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Preface

Increasing the productivity of crops is imperative to satisfy the growing demand for food,
feed, and fuel in the world. The development of crops with higher yields capable of thriving
under adverse environmental conditions requires novel strategies that enable better and
faster assessment of the genome-by-environment-by-management (GxExM) interactions.
Plant phenomics or high throughput plant phenotyping (HTPP) consists in the application
and development of different methodologies to capture information related with perfor-
mance, function, and structure of a large number of plants. The main purpose of plant
phenomics is to understand plant behavior under a vast variety of scenarios and how exactly
the genotypic traits are expressed through the plant phenotype.

In High-Throughput Plant Phenotyping: Review and Protocols, readers will find a collec-
tion of state-of-the-art, step-by-step, and reproducible protocols to quantify the GxExM
interactions in a variety of model and plant crops. Reflecting the multidisciplinary nature of
this area of research, the book contains all aspects that are key to HTPP experiments
including plant growth and care, experimental design considerations, image acquisition
tools and robots, novel algorithms for image analysis, and protocols discussing statistical
and network analysis. The book is divided into five parts. In the first one, leaders in the field
contributed HTPP protocols for plants growing under controlled conditions. In the second
part, we present novel algorithms for extracting data from seed images, color analysis from
fruits, and other digital readouts from 2D objects. Part III is comprised of two chapters
describing keys to the success of molecular imaging protocols using PET and X-ray
approaches. The fourth part is a collection of HTPP protocols for crops growing under
field conditions. Part V contains chapters dedicated to molecular analysis, metabolomics,
network analysis, and statistical methods for the quantitative genetic analysis of HTP data.

We are grateful to all the talented people that contributed their expertise and know-how
in these excellent chapters. These colleagues, in addition to top-quality scientists, are also
compassionate people. I would like to thank all contributors for the patience and grace you
offered me during the difficult months when my mother was very ill and the ones after her
passing.

Mom, you are the strongest and wisest woman I know. I aspire to follow your example
and make you proud. This book is for you.

Jonesboro, AR, USA Argelia Lorence
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Chapter 1

High-Throughput Screening to Examine the Dynamic
of Stay-Green by an Imaging System

Daniel Padilla-Chacón and Cecilia B. Peña-Valdivia

Abstract

The development of RGB (red, green, blue) sensors has opened the way for plant phenotyping. This is
relevant because plant phenotyping allows us to visualize the product of the interaction between the plant
ontogeny, anatomy, physiology, and biochemistry. Better yet, this can be achieved at any stage of plant
development, i.e., from seedling to maturity. Here, we describe the use of phenotyping, based on the stay‐
green trait, of common bean (Phaseolus vulgaris L.) plant, as a model, stressed by water deficit, to elucidate
the result of that interaction. Description is based on interpretation of RGB digital images acquired using a
phenomic platform and a specific software. These images allow us to obtain a data group related to the color
parameters that quantify the changes and alterations in each plant growth and development.

Key words Stay-green, High-throughput screening, RGB, Common bean, Senescence

1 Introduction

By definition, senescence is a complex trait that reflects the final
stage of development during which the plant recycles nutriments,
induces gene expression, and involves the interactions of many
signaling pathways that may have significant impact on increasing
future food production [1, 2].

High-throughput screening (HTS) is a recent scientific method
in which hundreds of thousands of experimental samples are sub-
jected to simultaneous testing under given conditions [3]. The
sample themselves may take the form of molecules, cells, plants,
or field crops to generating large datasets to answer complex
biological questions [4]. In particular, “stay-green” or greenless is
accepted to be one the most vulnerable parts of the first manifesta-
tion of leaf stress. That can be a result of alterations in hormone
metabolism and signaling, particularly those affecting networks
involving cytokinins and ethylene associated with chlorophyll
synthesis-degradation. Symptoms of premature senescence such as

Argelia Lorence and Karina Medina-Jimenez (eds.), High-Throughput Plant Phenotyping: Methods and Protocols,
Methods in Molecular Biology, vol. 2539, https://doi.org/10.1007/978-1-0716-2537-8_1,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2022
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leaf greenless are related to alterations in photosystems (PS) and can
be followed up with the chlorophyll fluorescence. Because this
fluorescence depends directly on tissue photosynthetic activity,
and explains the flow of electrons through PSII, this can be an
indicative of photosynthetic efficiency and photosynthetic perfor-
mance [5–8]. Empirical selection for functional stay-green has
contributed to increasing crop yields, particularly where it is part
of a strategy that also targets other traits such as sink capacity and
environmental sensitivity and is associated with appropriate crop
management methodology [8, 9].

Here, we describe a procedure for a rapid, inexpensive, and
noninvasive assessment of plants during abiotic stress treatment in
relation to chlorophyll turnover and stay-green traits. The changes
in major photosynthetic parameters during increasing abiotic stress
were monitored via RGB (red, green, blue) imaging in leaves and
fruits. The method described here allows the acquisition of quanti-
tative numerical traits that are amenable to statistical analysis. Thus,
we applied an accurate method analyzing changes in image time-
series to investigate the plant growth and phenotypic response to
abiotic stress conditions or different levels of fertilizer of common
bean (Phaseolus vulgaris L.). A phenotyping platform Scanalyzer PL
is used to image in RGB and to monitor plant greenness by pheno-
typic image analysis accurately measured plant biomass.

2 Materials

1. Diverse growth habit (type I) of P. vulgaris cultivars can be
used. Each must include a minimum of five replications, each
represented by a single plant in a pot (see Note 1).

2. Eachplant shouldgrow inaplasticpot (20cm�12cm�19cm),
with 4–6 kg of soil or sand.

3. The researcher must make sure to establish at least two plant
groups: one will be the control that will grow with zero level of
the stress factor and the other will be maintained with the stress
factor (other plant groups can be under more stress levels).

4. Plant images are obtained using a Scanalyzer PL semiauto-
mated platform imaging system (LemnaTec GmbH, Aachen,
Germany) (Fig. 1a).

3 Methods

3.1 Image

Acquisition

(Scanalyzer PL)

1. The plant size should not exceed the one established by the
platform and allow lateral side and top view as shown in Fig. 2.
The resolution of digital images is 2454 � 2056 H x V pixels,
with a pixel size of 4.4 � 4.4 μm2; this is obtained using a
camera Basler AG, Ahrensburg (Germany), or equivalent.

4 Daniel Padilla-Chacón and Cecilia B. Peña-Valdivia



Fig. 1 The panel shows images of (a). Scanalyzer PL platform (LemnaTec, Germany). The cabinet is equipped
with RGB imaging in (b), top, (c) side views

Fig. 2 The image shows reconstruction of field of views. (a) width ¼ 54 cm, depth ¼ 154 cm. (b)
width ¼ 54 cm, depth ¼ 84 cm field of view, Min. Field of top view 4.6 cm � 6.1 cm. Max. 38 cm radius

RGB Imaging for Plant Phenotyping and Physiological Research 5



2. Each plant is imaged individually in three (0�, 90�, and 180�)
plane orientations, and monitored over course of time treat-
ment or sampled progressively at the end of the cycle when the
plant reached maturation (Fig. 2).

3. To guarantee a high-quality image, it is advised to select top or
side camera with illumination settings for different applica-
tions. Each image configuration can store large numbers of
configurations and recreate the exact same imaging conditions
throughout the study.

3.2 Image Analysis 1. All components defining the image acquisition of a certain
sensor (camera, optics, light, rotation) must be decided, and
this configuration (LemnaControl) can be stored to define
imaging conditions during the experimental by color classifica-
tion cuantificanting the damage and growth of each plant.

2. Once images are obtained (snapshops), the core database is
analyzed with the commercial software, LemnaBase, Lemna-
Grid, and LemnaMine, to ensure the quality and lasting value
of all acquired data and related to parameters as color classifica-
tion cuantificanting the damage and growth of each plant.
Firstly, extract data from Lemna databases and employ user-
friendly tools to organize and visualize them. By correlating
image analysis data with other experimental data, the results are
transformed into biologically relevant information for
subsequent statistical analysis.

3. Database administration tools are provided with the Lemna-
Miner software suite. The databases will include the number of
samples screened per time, test system or user, and control data
throughout experiment.

4. Images are processed with the LemnaGrid software (Fig. 3).
This software works as toolbox in a graphical dataflow pro-
gramming language which allows easily connecting different
algorithms, creating an image processing pipeline to extract the
desired properties from the original image. To fulfill the needs
of high-throughput image processing, the image processing
chains (grids) are usually designed for representative images
of the experiment and can then be applied to whole datasets
consisting of thousands of images. In each image processing
chain, there are four typical steps to extract properties from the
image. (A) Load reference image. One or multiple reference
images are loaded. These images should represent the most
average and extreme cases to make the grid cover all possible
images in the dataset that it is later applied. (B) Separate object
from background. There are plenty of algorithms available to
separate the foreground from the background, in addition to
simple techniques like picking background color from the RGB

6 Daniel Padilla-Chacón and Cecilia B. Peña-Valdivia



color space. (C) Attach desired properties. As soon as the
object is separated from the background, it contains a lot of
mathematical properties such as size, length, width, and many
more (Fig. 3H). Other parameters can be attached to the
objects as well using additional algorithm such as color classifi-
cation or skeleton information (Fig. 3G).

5. The size and dimensions of the object could be calculated, and
all three images are used to estimate the overall biomass of the
plant and compared with actual plant size determined on the
destructively harvested plants. In addition, extracted plant pixel
area from all side and top view images could be used to calcu-
late a volume which was termed “digital biomass” that corre-
sponds to a pixel volume using the following equation:

Digital biomass average pixel side area top area ¼ � 2

6. This digital trait is used as a proxy for fresh weight. Traits
estimated from side view images are plant height and plant
width.

7. Additional types of automated imaging analysis include geo-
metric parameters of convex hull (the smallest possible mathe-
matically solved perimeter that envelopes the imaged plant),
compactness (the ratio of leaf area per convex hull area), caliper
length (the longest dimension of the canopy when viewed from
above), circumference (the minimum circle that can enclose the

Fig. 3 Example of images taken from side views of common bean plants under drought and derivation of
geometric parameters. First, the foreground and background are separated in the image (A–D), resulting in a
binary image (E–G). Thereafter, the object is separated according to a color classification (highlighted in green,
yellow senescence, and necrotic pink), and geometric parameters, such as caliper length, convex hull, and
compactness as minimum enclosing area (H). The measurements are made in individual plants
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plant), and surface coverage (the ratio of leaf area to the area of
the minimum enclosing circle calculated from the top view
image). Compactness and convex hull measure the degree of
leaf area coverage (Fig. 3A–F).

3.3 Statistical

Analysis

Predicted values for genotype � experiment (G � E) is calculated
using the R function predict.asreml using the Excel procedure for
linear regressions. Statistical analyses used for to test the effect of
replications, genotypes, and stress treatment, the one-way analysis
of variance (ANOVA) with subsequent post hoc pairwise compari-
son using Tukey Honest Significant Difference (HSD) could be
applied at 95% confidence level. Pearson coefficients could be cal-
culated to analyze the relevance of the stress treatment.

4 Notes

1. Additional biological replicates may be needed if the stress
applied is too subtle.

2. In application to time-series images is only for plants with
maximum dimensions mentioned in Fig. 2.

3. In order to exclude artifacts in the images, the pots must avoid
reflections, so opaque colors other than green should be used
(e.g., black) (Fig. 3A).

4. When the leaves overlapped, obtain as many snapshots as pos-
sible rotating the pot manually in different angles (Fig. 2).
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Chapter 2

An Automated High-Throughput Phenotyping System
for Marchantia polymorpha

Karina Medina-Jimenez, Mario A. Arteaga-Vazquez, and Argelia Lorence

Abstract

High-throughput phenotyping (HTP) allows automation of fast and precise acquisition and analysis of
digital images for the detection of key traits in real time. HTP improves characterization of the growth and
development of plants in controlled environments in a nondestructive fashion.Marchantia polymorpha has
emerged as a very attractive model for studying the evolution of the physiological, cellular, molecular, and
developmental adaptations that enabled plants to conquer their terrestrial environments. The availability of
the M. polymorpha genome in combination with a full set of functional genomic tools including genetic
transformation, homologous recombination, and genome editing has allowed the inspection of its genome
through forward and reverse genetics approaches. The increasing number of mutants has made it possible
to perform informative genome-wide analyses to study the phenotypic consequences of gene inactivation.
Here we present an HTP protocol for M. polymorpha that will aid current efforts to quantify numerous
morphological parameters that can potentially reveal genotype-to-phenotype relationships and relevant
connections between individual traits.

Key words High-throughput phenotyping, Marchantia polymorpha, Morphological parameters

1 Introduction

Even though early land plant evolution is still under intense debate
[1], it is widely accepted that liverworts belong to the group of
basal land plants (known as bryophytes, which also includes horn-
worts and mosses) that are closely related to the aquatic ancestor of
land plants [2].Marchantia polymorpha (Marchantia) is a dioecious
liverwort with eight autosomes and either a sexual X or Y chromo-
some (n¼ 9) that has reemerged as an exciting model for evolution
and functional genomics studies [3–5]. The life cycle of March-
antia involves a dominant haploid gametophytic phase character-
ized by the development of a dorsiventral thallus exhibiting a
periodic bifurcated pattern [6, 7]. The thallus is considered the
main plant body and it will produce distinct sets of tissues and
organs. During the vegetative growth, the dorsal side will develop
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air chambers and gemma cups that produce vegetative propagules
termed gemmae (singular: gemma). The ventral side will develop
two types of single-celled rhizoids (pegged and smooth) and scales
[7]. The reproductive phase (that can be induced under controlled
laboratory conditions with a combination of white and far-red
light) is characterized by the development of either a male
(in plants containing a Y chromosome) or a female (in plants con-
taining an X chromosome) gametophore. The male antheridio-
phore, harbors antheridia that produce motile sperm
(antherozoids), and the female archegoniophore, harbors archego-
nia within which egg cells develop [5]. Sexual reproduction results
in the formation of a diploid embryo that will divide meiotically to
produce thousands of haploid spores [reviewed in [7]]. When
germinated, spores will subsequently produce a thallus, completing
this way the sexual life cycle. The availability of in vitro culture
techniques for rapid growth and propagation position Marchantia
as a very powerful model for functional genomics as the sexual life
cycle can be completed in less than 2 months and the vegetative one
in less than 20 days. Additionally, protocols for chemical, physical,
and biological mutagenesis (vgr. EMS, UV light, and T-DNA,
respectively) are already available [5, 8].

Plant phenotyping focuses on the analysis of the interactions
between the genome (and also the epigenome) and the environ-
ment (including both internal and external cues) and their impact
on observable plant traits [9]. New technological advances such as
high-throughput phenotyping systems (HTPS) are promising tech-
niques for imaging and data processing that can be used to produce
accurate measurements of the morphology and geometrical fea-
tures of the plant through its life cycle [10]. Usage of HTPS in
combination with functional genomics approaches will greatly aid
current efforts to understand how gene functions shape plant
growth and performance [11].

2 Materials

2.1 Marchantia

polymorpha Gemmae

We employed gemmae from M. polymorpha plant accession
Takaragaike-1 (Tak-1) that have been asexually maintained and
propagated in vitro through asexual reproduction as previously
described [12, 13].

2.2 Equipment and

Materials

1. Graduated cylinders (1 L).

2. Flasks with sterile distilled water (2 L).

3. Graduated flask (1 L).

4. Graduated glass beaker .

5. Sterile petri dishes.
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6. Sterile toothpicks.

7. Parafilm® to seal petri dishes.

8. 70% (v/v) ethanol.

9. Blue nylon mesh fabric discs (diameter 8 cm; see Note 1).

10. Scissors.

11. Sterile tweezers.

12. Analytical balance.

13. Magnetic stirrer.

14. Orbital shaker.

15. Laminar flow cabinet.

16. Vertical autoclave.

17. Culture room or growth chamber.

18. Autoclave.

19. Personal protective equipment (heat resistance gloves, latex
gloves, and laboratory coat).

2.3 Culture Media Gamborg B5 basal medium half strength (PhytoTech Labs), sup-
plemented with 1% sucrose and 1% agar plant tissue culture
(TC) grade (PhytoTech Labs). This media is the most commonly
used for standard growth of gemmae in M. polymorpha (see
Table 1).

As indicated, the culture media is prepared with purified deio-
nized water (obtained from a purifying system with a sensitivity of
18 MΩ-cm at 25 �C). The media needs to be sterilized at 121 �C
for at least 20 min using saturated steam under at least 15 pounds
per square inch (psi) of pressure. The culture media and their
components should be stored away from light, and exposure to
direct sunlight should be avoided at all times. This protocol has
been optimized to phenotype M. polymorpha thalli [12].

2.4 Marchantia

Growth Conditions

Gemmae were grown at 22 �C under continuous white light
(75 micromol m�2 s�2) using a Conviron (Winnipeg, Canada)
climate-controlled growth chamber.

2.5 Image

Acquisition

To record the morphological parameters, a non-invasive image
acquisition was carried out using the Scanalyzer HTS high-
throughput phenotyping system (LemnaTec, Germany). The unit
has an automatic robotic arm that holds three high-resolution
cameras that allow top-down imaging of visible (VIS), fluorescence
(FLUO), and the near-infrared (NIR) spectra. Visible images were
taken with a piA2400-17gc CDD camera (Basler, Germany) with a
resolution of 2454 � 2056 pixels and a scA1600-14gc CCD cam-
era (Basler, Germany) with a resolution of 1624 � 1234 pixels for
the FLUO images. The images were acquired in a sequential
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manner in the same imaging station. The image files were exported
in PNG (Fig. 1) and TIFF formats.

3 Methods

3.1 Gamborg B5

Media Preparation

1. For 1 L, weight 1.55 g of Gamborg basal salt mixture, 10 g of
sucrose, and 10 g of agar plant tissue culture grade.

2. In a 2 L graduated beaker, add 500 mL of distilled water to
dissolve Gamborg basal salt and sucrose using an orbital shaker
and a magnetic stir bar (Table 1).

3. When the powder is completely dissolved, add 10 g of agar
plant tissue culture (TC) grade. Calibrate the pH to 5.8 and
adjust the volume to 1 L with sterile distilled water.

Table 1
Preparation of Gamborg B5/2 media

Media compound g/L

Gamborg B5 basal medium 1.5

Agar plant TC (1%) 10

Sucrose (1%) 10

Fig. 1 Example of VIS and FLUO images with 7- and 9-day-old M. polymorpha thalli
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4. Autoclave at 121 �C for 20 min and after the cycle is complete,
place the media into a laminar flow chamber to cool to 50 �C.

5. Set your plates and pour the Gamborg B5/2 medium into the
petri dishes. Just pour enough media into the plates to cover
the bottom of the plate. Every plate needs to be labeled with
the date and the name of the Marchantia accession, genotype,
treatment, or condition being analyzed.

3.2 Transferring

Gemmae to the Culture

Media

1. Once the Gamborg B5/2 media is solidified, place a blue nylon
mesh fabric disc to cover the media using sterile tweezers (see
Note 1).

2. Gemmae are directly collected from gemma cups of 3-week-old
M. polymorpha thalli (see Note 2). The number of gemmae
placed into the plates can be different, depending on the exper-
iment. In this case, six gemmae were placed on each petri dish
using a dissecting needle (heat sterilized) or sterile toothpicks
(see Note 3).

3. In order to prevent contamination, petri dishes are sealed using
Parafilm® or micropore.

4. Finally, the plates with gemmae are placed into the growth
chamber, under the conditions previously described in the
materials. Within 3–7 days, gemmae will develop into a thallus
(see Note 4).

3.3 Imaging

Acquisition

The imaging process started by transferring the petri dishes with
the gemmae to the imaging system. Different decks for pots, petri
dishes, and multiwell plates are available depending on the species
of interest. In this case, the petri dish deck option was chosen. Once
all petri dishes were appropriately placed, the LemnaControl soft-
ware was accessed, and the option “biotest” chosen. Under “mea-
surement series,” plate positions with the appropriate configuration
and measurement series were selected. Finally, a name for the
experiment was given before starting imaging. Imaging time varied
depending on the number of plates to scan.

3.4 Image Analysis Images from Marchantia gemmae were analyzed with the help of
the image analysis software package LemnaBase (LemnaTec
GmbH, Germany) (see Note 5). Images were processed using a
user-designed pipeline for LemnaControl software. Before acces-
sing the LemnaBase, and starting analysis, images were viewed and
organized selecting “snapshot viewer.” To analyze the images, the
option “image analysis” was selected (Fig. 2). Using visible images,
we were able to obtain phenotypic parameters from each gemma
including projected area (cm2), convex hull area (area that entirely
encloses the plant) (cm2), caliper length (maximum diameter of the
plant) (mm), and compactness (ratio of projected area to convex
hull area). Using FLUO images, we were able to analyze the
amount of chlorophyll present. The analyzed images and calcula-
tions were saved in the LemnaBase as a PostgreSQL database. The
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output readouts from the images were exported as a CSV file for
further statistical analyses.

