as referenced by
https://benjjneb.github.io/dada2/training.html on GitHub. 16S reads and sample data were
prepared in an R Phyloseq object for further processing.

Raw ASV reads were subjected to a series of filters to produce a final ASV table with

biologically relevant 16S sequences:

1) Removed chimaeric 16S reads using removeBimeraDenovo()

2) Removed sequences with <20 total observations

3) Removed sequences that did not map to either Bacteria or Archaea

4) Removed chloroplast sequences

5) Removed mitochondrial sequences

6) Removed ASVs that were not observed in at least 5% (166) of all samples

7) Removed ASVs that were not observed in both years 2018 and 2019
8) Removed 53 out of 160 genera and families that had fewer than 5 unique ASVs and 7

samples with < 100 ASV counts

Step 6 resulted in 4,632 common ASVs that were detected in at least 5% of the samples,
representing 120,004,239 of the raw reads. Constrained ordination and PERMANOVA analyses

of the 4,632 ASV:s identified a strong effect of N treatment as well as other experimental factors
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on ASV abundance (Figure 7). This observation is consistent with previous observations that
environmental factors play an important role in determining the composition of the root
associated microbiome diversity (Floc’h et al., 2020; Meier et al., 2021; Schlatter et al., 2020).
Of the 4,632 common ASVs, 3,728 (or 80.5%) were highly abundant and observed in samples
collected from both the 2018 and 2019 growing seasons (step 7). Removing ASVs that could
not be repeatedly observed in multiple years reduced the complexity of the data set by 19.5% at
the cost of a 2.3% loss in diversity (Shannon diversity reduced from 6.4 to 6.3, Figure 7 —
figure supplement 1). Finally, removing taxa (genus or family) with less than 5 observed ASVs
yielded a dataset of 3,626 ASVs, 3,306 samples, and 105,745,986 total ASV counts. This final
core microbiome encompasses <1% of initial ASVs and ~50% of initial observations. The ASV
table from step 8 was converted to relative abundances and values were transformed with the
natural logarithm. A phylogenetic tree was constructed from the final set of 3626 ASVs using
mafft v. 7.404 (Katoh and Standley, 2013) for multiple alignment and fasttree v. 2.1 (Price et al.,
2010) and the phylogenetic tree was attached to the phyloseq object and plotted using the

ggtree R package (Yu, 2020).
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Figure 7: PERMANOVA results. It was calculated from the log(relative abundance) of 4,632 ASVs. Each

dot represents a sample. Genotypes common to 2018 and 2019 panel are marked in grey.

Figure 7 - figure supplement 1: Retaining ASVs observed in both years reduces dataset

complexity with minimal loss of diversity. (A) Intermediate set of ASVs after prevalence filtering

contains 4,632 ASVs, of which 904 were exclusively found in 2019. (B) Comparison of the Shannon

diversity between the total set (4632 ASVs, purple) and the shared set (3728 ASVs, gold) reveals a

2.29% loss in diversity: Median(Shannon3728)/Median(Shannon4632) = 0.9771.
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Clustering of ASVs into microbial groups

ASVs were clustered into groups of rhizosphere microbes at the family, genus, and species
level using a procedure described previously (Meier et al., 2021). First, the 3,626 ASVs in the
present study were grouped at the family level (the lowest taxonomic rank for which all ASVs
were successfully annotated) and the phylogenetic tree derived from 16S V4 alignment was
plotted alongside taxonomic annotation at the genus and species level. Because the ASVs are
derived from short reads and may constitute variations not covered in the SILVA database,
annotation at the genus and species level was often not possible. To close these gaps and form
biologically meaningful groups of ASVs at low taxonomic ranks with better confidence, we
examined the overall abundance of each ASV as well as the differential abundance in response
to the N treatment alongside the sequence-based clustering. The premise here is that ASVs
derived from biologically closely related individual microbes are similarly abundant in our
dataset and respond similarly to the N treatment imposed on the field, in addition to similar 16S
sequences due to common ancestry. An example is given in Figure 8 with a subset of ASVs
assigned to the Burkholderiaceae family. The plots used to determine all 150 microbial groups

in this study are available in Supplementary File 6.

48



A B c

Annotation based on 165 sequence Overall abundance Response to N treatment
ASV Genus Species [Log10(total observations)] [Log2(fold change)]
o : '» . : ‘.‘.% : 2 * .
X P8

.
s ®

D Ralstonia pickettii | .:‘ ¢
. P4

™

> '
e ' -
L 0

Burkholderia insecticola <" ,*

ASVs in Burkholderiaceae Family

-a®
L] . ) %
i E. & -
. Paraburkholderia caffeinilytica bigas e . .
*s i A Yoy
= s E. ‘.
i 5 H s E : - N
Te 3 ! Burkholderia sp 1 .3
. g e 2 <
e o
I i . Og, |
e  Burkholderiasp2 _«*
' ", ]
4 5 -1l _0__1 .2 3
more abundant ~ more abundant
under -N under +N

Figure 8: Microbial groups are derived from taxonomic data and experimental data. An example
is given using a subset of the ASVs in the Burkholderiaceae family. (A) Phylogenetic clustering of ASVs
based on 16S V4 alignment. ASVs are annotated at the genus and species level using the SILVA
database. Note that for some ASVs, annotation at the species level is missing, although the
phylogenetic tree suggests divergent groups at the species level. Overall abundance in the dataset (B)
of each ASV and differential abundance in response to the N treatment (C) were used in tandem with
sequence-based clustering to group ASVs with similar features into microbial groups at sub-genus
resolution (labeled in green).

In this example, the genus Ralstonia constitutes a monophyletic cluster of ASVs which were all
successfully assigned to the species R. pickettii (A). This uniform group is also reflected in relatively
uniform abundance (B) and positive response to N treatment (C). On the other hand, most ASVs in the
Burkholderia genus could not be annotated at the species level, even though the phylogeny suggests
at least 4 distinct groups below the genus level. The first group, Burkholderia insecticola was identified

at the species level without fail and once again, this is reflected in uniform abundances as well as a
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consistently negative response to N treatment. Within the next cluster two ASVs are assigned to
Paraburkholderia caffeinilytica, and we assigned all other ASVs in the same cluster to the same
species because they showed consistent abundance and response to treatment. In the remaining two
clusters, no ASVs could be annotated at the species level, hence we assigned a number to the
unassigned species (Burkholderia sp 1 and sp 2). Experimental data confirms that the two clusters
should be treated as separate microbial groups because Burkholderia sp 2 is roughly 10 times as

abundant as Burkholderia sp 1 and we observe opposite responses to N treatment.

941

942  Heritability estimation

943  To calculate heritability (h2), read counts from 3 subsamples were pooled for each subplot.

944  Combined counts were then normalized by converting to relative abundance and subsequent
945  natural log transformation, which yielded a subplot-level measure of microbial abundance,

946  replicated in 2 blocks. The following linear mixed model was used with all random effects: Y =
947  genotype + block + error. Y is the log-transformed relative abundance of each microbial group in
948  each subplot-level sample, the blocks and subplots are as outlined in (Figure 6). Heritability
949  was tested for significance using a permutation test in which microbial abundance data for each
950 trait was shuffled and heritability calculated anew 1000 times. p-values indicating heritability

951  were calculated by tallying the number of permutation h2 scores exceeding the observed h2 and
952  dividing by the number of permutations. Traits with a p-value < 0.05 were deemed “heritable”
953  under either or both N treatments.

954

955  Estimation of genetic architecture parameters

956  SNPs in high linkage disequilibrium (LD) were pruned using the “indep-pairwise” command of
957  with a LD threshold of r2 = 0.1. In the GCTB analysis, the BayesS model was used with the

958 chain length of 410,000 and burnin 10,000. One example command used for the GCTB analysis
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is “gctb —bfile 282_GCTB_G --pheno gctb_blup_stdN_150_tax_groups.txt --mpheno 28 --out
Results_HN/asv_000013 --bayes S --pi 0.05 --hsq 0.5 --S 0 --wind 0.1 --chain-length 410000 --

burn-in 10000

Genome-wide association study

GWAS was performed using GEMMA 0.98 (Zhou and Stephens, 2012) with the following
parameters: gemma-0.98 -bfile {snp_file} -k {kinship_matrix} -c {pca_file} -p {traits_file} -Imm 1 -
n {trait_num} -outdir {outdir _path} -o T{trait_num} -miss 0.9 -r2 1 -hwe 0 -maf 0.01"). Blup values
were summarized in a trait matrix (214 genotypes x 150 traits) for all 150 rhizobiome traits and
for all 214 maize genotypes for which high quality SNP data was available. To conserve disk
space, SNP information was only retained in each ASV if a response at p_wald < 10-2 was
observed. To identify genomic loci with high counts of significant SNPs, the genome was split
into bins of 10 kbp, and the number of significant SNP signals at a threshold of p_wald < 10-5

was counted for each bin.