4 Notes

1. In order to increase the contrast between the background and
the region of interest (plant region) during image analysis using
the software package LemnaGrid, a roughly uniform blue back-
ground (nylon blue mesh or something similar) must be used.
Blue color is a good choice in terms of image quality [7]. Several
circles made with blue nylon mesh fabric of the same size as the
petri dishes were cut, autoclaved, and placed on the media.

2. The number of gemmae per plate will depend on the viability of
gemmae. Within 3–5 days, the gemmae will become large
thalli, not enough to overlap with each other. But if gemmae
are older than 15 days, they will start overlapping.

3. Technical replicates of gemmae of the same age (coming from
the same gemmae cup) were used for image acquisition. A size
marker can be included next to the gemmae as a reference to
convert the number of pixels to mm or cm.

Fig. 2 Example of VIS images for 9-day-old thalli analyzed with the LemnaGrid software. (a) Identification of
thalli from the background with the help of the blue mesh as part of the image processing. (b) Identification of
the projected area. (c) Convex hull area. (d) Caliper length
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4. One method involves using a paper disc with a grid, the same
size as the petri dish to map the positions where gemmae will be
placed. By placing the paper discs under the petri dishes as a
reference, you are assuring that all of them are equally and
consistently spaced.

5. The images can be analyzed using other image software tools
(https://www.quantitative-plant.org/software), for example,
PlantCV2 that is an open-source image analysis software pack-
age targeted for plant phenotyping (https://plantcv.
danforthcenter.org).
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Chapter 3

A Novel High-Throughput Phenotyping Hydroponic System
for Nitrogen Deficiency Studies in Arabidopsis thaliana

Lucia M. Acosta-Gamboa, Zachary C. Campbell, Fei Gao, Benjamin Babst,
and Argelia Lorence

Abstract

High-throughput phenotyping enables the temporal detection of subtle changes in plant plasticity and
adaptation to different conditions, such as nitrogen deficiency, in an accurate, nondestructive, and unbiased
way. Here, we describe a protocol to assess the contribution of nitrogen addition or deprival using an
image-based system to analyze plant phenotype. Thousands of images can be captured throughout the life
cycle ofArabidopsis, and those images can be used to quantify parameters such as plant growth (area, caliper
length, diameter, etc.), in planta chlorophyll fluorescence, and in planta relative water content.

Key words Nitrogen, High-throughput phenotyping, Hydroponics, Arabidopsis

1 Introduction

Of all the plant nutrients, nitrogen (N) is the most important
inorganic element necessary to support plant growth and develop-
ment. Nitrogen is taken up in different forms, such as nitrate and
ammonium, which can then be converted into the N component of
amino acids, the main backbone of plant proteins, as well as numer-
ous other crucial biochemicals including nucleotides, and the plant
signal molecules auxin, cytokinin, and nitric oxide. This inorganic
element also plays a role in the formation of secondary metabolites,
chlorophyll, and coenzymes [1]. Plants require more N than any
other mineral element, and N deficiency has been shown to limit
plant growth as well as lower photosynthetic capacity and antioxi-
dant production [2, 3]. Arabidopsis is typically grown in peat-based
potting mix, which has a relatively high N content. In a hydropon-
ics system, researchers have precise control over the amount of N
introduced into the system, and this allows a better understanding
of how much N plants need.
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Traditionally, N-deficient phenotypes—and many other phe-
notypes observed under abiotic stress—have been measured manu-
ally with parameters such as height, fresh and dry weight of aerial
and root tissue, yield, etc. These measurements can often be
destructive, resulting in one-off measurements related to plant
health and viability. However, high-throughput phenotyping is
quickly revolutionizing the field, allowing plant phenotypes to be
studied in greater depth than ever before. Utilizing a LemnaTec
HTS Scanalyzer system, it is possible to monitor an experiment
temporally from the seedling to reproductive stage in a high-
throughput and nondestructive manner. In this work, we describe
a high-throughput phenotyping method using Arabidopsis thali-
ana, a model plant system, to hydroponically study varying levels of
N deficiency.

2 Materials

Prepare all the solutions using ultrapure water (prepared by purify-
ing deionized water, to attain a sensitivity of 18 MΩ-cm at 25 �C)
and analytical grade reagents. Prepare and store all reagents at room
temperature (unless otherwise specified). Diligently follow all waste
disposal regulations when disposing of waste materials.

2.1 Arabidopsis

Seeds

Arabidopsis wild-type Col-0 and T-DNA mutants (nrt1.2, nrt1.6,
nrt1.7, pot) were obtained from the Arabidopsis Biological
Resource Center (ABRC, Columbus, OH, USA).

2.2 Half MS Media Seeds were germinated in ½ Murashige and Skoog (MS) medium
[4], and grown for 10–12 days under a short-day photoperiod
(10 h light, 24 �C daytime, 22 �C dark, 65% humidity). Light was
provided by fluorescent tubes (F40PL/AQ/ECO 49893 40 W
T12, GE) at a photon flux density of 150–200 μmol/m2/s,
measured at the top of the pots.

2.3 MS Salts For this experiment, MS salts from Caisson Labs were used. This
included Murashige and Skoog with Gamborg’s vitamins (MSP06)
and Murashige and Skoog without nitrates (MSP07).

2.4 Quick Pot 15

Trays and Solid Matrix

Each genotype/treatment was grown in 85 � 73 mm Quick Pot
15 RW trays (HerkuPlast Kubern GmbH). The trays contained
Profile Greens Grade Soil Amendment. For the half scoop of soil
placed in the center of the solid matrix, Arabidopsis plant growing
media was used (PRO-MIX PGX). Blue mesh (Kittrich Corpora-
tion, Pomona, CA) was placed on top of the soil mixture to prevent
algal growth, reduce transpiration, and improve the object segmen-
tation during image analysis (Fig. 1).
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2.5 Image

Acquisition and

Analysis

Phenotyping was done using a Scanalyzer HTS high-throughput
phenotyping system with the LemnaControl software (LemnaTec,
Aachen, Germany) three times per week, starting 3 days after
transplanting to monitor plants in the vegetative stage through
the transition to the reproductive stage. The system has a robotic
arm fitted with cameras that allow the capture of images, including
visible (RGB), fluorescence (FLUO), and near-infrared (NIR).
Differences between N treatments and genotypes are analyzed
using LemnaGrid, and readouts such as rosette size, leaf shape
and area, in planta chlorophyll fluorescence, and in planta water
content are available. Image acquisition and analysis was done as
previously described [5]. Phenotyping experiments were termi-
nated when the flower stalks reached the camera, which affected
the resolution of the images.

3 Methods

3.1 Seed

Sterilization, Tissue

Culture, and

Vernalization

1. Sterilize: Place seeds in a 1.5 mL tube. Wash the seeds with
1 mL of 70% ethanol for 1 min. Spin the seeds down using a
centrifuge (4000 � g for 1 min) and discard the ethanol. Wash
the seeds with 1.5 mL of a solution of 50% bleach and 0.05%
Tween 20 solution for 5 min. Spin the seeds again and discard
the solution. Rinse the seeds six to eight times with sterilized
deionized water until the bleach smell is gone. Perform all
these steps using a laminar flow clean bench.

2. Plate: Using a flame-sterilized spatula, spread around 25–30
seeds in a petri dish containing ½ MS phytagel medium. Seal
the petri dish with Parafilm.

3. Vernalize: Place the plates at 4 �C for 2–3 days.

Fig. 1 Representative Arabidopsis images acquired with the vis (RGB, left), fluorescence (FLUO, center), and
near-infrared (NIR, right) sensors
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3.2 Growth

Conditions in Plates

1. Place the petri dishes inside a growth chamber set up with a
photoperiod of 10 h light/14 h dark, 22 �C for 10 days. The
light intensity should be 150–200 μmoles/m2/s.

3.3 Nutrient Solution

Preparation

1. Make the MS media for three N treatments by mixing MS and
MS containing no N as presented in Table 1.

3.4 Profile Greens

Grade Mixed with

Nutrient Solution

1. Prepare three different types of nutrient solutions and mix
them with the profile greens before putting the soil matrix
into each well. Use 1.5 L of nutrient solution per tray. The
profile green/nutrient solution mix should be very wet.

2. Place a round piece of tight mesh screen (0.25 mm opening or
smaller) at the bottom of each well to keep the profile greens
from pouring out.

3. Tamp the mix into the wells; around 174 g of dry profile greens
is enough to fill a well.

3.5 Transfer and

Establishment

1. Push a shallow hole into the mixture using a clean dibble or a
gloved finger. Place half a scoop of regular peat-based potting
mix in each well and plant half a tray for each genotype (At
mutant andAtCol-0 wild-type) for 3 trays (one tray for each of
the three different nutrient treatments). Each tray should have
seven mutants and eight Col-0.

2. Using forceps, gently pull the 10-day-old seedlings out from
the ½ MS without breaking the roots.

3. Place the plant into the hole and gently push potting mix to
cover the roots (see Note 1).

4. The profile greens should be wet enough, but if it looks dry,
add a little water to the tray.

5. Cover the tray with a loose-fitting plastic lid for 2 days to keep
moisture and ensure high humidity during establishment.

6. Remove the plastic lid and water the plants from the bottom
once a week by filling the drainage tray in the morning and
leaving the plants in standing water for 3–5 min, emptying the
water once the profile greens surface looks wet.

Add nutrient solution once a week. In each N treatment,
add the appropriate solution from the bottom (1.5 L/tray).
During week 1, water once and fertilize once (see Note 2).

3.6 Phenotyping 1. Acquire images from plants every other day. Start scanning a
day after transplanting. Obtain images using the visible (RGB),
fluorescence, and near-infrared cameras to observe differences
between N treatments and genotypes.

2. After completing the phenotyping, harvest the plant tissue as
required.

3. Analyze images as described in [5, 6] (see Note 3).
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4 Notes

1. Need to be very careful to transfer the seedlings; mortality rate
is higher than in regular soil. It is suggested to transfer extra
backup seedlings for each well, wait for a few days, and if both
of them survive, remove the least robust seedling.

2. For example, if plants were transferred on Tuesday, they should
be watered Friday and fertilized with 1.5 L of nutrient solution
on next Tuesday.

3. Alternatively, images can be analyzed with open-source soft-
ware. We have successfully used PlantCV2 [7].
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Chapter 4

Camelina sativa High-Throughput Phenotyping Under
Normal and Salt Conditions Using a Plant Phenomics
Platform

Emilio Vello, John Aguirre, Yang Shao, and Thomas Bureau

Abstract

Climate change and environmental pollution will have a great impact on food security worldwide. More
than 30% of the world’s irrigated areas are estimated to be perturbed by high salinity affecting the
productivity of crops. Camelina sativa, also known as false flax, is a flowering plant that is mainly cultivated
as an oilseed crop that has many potential economic benefits; it can be used in food products, in industrial
applications, and in animal feed and converted into biofuel. However, natural disasters due to climate events
have led to significant crop losses. In this work, we developed a high-throughput phenotyping protocol to
analyze the effects of different concentrations of salt on C. sativa using the McGill Plant Phenomics
Platform (MP3). We present an adapted protocol to be applied with phenomics facilities in a greenhouse
environment and the most effective way for high-throughput phenotyping.

Key words Phenomics, Phenotype, Camelina sativa, Salt tolerance, Abiotic stress, Image analysis

1 Introduction

In the last decade, plant phenomics has become essential to
improve crop yield production and stress resistance [1, 2]. Tradi-
tional phenotyping methods in which plant harvesting is necessary
are time and labor consuming, and analyses of growth dynamics on
individual plants cannot be achieved [1]. Plant image-based phe-
notyping, therefore, is receiving more interest resulting in the
increasing number of plant phenomics platforms and centers
appearing around the world such as the McGill Plant Phenomics
Platform (MP3, http://mp3.biol.mcgill.ca). These facilities allow
researchers to accumulate hundreds or thousands of images under
different portions of the light spectrum including other comple-
mentary sensors such as height detectors. These technologies have
the advantage of collecting multidimensional high-throughput
data quickly and in a noninvasive way, unthinkable with the
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“old-fashion” methods [1, 3]. Here, we present a protocol to assess
C. sativa varieties or mutant lines responses under different levels of
salt concentration using a plant phenomics platform.

2 Materials

2.1 Plant Growth 1. Plastic round planter pots (diameter, 500/12.7 cm; color, green)
and plastic saucers according to the number of samples (see
Note 1).

2. Pro-Mix BX, use 250 g of per pot.

3. Greenhouse room (semi-controlled environment) divided in
growth zones (see initial preparation below).

4. Camelina sativa variety seeds: “Celine.”

2.2 Phenotyping

Equipment

1. LemnaTec Scanalyzer conveyer system (3D); LemnaTec
GmbH, Wuerselen, (Germany), equipped with multiple sen-
sors: two visible light cameras piA2400-17gc (VIS),
2454 � 2056 pixels; two near-infrared cameras NIR-300PGE
(NIR), 320 � 254 pixels; and two infrared cameras
IRC-320GE (IR), 320 � 240 pixels (Fig. 1).

2. A total of 17 carriers for the 3D with a center hole to accom-
modate 800 round plastic pots (Fig. 2).

3. A total of 17 plastic saucers with a hole in the middle to
accommodate 500 round plastic pots (Fig. 2).

2.3 Image and

Statistical Software

1. In our case, a custom image analysis algorithm was developed
using Java 1.8.0–45 (http://www.java.com) and ImageJ library
v1.49t (http://imagej.nih.gov/ij/) [4]. The statistical analysis
script was written in R v3.0.2 15 (http://www.r-project.org/).
PostgreSQL v 9.3.1.was used to build the database. However,
there are other image libraries, programming languages, and
databases under open-source and commercial licenses that can
be used to implement the image and data analysis algorithms
and pipelines.

2. A Dell R910 server with 512 GB of RAM and two MD1200
storage devices 72 TB to process the image data analysis.

3 Methods

3.1 Initial

Preparation

1. Fill up 64 pots (round 500) with 250 g of Pro-Mix BX. The
number of pots depends on the experimental design.

2. Water the pots with 450 mL of water. Soil and water should
weigh 700 g.
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3. Seed three Camelina seeds per pot (see Note 2).

4. Set up a greenhouse environment to 14 h:10 h light/dark
photoperiod cycle. Temperature 24 �C day and 20 �C at
night. Humidity between 40% and 60%.

5. Divide the samples into groups according to the different
treatments (see Note 3).

6. Divide the greenhouse room into zones and assign each pot to
a zone according to the number of samples. We don’t assign
more than 17 pots per zone. However, a minimum of two
samples of each treatment group is assigned to each zone
group (see Note 4).

Fig. 1 Customized version of the LemnaTec 3D Scanalyzer installed in the McGill
Plant Phenomics Platform (MP3 – http://mp3.biol.mcgill.ca). The system is
equipped with two infrared cameras IRC-320GE (IR) (top-side), 320 � 240
pixels (first cabinet); two visible light cameras piA2400-17gc (VIS) (top-side),
2454 � 2056 pixels (second cabinet); and two near-infrared cameras
NIR-300PGE (NIR) (top-side), 320 � 254 pixels (third cabinet)
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7. Identify each pot with a label containing number (unique per
pot), barcode, greenhouse room location, and treatment.

3.2 Growing

Conditions

1. Thin seedlings after 1 week of growth to obtain one plant per
pot. Choose the seedlings presenting similar size.

2. Every 2 or 3 days, weigh the pots and water to reach 700 g if
needed. This operation can be performed automatically if the
system is equipped with a watering system (seeNote 5) (Fig. 3).

3. Every 3 days, randomly shift the position of the zone groups in
the greenhouse room to avoid the position effect.

3.3 Salt Treatment Salt stress is applied when plants have four pairs of fully developed
leaves. This occurs at approximately 20 days after sowing (DAS).

1. Prepare NaCl solutions to 0, 50, 100, 150, 200, 250, 300, and
350 mM accordingly to a final volume of 450 mL of water. The
concentration should be chosen according to the experimental
design. However, a set of non-treated samples should always be
part of the experimental design (Fig. 4).

2. Apply the treatment according to the sample identification
label. The desired concentration is reached after four applica-
tions over 2 days (see Note 6).

3. Monitor the weights of the plants every day to keep 450 mL of
water per pot (see Note 7).

3.4 Image

Acquisition

A customized version of the LemnaTec Scanalyzer conveyer system
(3D); LemnaTec GmbH, Wuerselen (Germany), installed at the
McGill Plant Phenomics Platform (MP3 – http://mp3.biol.
mcgill.ca) is used to carry out the image acquisition. However, an
adapted version of this protocol can be implemented into any
image-based phenotyping equipment if the system is able to accom-
modate plants of about 60 cm width and 90–100 cm height (see
Note 8) (Figs. 1 and 3).

Fig. 2 A Camelina plant in the visible light cabinet. A round 500 pot is located
inside a homemade adapter from plastic saucers that is installed into 800 pots to
fit the 3D carriers. The blue type around the bigger pot is to improve the image
analysis process
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Fig. 3 Plants in the imaging cycle, watering station, and greenhouse. Plants in the conveyer system passing for
the watering station. Samples are identified with a barcode to reduce manipulation errors

Fig. 4 A sample from each group treated with non-salt, 50, 100, 150, 200, 250, 300, and 350 mM,
respectively, at 37 days after sowing
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1. Set up the camera configurations to be used during the experi-
ment (Table 1). In our case, we have used a different combina-
tion of top and side views, rotation angles, and optical
parameters. In this report, the word “view” is used to name
each of those combinations (see Note 9).

2. Image every plant at regular time intervals. The desirable fre-
quency is four times a week. However, a minimum of two
measurements a week is necessary. In the 3D, pots are moved
to the imaging cycle in blocks of 17 using the exchange option
of the software.

3.5 Image Analysis In addition to specialized software, databases, and powerful servers,
the implementation of this step requires prior knowledge of image
analysis and programming. This is especially important in high-
throughput image-based phenotyping. We provide enough detail
to allow computer developers to implement this pipeline in any
programing language using most of the image analysis software
libraries (see Note 10) (Fig. 5).

3.5.1 “vis-side-1-0” and

“vis-side-1-90” Views

1. Convert the image to HSB color space.

2. Retain pixels having hue (H) channel value higher than 25 and
lower than 103, saturation (S) higher than 30, and brightness
(B) lower than 170.

3. Mark background as RGB (255, 255, 255) which represents
the white color.

Table 1
Optical settings and image processing parameters of views

View Light Angle Exposure Zoom Resize x-offset y-offset

vis-top-1-1000 VIS 0 80 1000 – – –

vis-top-min1-1 VIS 0 80 1 – – –

vis-side-1-0 VIS 0 100 1 – – –

vis-side-1-0-dk VIS 0 40 1 – – –

vis-side-1-90 VIS 90 100 1 – – –

nir-side-1-0 NIR 0 120 1 298 8 5

nir-side-1-90 NIR 90 120 1 298 7 5

nir-top-1-1000 NIR 0 100 1000 298 10 2

nir-top-min1-1 NIR 0 100 1 298 13 0

ir-side-1-0 IR 0 – – 375 -30 -75

ir-side-1-90 IR 90 – – 375 -30 -75

ir-top-1-0 IR 0 – – 290 13 2
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Fig. 5 Image analysis pipeline. Visual representation of some steps of the
“vis-top-1-1000” view image process algorithms. (a) Original image including
the virtual rectangle representing the interesting region. (b) Pixels retained after
applying the following filters: (1) red (R), green (G), and blue (B) channel values
lower than 198, (2) hue (H) channel value higher than 5 and lower than 103 and
saturation (S) higher than 70, and (3) formula I result higher than 0.85 or a
formula II result higher than 19. I) (R-B) / (R + B). II) 4*G - 4*B - R [8]. (c) Pixels
selected after applying two eroding and one dilating operations in a gray scale-
type version of the image. (d) Pixels retained after the selection of objects with
area higher than 700, a maximum distance to the theoretical image center of
500, and a maximum eccentricity value of 9. (e) Pixel original values of the
region of interest or “digital plant”. (f) Reduction of the HUE channel of the HSB
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4. After reducing image into gray scale type, submit the resulted
image to eroding and dilating operations and reconvert into
color image.

5. Tag the selected pixels as foreground.

6. Identify the objects based on the “combined contour tracing
and region labeling” algorithm proposed by Burger and Burge
[5, 6] (see Note 11).

7. Select objects: lying outside of the rectangles described by the
coordinates (153, 660, 237, 2037) and (2247, 660, 2349,
2037), having an area greater than 500, a Euclidean distance
lower than 1100 to the theoretical pot center, and an eccen-
tricity lower than 80.

8. Join the resulted objects. Each plant will be represented by one
object or “digital plant” from which the color-morphological
features are calculated [3–5, 7].