Datasets

The datasets generated in this study are available as supplementary datasets:

Supplementary File 1: Feature table (3,306 samples by 3,626 ASVs) from which our results
were generated, alongside the sample metadata collected in this study.

Supplementary File 2: Taxonomically annotated list of 3,626 16S sequences that comprise the
core maize microbiome used for this analysis and may serve as a reference to identify the same
maize-associated ASVs in future experiments.

Supplementary File 3: List of the 150 microbial groups defined in this study alongside relevant
summary statistics, such as abundance, heritability, selection coefficients, and correlations with

plant traits under both N treatments.
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Supplementary File 4: List of 229 Buckler-Goodman maize genotypes with the corresponding
measurements of all 17 plant and 150 rhizobiome traits analyzed here under both N treatments.
Sample-level data is published for aerial imaging (Rodene et al., 2022).

Supplementary File 5: List of 622 plant loci (10 kb genomic regions) that exhibit significant
association with one or more microbial groups, including the IDs of nearby (+/- 10 kb) genes.
Supplementary File 6: Plots of phylogeny, abundance and response to N treatment for all
microbial families present in this dataset, with clustering of ASVs into the microbial groups used

here.
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Figure 1 — figure supplement 1: GWAS of high-level rhizobiome traits:

(A, B) The first 10 principal components were calculated for both the high N (left) and low N (right)
treatment using the best linear unbiased prediction (BLUPSs) of the log(relative abundance) of 3618
ASVs in 230 maize genotypes. Total variance explained was 60.8% for +N and 65.3% for -N.

(C) The largest contributors to PC1 differed between the two experimental conditions. Microbial groups
that account for at least 1% of total variance are annotated in the pie charts.

(D, E). Notable GWAS signals above the significance threshold (dashed red line) were observed in the -
N treatment for PC1 and the InvSimpson diversity metric (red arrows), indicating genomic loci that
affect high-level metrics of the rhizobiome. The other PCs and diversity metrics had no strong GWAS

signals and were not shown.
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Figure 1 — figure supplement 2: Abundance and heritability of 150 microbial groups.
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(A) Phylogenetic tree of 150 microbial groups. Colors indicate differential abundance between the +N
and -N treatment.

(B) The mean abundance (mean BLUP of log(relative abundance) across 230 maize genotypes) of
each microbial group was plotted against the heritability score in the +N and -N treatment. A positive
correlation is observed in both environments, indicating that more abundant microbes in the

rhizosphere also tend to be more heritable.

56



4o

06

®e
Sphingobium he

f_Sphinggmonadaceae Unknown tienys

Heritability under +N

Kribbella k4

Candidatus Udaeobacle
Phenylobacterium my
rbicidovorans 1—

Burki

,

? ot .

roonensis Bacilkis fumarioli
L ]

I copiosus—°

’
blderia-bklahomensts

7 °

LA L]
.

f
* Parafiimonage 7

A21b

f_Comamonadaceae Unknown g‘;“uygmm )
sRsetdodugahella adyrhizobium elkanii
e
L ’

sign_group
a heritable under +N
a heritable under -N
A heritable under both treatments
A  heritability not significant

Phylum

Verrucomicrobiota

Class

Verrucomicrobiae

0.4 0.6 08
Heritability under -N
Order Family tax_group
Chthoniobacterales Chthoniobacteraceae Candidatus Udaeobacter copiosus

Pr teria Alphap bacteria  Sphi dal Sphingomonadaceae  Sphingobium herbicidovorans 1
Proteobacteria Alphap bacteria Sphi dal Sphing daceae f_Sphingomonadaceae Unknown Genus
Proteobacteria Alphap bacteria I Xanthobacteraceae Bradyrhizobium elkanii

Pr bacteria Alphap bacteria  Caulobacterales Caulobacteraceae Phenylobacterium muck
Proteobacteria Gammaproteobacteria Burkholderiales Oxalobacteraceae Pseudoduganell

Pr bacteria G p bacteria Burkholderiales G faceae f_Ci laceae Unk Genus
Pr bacteria G bacteria Burkholderiales AZlb f_A21b