3.5.2 “vis-top-1-

1000” View

1. Select pixels having red (R), green (G), and blue (B) channel
values lower than 198.

2. Convert resulted image into HSB color space.

3. Select pixels having hue (H) channel value higher than 5 and
lower than 103 and saturation (S) higher than 70.

4. Apply the following formulas:

(a) I) (R-B)/(R + B)

(b) II) 4*G - 4*B - R [8]

5. Retain pixels having a formula I result higher than 0.85 or a
formula II result higher than 19.

6. The rest of the algorithm is similar to Subheading 3.5.1 with
some differences in the parameters.

(a) Perform two eroding and one dilating operations.

(b) Select objects with area higher than 700, a maximum
distance to the theoretical image center of 500, and a
maximum eccentricity value of 9.

3.5.3 “vis-side-1-0-

dk” View

The general structure of this algorithm is similar to Subheading
3.5.1.

1. Select pixels having saturation (S) higher than 10 and blue
channel value higher than 85.

2. Did not apply formulas I or II and erosion-dilation operations.

�

Fig. 5 (continued) color space into color classes. (g) Near-infrared image with
the mask from the visible light image in red. (h) False color representation of the
near-infrared intensity of the “digital plant”
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3. In this case, the minimum area is 50, the maximum distance to
the theoretical center is 800, and the maximum eccentricity
value is 100.

3.5.4 “vis-top-min1-

1” View

The general structure of the Subheading 3.5.1 algorithm is
followed.

1. Transform images into HSB color space.

2. Select pixels having hue (H) channel value higher than 25 and
lower than 103 and brightness (B) lower than 220.

3. After converting into gray scale images, perform erosion and
dilation operation to the images.

4. Convert the images back into color scale using the pixel infor-
mation of the original images.

5. Join objects having an area greater than 700, a distance to a
theoretical center bigger than 1000, and eccentricity value
lower than 500 into one object.

3.5.5 Near-Infrared and

Infrared Views

1. Use the corresponding images already treated with the visible
light algorithms as masks or templates to obtain the plant pixels
of the near-infrared and infrared images. A process of resizing
and horizontal and vertical offsetting is necessary.

(a) “nir -side-1-0” view. Resize, 298; x-offset, 8; y-offset, 5

(b) “nir-side-1-90” view. Resize, 298; x-offset, 7; y-offset, 5

(c) “nir-top-1-1000” view. Resize, 298; x-offset, 10;
y-offset, 2

(d) “nir-top-min1-1” view. Resize, 298; x-offset, 13;
y-offset, 0

(e) “ir-side-1-0” and “ir-side-1-90” views. Resize, 375;
x-offset, -30; y-offset, -75

(f) “ir-top-1-0” view. Resize, 290; x-offset, 13; y-offset, 2

3.5.6 Morpho-

colorimetric Features

Morpho-colorimetric features are calculated from the digital plant
as part of the image analysis algorithms. These features are used to
assess differences among samples and treatment groups (see Note
12).

1. Area: number of pixels of the digital plant (Fig. 6).

2. Perimeter: length of the outer contour of the digital plant. In
8-neighborhoods, assign 1 to the horizontal and vertical seg-
ments and √2 to diagonal segments. Apply a 0.95 correction to
the total value [5, 6].

3. Circularity: ratio between the circumference square and the
area [7].

4. Compactness: ratio between the area and the perimeter [5, 6].
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5. Major axis: axis where a physical body requires less effort to
rotate. It extends from the centroid (center of gravity) to the
widest part of the object [5, 6] in this case the “digital plant”.

6. Angle: orientation of the major axis [5, 6].

7. Minor axis: axis perpendicular bisector to the major axis.

8. Eccentricity: ratio between the major axis and the minor axis of
the digital plant [5, 6]. The minor axis extends from the
centroid to the narrowest part perpendicular to the major axis.

9. Color markers: first, second, and third quartile values from the
pixel distribution of each particular RGB color space channel
and gray scale (R + G + B)/3.

3.5.7 Color Classification

and Clustering

The color classification and clustering approach is based on previ-
ously reported methods [2, 3].

1. Divide equally the hue channel of the HSB color space from
visible light views into 64 categories. It is possible to use 32 and
16. Each class or category is defined as an interval of intensities.

2. Classify each pixel of the “digital plant” into one category.

3. Calculate a Euclidean distance matrix of the “digital plants”
using the color classes.

4. Perform a hierarchical cluster analysis using the method
“ward” of the R function “hclust” on the distance matrix.

5. Divide the resulting cluster tree of samples into two groups
using the R function “cutree.”
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Fig. 6 Projected shoot area. Number of pixels of the area (mean� standard error) as a function of the number
of days after sowing (DAS). (a) “vis-top-1-1000”, (b) “vis-side-1-0-dk”
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3.6 Data and

Statistical Analysis

1. The morpho-colorimetric features can be analyzed using any
“standard” statistical methodology such as ANOVA or a linear
mixed model which may be a more accurate way to assess time
series in biological data [9] presented in most of the statistical
software.

2. Color classification analysis: Build a 2� 2 contingency table for
each of the treated groups and the non-treated group as col-
umns and the clustered groups as row. A Fisher’s exact (“fisher.
test” function in R), Cochran-Mantel-Haenszel (“mantelhaen.
test” function in R), or Pearson’s chi-squared test as a
goodness-of-fit test (“chisq.test” function in R) can be applied
to detect differences between groups at different days of
sowing.

4 Notes

1. It is possible to use other pot size. This protocol has also been
used with 800/20.32 cm plastic planter pots.

2. We found that three seeds per pot is the optimal number to
obtain at the end one plant per container. However, mutant
line seeds are quite limited or may have a low germination rate.
So, the number of seeds may vary accordingly.

3. In this paper, treatment groups are formed by different salt
concentrations. However, these groups can be different mutant
lines or a combination of concentration-mutant lines. This
protocol has also been used to test overexpression mutant lines.

4. We have chosen 17 pots per zone because it is the maximum
capacity of the image cycle in the McGill 3D system, and we
haven’t observed any position effect [10]. However, this pro-
tocol has also been tested with eight plants per group. We think
that any number below 17 will work well.

5. The 3D system is equipped with a watering system. If this
option is chosen, the average weights of the carriers need to
be considered. In the case of the MP3, the average carrier
weight is about 1.935 kg.

6. The salt application is differed over time to avoid a plant
“shock”. However, it depends on the experimental design.
This protocol has also been used with “one shot” application.

7. This ensures that the salt concentration is constant over time.

8. In small systems, plants may be monitored to earlier stages. In
high concentration of salt, the effect of the stress can be seen
1 to 4 days after the treatment.

9. The combination of views (cameras/angles/zooms/etc.) max-
imizes the collection of data from one single experiment.
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Multiple views permit to validate the results as well as future
analyses.

10. The algorithm and pipeline parameters need to be adjusted
according to the phenotyping equipment and the imaging
setup. However, the general structure of these algorithms will
be valid in most of the cases.

11. Any other object detection algorithm could be used in
this step.

12. Additional morpho-colorimetric features can be calculated
from the “digital plant” such as width, height, median, or skew.
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Chapter 5

A Straightforward High-Throughput Aboveground
Phenotyping Platform for Small- to Medium-Sized Plants

Denise Caldwell and Anjali S. Iyer-Pascuzzi

Abstract

High-throughput phenotyping platforms for growth chamber and greenhouse-grown plants enable non-
destructive, automated measurements of plant traits including shape, aboveground architecture, length,
and biomass over time. However, to establish these platforms, many of these methods require expensive
equipment or phenotyping expertise. Here we present a relatively inexpensive and simple phenotyping
method for imaging hundreds of small- to medium-sized growth chamber or greenhouse-grown plants
with a digital camera. Using this method, we image hundreds of tomato plants in 1 day.

Key words Phenotyping, Aboveground, Digital camera, RGB images

1 Introduction

A growing population, increasing climate challenges, or decreasing
arable land is driving the need for improved crop varieties with
increased yield and stress tolerance. Understanding the relationship
between plant genotype and phenotype is key to crop improvement
[1, 2].

Technological advances have led to lower costs and increased
efficiencies in genotyping, but high-throughput inexpensive meth-
ods of plant phenotyping remain a bottleneck to crop improvement
[2, 3].

Recent years have seen an explosion of phenotyping platforms,
software, and resources for nondestructively phenotyping and ana-
lyzing a vast range of above- and below-ground plant traits [1, 2, 4–
8]. Phenotyping platforms are available for plants grown at multiple
scales—from growth chamber to greenhouse to the field. With
available technology, scientists can measure nearly any above-
ground trait they wish. For example, using thermal infrared cam-
eras, leaf temperature can be recorded. Near-infrared cameras can
provide data regarding leaf water content, and hyperspectral
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imaging can provide researchers with spectral signatures of abiotic
and biotic stress responses [4–6]. Digital cameras, which image in
the visible light range, result in images that can be analyzed for data
regarding plant architecture, growth rates, shape, length, color, and
biomass. These advances have added tremendously to the plant
phenotyping field, and with improved image processing algo-
rithms, have made it possible to identify phenotype-genotype lin-
kages. However, most of these platforms are very expensive, and
require substantial investments in time and expertise to acquire and
establish. Increasingly, low-cost platforms and custom-made phe-
notyping hardware are becoming feasible [3, 4].

Here we describe a straightforward, inexpensive method for
aboveground imaging of growth chamber or greenhouse-grown
plants with a digital camera. The platform uses a commercially
available turntable that can be set up in less than a day by nearly
any member of the laboratory, and can be designed with one or two
cameras for side and/or top views. We routinely use this method
for imaging shape, color, and aboveground architecture of tomato
plants after biotic stress treatment. In our experience, one person
can image approximately 200 plants in 1 day. Resulting images can
be analyzed and used with any number of available software
packages designed for images in the visual light spectrum, or ana-
lyzed with in-house software. We provided tips for optimal lighting,
camera settings, tripods, lenses, and plant setup. This is a particu-
larly useful system for researchers new to phenotyping, or for a
laboratory that needs to phenotype plants only occasionally but
wants high-quality images for downstream analyses.

2 Materials

2.1 Light Studio 1. Commercially available light studio (see Note 1).

2. Surge protector power strip.

2.2 Imaging 1. PhotoCapture 360 photography turntable and software by
Ortery Technologies (see Note 2).

2. Two tables: one large enough to hold the turntable and the
other for the computer (see Note 3).

3. Computer (seeNote 4) with USB port access. If your computer
has fewer than four USB ports, you will need to buy a multi-
port USB hub.

4. Camera(s). Any digital single-lens reflex (DSLR) camera that
can be operated with the PhotoCapture software will work (see
Note 5).

5. Additional camera lenses (see Note 6).

6. Additional battery packs and chargers for camera.
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7. One interface cable per camera.

8. Tripod for each camera (see Note 7).

9. Ethernet cable.

10. USB extension cable.

2.3 Specimen Stage

Used in Imaging

1. 100 mm � 100 mm polystyrene square petri dish.

2. Fiducial markers (see Note 8 and Fig. 1).

3. White foam board 8 � 10 inches (optional; see Note 9).

4. Double-sided tape.

3 Methods

3.1 Setting Up the

Studio

1. Set a solid worktable in the middle of a room at least 3 m2. This
is for the PhotoCapture 360 turntable.

2. Place another table in front of the table holding the Photo-
Capture 360 and place the laptop on it.

3. Connect the multi-port USB hub to the laptop.

4. Download the PhotoCapture 360 software onto your laptop
and set up an account via www.ortery.com. This account will be
accessed each time you use the turntable.

5. Position the PhotoCapture 360 photography turntable onto
the solid worktable and connect the power supply to a surge
protector power supply. Then connect the PhotoCapture
360 to the computer via the supplied cord from Ortery (see
Note 10).

6. Place a platform cover onto the turntable and position it in the
center (see Note 11).

7. Set up the light studio per the manufacturer’s instructions.
Connect all lights to a surge protector power supply.

8. Choose background fabric (see Note 12) for your lighting and
hang this behind the table. The backdrop stand can be posi-
tioned wider than needed to ensure you have an even operating
surface.

9. Arrange the light banks them in accordance with Figs. 1 and
2 to start. Then, adjust to your needs.

3.2 Setting Up the

Camera

1. Attach the camera lens and fully charged battery to the camera.
Attach the quick release plate from the tripod to the camera
body. Place camera and quick release plate onto the tripod and
ensure it is securely attached.

2. Adjust the tripod to the proper height (see Note 13) and
distance from the plant sample. Distance will depend on your
lens and how close you need to be to your plant to generate the
desired image (see Note 14).
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Fig. 1 Platform design with one camera. (a) Side view, (b) top-down view.
Distances should be adjusted according to each researcher’s needs
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3. Attach the interface cable from the camera to the multi-port
USB hub, making sure that the cables do not travel between
the camera and the plant sample (see Note 15).
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Fig. 2 Platform design with two cameras. (a) Side view, (b) top-down view.
Distances should be adjusted according to each researcher’s needs
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4. Place spare battery into the battery charger and connect it the
surge protector power supply (see Note 16).

5. Camera settings: Set the mode dial on the camera to the
manual exposure mode (M), ISO speed to 100, shutter speed
to 1/30, and the aperture to 11. Set the white balance to color
temp and have the lens set to autofocus (AF).

6. If using the two-camera imaging setup, repeat step 2, Sub-
heading 3.2. Lights may need to be adjusted (see Note 17).

3.3 Setting Up the

Plant Stage

1. We use the bottom plate of a 100 mm � 100 mm square petri
dish as a stage to hold the plants on the turntable. This ensures
plants and fiducial markers are always in the same place (fiducial
markers are attached to the sides of the petri dish). We grow
plants in cells 9 cm � 9 cm � 6 cm (see Note 18) and plants of
this size easily fit in the petri dish. Place the plant stage in the
middle of the turntable.

2. Place fiducial markers on each side of the square petri dish
facing out. We affix double-sided tape to the center of each
side of the petri dish and stick fiducial markers mounted on
foam boards to the tape. If your fiducial markers are printed
onto paper, it is helpful to mount them on pieces of white foam
board the same size as the markers and then affix the white
foam board to each side of the plant stage. The foam board
makes the fiducial markers more durable (see Notes 8, 9, and
19). The reason for placing the marker on each side of the stage
is that you will see it in each image you take if you take multiple
images around the plant (see Note 20). Ensure your fiducial
marker is oriented the same way on each side of the stage.

3. Mark one side of the ensemble as the front (see Note 21) and
place entire ensemble onto the center of the turntable.

3.4 Imaging 1. Place plant sample into plant stage and align each sample
perpendicular to the camera angle (see Note 22).

2. Open the Ortery Capture software and log in with the user-
name and password you created in step 4, Subheading 3.1.
Select Login.

3. Once you are logged in, the software will ask you to set up your
workspace. Select Browse and choose your file location.
Select OK.

4. After the program has launched, click on the capture button.

5. Under the Capture Settings, select the camera you want to use
and fill in your desired camera parameters (see Note 23).

6. Under the turntable controls selection, choose device, Photo-
Capture 360; direction, clockwise; and speed, normal.
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7. Set the Animation Settings to spin range, 360, and shooting
mode, continuous, and choose the desired number of images
around the plant. This will depend on your question (see Note
20). Focus camera lens on plant sample. You may adjust focus
with the controls on the bottom of the screen.

8. As long as the plant sample is in the center of the turntable and
the width of the plant is not too different 360� around the
plant, you can select the box that will “Apply current MF
settings to all the images in this row.”

9. Once focus is adjusted, select Snap. The camera will now snap
the images as it has been programmed. A display of the images
being collected will show in the screen and all the thumbnails
will be visible below that image.

10. Once all images have been collected, press next and the turnta-
ble will return to its starting position.

11. On this screen, you will need to enter the filename for your
samples. It is critical to think about this prior to initiating your
experiment. The naming system should be uniform. For exam-
ple, Rep1.Plant1.Day1.FrontCamera, Rep1.Plant2.Day1.
FrontCamera (see Note 24).

12. To the left of the word Filename is an icon that will add save
type files. Click on this and select TIFF and RAW (see
Note 25).

13. On the right side of the screen is a Browse button so that you
can save your file in a specific location. Select save.

14. If using the two-camera system, select the other camera under
the Capture Settings-Camera and repeat steps 5–13,
Subheading 3.4.

15. Ideally, it is best to save images directly to a server (see Note
26). If you do not do this, upload them after each imaging
session.

16. Images can be analyzed using any number of freely available
image processing programs (see Note 27).

4 Notes

1. We used the Linco Linstore 2000 Watt Photo Studio Lighting
Kit with three Color Muslin Backdrop Stand Photography
Flora X Fluorescent with four-socket Light Bank and Auto
Pop-up Softbox (bought from Amazon.com), but any similar
light studio will work. You will need to try different configura-
tions to test what works best for your system.

2. Ortery Technologies (ortery.com) provides a suite of imaging
products. The PhotoCapture 360 is a turntable that turns a
user-specified number of degrees (from 1� to 360�), stops, and

Simple Aboveground Phenotyping Platform 43

http://amazon.com
http://ortery.com


takes an image. The turntable is controlled by accompanying
software that is included in the PhotoCapture 360 cost. The
user decides how many images to take, and whether to use one
or more cameras.

3. Choose a table for the turntable that is not susceptible to
vibration. The operation of the turntable causes a slight vibra-
tion that can cause leaf movement if the table is not stable.

4. You can use a desktop or a laptop and either a Mac or a PC as
long as it runs Windows 7, 8, or 10. Make sure you look at the
Ortery.com webpage before buying the computer and cameras
to ensure your models work with the software. We have found
laptops are more flexible for confined spaces. We use a Dell
Mobile Precision 5530.

5. We use Canon EOS 6D DSLR cameras with a full-frame sensor
that allows wider angle images to be taken, but any camera that
works with the PhotoCapture 360 software can be used. It is
critical to check the ortery.com website to ensure compatibility
prior to buying the camera.

6. When considering which lens to buy, think about plant size and
size of the room you are using (this will impact distance from
sample to camera). We use a Canon EF 50 mm f/1.4 USM
lens. If you are working with larger plant sizes, you may need to
reconsider the lens. We work with relatively small plants (see
Note 18) and thus the 50 mm f/1.4 USM lens (fixed focal
length) is sufficient. While adjustable zoom lenses would allow
a larger selection of plant samples, the cost difference between
fixed focal lens and an adjustable zoom lens is large (about US
$1000). The other issue is that the adjustable zoom lens can
adjust focal lengths which can cause issues if the tripod location
has been moved or the zoom has been manually manipulated.

7. We use Vanguard VEO 265AP Aluminum Travel Tripod with
Panning Head from Amazon.com.

8. Fiducial markers are objects used as points of reference and for
image registration and orientation. They appear in the same
orientation in each image. Depending on the type of fiducial
marker, they can also be used for color correction. Many differ-
ent types of fiducial markers can be used. Depending on your
image analysis needs, fiducial markers for images taken with this
platform can be as simple as a ruler, or a piece of tape affixed to
the stage. We print fiducial markers on heavy paper, and subse-
quently cut them out and glue them to a white foam board as
described in the methods section. You do not need to use the
same type of fiducial marker used in Fig. 1. Regardless of what
you use as your marker, it is important for downstream analyses
that each image has one.
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9. The white foam board is used for mounting fiducial markers
(if you print them and need to make them more durable) (see
Note 8).

10. You may need to use a longer cord to connect the computer to
the turntable. We found that the turntable did not operate with
the USB extension cable, but did connect to the laptop via the
multi-port USB hub. We had to try multiple configurations to
find the best distance for the laptop from the imaging table.

11. The Ortery turntable comes with four platform covers, two
white and two black, and in two different sizes. You can switch
them back and forth until you find the cover that works the
best for your downstream image analyses. Platform covers are
plastic with a hole in the middle. The turntable has a screw in
the very center of it. If you line up the hole in the middle of the
platform cover with the screw in the center of the turntable, the
cover will fit perfectly. Note that the platform cover is not
sealed to the turntable. This is beneficial for cleaning as you
can treat the cover with ethanol and wipe it up off the platform
so that any alcohol does not go into the platform and damage
anything.

12. Many commercially available light studios come with different
backgrounds. The Linco (see Note 1) comes with three back-
grounds: white, black, and green. Which background is used
depends on the researcher’s question. For example, we are
interested in biotic stress phenotypes. We use a black back-
ground to highlight the color of wilting tomato leaves. This
provides sufficient contrast between green healthy leaves and
yellow necrotic leaves, but the white background resulted in
overexposure of diseased areas of the leaf. If the researcher is
interested in leaf lesions, it may be better to use a royal blue
background, but each researcher will need to test different
backgrounds to determine which is best for their question. If
a desired color is not available or the light studio does not
come with a background, using a large sheet of cloth of the
desired color will work. With all backgrounds, it is critical to be
sure that there are not creases in the cloth, as this will make
downstream image analysis more challenging.

13. Camera height should be adjusted via the tripod so that the pot
is seen directly without observing the surface of the soil. This
helps reduce color noise and results in more uniform images.
This can be tricky when dealing with tall plants and will need to
be adjusted to capture the best possible image, and imaging
between plants of different sizes.

14. Tripod distance depends on the lens, size of the plant, and
image needed (whole plant, lesion on a leaf, etc.). If you have
a fixed focal length lens, the distance of the lens is predefined
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and cannot zoom in or out more than is designed. Distance
should be the same for each replicate and experimental trial. It
is best to set up the camera and test your focal length and then
mark the location of the tripod feet with tape on the floor.

15. If using the two-camera system, it may be necessary to use an
USB extension cable and run the cords behind or underneath
the table to leave the image area unobstructed.

16. This will allow rapid exchange of battery packs during a long
photography session without any delay in imaging. We image
for 8 h/day and exchange batteries during that time.

17. We have found that one camera that takes images from the side
is sufficient for our work. An additional camera taking a
top-down image did not provide additional useful information.
However, in some species like Arabidopsis, imaging top-down
may be more beneficial than from the side. The researcher can
decide how many cameras and in what positions to place them,
depending on the question of interest and images desired. We
take images on a daily basis, and measure growth rate over a
week. We take four images (all from a side-facing camera)
around the plant: one image every 90�. Because plant growth
can substantially increase over that period, having four images
at different angles around the plant is very helpful for deter-
mining leaf order and connections.

18. We image tomato plants grown in 1801 cell packs. This pro-
vides 18 single cells in a typical 1020 tray. Each cell is 9 cm �
9 cm and is 6 cm tall. We have imaged plants that vary in height
from approximately 9 to 18 cm. Larger plants are possible but
adjustments may need to be made to the camera and tripod.
Plants smaller than 9 cm height are also fine.

19. Be careful about using liquid glue to mount the markers. You
can use a glue stick but we have found that liquid glue will
cause the fiducial markers to become distorted.

20. With this software, you can image 360� around your plant
sample. An image can be taken each degree if desired. The
number of images needed depends on the question—for exam-
ple, are you interested in 2D or recreating the plant in 3D? If
3D is desired, many more images will be needed. The number
of images will also depend on the complexity of your plant
sample—i.e., how tall and how many branches and leaves
overlap. We take four images (one every 90� around the
plant). This is sufficient to determine the correct leaf paths
from those that cross in front of one another, but is not
sufficient for 3D images. Care should be taken to balance
time to image and upload files with the ability to accurately
perform downstream data analyses.
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21. Make sure the ensemble is positioned with the front mark
toward the camera at the beginning of each plant sample.
Additionally, ensure that the fiducial marker is perpendicular
to the camera at the beginning of imaging each plant sample.
This will be important if image registration is needed during
image analysis.

22. Prior to the beginning of imaging, each plant sample is marked
to indicate which side of the plant will be imaged first. This
helps provide consistency in phenotyping.

23. We use the following parameters: focus mode, MF; mode, M;
aperture, 11; exposure, 0; white balance, auto; shutter speed;
1/30; and ISO, 100. These settings are a good place to start,
but may need to be adjusted depending on your camera, lens,
lighting, and plant conditions.

24. Plants should be named with the same naming convention that
you will use throughout this experiment and future experi-
ments. This helps greatly with data storage and retrieval. If
necessary, plants can be barcoded as well.

25. We routinely save in both file formats. This is helpful for
flexibility when sharing images among team members and for
image analysis.

26. Regardless of whether using a laptop or desktop, test whether
an Ethernet or Internet connection should be used for upload-
ing images to a server (images should be uploaded to a server
for storage during imaging or immediately after imaging). We
have found that using Ethernet decreases the upload time from
6 min for eight images using Internet connection to 1.5 min
for eight images. This decreased time makes a significant dif-
ference when imaging hundreds of plants in 1 day.

27. Image processing programs will identify plant pixels within
each image, and use these to calculate a range of plant traits.
Some programs will also color correct the image, but for these
special fiducial markers designed for color correction are nec-
essary if this imaging platform is used. To start phenotyping
images, see PlantCV, an open-source image analysis software
package [9], and also multiple software packages at https://
www.plant-image-analysis.org. Image processing technology
has recently been reviewed in [6]. Image analysis programs
will run from manual to semiautomated to automated, but
the researchers will need to determine what tools work best
for their questions of interest. FIJI/ImageJ also has a number
of useful plugins. Regardless of the image analysis program, it is
important that the researcher ground truth a set of images, i.e.,
make a manual measurement and test that against the value
obtained with the software package used.
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Chapter 6

Wireless Fixed Camera Network for Greenhouse-Based
Plant Phenotyping

Nadia Shakoor and Todd C. Mockler

Abstract

An indoor wireless fixed camera network was developed for an efficient, cost-effective method of extracting
informative plant phenotypes in a controlled greenhouse environment. Deployed at the Donald Danforth
Plant Science Center (DDPSC), this fixed camera platform implements rapid and automated plant pheno-
typing. The platform uses low-cost Raspberry Pi computers and digital cameras to monitor aboveground
morphological and developmental plant phenotypes. The Raspberry Pi is a readily programmable, credit
card-sized computer board with remote accessibility. A standard camera module connects to the Raspberry
Pi computer board and generates eight-megapixel resolution images. With a fixed array, or “bramble,” of
Raspberry Pi computer boards and camera modules placed strategically in a greenhouse, we can capture
automated, high-resolution images for 3D reconstructions of individual plants on timescales ranging from
minutes to hours, capturing temporal changes in plant phenotypes.

Key words Greenhouse, Phenotyping, Raspberry Pi, 3D reconstruction, Image analysis, Imaging

1 Introduction

A wireless fixed camera array was developed and deployed at the
Donald Danforth Plant Science Center (DDPSC) to monitor
aboveground morphological and developmental plant phenotypes.
One hundred eighty Raspberry Pis (Pis) and connected camera
modules (Fig. 1) are positioned on an overhead scaffold in a grid
formation. The camera array, or “bramble,” is powered by blocks of
electrical power strips with USB adaptors and cables, and network
access is provided via WiFi dongles attached to each Pi. The Pis are
affixed to the scaffold 3 meters above the ground with flexible
tripods (Fig. 2). Each camera is angled to provide overlapping fields
of view to ensure high-quality 3D reconstructions.

3D reconstructions and image analyses are carried out in
VisualSFM [1] and CloudCompare [2], respectively (Fig. 3).
Using the connected component analysis feature in
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Fig. 1 Raspberry Pi 3 with an attached 8 MP camera module (www.raspberrypi.
com)

Fig. 2 Raspberry Pi camera setup (case, WiPi dongle, power cord) from two views attached to scaffold with a
flexible tripod
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CloudCompare, we can bound and separate each plant in the
greenhouse and accurately calculate measures of biomass accumu-
lation, plant height, leaf area, leaf angle, and growth rate. Compar-
ing ground-truth and image-derived measurements of plant
heights, we attain 1–2 cm accuracy in distance measurements with
R-squared values of greater than 0.9 (Fig. 4a–c).

2 Materials

l Raspberry Pi 3 computers (see Note 1).

l Raspberry Pi 8MP camera modules (see Note 1).

l Raspberry Pi camera cases.

l Flexible tripods.

l WiPi WiFi dongles.

l MicroSD cards (minimum 8 GB storage).

l USB power cords.

l Electrical power strips.

l Wireless access point(s)

3 Methods

3.1 Hardware Setup Raspberry Pis and connected camera modules are enclosed in a
water-resistant plastic case and are affixed to an overhead scaffold
in an evenly spaced grid formation. WiPi WiFi dongles are used to
connect the Pis to the WiFi local area network. Raspberry Pi

Fig. 3 VisualSFM 3D reconstruction and CloudCompare visualization of the greenhouse point cloud
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3 computers have internal WiFi; however, we found that using an
external WiPi dongle improves signal strength and stability. The
camera modules are angled using flexible tripods to ensure 20–30%
overlap in the fields of view between adjacent cameras.

3.2 Software and

Management

The Raspberry Pi camera array is online at all times and was created
using Raspbian, a Debian-based operating system for Raspberry Pi
software (www.raspbian.org). Ganglia [3] is used to obtain real-
time reporting data from the bramble, including a visualization of
the Raspberry Pis that are currently online and transmitting data
(Fig. 5). We also recommend spot checking the images down-
loaded at a given time point or accessing each Pi remotely to verify
connectivity and transmission. Independent of network access,
image capture is initiated on each Pi camera system via a cron job
that is set up on the Raspberry Pi device. Images are stored on a
local SD card and then imported to local storage, or a compute
infrastructure from each Raspberry Pi using a cron job set up on a
rsync server. The Raspberry Pi bramble is managed from the server
using a deployment configuration engine called Ansible [4]. Each
Pi’s configuration requires a unique hostname and IP address.
Additional requirements include WiFi access either via a WiPi
dongle or use of Raspberry Pi 3 camera, a set time zone, and an
OpenSSH server. A microSD card with a minimum of 8 GB storage
is recommended for each Pi system to accommodate system speci-
fications and local image storage.

Wireless power management is a standard feature on the Rasp-
berry Pi that disables the WiFi dongle after periods of inactivity.
This setting can be turned off using the code “sudo nano /etc/

Fig. 4 CloudCompare feature analysis of a single plant with derived plant height (a), leaf angle (b), and leaf
lengths (c)
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network/interfaces” and entering “wireless-power off” in the
wlan0 section. OpenSSH server is also installed on each Pi using
the command “sudo apt-get install openssh-server.” OpenSSH
allows for remote access and transfer capabilities. We also recom-
mend setting the time zone for each Pi using the command “sudo
dpkg-reconfigure tzdata.” A local image directory is also created
using the command “mkdir /home/pi/Images” which creates a
directory named “Images” on the Pi.

3.3 Raspberry Pi

Bramble Setup

We built an array of 180 Raspberry Pis, which provides sufficient
coverage and 20–30% image overlaps for a 1400 sq ft/130 m2

greenhouse (250 � 560/7.6 m � 17.1 m). The Pis are affixed in a
grid arrangement to a scaffold (150 � 450/4.6 m � 13.7 m) 3 m
above the ground.

3.4 Calculation of

Distance Units

A GPS reference point from the corner of the greenhouse was
identified using Google Maps/Earth Mercator projection. QGIS
[5] was used to assign GPS points to the Raspberry Pis in the
bramble given the reference GPS location. In VisualSFM, GPS
points were added to the 3D reconstruction images, which trans-
lates point cloud units into centimeters for visualization and analy-
sis in CloudCompare (Fig. 6).

Fig. 5 Ganglia interface showing CPU load of each Pi in the bramble. CPU load for four camera systems are
individually highlighted in bottom panels
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3.5 3D

Reconstruction and

Analysis in VisualSFM

and CloudCompare

VisualSFM is used to reconstruct the interior of the greenhouse,
including all plants and pots in the space. Using connected compo-
nent analysis in CloudCompare, the 3D reconstruction is separated
into individual point clouds. Thresholding is used to determine the
minimum number of points per component, which subsequently
selects the smallest set of points that can be considered a
“connected component” (Fig. 7a, b). Complete objects with mul-
tiple point clouds (e.g., several leaves on one plant) require manual
merging.

4 Notes

1. It is recommended that the newest, highest-resolution Rasp-
berry Pi computers and camera modules available be used when
building a camera network.

2. The most significant challenge with the wireless fixed camera
system is maintaining a sustained connection to each Raspberry
Pi for the amount of time it takes to transfer a file. Wireless
interference is the typical cause of this issue. There are four
wireless access points (WAPs), each connected to 45 Pis, sta-
tioned in and around the greenhouse that cause interference;
the 180 Raspberry Pis themselves also cause interference.

3. We implemented several methods to reduce the impact
of wireless interference. Four WAPs and four SSIDs were
used exclusively for the bramble, preventing Raspberry Pi net-
work dropout. WiPi dongles also helped with establishing con-
nectivity and maintaining connection stability. We also
decreased the transmit power from each Raspberry Pi until it

Fig. 6 CloudCompare distance measurements in centimeters
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was time to transfer the files. The transmit power was increased
for the duration of the transfer time.

4. Hardwiring: If feasible, each Raspberry Pi can be hardwired to
a switch that is directly connected to the network.

5. Partial hardwiring: We recommend partially hardwiring the
Raspberry 5. Pis, six at a time to a wireless bridge, bringing
the number of devices connected to each SSID/WAP to eight
Pis per SSID/WAP instead of 45 per SSID/WAP.

6. WiFi dongles with directional antennas: Dongles with direc-
tional antennas may also aid in reducing wireless interference.

7. The quality of the Pi-generated input images in VisualSFM
determines the quality of the 3D reconstructions. Poor image
quality in the greenhouse is primarily due to environmental
variables, including variations in sunlight passing through
the greenhouse roof and resulting in under- and oversaturated
images. Cloudy days or shadows from clouds or overhead
lighting fixtures can also dramatically reduce image quality
and the resolution of the subsequent 3D reconstruction.

8. Several image processing methods can be applied to the
Pi-generated images before the 3D reconstruction step.
These include thresholding, machine learning-based classifica-
tion methods, and image enhancements [6–8]. Addition of
color markers or other distinct objects in the greenhouse can
also aid in the reconstruction process. We have found that
VisualSFM produces a better reconstruction output when
there are unique features captured in the greenhouse during
image acquisition. Additionally, we find that increasing the rate
of image acquisition allows for the removal of sub-par 3D
reconstructions without compromising the phenotyping
experiment.

Fig. 7 CloudCompare connected component analysis pipeline with thresholding (a) and connected component
extraction (b)
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Chapter 7

Experimental Design for Controlled Environment
High-Throughput Plant Phenotyping

Jennifer L. Clarke, Yumou Qiu, and James C. Schnable

Abstract

It is essential that the scientific community develop and deploy accurate and high-throughput techniques to
capture factors that influence plant phenotypes if we are to meet the projected demands for food and energy.
In recognition of this fact, multiple research institutions have invested in automated high-throughput plant
phenotyping (HTPP) systems designed for use in controlled environments. These systems can generate
large amounts of data in relatively short periods of time, potentially allowing researchers to gain insights
about phenotypic responses to environmental, biological, and management factors. Reliable inferences
about these factors depends on the use of proper experimental design when planning phenotypic studies in
order to avoid issues such as lack of power and confounding. In this chapter, the topic of experimental
design will be discussed, from basic principles to examples specific to controlled environment plant
phenotyping. Examples will be provided based on the package agricolae in the R statistical language.

Key words Design of experiments, Agricolae, Genomes2Fields, G2F

1 Introduction

According to [1], a plant phenotype is “a quantitative description
of the plants anatomical, ontogenetical, physiological and biochem-
ical properties.” Scientists and farmers alike are interested in phe-
notypes as quantitative assessments of plant performance, where
performance may be defined as overall yield or stress tolerance or
response to data-driven management. Scientists are also interested
in phenotypes as reflections of how plant life is organized across
scales, from molecular to ecological [2]. Plant responses such as
growth are best measured over time, leading to interest in nonde-
structive approaches to phenotyping. Modern high-throughput
plant phenotyping (HTPP) systems can measure multiple

Argelia Lorence and Karina Medina-Jimenez (eds.), High-Throughput Plant Phenotyping: Methods and Protocols,
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phenotypes over time, nondestructively, in either controlled or field
conditions. These systems can generate large amounts of data
relatively quickly, which can lead researchers to assume that such
data contains plenty of scientifically valuable information. How-
ever, reliable and reproducible inferences from such data depend
on the use of proper experimental design in order to avoid issues
such as lack of power and confounding. The expense and high
demand associated with controlled environment HTPP make
proper design a critical consideration for any study.

Although HTPP is relatively new, experimental design has been
around for decades; see Box, Hunter, and Hunter [3], Gómez and
Gómez [4], and Montgomery [5]. This chapter will provide a brief
overview of experimental design including key principles, optimal-
ity and efficiency, and some designs common to agricultural
research. Included is an example of design used for a HTPP study
associated with the Genomes to Fields (G2F) Initiative [6]
(https://www.genomes2fields.org/home). Code to implement
various designs and examples is provided based on the R statistical
language [7] and the agricolae package (version 1.3-1) [8] available
from the Comprehensive R Archive Network (CRAN).

2 Overview of Experimental Design

Experimental design is a way to plan experiments in advance so that
the results are as objective and valid as possible. Ideally, an experi-
mental design should achieve the following: (1) describe how
participants are allocated to experimental groups, (2) minimize or
eliminate confounding variables, (3) permit inferences about the
relationships between independent and dependent variables, and
(4) reduce variability which facilitates the finding of differences in
treatment outcomes. A design rests on the following principles:

l Randomization: Eliminates bias from the results. Assign indivi-
duals to treatments using a random method.

l Replication: Experiment must be replicable by other researchers.
Use statistics like standard error of the sample mean or confi-
dence intervals. Blocking: controlling sources of variation.

When discussing the design of experiments (DoE), statisticians
often focus on two aspects, namely, optimality and efficiency
[9]. An optimal design allows parameters to be estimated without
bias and with minimum variance (note: bias is related to inaccuracy
and variance is related to imprecision). The measurement of opti-
mality depends on the statistical model of the data and the specific
optimality criterion. The efficiency of a model is usually stated as
relative to the best (i.e., least variable) model, so a ratio of the
minimal possible variance to the actual variance. For the most
efficient model, this ratio will equal one, and this ratio decreases
with decreasing efficiency.
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2.1 Commonly Used

Designs

This section will briefly cover several common designs of increasing
complexity through examples, with associated R code. For compu-
tational implementation of any of the code below, the first step is to
download and load the agricolae package within R. The package
can be downloaded from https://cran.r-project.org/web/
packages/agricolae/index.html.

install.packages(“agricolae”)
library(agricolae)
designs <- apropos(“design”)

print(designs[substr(designs,1,6)¼¼“design”], row.names¼FALSE)

2.2 Completely

Randomized Design

(design.crd)

A completely randomized design (CRD) has treatments assigned at
random. In other words, every experimental unit has the same
probability of receiving a given treatment. As an example, the
sweetpotato data in agricolae correspond to a CRD with 12 plots,
50 sweet potato plants per plot, 4 treatments (CC (Spcsv)¼ Sweet-
potato chlorotic dwarf, FF (Spfmv) ¼ Feathery mottle, FC (Spfmv
y Spcsv) ¼ Viral complex and OO (witness) healthy plants), and
3 replicates. Note that this example has one treatment per plot. The
relevant command for CRD is design.crd.

data(sweetpotato)
str(sweetpotato)
trt<-levels(sweetpotato$virus)
r<-c(rep(3, 4))
outdesign1<-design.crd(trt,r,serie¼0,seed¼2020)
book1<-outdesign1$book

head(book1)

write.table(book1, “crd.txt”, row.names¼FALSE, sep¼“\t”)

The first part of the resulting design (output from the above)
will be as follows:

plots r trt

1 1 1 fc

2 2 1 ff

3 3 2 ff

4 4 1 oo

5 5 2 oo

6 6 1 cc

Here is what the design looks like (see Table 1).
The full design will be output and saved to the file crd.txt in the

working directory.
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2.3 Randomized

Complete Block Design

(design.rcbd)

In a randomized complete block design (RCBD), the researcher
divides experimental subjects into homogeneous blocks and assigns
treatments randomly within each block. Under this model, it is
assumed that variability within blocks is larger than variability
between blocks. This design avoids potential confounding by the
blocking variable. All treatments appear exactly once within each
block. The grass data correspond to a RCBD with 12 lawns each
with 4 subplots, and 4 treatments (type of grasses) with, as
expected, one treatment per subplot. The relevant command for
RCBD is design.rcbd.

data(grass)
str(grass)
trt<-levels(grass$trt)
r<-12
outdesign<-design.rcbd(trt,r,serie¼2,seed¼2020)
book2<-outdesign$book
head(book2)

write.table(book2, “rcbd.txt”, row.names¼FALSE, sep¼“\t”)

The first part of the resulting design (output from the above)
will be as follows:

plots block trt

1 101 1 t2

2 102 1 t4

3 103 1 t3

4 104 1 t1

5 201 2 t3

6 202 2 t2

Here is what the design looks like (see Table 2).
The full design will be output and saved to the file rcbd.txt in

the working directory.

Table 1
Completely randomized design (design.crd)

1 2 3 4

fc ff ff oo

5 6 7 8

oo cc oo cc

9 10 11 12

fc cc fc ff
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2.4 Balanced

Incomplete Block

Design (design.bib)

A balanced incomplete block design (BIB) may be used when each
pair of treatments occur together λ times and not all treatments fit
into each block. With a treatments, b blocks, r replicates, and
k treatments per block, the total number of observations is
kb ¼ ar ¼ N. Under this design, each treatment occurs in r blocks.
To have balance, each treatment has equal probability of occurring
with every other treatment. With (k � 1) other treatments in a
block and (a � 1) other treatments, λ ¼ r(k � 1)/(a � 1).