Proteobacteria
Firmicutes
Bacteroidota

Actinobacteriota

Gammaproteobacteria
Bacilli
Bacteroidia

Actinobacteria

Burkholderiales
Bacillales
Chitinophagales

Propionibacteriales

Burkholderiaceae
Bacillaceae
Chitinophagaceae

Mocardioidaceae

Burkholderia oklahomensis
Bacillus fumarioli
Parafilimonas

Kribbella karoonensis

Figure 1 — figure supplement 3: Annotations of heritable microbial groups. (A) The 12 most

heritable microbial groups with heritability > 0.6 (drawn lines) under both N conditions were annotated

by name. (B) Taxonomy of the 12 most heritable groups.
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Figure 4 - figure supplement 1: Correlation of microbe abundance with 17 agronomic and
micronutrient traits under +N (blue) and -N (red) conditions. Each dot represents one of 150

rhizobiome traits. X axis shows correlation with agronomic trait (r value), y axis shows significance,

dashed line shows p=0.01 level of significance. CC_Aug12, EXG_Aug12: canopy coverage and excess

green index measured on Aug. 12, 2019; CHL: chlorophyll content, DW: dry weight, FW: fresh weight,

LA: leaf area.
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® @ flmg
@® ® “Golbitalea”
® ® "Tlumatobacter™
@® ® "Mucilaginibacter gossypii”
® ® "Nocardioides”
® @ "Pseudomonas citronellolis”
@ "Pseudomonas sp 1"
@ "Solirubrobacter”
® ® @ ® "Sphingoourantiacus”
® ©® "Wasp2
® @ "Variovorox soli"

@ "Achromobacter insolitus”
@ "Acidothermus”
® "Bacillus fumarioli”
@ "Bradyrhizobium elkanii”
"Burkholderia insecticola”
"Candidatus Udoecbacter copiosus”
@ "Chitinophaga eiseniae”
@ "Delftia tsuruhatensis”
@ "Dyadobacter fermentans 3"
@ "f_A21b"
@ "f_Chitinophagaceae Unknown Genus”
@ "f_Comamonadaceae Unknown Genus®
@ "f_Nitrososphaeraceae Unknown Genus 1"
@ “f_Vicinomibacteraceae”
@ "Flavobacterium anatoliense”
® "Gemmatimonas"”
@ "Marmoricola”
® "Mesorhizobium huakuii®
@ "Niabello yanshanensis”
@ "Nitrospira japonica®
@ "Porafilimonas”
@ “Phenylobacterium muchangponense”
@ ® "piscinibacter”
® ® "Rhizobium daejeonense”
® ® "Rhodoplanes"”
® ® @ @ "salmonella bongori”
® @ "Sphingobacterium siyengense-multivorum®
® “Sphing i diminicola”
® ® "Taibaiello chishuiensis”

@ "Acinetobacter nosocomialis”
@ "Bacillus aryaobhattai®
@ "Blastococcus”
@ "Burkholderia pseudomallei”
@ "Burkholderia sp 2"
@ “Candidatus Nitrocosmicus oleophilus"
@ “Conexibacter”
@ "E11in6@67"
@ " f_)G30-KF-AS9"
"f_Sphing daceae Unk Genus™
“f_WD2101 soil group”
@ "Knoellia-Lapillicoccus”
@ "Oryzihumus terrae”
@ "Pseudomonas umsongensis”
® @ "Pseudonocardia”
@ "RB4L sp 2"
@ "Stenotrophomonas pavanii”
@ @ "Steroidobacter”

® Positively correlated with CC

@ Negatively correlated with CC

@ Heritable under -N

@ Heritable under +N

® Heritable under both

@ Strong association with plant locus
® Under Selection

Figure 4 - figure supplement 2: Microbial traits that correlate with canopy coverage.

Venn diagram shows a total 62 microbial traits that correlate with canopy coverage either under +N, -N

or both treatments. For the 62 listed rhizobiome traits, colored dots summarize various statistics that

indicate association with the host plant genetics and performance.
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Figure 5 — figure supplement 1: Genes at MAPL are preferentially expressed in roots.

tissue

Gene expression in leaf tissue vs roots of three genes at chr 10 locus in main text Figure 5. Maize

genotypes are the same as in main text Figure 3C. Genes Zm00001d023838 and Zm00001d023839

show significantly higher expression in roots.
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Figure 7 - figure supplement 1: Retaining ASVs observed in both years reduces dataset

complexity with minimal loss of diversity. (A) Intermediate set of ASVs after prevalence filtering
contains 4,632 ASVs, of which 904 were exclusively found in 2019. (B) Comparison of the Shannon
diversity between the total set (4632 ASVs, purple) and the shared set (3728 ASVs, gold) reveals a

2.29% loss in diversity: Median(Shannon3728)/Median(Shannon4632) = 0.9771.
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