As an example of a BIB design, revisit the grass data with
12 lawns each with 4 subplots, and 4 treatments (type of grasses;
a ¼ 4), one treatment per subplot. What if k ¼ 2 and b ¼ 6? In this
case, r ¼ 3 and λ ¼ 1. The relevant command for BIB is design.bib.

str(design.bib) function (trt, k, r ¼ NULL, serie ¼ 2, seed ¼
0, kinds¼ “Super-Duper”, maxRep¼ 20, randomization¼ TRUE)
trt< levels(grass$trt) k<-2

outdesign<-design.bib (trt,k,r¼3,serie¼2,seed¼2020)
book3<-outdesign$book

write.table(book3, ”bib.txt”, row.names¼FALSE, sep¼”\t”)

Below is some information about the resulting design:

Parameters BIB

¼¼¼¼¼¼¼¼¼¼¼¼¼¼
Lambda : 1

(continued)

Table 2
Randomized complete block design (design.rcbd)

101 102 201 202 301 302 401 402

t2 t4 t3 t2 t3 t1 t4 t2

103 104 203 204 303 304 403 404

t3 t1 t1 t4 t4 t2 t1 t3

501 502 601 602 701 702 801 802

t2 t1 t4 t3 t2 t3 t1 t3

503 504 603 604 703 704 803 804

t4 t3 t2 t1 t1 t4 t4 t2

901 902 1001 1002 1101 1102 1201 1202

t4 t2 t1 t3 t3 t4 t1 t2

903 904 1003 1004 1103 1104 1203 1204

t1 t3 t2 t4 t1 t2 t3 t4
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treatmeans : 4

Block size : 2

Blocks : 6

Replication : 3

Efficiency factor 0.6666667

Note that the output above provides the efficiency factor as
mentioned in Subheading 2. The efficiency of this design is less
than one as this is an incomplete design, i.e., we are trading away
some efficiency in exchange for a smaller design. This can be
important when observations are expensive. Here is what the
design looks like (see Table 3).

The full design will be output and saved to the file bib.txt in the
working directory.

2.5 Other Incomplete

Designs

The better designs (in terms of efficiency) have every pair of treat-
ments occurring the same, or nearly the same, number of times in
the row blocks and column blocks. Some commonly used designs
are briefly listed here.

l Youden square (design.youden) is a Latin square with one row
(col) deleted so each treatment occurs in each row (col).

l Partially balanced incomplete block design (PBIB) (design.
alpha) doesn’t require each pair of treatments to occur λ times.
Instead, each pair of treatments in a defined associate class
i appear together λi times. For general alpha designs, k < b,
a < b � k.

l Cyclic design (design.cyclic) may be relevant in situations where
r ¼ mk and b ¼ ma. This is a very large class and includes some
BIB and PBIB designs.

l Lattice design (design.lattice) includes square (a ¼ k2), cubic
(a ¼ k3), and rectangular (a ¼ k(k + 1)) lattices. For an example
of a lattice design, see He et al. [10].

An example of the above designs is the partially balanced
incomplete block design (design.alpha). Consider 30 treatments/

Table 3
Balanced incomplete block design (design.bib)

101 102 201 202 301 302

t1 t2 t4 t2 t2 t3

401 402 501 502 601 602

t4 t3 t3 t1 t4 t1
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genotypes, 2 repetitions, and a block size equal to 3. (In other
words, a ¼ 30, k ¼ 3, r ¼ 2.)

Genotype<-paste(“geno”,1:30,sep¼“”)
r<-2
k<-3
plan<-design.alpha(trt¼Genotype,k¼k,r¼r,serie¼2,seed¼2020)
book4<-plan$book
write.table(book4, “pbib.txt”, row.names¼FALSE, sep¼“\t”)

Below is some information about the resulting design:

Treatmeans: 30

Block size: 3

Blocks: 10

Replication: 2

Efficiency factor (E) 0.6170213

Here is what the design looks like (see Table 4).
The full design will be output and saved to the file pbib.txt in

the working directory.

3 Analysis of DoE: PBIB

Analysis of the designs presented here is usually through analysis of
variance (ANOVA) tables and restricted maximum likelihood
(REML). By these methods, one can examine effects due to

Table 4
Partially balanced incomplete block design (design.alpha)

101 102 103 104 105 106 107 108 109 110 111 112

g16 g20 g7 g24 g17 g11 g10 g28 g18 g29 g12 g14

113 114 115 116 117 118 119 120 121 122 123 124

g4 g6 g9 g2 g27 g15 g1 g26 g30 g13 g19 g5

125 126 127 128 129 130

g8 g23 g21 g25 g3 g22

201 202 203 204 205 206

g10 g13 g12 g19 g18 g21

207 208 209 210 211 212 213 214 215 216 217 218

g6 g22 g17 g7 g15 g1 g3 g24 g27 g14 g9 g28

219 220 221 222 223 224 225 226 227 228 229 230

g11 g4 g29 g20 g2 g25 g8 g5 g26 g23 g30 g16
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treatment as well as other factors. In cases with lots of treatments
and tests of significance, multiple comparison corrections are
recommended; see refs. [11] and [12] for more information.

Assume the experimental study investigating yield as a response
to genotype and the associated experimental design as described
before. The code for the analysis of that design may be as follows:

yield<- c(5,2,7,6,4,9,7,6,7,9,6,2,1,1,3,2,4,6,7,9,8,7,6,4,3,2,2,1,1,2,1,1,2,

4,5,6,7,8,6,5,4,3,1,1,2,5,4,2,7,6,6,5,6,4,5,7,6,5,5,4) data<-data.
frame(plan$book,yield)

modelPBIB<-with(data,PBIB.test(block,Genotype,replication,
yield,k¼3,console¼TRUE))

Requests for various outputs from the model may include the
following:

Parameter Estimates (e.g., head(modelPBIB $ means))

Fit Statistics (e.g., head(modelPBIB $ comparison))

Analysis of Variance Table head (modelPBIB$comparison) (e.g.,
summary(modelPBIB))

4 G2F Greenhouse Study

The goal of this study, conducted in 2017 in the Greenhouse
Innovation Complex at the University of Nebraska-Lincoln, was
to assess the heritability and spatial/temporal effects in a high-
throughput automated greenhouse environment on maize biomass
using the Genomes2Fields (G2F) diversity panel [6]. Thirty-two
maize inbreds were used, including B73 and 31 lines grown and
phenotyped under a variety of field conditions in 2014 and 2015.
The associated field data from 2014 is available from https://doi.
org/10.7946/P2201Q, and the RBG images from the greenhouse
study are available from http://plantvision.unl.edu/. Imaging
started 8 days after planting, with watering to target a weight of
540 g, and continued until day 39 after planting.

The area available in the greenhouse for this study contained
96 pots arranged in 8 rows and 12 columns. With 32 genotypes,
the question arose regarding the optimal design, i.e., the choices of
b and r. As each experimental unit would be relatively expensive and
limited resources were available, the choice was made to use an
incomplete block design (design.alpha) in which tables of blocks
are rectangular, col by row, and row < col. The number of treat-
ments, i.e., genotypes, was b � k ¼ 32 and the number of experi-
mental units was r � b � k ¼ 96. This type of incomplete block
design is known as an alpha lattice design [10]. Alpha lattice designs
are resolvable, i.e., the incomplete blocks group together into super-
blocks that are complete. The results can be analyzed with ANOVA
(and restricted maximum likelihood) or functional modeling
approaches [13–15].
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The following code will generate an alpha lattice design for this
study:

trt<-c(paste(“t”,1:32,sep¼“”))

design.alpha(trt¼trt,k¼4,r¼3,serie¼1,seed¼2002)

plan<-outdesign$book

write.table(plan, “alphalattice.txt”, row.names¼FALSE, sep¼“\t”)

Below is some information about the resulting design:

Alpha Design (0,1) – Serie III

Parameters Alpha Design

¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
Treatments: 32

Block size: 4

Blocks: 8

Replication: 3

Efficiency factor

(E) 0.746988

Here is what the design looks like (see Table 5).

Table 5
Alpha lattice design (design.alpha)

11 12 13 14 11 12 13 14 11 12 13 14

g28 g16 g4 g2 g1 g4 g5 g18 g13 g15 g31 g29

21 22 23 24 21 22 23 24 31 32 33 34

g13 g21 g25 g30 g3 g27 g17 g29 g10 g5 g9 g28

31 32 33 34 31 32 33 34 41 42 43 44

g10 g31 g20 g8 g6 g30 g7 g31 g18 g30 g14 g20

41 42 43 44 41 42 43 44 41 42 43 44

g27 g7 g9 g19 g10 g11 g23 g19 g2 g1 g27 g11

51 52 53 54 51 52 53 54 51 52 53 54

g32 g6 g1 g12 g12 g16 g20 g21 g8 g4 g26 g7

61 62 63 64 61 62 63 64 61 62 63 64

g18 g3 g15 g23 g26 g32 g25 g2 g24 g12 g3 g25

71 72 73 74 71 72 73 74 71 72 73 74

g11 g17 g24 g22 g9 g13 g22 g8 g17 g6 g23 g21

81 82 83 84 81 82 83 84 81 82 83 84

g29 g5 g26 g14 g14 g15 g28 g24 g32 g19 g22 g16
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The full design will be output and saved to the file alphalattice.
txt in the working directory.

For the analysis of this design, effects of interest include block
and genotype effects on a given trait. The statistical model can be
expressed as

yij ,t ¼ μt þ αi,t þ γν i,jð Þ,t þ εij ,t ,

where i¼ block, ν(i, j)¼ plant j in block i, t¼ time. This model can
be used to examine effects due to treatment (genotype).

Assume that biomass is the outcome of interest. Then some
code for the data analysis is as follows:

biomass <-c(biomass)

data<-data.frame(outdesign$book,biomass)

modelPBIB<-with(data,PBIB.test(block,trt,replication,biomass,
k¼4,console¼TRUE))

plot(modelPBIB,las¼2)

The resulting plot looks something like Fig. 1 depending on
the values of biomass.

Fig. 1 Analysis of G2F alpha lattice design
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In Fig. 1 the genotypes are noted along the x-axis and biomass
is the y-axis. Groups of genotypes with significant differences in
biomass are shown in different colors with different group labels.

5 Conclusions

Experimental design is a critical part of any research study. Use of a
proper design provides some level of confidence that analyses of the
resulting data will be sufficient to answer the scientific hypotheses.
The designs presented in this chapter have a long history in agricul-
ture and apply in the modern setting of HTPP. Although green-
houses provide a higher level of environmental control than most
field conditions, there remains variability within the greenhouse
microclimate that can impact the results of a study. The use of
statistical design can help separate the effects of treatments/condi-
tions/genotypes from other potentially confounding factors. This
improves reproducibility of any findings.

In addition to the agricolae package, the R language has several
other packages that contain tools for experimental design (such as
desplot [16] and data from agridat [17]). A reliable source for
information about such packages is the CRAN Task View on
Design of Experiments and Analysis of Experimental Data
(https://CRAN.R-project.org/view¼ExperimentalDesign). This
page contains a special section on designs for agricultural and
plant breeding experiments as well as a list of key references.
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9. Atwood C (1969) Optimal and efficient
designs of experiments. Ann Math Stat 40:
1570–1602

10. He J, Li J, Huang Z, Zhao T et al (2015)
Composite interval mapping based on lattice
design for error control may increase power of
quantitative trait locus detection. PLoS One
10(6):1–14. https://doi.org/10.1371/jour
nal.pone.0130125

11. Tamhane A (1996) Design and analysis of
experiments for statistical selection, screening
and multiple comparisons. Technometrics
38(3):289–290. https://doi.org/10.1080/
00401706.1996.10484514

12. Gadbury G, Garrett K, Allison D (2009) Chal-
lenges and approaches to statistical design and

Experimental Design for Phenotyping 67

https://cran.r-project.org/view=ExperimentalDesign
https://cran.r-project.org/view=ExperimentalDesign
https://doi.org/10.1186/s13007-015-0056-8
https://doi.org/10.1186/s13007-015-0056-8
https://doi.org/10.1038/s41467-017-01450-2
https://doi.org/10.1038/s41467-017-01450-2
https://www.r-project.org
https://doi.org/10.1371/journal.pone.0130125
https://doi.org/10.1371/journal.pone.0130125
https://doi.org/10.1080/00401706.1996.10484514
https://doi.org/10.1080/00401706.1996.10484514


inference in high-dimensional investigations.
Methods Mol Biol 553:181–206. https://doi.
org/10.1007/978-1-60327-563-7_9

13. Liang Z, Qiu Y, Schnable J (2012) Distinct
characteristics of genes associated with
phenome-wide variation in maize (Zea mays).
bioRxiv (2019). https://doi.org/10.1101/
534503

14. Patterson H, Williams E (1976) A new class of
resolvable incomplete block designs. Biome-
trika 63(1):83–92. https://doi.org/10.1093/
biomet/63.1.83

15. Xu Y, Qiu Y, Schnable J (2018) Functional
modeling of plant growth dynamics. Plant Phe-
nome J 1:170007. https://doi.org/10.2135/
tppj2017.09.0007

16. Wright K (2019) Desplot: plotting field plans
for agricultural experiments, v. 1.5. Corteva
Agriscience, Johnston. https://CRAN.R-proj
ect.org/package¼desplot

17. Wright K (2018) Agridat: agricultural datasets,
v. 1.16. Corteva Agriscience, Johnston.
h t t p s : // C R A N . R - p r o j e c t . o r g /
package¼agridat

68 Jennifer L. Clarke et al.

https://doi.org/10.1007/978-1-60327-563-7_9
https://doi.org/10.1007/978-1-60327-563-7_9
https://doi.org/10.1101/534503
https://doi.org/10.1101/534503
https://doi.org/10.1093/biomet/63.1.83
https://doi.org/10.1093/biomet/63.1.83
https://doi.org/10.2135/tppj2017.09.0007
https://doi.org/10.2135/tppj2017.09.0007
https://cran.r-project.org/package=desplot
https://cran.r-project.org/package=desplot
https://cran.r-project.org/package=desplot
https://cran.r-project.org/package=agridat
https://cran.r-project.org/package=agridat
https://cran.r-project.org/package=agridat


Part II

Novel Algorithms for HTP



Chapter 8

High-Throughput Extraction of Seed Traits Using Image
Acquisition and Analysis

Chongyuan Zhang and Sindhuja Sankaran

Abstract

Seed traits can easily be assessed using image processing tools to evaluate differences in crop variety
performances in response to environment and stress. In this chapter, we describe a protocol to measure
seed traits that can be applied to crops with small grains, including legume grains with little modification.
The imaging processing tool can be applied to process a batch of images without human intervention. The
method allows evaluation of geometric and color features, and currently extracts 11 seed traits that include
number of seeds, seed area, major axis, minor axis, eccentricity, and mean and standard deviation of
reflectance in red, green, and blue channels from seed images. Protocols or methods, including the one
described in this chapter, facilitate phenotyping seed traits in a high-throughput and automated manner,
which can be applied in plant breeding programs and food processing industry to evaluate seed quality.

Key words Seed phenotyping, Feature extraction, Image processing, Grains

1 Introduction

Seed traits such as number of seeds and seed size are directly
associated with crop productivity [1]. In addition, traits such as
seed size and color are also associated with seedling vigor [2–5] and
biochemical composition [6–9], and are important quality traits.
The economics of produce (e.g. green pea, chickpea) depends on
these factors [10]. Seed traits are often evaluated as a part of
breeding trials and/or to assess stress response [1, 11, 12].

Conventionally, seed traits are evaluated using sieve analysis,
estimating hundred or thousand seed weight, and color charts/
scales. These methods can be subjective, labor-intensive, and very
limited on the amount of data that can be acquired. Imaging with
processing tools offer simple, reliable technique to extract number
of features with high accuracy and throughput. Moreover, image
features such as uniformity in seed size (that can also contribute to
uniform maturity under field conditions) or seed size distribution,
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which usually cannot be easily assessed using conventional meth-
ods. In this work, we describe a simple technique for extracting
seed traits for grain crops.

2 Materials

2.1 Imaging System 1. Detach the cover of the office scanner (e.g., Epson Perfection
V39, Epson America, Inc., Long Beach, CA, USA), and clean
the glass top with 70% ethanol solution to remove any dirt and
stain.

2. Use cardboard box covered with black paint inside to prevent
interference from external light source, and that can serve as a
background for the images (see Notes 4.1., 1 and 2).

3. Connect the computer to the scanner via software provided by
the scanner manufacturer to acquire images (seeNote 4.1., 3).

2.2 Auxiliary Items 1. Place the reference standard (Spectralon® Diffuse Reflectance
Standards, SRS-99-020, Labsphere Inc., North Sutton, NH,
USA) to correct for image reflectance for color measurements
during image processing (see Note 4.2., 1).

2. Use size standard such as US Dime (17.91 mm in diameter) to
convert the seed size from number of pixels to measurement
units (mm, cm) (see Note 4.2., 2).

3. Place blue tape marker (as blue is not found in seeds) next to
other auxiliary items to prevent the scanner from switching to
back-and-white mode automatically.

2.3 Seeds 1. Clean the seeds as much as possible (especially when the seeds
are small) to calculate number of seeds and hundred or thou-
sand seed weight accurately during image processing.

2. Use the scanner system for small seeds such as wheat, camelina,
and quinoa (for bigger seeds, see Note 4.1., 3).

2.4 Software Use customized image-processing algorithm developed in
MATLAB® (2018, MathWorks Inc., Natick, MA, USA) to extract
seed features (see Note 4.3., 1).

3 Methods

3.1 Image

Acquisition

1. Place seeds on the glass top of the scanner with some space
between seeds and the auxiliary items mentioned above and
cover the scanner with cardboard box described above (see
Notes 4.4., 1 and 2).
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2. Acquire images of seeds using the scanner system with 600 dpi
(dots per inch).

3. Save the images as 8-bit images in JPG format.

3.2 Image

Processing

Use the customized image-processing algorithm to automatically
analyze acquired images. The image-processing steps are as
described below:

1. Identify the reference panel automatically from original image
(Fig. 1a using a mask shown in Fig. 1b), and correct the image
based on incident light conditions. This step is important for
color analysis and not for shape or size analysis. The digital
number of each channel (red, green, and blue) is corrected by
multiplying each pixel with a correction factor (255/mean
pixel value of reference panel for the corresponding channel)
to calculate corrected digital number that represents
reflectance.

2. Create a mask image to separate the foreground of each image
(seeds, blue tape marker, and size reference coin) using a set of
thresholds (e.g., R > 40, G > 30, B > 10 for quinoa), as shown
in Fig. 1c (see Note 4.5., 1).

3. Apply morphological operations to remove noise and increase
the quality of the mask. For example, filling the gaps/holes
within objects of foreground, removing small objects that are
not seed, etc., as shown in Fig. 1d.

4. Apply watershed operation to separate seeds that are connected
to each other, as shown in Fig. 1d.

5. Before extracting features from seeds, convert seed size from
number of pixels to millimeter using a measurement coefficient
calculated based on the major axis of the reference object (e.g.,
coin size).

6. Remove the coin, the blue tape marker, and objects that are too
small or big to be seeds, as shown in Fig. 1e.

7. Extract features fromeach seed and calculate the (trimmed)mean
values of seed features that represent the sample (variety, treat-
ment, etc.). Before calculating the mean values of seed features,
the biggest and smallest 15% of seeds (in terms of area) are
removed to reduce the influence from connected and broken
seeds and debris. Currently, the image-processing algorithm
extracts 11 features from each image such as number (calculated
before trimming), area, major axis, minor axis, eccentricity, and
mean and standard deviationof reflectance in red, green, andblue
channels of seed images (seeNotes 4.5., 2–5).

8. Export the overlapping images of detected seeds and
corresponding original images for quality inspection, shown
in Fig. 1f, and seed features extracted from all the images as
Excel file for further statistical analysis.
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4 Notes

4.1 Imaging System 1. Blocking external light source is important to create standar-
dized condition for automated image processing and robust
color feature extraction.

2. Select the right background to increase the efficiency of auto-
mated image processing. Background color will depend on the
seed color. For dark colored seed, light backgrounds are
recommended. In addition, coarse background can prevent
specular reflection.

Fig. 1 Images showing processing procedure. Notes: (a) Original image of quinoa seeds and auxiliary items;
(b) mask used to identify the reflectance panel; (c) mask used to separate foreground objects; (d) zoom-in
images showing seeds/debris and connected seeds (the two on the top), and retained seeds (highlighted by
white) with debris removed and seeds separated by watershed operation (the two at the bottom); (e) seed
mask in which only seeds are retained; (f) overlapping of seed mask and original image, with seeds
highlighted, while other objects are dimmed
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3. Phenotyping box similar as described in previous studies
[13, 14] can also be used with customer-grade digital/RGB
camera to phenotype bigger seeds, tubers, or other fruits/
vegetables (cherry and pea). Similar applications can be found
in literature [10, 15, 16].

4.2 Auxiliary Items 1. Recommended reference standard represents 99% reflectance
from 250 to 2500 nm wavelength. However, other standards
providing 99% reflectance or higher in visible range
(380–740 nm) can be used.

2. Size standard can be of user choice, which should be relatively
thin to avoid shadows and other image anomalies (2D object).

4.3 Software 1. The image-processing algorithm can be modified easily to
adapt to different kinds of seeds and image resolution, to
increase the features of interest to be extracted, etc. Image
Processing Toolbox™ and Statistics and Machine Learning
Toolbox™ in MATLAB are required to run this algorithm.
Alternatively, ImageJ, PlantCV, GrainScan, SmartGrain, or
others [10, 16–19] can be utilized for image processing and
analysis.

4.4 Image

Acquisition

1. Separating the seeds one by one during imaging is not neces-
sary, as the image-processing algorithm can separate the seeds
automatically. However, it is not recommended to place seeds
as a clump, where dozens of seeds are touching or overlapped
with each other.

2. It is suggested that the auxiliary items are places in a relatively
fixed locations so that auxiliary items can be removed by mask-
ing these fixed locations. Detection and masking of auxiliary
items automatically is possible, but it will slow down the pro-
cessing speed.

4.5 Image

Processing

1. The threshold may need to be adjusted based on seeds, back-
ground, and settings during imaging.

2. The standard deviation of reflectance in a channel is the mean
of standard deviation of reflectance of the central 70% seeds
after elimination of 15% on either directions as mentioned
above (in terms of size/area) in a channel.

3. More color features such as mean and standard deviation of
channels in HSV color space, Lab color space, and textural
features can also be extracted by modifying the code [14].

4. Image-processing analysis can be adapted based on user needs.

5. MATLAB® code and sample images are available in
Zenodo [20].

Seed Trait Analysis 75



References

1. Komyshev E, Genaev M, Afonnikov D (2017)
Evaluation of the SeedCounter, a mobile appli-
cation for grain phenotyping. Front Plant Sci 7:
1990

2. Ries SK, Everson EH (1973) Protein content
and seed size relationships with seedling vigor
of wheat cultivars. Agron J 65:884–886

3. Evans LE, Bhatt GM (1977) Influence of seed
size, protein content and cultivar on early seed-
ling vigor in wheat. Can J Plant Sci 57:929–
935

4. Spilde LA (1989) Influence of seed size and
test weight on several agronomic traits of bar-
ley and hard red spring wheat. J Prod Agric 2:
169–172

5. Jahnke S, Roussel J, Hombach T et al (2016)
phenoSeeder – a robot system for automated
handling and phenotyping of individual seeds.
Plant Physiol 172:1358–1370
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Chapter 9

ColourQuant: A High-Throughput Technique to Extract
and Quantify Color Phenotypes from Plant Images

Mao Li, Margaret H. Frank, and Zoë Migicovsky

Abstract

Color patterning contributes to important plant traits that influence ecological interactions, horticultural
breeding, and agricultural performance. High-throughput phenotyping of color is valuable for understand-
ing plant biology and selecting for traits related to color during plant breeding. Here we present Colour-
Quant, an automated high-throughput pipeline that allows users to extract color phenotypes from images.
This pipeline includes methods for color phenotyping using mean pixel values, a Gaussian density estimator
of CIELAB color, and the analysis of shape-independent color patterning by circular deformation.

Key words Color phenotyping, High-throughput image acquisition, Color patterning, Continuous
color distribution, Shape-independent color quantification

1 Introduction

Color patterning contributes to important ecological, horticul-
tural, and agricultural traits. Developing high-throughput
(HT) phenotyping methods for color analysis is essential for fur-
thering our understanding of plant biology and providing accurate,
quantitative information for plant breeding.

Morphological diversity in flower color plays a significant role
in determining pollinator recruitment, and as a result, pollinator
preference may result in selection for flower colors. For example,
across 206 Australian angiosperm species, flowers pollinated by
birds differed significantly in color from those visited by insects
[1]. Pollinators may also exert selective pressure on color variation
among close relatives, as evidenced by the hummingbird-pollinated
clade Iochrominae (Solanaceae) [2].

In addition to driving plant-pollinator relationships, color is an
essential component of the ornamental plant industry and has a
direct influence on the commercial value of given cultivars
[3, 4]. Indeed, the desire for new colors has been a major driver
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behind the use of biotechnology in ornamental horticulture, espe-
cially for the cut flower industry [5].

Food color can also significantly influence flavor perception
[6, 7], steering consumer choices. For fresh market produce, con-
sumers prefer bright colors, which can indicate freshness and desir-
able nutrient content [8]. Novel fruit color may also add value to
new fruit varieties. For example, in one study, 44% of consumers
were willing to pay 50 cents more for a pear with red skin, despite
its poor flavor [9]. However, traditional assessment of seedlings for
color may be time-consuming for large numbers of plants and vary
based on observer. Thus, efficient and accurate phenotyping of
color and color patterning may serve as an important tool for
plant breeding.

Quantitative color measurements may be used directly for cul-
ling plants without a desirable trait, or, in instances where the color
is not apparent at the seedling stage (e.g., fruit on trees), the data
can be used instead for genetic mapping. Techniques such as link-
age mapping and genome-wide association studies (GWAS) con-
nect phenotype data with genotype data to uncover genetic markers
correlated with a trait of interest. Genetic mapping is improved by
precise, quantitative data [10]. Early screening of plants using
genetic markers allows the breeder to reduce the number of plants
that is propagated without a trait of interest and therefore is espe-
cially cost-effective in perennial crops that have a lengthy juvenile
phase, such as apples and grapes [11]. As a result, genomics-assisted
breeding for color traits including peach blush [12] and sweet
cherry fruit color [13] are already underway.

HT phenotyping can also be used to efficiently detect and
diagnose pathogen spread in diseased plants [14], facilitating
genetic mapping of disease resistance. Genomics-assisted breeding
of disease resistance eliminates the need for the time-consuming
and expensive task of inoculating plants. Digital imaging improves
ease of scoring for infection and allows for a quantitative measure-
ment of characteristics that would otherwise be missed. For exam-
ple, a study of Arabidopsis thaliana infected with Botrytis cinerea
reanalyzed images from a previous GWAS for visual traits, including
color, finding that some resistance genes impacted color, but not
the shape or size of lesions [15].

Among the benefits of HT color phenotyping is its potential to
dramatically improve our characterization and understanding of
plant diversity, such as plant-pollinator relationships, and have a
direct impact on plant breeding for important traits including
appearance and disease [4]. Here we present ColourQuant, meth-
ods for automatedHTcolor phenotyping usingmean pixel values, a
Gaussian density estimator of CIELAB (L*a*b*) color, and the
analysis of shape-independent color patterning by circular
deformation.
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2 Materials

1. Flatbed scanner (e.g., Epson Perfection V550 Scanner) for flat
images, camera, and light box for three-dimensional objects.

2. Color card (e.g., Kodak KOCSGS color separation guide).

3. MATLAB (https://github.com/maoli0923/ColourQuant).

3 Methods

3.1 Image

Acquisition

1. For flat objects such as leaves, place samples on a flatbed
scanner with a color card in the corner.

2. For three-dimensional objects, such as fruit, images may be
acquired by placing the samples inside of a light box with a
color card in the corner and photographing using a camera.

3. A few rounds of sample images should be collected in order to
optimize lighting and resolution. It is useful to have enough
light to capture details while reducing glare (see Note 1).

4. Color images can be saved in a variety of file formats. Lossless
compression methods retain complete pixel information; these
include TIF LZWand PNG file formats. JPG files are produced
using Lossy compression, which reduces pixel information,
making the files smaller, but less informative. Lossless compres-
sion is generally preferred for color image analysis; however,
Lossy compression works in most cases and takes up less com-
puter storage. The right file format will depend on the size of
the experiment, hard drive space, and desired experimental
output (see Note 2).

5. Color correct images. One method is to perform white balance
for the image. In the example pictured, first extract and
average R, G, and B values (denoting as avgR, avgG, and
avgB) for the white swatch in the Kodak KOCSGS color sepa-
ration guide. Then add (255-avgR), (255-avgG), and
(255-avgB) to R, G, and B of all the pixels in the image. As a
result, the RGB value of the white swatch on the color guide is
equal to 255 and the image color is white balanced (Fig. 1, code
lines 5–29).

3.2 Object

Segmentation

To separate the object (e.g., leaf, fruit) from the background, first
convert the image into a binary image in which object and back-
ground are in white and black (or black and white), respectively.
Many different segmentation methods exist, such as adaptive
thresholding or learning algorithms [16]. In addition, parameters
may need to be adapted based on factors such as brightness and
contrast of the image with respect to the background, surrounding
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shadows along the sample margins, and image quality. One object
segmentation method that generally works well for scanned as well
as photographed objects is outlined below (code lines 31–69) and
displayed in Fig. 1.

1. Extract the RGB matrix from the image and convert it into
hue-saturation-value (HSV) format.

2. In HSV, most background pixels become gray, and it is possible
to set a threshold that separates gray values from true object

Fig. 1 Overview of ColourQuant pipeline going from image acquisition to global pixel quantification. Flat
samples can be imaged using a scanner or digital camera, whereas three-dimensional samples are easiest to
capture on a copy stand (a). For both approaches, the inclusion of a color card is essential for performing post-
acquisition color balance. Color thresholding can be used to segment samples from the surrounding
background (b), and then color values for isolated samples can be extracted and quantified using a three-
step process. First, pixels are converted from RGB to L*a*b* continuous color space. This space is plotted in a
three-dimensional point cloud and a Gaussian density estimator function is applied to the point cloud, in order
to quantify the color composition of the sample (c)
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values. In our example, this value was Saturation > 0.15, but it
will need to be customized for each experiment (code line 39).

3. If there are multiple objects in an image (e.g., coleus image in
Fig. 1), detect each connected component and segment out the
object of interest (e.g., large enough objects, code lines 44–51)
for color analysis.

3.3 Color Analysis The first step in color analysis described here is to convert the color
matrices from RGB to L*a*b* color (code lines 78–85). L*a*b*
color is a continuous color space that consists of three descriptors:
L* ¼ “lightness,” a* ¼ “green to magenta,” and b* ¼ “blue to
yellow,” displayed in Fig. 1.

3.3.1 Mean and Variance For objects with nearly solid colors or relatively simple patterns,
calculating the mean and variance for L*, a*, b* color values for
each image is informative (code lines 72–91). These data can be
summarized visually using a scatterplot with each object (e.g.,
apple fruit) displayed (Fig. 2).

3.3.2 Gaussian Density

Estimator

For objects with complex color patterns, a robust and more com-
prehensive measurement tool, such as a Gaussian density estimator
(GDE), needs to be applied.

1. Treat 3D L*a*b* color matrices as 3D point clouds with
coordinates (L*, a*, b*).

2. To reduce the amount of time needed for the computation, we
find the extreme values for L*, a*, and b* through 3D point
clouds of the population (code lines 88–90). Then working 3D
space can be bounded by a box with ranges based on the
extreme values L*, a*, and b*. In our example, L* ranges
between �10 and 110, a* ranges between �40 and 50, and
b* ranges between �30 and 74 (code lines 94–97).

3. Extract color distribution and frequency for each image by
applying a GDE to the L*a*b* point cloud (code lines
98–112). The GDE directly estimates density from the point
cloud data; thus, it is a function defined on a 3D space
(depicted in Fig. 1).

4. The GDE descriptor captures statistical color distributions;
however, it does not provide information regarding spatial
patterning. To capture spatial color information, the object
can be segmented into distinct zones. One method is to define
these zones based on normalized pixel distances (code lines
114–136), for example, the “border,” defined as the outer
15% of pixels from the leaf boundary to the centroid; the
“center,” defined as the inner 75% of pixels from the centroid
to the boundary; and “full,” defined as the entire color matrix.
These zones should be customized for each study (code lines

ColourQuant: High-Throughput Colour Phenotyping 81



135–136). The distance between any two objects is calculated
by

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
full þ d2

border þ d2
center

q

where d represents the L2 distance (the square root of the
sum of the squared vector values) between GDE functions for
each corresponding zone. This calculation determines the dif-
ference in color patterns between two objects based on their
similarity across all zones (code lines 152–156).

3.3.3 Circular

Deformation

To examine the impact of color while reducing the effect of shape,
it is possible to deform each object (e.g., coleus leaf) into a disk
using thin plate spline (TPS) interpolation [17]; algorithm is
from [18].

1. Align all the objects to the same orientation (e.g., rotating the
leaf so that the tip is on the top and base is on the bottom). This
could be achieved by aligning a few manually or automatically
labeled landmarks (e.g., leaf tip and base, code lines 163–176).

2. Normalize the object so that the square root of the average
squared distances of all the points on the outline to the center is
1 (code lines 177–178).
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Fig. 2 Mean “L*” and “a*” pixel values displayed as a scatterplot of apple
samples. In continuous color space, L* represents the dark-to-light spectrum of
values and a* represents green-to-magenta space. In this example, apple
samples spread from light green to deep red across the scatterplot
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3. Set the points on the outline as control points.

4. Use TPS to deform the object to force the control points to be
the points on the circle with radius 1 (Fig. 3a) and save the
image with a transparent background (code lines 182–199).

5. Resize the circular image with a fixed dimension (e.g.,
70 � 70). Extract L*a*b* colors from a 14,700-dimensional
vector (4900 pixels, each has three values, code lines 202–212).
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Fig. 3 Example of the thin plate spline method applied to coleus leaves to
analyze color composition independent of sample shape. In this example, coleus
leaves are deformed into circles using the thin plate spline method (a), and then
plotted into PCA space based on their global pixel composition (b). Eigen leaves
that explain the largest contribution to color variance across the sample
population can be extracted from this analysis (c)
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6. It is possible to perform principal component analysis on these
vectors (Fig. 3b) and get eigen colors (Fig. 3c) that show color
pattern variation (code lines 214–232).

4 Notes

1. Minimizing shadows around the edges of your samples will also
help with streamlining the downstream image processing steps.

2. For large experiments, we recommend testing whether a Lossy
file format (e.g., .jpg format) is appropriate for your study, or
investing in additional data storage.

5 Conclusions

ColourQuant enables the efficient extraction of quantitative color
distribution and patterning from a large set of samples. It can be
applied to virtually any subject, and flexibly adapted to study differ-
ent color patterns and investigate color patterning irrespective of
sample shape. The output from this method includes a table of
color values that correspond to each sample or subsample, for
which there are numerous visualization and statistical packages
built in R and MATLAB that can be used to analyze and plot
the data.
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Chapter 10

Using Cameras for Precise Measurement
of Two-Dimensional Plant Features: CASS

Amy Tabb, Germán A. Holguı́n, and Rachel Naegele

Abstract

Images are used frequently in plant phenotyping to capture measurements. This chapter offers a repeatable
method for capturing two-dimensional measurements of plant parts in field or laboratory settings using a
variety of camera styles (cellular phone, DSLR), with the addition of a printed calibration pattern. The
method is based on calibrating the camera using information available from the EXIF tags from the image,
as well as visual information from the pattern. Code is provided to implement the method, as well as a
dataset for testing. We include steps to verify protocol correctness by imaging an artifact. The use of this
protocol for two-dimensional plant phenotyping will allow data capture from different cameras and
environments, with comparison on the same physical scale. We abbreviate this method as CASS, CAmera
aS Scanner.

Key words Camera calibration, Image measurement, Plant phenotyping

1 Introduction

Images are used with increasing frequency in plant phenotyping for
a variety of reasons. One reason is the ability to remotely capture
data without disturbing the plant material, while another is the
promise of high-throughput phenotyping via image processing
pipelines such as those enabled by PlantCV [3]. However, to
acquire precise data suitable for measurements of
two-dimensional objects, the prevailing method in the community
is to use a flatbed scanner. Shape analysis of leaves has used scanned
images for apple, grapevine, Claytonia L., and a mixture of species
[6–8, 11]. Scanners have also been used to analyze the shape of
pansy petals [14] and Vitis vinifera L. seeds [9].

Cameras have been used to phenotype a range of structures and
sizes, such as cranberry fruit shape and size [2] and root system
architecture [1]. In both of these works, a disk of known diameter is
added to the scene for scaling purposes.
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1.1 Camera

Calibration

The protocol in this paper transforms images acquired from a
standard consumer camera such that measurements in pixels are
representative of a planar scene. What this means in more detail is
that we have emulated a flatbed scanner with a consumer camera;
angles between lines are preserved, as are distance ratios. Physical
measurements can be recovered from image measurements by
dividing by the number of pixels per millimeter, similar to flatbed
scanners.

This method is needed because measurements of
two-dimensional objects, when done in image space of camera-
acquired images, are subject to diminished accuracy from physical
perturbations. A small movement of the camera up or down will
give the erroneous impression that an object is larger or smaller in
terms of pixels. Image pixels are also subject to radial distortion and
projective geometry that allows three-dimensional objects to be
viewed in a two-dimensional image. In other words, 100 pixels
on one side of the image may not represent the same physical
dimensions as 100 pixels in another portion of the image.

The method at the center of this protocol makes use of estab-
lished camera calibration procedures to mitigate the problems of
the preceding paragraph. Camera calibration is the estimation of
parameters that relate three coordinate systems, image, camera, and
world, to each other. Hartley and Zisserman [5] is a good text on
camera calibration. When camera calibration is completed, the
coordinate systems have been defined relative to a standard, and
the relationships of one coordinate system to another are known.

Calibration patterns are used to define coordinate systems rela-
tive to a standard. These may take many forms; in this work we use
aruco patterns [4]; laid out in a grid, patterns define the X–Y plane
of the world coordinate system as in Fig. 1. The camera captures an
image of the pattern to aid in defining the world coordinate system
with respect to the image and camera coordinate systems.

Usually, many views of the pattern are captured to solve an
optimization problem to fully calibrate the camera [15]. However,
the structure from motion (SfM) community [10, 13] began
exploiting EXIF data, or exchangeable image file format. EXIF
data is a type of metadata that is common in today’s consumer
cameras. Within SfM, the camera’s sensor size and some data from
the EXIF file are used to generate an initial solution for some of the
camera calibration parameters. We have borrowed this practice for
calibrating in the phenotyping context.

1.2 Using a Camera

as a Scanner

The original intent of this method was to develop a high-
throughput substitute for slow flatbed scanners. The steps in Sub-
heading 3 will give details for the user. A brief overview of the code
is provided with this chapter: (1) calibrates the camera, per image,
(2) computes the homography to transform the current image to
the X–Y grid of the world coordinate system, and (3) warps the
current image to match the world coordinate system’s X–Y grid.
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Figure 2 shows the input images and the output of the method.
From the output images, users can apply their own computer vision
techniques to identify the objects of interest. Measurements in
pixels can be transformed to physical units by dividing by the
user-selected scaling factor.

It is important to note a strong assumption when using this
method, which is that the object is planar. In practical terms, the
user should either use objects that are roughly planar or consider
the footprint of the object on the calibration pattern plane. This
method is not suitable for measuring objects that are nonplanar,
such as freestanding branches with the calibration pattern behind.

To verify that the protocol has been performed correctly, we
also include instructions for verifying that the measurements are
correct by way of an artifact.

2 Materials

The materials needed are:

1. Calibration pattern.

2. Camera.

3. Artifact.

4. Code.

Fig. 1 Example of a grape cluster. This is a three-dimensional object, but we are
interested in measuring aspects of the object where it meets the calibration
pattern. Top row: input images of the same grape cluster, left two images are
from an Apple iPhone 6 (cellular phone camera), right two images are from a
Canon EOS 60D DSLR camera. Bottom row: results of applying the method for
the image above, where every 10 pixels equal 1 mm. Full images are available in
camera-as-scanner data
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The preparation of the calibration pattern is documented in
step 1, Subheading 3. The style of the camera is not specific to this
method, and should be chosen for the user’s convenience. This
method relies on the extraction of EXIF tags, so the camera should
write EXIF data. At the time of this writing, this feature is common
in consumer and cellular phone cameras. An artifact of a known size
is needed to check that the protocol has been implemented cor-
rectly. In our example, we chose a playing card, as shown in Fig. 3.
A natural choice for an artifact may be a ruler.

The code and test datasets are provided in [12]. Within [12] are
two programs and the data source: aruco-pattern-write, camera-as-
scanner, and data camera-as-scanner data. To prepare for the
experiments, install the code and run the examples.

3 Methods

1. Prepare the aruco calibration pattern. The pattern should be
printed such that x and y axes are equally scaled, and attached to
a flat surface. A pattern is provided in the [12] resource, as well
as code for generating a new pattern via aruco-pattern-write
and instructions in its README. Considerations when

Fig. 2 An aruco calibration pattern. This particular example has been printed on aluminum, so it can be
cleaned during experiments, which is convenient in plant research
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generating a new pattern are inNote 1. The option of printing
patterns on metal is discussed in Note 2.

2. Arrange the object to be measured on top of the aruco pattern
printout. If segmentation of the object from the scene is
desired using an image processing technique, we suggest plac-
ing a solid-colored paper or fabric in between the object and
the pattern. See Note 3 for more details.

3. Acquire images of the object, including at minimum a
one-layer border of aruco tags on all four sides of the image.
The image should generally be in focus, and acquired such that
the camera body is parallel to the aruco pattern plane. How-
ever, the alignment does not have to be exact. See Figs. 2 and 3
for examples. If using a cell phone camera, do not zoom.
Standard image formats are all acceptable, as long as EXIF
tags are generated.

4. Acquire an image of an artifact (such as a ruler) of known size
with the same protocol as in step 3. We suggest that the artifact
be rectangular in shape to allow for ease of measurement.

5. Prepare the image and format information to run camera-as-
scanner. This step assumes that the code has been installed
according to its instructions, mentioned in Subheading 2.

Fig. 3 Left: Apple iPhone6 camera images of a 2.5 � 3.5 inch (63.5 mm � 88.9 mm) playing card. Right:
results of applying the method for the image above, where every 10 pixels equal 1 mm. Black lines indicate
measurements of the card in pixels. The horizontal line was 635.02 pixels, so is equivalent to 63.502 mm as
measured by this system. The vertical line was 888.07 pixels, which is equivalent to 88.807 mm
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5.1 The preparation instructions for running the method for a
group of images are given with the README of repository
camera-as-scanner. Create a test directory.

5.2 Look up the camera’s sensor size and convert to milli-
meters. This information may be found in the manufac-
turer’s provided information that came with the camera, or
can be found online. Fill in the sensor size parameters in
the appropriate file as indicated in step 5.1.

5.3 Measure one of the squares of the printed aruco calibration
pattern, in millimeters. Fill in the square length parameter
of the appropriate file as indicated in step 5.1.

5.4 Move the images of the objects and image of the artifact to
a directory with the name images within the test directory.

5.5 Determine the number of pixels per millimeter np∈ (0,1)
for the transformed images, which will be an argument for
running the code. The choice for np depends on the size of
the object, size of the calibration pattern, and how large
one can tolerate the result image size. Suppose the aruco
calibration pattern print is x mm � y mm. The result
images will be x � np pixels � y � np pixels. See Note 4
for suggestions. In Figs. 2 and 3, 10 was chosen.

6. Run the code camera-as-scanner with three, and optionally
four, arguments: the directory and the specified files and direc-
tory from step 5, an empty output directory, and the number
of pixels per millimeter np. The optional fourth argument is a
Boolean variable, 0 or 1, indicating whether intermediate
results are written. If the variable is 1, the intermediate results
are written; if 0, they are not.

7. Verify that the output is as expected, by inspecting the warped
image corresponding to the artifact. Measure the width of the
artifact in an image manipulation program such as ImageJ,
KolourPaint, the GIMP, Adobe Photoshop, etc.; its units will
be pixels wp. Measure the width of the physical artifact in
millimeters: wmm. The following should be true: wmm ¼ wp

np. If
not, then recheck the steps. The verification process was
demonstrated with the playing card artifact in Fig. 3.

4 Notes

1. Note that the pattern can be scaled up or down to be suitable
for the data acquisition context, such as the image provided in
aruco-pattern-write as an example. It is not necessary for the
camera to view the whole pattern. The patterns are black and
white, so do not need to be printed in color.
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2. In our experiments, we have ordered prints of the patterns on
aluminum. These have been convenient when working with
fruit and plant material, because aluminum prints can be
washed and cleaned. It is important that the aruco patterns
not become occluded with dirt or stains.

3. Concerning segmentation of the object from the scene of aruco
pattern and solid-colored fabric or paper, we suggest that the
solid-colored fabric or paper be chosen such that it is a con-
trasting color compared to the target object. The fabric or
paper should be cleaned or replaced if there are dirt or stains.
The color of the fabric or paper, whatever color is chosen, will
not interfere with the detection of the aruco tags.

4. As np increases, so will the image size. We suggest trying a
range of sizes with a small number of images, such as np ¼ 5,
10, 20, to get a sense of the resulting file size and resolution of
features of interest.
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Chapter 11

Positron Emission Tomography (PET) for Molecular Plant
Imaging

Sergey Komarov and Yuan-Chuan Tai

Abstract

Positron emission tomography (PET) is an imaging technology that measures 3D spatial distribution and
kinetics of radio-tagged biomolecules in a living subject quantitatively and nondestructively. Commonly
used positron-emitting radionuclides include 11C, 13N, and 15O, which are essential elements for plant
growth. Combining radiotracer techniques with PET, this in vivo molecular imaging capability offers plant
biologists a powerful tool for molecular phenotyping research. While PET is widely used clinically for cancer
diagnosis and pre-clinically for drug development, it is an unfamiliar imaging tool for plant biologists. This
chapter introduces the basic principles of PET, factors that affect the quantitative accuracy of PET when
imaging plants, and techniques for administering radiotracers to plants for a variety of molecular plant
imaging applications.

Key words Positron emission tomography, PET, Molecular imaging, Plant phenotyping

1 Introduction

A wide variety of imaging technologies have been adapted by plant
scientists to provide structural and functional information of plants
nondestructively [1, 2]. Depending on the technologies employed,
some are suitable for high-throughput and detailed imaging analy-
sis of a large number of samples in a controlled laboratory settings
[3], while others can operate in the field to collect data from a
natural growing environment [4, 5]. The longitudinal measure-
ments of plants’ morphology and physiology over their life cycles
allow us to establish more accurate biological models to predict the
growth and yield of plants, as well as how plants respond to their
environments [6].

Among all the imaging technologies that measure the pheno-
typic characteristics of plants, positron emission tomography (PET)
technique measures the spatial and temporal distribution of radio-
tagged biomolecules in a whole plant quantitatively. The “tag”
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employed here is a radionuclide that decays through the emission of
a positron—the anti-matter of electron that carries the same mass
but opposite charge of an electron. The emitted positron carries a
significant amount of energy (typically in the range of hundreds of
keVor more). It interacts with the surrounding medium to contin-
uously slow down and eventually annihilate with an electron. The
result of its annihilation is the instantaneous emission of two back-
to-back gamma rays of 511 keVeach (the rest mass of an electron or
a positron). The detection of two 511 keV gamma rays simulta-
neously is the underlying principle of a PET scanner. One can use
two planar detectors to sandwich an object to obtain a “projection
image” of radioactivity distribution in a three-dimensional
(3D) object. Most PET scanners employ one or more rings of
detectors to surround an object and to collect coincidence events
frommultiple angles simultaneously. Throughmathematical recon-
struction algorithms of the coincidence events measured by multi-
ple pairs of detectors, tomographic images can be derived to show
the 3D distribution of the radioactivity within an object. Measure-
ment of such information over time can reveal the kinetics of
radiolabeled biomolecules in a subject, which is often used to
establish biological models of interest (such as a disease model or
the pharmacokinetics of a new drug).

The image resolution of PET is known to be limited by three
fundamental factors: positron range, photon acolinearity, and the
intrinsic resolution of detectors. Positron range refers to the dis-
tance between origin of the positron (where the radioactive decay
of the mother nuclide takes place) and the origin of the detected
signals (two annihilation gamma rays). This uncertainty depends on
the kinetic energy of a positron when it is emitted from a nucleus.
Depending on the type of radionuclide used to tag biomolecules,
the level of blurring to image resolution can be as small as
200–300 μm or as large as several mm. The photon acolinearity
refers to a small angular uncertainty between the two back-to-back
annihilation gamma rays because the positron and electron are not
completely at rest when they annihilate. To preserve the momen-
tum, the two gamma rays cannot be exactly 180-degree apart. The
level of uncertainty in localizing the origin of the two gamma rays
depends on the distance between the pair of detectors. Therefore,
the bigger the ring diameter, the more blurring there is to the
image resolution. For a small-ring scanner that is ~10 cm in diame-
ter, the blurring may be only 200 μm. For a clinical PET scanner
that has 90 cm diameter detector rings, the blurring may be as high
as 2 mm. In terms of detector intrinsic spatial resolution, it is often
a balance between the cost-effectiveness and performance. The
highly penetrating 511 keV gamma rays require substantial detec-
tor mass in order to interact with and stop the photons effectively.
For this reason, detectors of larger dimension should be used to
increase the probability of detection, but often at the expense of
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reduced intrinsic spatial resolution. There are sophisticated radia-
tion detectors that employ complex readout schemes to achieve
submillimeter intrinsic spatial resolution in 3D. These may be
useful when imaging small animals for preclinical or pharmaceutical
research, but could be a waste of resource if used for a clinical PET
scanner whose image resolution is fundamentally limited by the
photon acolinearity to be no better than 2 mm regardless of the
choice of detector technologies. As a result, the image resolution of
a clinical PET scanner remains in the 3–4 mm range, while the
image resolution of a small animal PET scanner for studying
rodents is approximately 1 mm. Details on the basic physics of
PET and its applications can be found in an excellent reference
book here [7].

In this chapter, we will explain the basic components needed
for PET imaging. We will point out unique challenges (relative to
human and animal imaging), limitations, and solutions when apply-
ing PET imaging to study plants. We include several examples to
illustrate the molecular imaging capability of PET and its potential
for plant phenotyping.

2 Methods

2.1 Radiotracer and

PET Imaging for Plants

PET has been widely used clinically for cancer staging, restaging,
and evaluating the efficacy of cancer therapies (such as chemother-
apy). The radiolabeled biomolecule commonly used to detect can-
cer is 18F-FDG—a glucose analog tagged by 18F tomeasure glucose
metabolism in a patient’s body. The choice of 18F as a radioactive
tag for clinical PET imaging is due to its half-life (T1/2) of
109.8 min, which permits a radiopharmaceutical to be manufac-
tured in a centralized production facility and distributed to hospi-
tals within a radius of a couple hundred miles. Several other
commonly used positron-emitting radionuclides such as 11C, 13N,
and 15O are the essential elements for plant growth. Therefore, it is
unsurprising that 11C was used to study plants well before PET was
widely accepted and used clinically [8–10]. However, with the
short half-lives of 20.33 min, 9.97 min, and 2.04 min for 11C,
13N, and 15O, respectively, one will need to have access to a cyclo-
tron or a linear accelerator nearby in order to produce these radio-
isotopes for PET imaging. The availability of radionuclides and the
cost associated with a cyclotron operation are two of the major
limiting factors for PET to be widely adapted as a phenotypic
imaging tool to study plants. Fortunately, with PET now widely
adapted for clinical imaging and preclinical research, many medical
centers now have on-site cyclotron facility that can be leveraged to
supply 11C and/or 13N to support plant imaging research. As a
result, we have seen increased interest in the use of PET for in vivo
mapping of molecular events in plants [11–14]. Throughout this
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chapter, it is assumed that one would have access to the short-lived
radionuclides such as 11C or 13N from a cyclotron facility nearby.
Otherwise, specialized radiotracers labeled with longer-lived iso-
topes such as 18F (T1/2 ¼ 109.8 m) or 64Cu (T1/2 ¼ 12.7 h) may
need to be used in order to overcome this limitation.

The relatively short half-life of 11C and 13N also limits the
biological processes that can be observed using PET imaging. In
general, the “window of opportunity” for observing a biological
process using radiotracer imaging techniques is less than ten times
of the radioactive decay half-life of the isotope. For 11C, this is
approximately 3 h. For 13N, this is less than 100 min. While this
may be a major limitation for observing slow biological process in
plants, it is also an advantage for measuring dynamic processes
and/or transient responses of plants to external perturbations.
For example, a plant can be studied repetitively every 3 h using
11CO2 as a label to probe its photosynthesis efficiency and carbon
allocation in responses to environmental stimuli. This nondestruc-
tive measurement of transient molecular processes in plants is a
unique strength of PET that is otherwise difficult to gain using
stable isotopes or other imaging techniques. That said, the short
half-lives of 13N and (in particular) 15O require careful planning
and execution of the imaging study because a large amount of
radioactivity needs to be administered in order to have a measurable
signal at the end of the imaging experiments. It is advised to
carefully plan and execute a PET imaging experiment with a “cold
run.” That is, one should run through the entire experiment with-
out using radioactive tracer to familiar oneself with all the essential
steps and to identify potential errors in experimental design. This
will help to minimize radiation exposure to personnel and to ensure
the success of the experiment.

Most PET scanners have horizontal bore to accommodate
human or animal imaging applications. Several groups developed
application-specific PET scanners dedicated to plant imaging
research, including the PETTIS [15], PlanTIS [16], PlantPET
[13, 17], etc. The PlantPET scanner is mounted inside a plant
growth chamber to enable imaging experiments under a controlled
environment. Additionally, respired radioactive gases from plants
will be exhausted to provide additional protection to workers dur-
ing an experiment. Since a PET study can take up to a few hours,
appropriate protection against radiation exposure should be fac-
tored in when designing a PET imaging lab for plant imaging
studies. The control room of the scanner and/or other associated
equipment may need to be lead-lined for door, walls, and glass
windows to provide adequate shielding for 511 keV gamma rays.
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2.2 Challenge in

Quantitative Accuracy

of PET Images When

Imaging Plants

A unique challenge when applying PET to plant imaging applica-
tions is the escape of positrons from the object when the radiola-
beled biomolecules are in small or thin structures of a plant
surrounded by air. For example, 11CO2 can be assimilated into a
leaf through photosynthesis. A positron emitted from 11C-labeled
sucrose within a thin leaf or shoot may quickly escape the plant and
travel a long range before it annihilates with the surrounding
structures [18]. The escaped positrons induce false signals (annihi-
lation gamma rays) in medium surrounding the plant. In contrast,
the escaped positrons are typically less of an issue in human or
animal PET imaging studies unless the focus of the study is the
lungs where tissues are partially surrounded by air. When a signifi-
cant fraction of positrons can escape and annihilate at locations far
away from their origins, not only is the image resolution degraded
but also more importantly the quantitative accuracy of PET images
is compromised. This may not be a problem for root imaging where
the escaped positrons can still annihilate with the surrounding soil.
However, it could lead to less quantitative results when imaging
leaves or small plant structures in air.

To address this challenge, one may wrap the tissue-of-interest
(e.g., fine shoot structures or leaves) with a thin layer of medium to
force the escaped positrons to annihilate near their origins.
Figure 1a shows a leaf containing 11C-labeled photosynthates sand-
wiched by two plastic plates to force the escaped positron to anni-
hilate in the plastic plates. Figure 1b shows small stems surrounded
by short and thin plastic tubes when one measures the 11C-labeled
photosynthates flowing from the (upstream) leaves to roots
through phloem in these stems. Notice that the plastic plates
surrounding the leaf in Fig. 1a are transparent so that they do not
interfere with photosynthesis. Air gaps are also allowed between the
medium applied (plastic plates or tubes) and the plant tissues to
avoid the blocking of gas exchange between the leaves and air that
might alter a plant’s physiology and functions. Figure 2 shows a
common bean plant with its roots in a hydroponic solution that
contains 13N-ammonia. Uptake of 13N-ammonia was transferred
upward to leaves. A small plastic tube around the stem forces all
escaped positrons to annihilate, which significantly enhanced the
intensity of PET images on the right.

Despite the challenge of “escaped positrons,” PET images of a
plant containing radiotracers are at least semiquantitative because a
significant fraction of emitted positrons has sufficiently low energies
that will still annihilate in the plants to form PET images. The pixel
value in these images is still proportional to the activity concentra-
tion except that annihilation efficiency may be dependent on the
structural thickness of the plant. Before the size of a plant changes
significantly, PET images of the same plant following multiple
rounds of radiotracer labeling (such as 11CO2) can be compared
semiquantitatively to measure the relative changes of radiotracer
uptake caused by environmental changes or biological effects.
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2.3 Administer

Radiotracers to Plants

To perform PET imaging study of human or animals, radiotracers
are commonly administered through intravenous injection, taking
advantage of the blood circulation system to rapidly deliver radio-
tracer to the entire body. Other routes of administration include
inhalation, ingestion, intraperitoneal injection, etc., depending on
the type of biomolecules used and the physiological functions to be
measured. Plants, on the other hand, have relatively slow circula-
tion systems such as phloem and xylem. Direct injection of

Fig. 1 To address the issue of escaped positrons from thin leaves and stems,
plastic clips and tubes can be used to force annihilation: (a) Acrylic clip applied
around a leaf after 11CO2 was administered; (b) Plastic tubes applied around
stems and petioles of a young common bean plant

Fig. 2 A plant of common bean with the soil (enclosed in a lead container)
labeled with 13N-ammonia (333 MBq or 9 mCi) water solution. Plastic tube (not
shown on the left photo) was applied around the stem to force escaped positrons
to annihilate. Forced annihilation of escaped positrons increased PET image
intensity at the location of the plastic tube
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radiotracer into either system is technically challenging. Excessive
handling of a plant is also considered a significant stress to the plant
itself and may alter the plant physiology and functions of interest.
Tran et al. [19] have demonstrated 18F-labeled sucrose can be
introduced to a plant’s phloem system through a cut at the tip of
a leaf. Alternatively, 11CO2 can be rapidly assimilated by a plant
through photosynthesis to generate 11C-labeled sucrose whose
translocation in a plant through the phloem system can be tracked
over time by PET imaging. Similarly, 13N-labeled ammonia or
nitrate [20] can be administered to a plant through its roots to
follow their translocation through the xylem system.

Depending on the type of radiolabeled molecules used, the
uptake of the radiotracer may be very efficient in some cases (e.g.,
plants are extremely efficient in assimilating 11CO2 in air through
the photosynthesis), and less so in other cases (e.g., 13N-ammonia
is taken up by transporters at the surface of roots). It can be a
challenge to detect small amount of radioactivity in a plant when
the background radioactivity in close proximity to the plants is
orders of magnitude higher. These high-intensity gamma ray fluxes
from background signal can produce the so-called random coin-
cidences—false signals that are produced by chance when two
unrelated gamma rays are detected by the scanner within a small
pre-defined coincidence time window (typically only a few nanose-
conds long). These types of coincidence events are randomly
distributed in the scanner’s imaging field-of-view. They not only
contribute to noise in the reconstructed images but also decrease
the contrast of the object to be imaged. To minimize its effect, one
can use smaller amount of radioactivity for imaging experiments
(which is not always an option), or shield large amount of radioac-
tivity such that the gamma rays produced by them would not reach
the detectors in the PET scanner. Figure 2 (left) shows a common
bean plant being labeled by 13N-ammonia through its roots. The
entire root section and the 13N-ammonia solution are enclosed by a
lead container to shield the majority of the radioactivity from the
PET scanner’s detectors. Only the shoots of the plant are placed
inside the PET scanner’s imaging field-of-view. This setup allows us
to use a large quantity of radioactivity for labeling a plant without
oversaturating the scanner with high-intensity flux of gamma rays.

An alternative to shielding the unabsorbed radioactivity is to
flush out (or remove) the radioactivity in the labeling chamber
(or container), as will be illustrated in several examples below.
Care should be taken to minimize the contamination of radioactiv-
ity on the surface of a plant. In some cases, when the “contami-
nated” radioactivity cannot be removed from the plant, additional
shielding materials may be used to block off the gamma rays. In
some extreme cases, removal of the “hot” parts from the plant may
be useful as well.
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2.4 Static and

Dynamic Imaging

Studies

A PET scanner detects and records coincidence events continuously
for the entire scanning duration. The output file typically contains
list-mode data (of individual coincidence events) and tag words that
keep track of additional information such as time passed, event rate
(for computing and correcting for random coincidences), etc. The
list-mode file can be sorted to obtain the total sum of all coinci-
dence events which are then reconstructed to form a single image
volume. This is called a static image that represents the average
activity distribution in the subject during the entire scan duration.
This type of study is often used when the temporal dynamics of the
radiotracer distribution is not critical. For example, one may use
radioactive metals to evaluate the uptake of micronutrients and
their allocation in plants. The kinetics may be extremely slow, and
as a result, only an image acquired at a late time point is necessary.

Alternatively, the list-mode data may be broken down into
multiple frames and reconstructed to form dynamic images. These
image sequences represent the kinetics of radiotracer distribution.
Plotting the radioactivity concentration within a particular region-
of-interest (ROI) in a plant as a function of time, one will obtain the
so-called time-activity curve (TAC). Using TAC of different com-
partments (e.g., leaf vs. stem vs. root vs. seed), one can establish
compartmental models for the kinetics of a radiotracer [7]. Since
the signal-to-noise ratio and image quality of a nuclear image
technique (such as PET) are determined by the counting statistics
of an imaging study, sufficient number of counts is essential in order
to render the results meaningful. For this reason, the frame dura-
tion of the early time points of a dynamic image sequence may be
short when a large quantity of radioactivity is present. As the
radioactivity decays away, the frame duration needs to be increased
in order to maintain sufficient counting statistics at late time points.
There is not an optimal (or minimal) frame duration defined for
dynamic PET imaging studies because it depends on many factors
such as the object size, the pattern of activity distribution, etc. If the
radioactivity is highly localized in several point- or line-like loca-
tions, they can be clearly imaged even with very short frame dura-
tions. In contrast, widely distributed radioactivity will require a
longer scan duration in order to obtain sufficient counting statistics
to make the data meaningful. The optimal frame duration and
imaging protocol are often found experimentally. Longer frame
durations and fewer numbers of frames have the benefits of fewer
images to analyze and better counting statistics in each image
frame. The drawback is a poor temporal resolution that may not
reveal the details of a fast-changing dynamics.

Most PET scanners apply “decay correction” to dynamic PET
images to account for the radioactive decay of the “signal” (i.e., the
radiolabeled biomolecules) based on the half-life (T1/2) of the
radionuclide employed. The simplest way to apply the “decay cor-
rection” is to sort the list-mode data to form time frames within
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which there are (on average) the same numbers of radioactive
decays in each frame. That is, the duration of a time frame is
increased as radioactivity decays away (see Fig. 3).

This approach keeps the statistical image quality the same for all
frames. In many of the examples below, we use “one-minute equiv-
alent” time frames where the initial frame was 1 min long and the
subsequent frames’ duration was increased according to the decay
curve defined by T1/2. It should be noted that for every decay
constant, there can be only a fixed number of such frames as the
duration of the last frame may go to infinity before completion. To
make use of the data from late time points, we may replace the
“one-minute equivalent” frame definition by a “half-minute equiv-
alent” or even a “quarter-minute equivalent” frame with the
corresponding scaling (~2 and ~4).

“T-equivalent” time frames can be calculated using a recursive
formula:

tnþ1 � tn ¼ �τ � ln 1� const
τ

e
tn=τ

h i

where τ is the decay constant of the radionuclide and the const is the
integral from 0 to time T for the initial frame:

const ¼
Z T

0

e�t=τdt

An example of the dynamic images is shown in Fig. 11 where a
maize plant was labeled with 11CO2 to show the kinetics of carbon
translocation from a leaf to roots.

2.5 Protocols for

Administering

Radiotracer to Plants

for PET Imaging

2.5.1 Administering

Radioactive Liquid Solution

Through Roots

One of the most common routes to administer radiotracers to
plants is through its roots via a liquid solution containing radio-
tracer. For example, 15O-water [21], 13N-labeled nitrate [22], or
22Na-labeled salt [23] can be used to measure water flow from
roots to shoots, or the uptake of N or Na by a plant’s roots,
respectively. If a plant is grown hydroponically, simply mixing the
radiotracer solution with the hydroponic solution would be suffi-
cient. However, the amount of radiotracer taken up by the roots

Fig. 3 Decay curve for 11C (T1/2 ¼ 20.33 min) with “one minute” equivalent time
frames
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may only be a small fraction of the total radioactivity in the hydro-
ponic solution. As a result, it may be a challenge to quantify the
radiotracer uptake in the roots when a large amount of radioactivity
is still in the solution and appear as background noise in the PET
images. To reduce this “noise” signal, one can drain the hydroponic
solution containing radioactivity, and then refilled the container
with fresh hydroponic solution. This will clear the background
“noise” in the PET images, simplify the data analysis, and improve
the quantitative accuracy. Some radiotracer may stick to the surface
of roots (or other objects) once in contact. In this case, draining the
radioactive solution in the pot does not guarantee that the
measured PET signals represent true uptake of the radiotracer by
plants. Thus, it is important to understand the chemical property of
the radiotracer before interpreting the biological meanings of PET
images.

For plants grown in regular soil, one can infuse the solution
containing radiotracer into the soil slowly if the half-life of the
radionuclide permits such slow operation. Otherwise, pouring or
injecting the solution into the pot would be sufficient. Draining the
radioactive solution or flushing out radioactivity by adding more
fresh water usually does not clean out the background radioactivity
in the soil. Therefore, if the main interest of the study is to measure
and/or to quantify the uptake of radiotracer in the roots, growing
plants in hydroponic solution will be the preferred choice.

If the main interest of the study is to measure the translocation
of radiotracer from roots to shoots (or other parts above soil level),
a complete isolation of the roots’ volume from the rest of the plant
using additional shielding (see Fig. 4, item 1) is recommended.
Figure 2 shows a small plant being labeled and shielded using a
lead pig container with a split lid. This not only reduces the radia-
tion exposure to personnel but also eliminates potential contami-
nation signal from the evaporated radioactivity or escaped positrons
from the solution. By limiting the gamma ray flux from radioactiv-
ity in the soil (or hydroponic solution), there are also fewer random
coincidences that contribute to noise in the PET images. Care
should be taken not to allow the solution to be in contact with
leaves or shoots above. Otherwise, it would be difficult to distin-
guish the contaminated radioactivity on the surface of leaves or
shoots from the translocation of radiotracer taken up by the roots.

Figure 5 shows two examples where tomato plants grown
hydroponically were given 18F-labeled radiotracers to their roots.
The container was enclosed in a lead pig (as shown in Fig. 2).
Uptake and translocation of the tracers can be clearly seen in the
shoots’ section.
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2.5.2 Administering

Radioactive Gas to Roots

Nitrogen fixation by plant/microbe symbiosis can be directly
measured by administering 13N-labeled nitrogen gas to roots fol-
lowed by PET imaging [24]. Figure 6 illustrates the procedures for
administering the radioactive gas and clearing the background
activity around the roots in order to obtain clean PET images.
The roots of a plant are sealed inside a pot with two valves (pot
#2 in Fig. 4). Granulated soil (e.g., puffed clay) should be loose
enough to permit free flow of gas through the pot. The shape and
property of the granulated soil should be chosen to minimize the
chance of radioactive gas trapping inside the soil grains. If neces-
sary, pre-rinse the soil to fill small air pockets on the surface of
granulated soil with water which can prevent radioactive gas being
trapped in these small pockets during the post-labeling water fill
procedure below. Clay may be used to seal the gap between the
stem of a plant and the soil-protecting cover. Alternatively, an
additional plastic bag around the entire plant may be used as a
reservoir of the radioactive gas when the pot is filled with water
later. It is recommended that the whole labeling procedure is con-
ducted inside a fume hood certified for (small amount of) radioac-
tive gas exhaust as a precaution in case of a leak of radioactive gas.

Fig. 4 Examples of labeling chambers: (1) A lead pig container (1/200 thick) with
split lid for labeled root (see also Fig. 2); (2) A pot with a gas inlet (top) and an
outlet for water supply and/or drain for labeling roots with radioactive gas; (3) An
opaque whole-plant gas labeling chamber with built-in LED light on top; (4) An
opaque whole-plant gas labeling chamber with gas inlet and outlet; (5–7) A
variety of transparent whole-plant gas labeling chambers, 4–6 inches in diame-
ter; (8) Plant labeling chamber with fluorescent light; (9) Labeling container for
small plants
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Radioactive gas is injected into the bottom of the pot/chamber
with the top valve open for venting to balance the pressure. The
vented gas may contain a small amount of radioactivity and should
be kept in a sealed container rather than vented to the room. After
closing both valves, wait for the uptake of radioactive gas by the
plant (or plant-microbes). Upon completion of the labeling, radio-
active gas is pushed out to the storage volume by pumping water
into the pot to completely fill up the space in the pot. Without
draining the water out, image the plant directly by a PET scanner.
Water around roots is beneficial for the PET imaging since it forces
the escaped positrons to annihilate near their origins.

Similar procedures can be applied to plants that are grown in
hydroponic solutions or plants that are exhumed from soil and
maintained in hydroponic solutions. Figure 7 shows examples
where 13N-labeled nitrogen gas was given to a young soybean
plant that was initially grown in soil and has developed root nodules
before it was transferred to hydroponic solution. The labeling
chamber was sealed completely (including the small hole around
the stem) and filled with hydroponic solution. 13N-labeled nitrogen
gas was fed to the inlet on top, while the hydroponic solution was
pumped out from the chamber to suck the radioactive gas in. We
waited 10 min to allow the fixation of nitrogen gas by root nodules
before pumping the hydroponic solution back into the chamber to
push out the radioactive gas. The entire plant and chamber (filled
with hydroponic solution) was imaged by a PET scanner to obtain
the images in Fig. 7 (right).

Fig. 5 Examples of radiotracer solution administration through roots: tomato
plants grown hydroponically were labeled by 18FDG (top) and 18F-labeled amino
acids (bottom)
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2.5.3 Administering

Radioactive Gas to Canopy

Using 11CO2 as a radiolabeled tag, one can quantify carbon assimi-
lation by plants and the efficiency of photosynthesis [25]. By track-
ing the 11C-labeled photosynthates, one can also study the kinetics
of carbon translocation and partitioning throughout a whole plant
using PET imaging [8, 26]. 11CO2 can be given to the entire plant,
to a single leaf, or to a single spot of a leaf using the following
procedures.

Whole-Plant Labeling A whole plant is enclosed inside a labeling (top) chamber that is
attached to a sealed pot that houses a plant (see #6 in Fig. 4). Soil
can be isolated from the top labeling chamber by plastic films to
minimize diffusion of the radioactive gas into the soil. In order to
accommodate the entire shoots and leaves, the labeling chamber
often has a large volume. As a result, clearing the background
radioactive gas from the labeling chamber will take an extended
period of time. Thus, this is not considered a pulse-chasing experi-
ment [27] where a tagged tracer is administered as a single “pulse

Fig. 6 Procedures for administering radioactive gas (such as 13NN) to roots
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input” over a very short period of time and its kinetics tracked when
additional “cold” (or unlabeled) tracer (such as regular photosyn-
thate) is continuously administered to “chase” the labeled tracer. In
this case, the radiotracer is assimilated into the plant continuously
(with a rate that decreases over time).

Administering of radioactive gas into a labeling chamber is
typically through injection using a syringe. With a syringe, one
can measure precisely the amount of radioactivity in it using a
dose calibrator. The highly concentrated radioactivity in a syringe
can also be better shielded from radiation safety’s consideration. We
typically receive up to 740 MBq (20 mCi) of 11CO2 in a 20 mL
syringe from our cyclotron facility. Using a tungsten shield to
protect the operator, the radioactive gas is injected into the labeling
chamber quickly by hand or slowly by an infusion pump, depending
on the type of study.

In a “static” labeling, the activity is injected into the sealed
labeling chamber (similar to #6 in Fig. 4). A small balloon can be
connected to the outlet of the labeling chamber to prevent pressure
increase that breaks the seal and causes leakage of radioactive gas.
The radioactive gas remains in the labeling chamber during the
imaging session. No evacuation is needed. This type of study is
perhaps the simplest to carry out and is most useful if the main
interest is to measure the translocation of 11C-labeled photo-
synthates to the roots. Thus, clearing of the background 11CO2

in the labeling chamber is less critical.

Fig. 7 Example of a soybean plant with its roots labeled with 13NN gas using the
procedures in Fig. 6. PET images were acquired and projected onto the XZ and
YZ planes for display
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In a “dynamic” labeling, the 11CO2 is infused into the inlet of
the labeling chamber, while the air is continuously evacuated by a
vacuum pump through the outlet of the chamber. The chamber is
kept under a small negative pressure (relative to the atmospheric
pressure). Injection can be fast via a single shot or slowly using a
syringe pump. The dynamic labeling has a few advantages. Firstly,
the negative pressure inside the chamber prevents the radioactivity
leak outside the chamber and creates counter airflow in the pot soil
(preventing radioactive gas diffusion into the soil). Secondly, the
flow of the fresh air into the labeling chamber keeps the moisture,
temperature, and CO2 concentration the same as those in the plant
growth chamber. Finally, the slow injection creates a quasi-
stationary radioactivity concentration inside the chamber during
the labeling procedure.

An example of the static whole-plant labeling (of two maize
plants) is shown in Fig. 8 using pot #7 in Fig. 4. With 11CO2

continuously being assimilated into the leaves, the radioactivity
concentration in leaves increases over time to produce higher pixel
values in the PET images. It should be noted that the translocation
of 11C-labeled photosynthates to roots takes time. With strong
signals in the shoots, it is difficult to visualize the signals in the
root section until late time points where the uptake in roots becomes
high enough to be visualized. Asmentioned before, the whole-plant
labeling is not a pulse-chasing experiment, thus sub-optimal for
modeling the translocation of photosynthates to roots. Single-leaf
labeling below is more suitable for this type of studies.

Fig. 8 Examples of PET images after whole-plant labeling: Two corn seedlings
statically labeled by >740 MBq (20 mCi) of 11CO2 injected into a labeling
chamber. PET images on the right show increased uptake of 11C in shoots
over time
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Single-Leaf Labeling Single-leaf labeling is perhaps the most versatile procedure among
all for the following reasons: (1) it requires a smaller amount of
radioactivity (when compared to whole-plant labeling); (2) the
labeling zone can be easily isolated (shielded) during an experi-
ment; and (3) the labeling procedure can be short and local that is
important for the dynamic studies (“pulse-chasing” techniques).
We have developed multiple leaf labeling chambers (LLC) as shown
in Fig. 9 with labels 1, 2, and 3. These chambers are made of two
transparent acrylic plates with “open cell” neoprene gasket on each
plate. A leaf to be labeled is sandwiched between those gaskets. The
volume of the labeling chambers is approximately 10 mL. Since the
complete sealing of the chamber is impossible without strong pres-
sure (and potential damage) to a leaf, the chamber is maintained
under a negative pressure by an external vacuum pump (through
the pair of outlets that are labeled as #5 in Fig. 9) throughout the
entire labeling procedure. The continuous airflow into the LLC
between the semi-sealed gaskets (including the air sucked in
through the “open cell” neoprene gasket itself) prevents the radio-
active gas to leak out from the chamber. The gently applied imper-
fect seal by the neoprene gasket prevents an accidental collapse of
the acrylic plates that overcompress the leaf. The continuous airflow
from the outside into the labeling chamber also helps to keep the
leaf under the same conditions (CO2 concentration, moisture,
temperature, etc.) as the rest of the plant in the plant growth
chamber before and after labeling.

Fig. 9 Variety of chambers custom designed for single-leaf labeling: (1) vapor
labeling chamber, (2) clamshell chamber, (3) split chamber. (4) and (5) are gas
“inlets” and “outlets”. (6) Syringe pump with a syringe surrounded by a tungsten
shield
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With LLC #2 and #3, the radioactive gas is steadily injected
into the LLC using a syringe pump (labeled as #6 in Fig. 9) through
the two gas dispensers (set of small holes drilled through both
acrylic plates) from one side of the LLC (labeled as #4 in Fig. 9)
and evacuated from the other side (labeled as #5). The LLC #2
operates like a clamshell and can be opened and closed quickly for a
convenient labeling operation. The LLC #3 can be completely split
to allow more accurate positioning of a leaf. Its top plate can be
removed without disturbing a plant during the imaging experi-
ment. By adjusting the injection and evacuation rates, one can
control a steady concentration of the labeling radioactive gas inside
the LLC. Labeling time is determined by the syringe pump speed.
In our experiments, we usually use 20 mL syringe (with 185 MBq
(5 mCi) of 11CO2) with 5 min injection time. Continuous evacua-
tion and the airflow into the LLC provide relatively fast (~5 min)
“wash out” of the radioactive gas from the LLC after the labeling.
The radioactive gas (pumped out from the chamber) can be
directed to an “activity trap” (e.g., a soda-lime trap that absorbs
CO2) or toward a storage reservoir outside of the plant growth
chamber away from the PET scanner to allow radioactive decay in
storage. Soda-lime traps placed into a dose calibrator can be used
for real-time monitoring of radioactivity flow. Quantitative estima-
tion of the evacuated unlabeled radioactivity is possible using a
“fresh” soda-lime trap since soda-lime compound degrades quickly
with the moisture from the plant growth environment. Since radio-
activity may be trapped along the exhaust line (e.g., 11CO2 dis-
solved in condensed water droplets on the inner surface of a
tubing), it is important to monitor the tubing for the presence of
radioactivity.

The LLC #1 was developed to label a leaf using the vapor of
13N-ammonia solution [28]. The 13N-ammonia solution can be
injected by a needle through the two gaskets into a recessed pocket
centered at the bottom acrylic plate. The LLC is held horizontally
to prevent a spill of the radioactive solution. To increase the surface
area and aid the evaporation, porous tissues (e.g., filter paper) can
be placed in the pocket to absorb the radioactive solution. It is
recommended to keep the chamber at slightly negative pressure to
avoid accidental radioactivity leakage from the chamber.

With the single-leaf labeling, one can easily place the LLC
outside of the scanner’s imaging field-of-view. The LCC can also
be shielded or removed without disturbing the plant or the imaging
session. This makes the single-leaf labeling protocol a convenient
way for dynamic PET imaging studies of the phloem transport.
With the low level of background activity in the imaging field-of-
view, it becomes possible to visualize and quantify low level of
radioactivity in a plant (including roots) using short time frames
to analyze the kinetics of radiotracer and to model plant physiology.
Figure 10a is an example of a common bean leaf being labeled with
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11CO2 using LLC #3. Figure 10b shows the LLC #3 completely
removed after 11CO2 labeling, and the labeled leaf sandwiched by
an acrylic clip to force positrons in a leaf to annihilate for quantita-
tive PET imaging.

Spot Labeling The same leaf labeling chambers (LLC) above can be used to label a
single spot of a long leaf blade such as those of maize plants.
Figure 11 illustrates the use of dynamic PET imaging to model
the translocation of photosynthates from shoots to roots in a maize
plant after a single leaf was spot labeled with 185 MBq (5 mCi) of
11CO2 for 5 min using the setup in Fig. 11a. The maximal intensity
projection (MIP) images of roots (derived from 3D PET images) at
different time points (relative to the injection time of the 11CO2)
are shown in Fig. 11b. We drew six cubic volumes-of-interest
(VOI) in the 3D image volume (Fig. 11d) to calculate the mean
radioactivity concentration in these VOI. The mean values are
plotted as a function of time to obtain the “time-activity curves”
(TAC) as shown in Fig. 11c. We used log-scale for the Y-axis
because the activity concentration in different VOI spans a wide
range that may differ by several orders of magnitude. The gray scale

Fig. 10 (a) A common bean plant was labeled with 296 MBq (8 mCi) of 11CO2 for
5 min using the single-leaf labeling procedures. (b) The plant was placed in a
PET scanner with two acrylic plates clipped to the labeled leaf. (c) PET images of
the plant acquired at 2 h 45 min post labeling. The acrylic plates were not
clipped to the leaf; (d) and (e) PET images of the plant acquired at 2 h and 30 min
post labeling, with the acrylic plates clipped to the leaf to force all escaped
positrons to annihilate locally to improve quantitative accuracy

114 Sergey Komarov and Yuan-Chuan Tai



of the images in Fig. 11b, d was oversaturated to reveal the minute
uptakes in fine root structures. Based on the physical distances
between adjacent VOIs in Fig. 11d and the difference in time
between the rising-edge of the corresponding TACs in Fig. 11c,
one could estimate the speed of the translocation of 11C-labeled
photosynthates in phloem. This type of direct measurement of
physiological parameters is hard to gain using other types of imag-
ing or analytical techniques.

3 Conclusions

PET imaging is not a common tool that plant biologists would use
on daily basis for phenotyping research. However, PET offers some
unique capabilities that are otherwise hard to gain using other
phenotypic imaging techniques. Depending on the choice of radio-
tracers employed, one may use PET to measure multiple physio-
logical parameters or functions. Figure 12 shows an example of
dual-tracer labeling and imaging to reveal the translocation of

Fig. 11 Example of a pulse-chasing PET imaging experiment using “spot” labeling of a corn leaf: (a) The tip of
a corn leaf was labeled with 185 MBq (5 mCi) of 11CO2 using LLC #3 for 5 min; (b) Dynamic PET images of the
roots at different time points (in min) post 11CO2 administration; (c) Time-activity curves extracted from
dynamic PET images using volume-of-interest (VOI) shown in the maximum intensity projection images
(XY and YZ) in (d). Color scales used for sub-panels (b) and (d) are oversaturated to show the fine structures
of the roots
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nutrients in the xylem and phloem systems. Figure 12a shows that
~37 MBq (1 mCi) of 13N-ammonia was administered to the roots
of a small tomato seedling to measure the flow in the xylem. Only
the top part of the plant was imaged by the PET scanner, while the
bottom part of the plant was in a lead shield outside of the scanner’s
field-of-view. Two hours after the initial injection of the
13N-ammonia (i.e., more than ten half-lives of the 13N), the leaves
and shoots of the tomato seedling were labeled by 11CO2 to
measure the 11C-photosynthates flow in the phloem (Fig. 12b).
This example clearly demonstrates the capability of PET for mea-
suring different physiological functions using different radiotracers.
It also highlights the potential benefits of short-lived radionuclides
as one can probe a plant repetitively to study transient responses in
plants as soon as the first radioactive probe decays away. It is
important that one understands the physical, chemical, and
biological properties of the radiotracer employed, as well as the
unique strengths and limitations of PET imaging technique, in
order to gain quantitative information from PET images to estab-
lish accurate biological models.
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Chapter 12

Phenotyping Complex Plant Structures with a Large Format
Industrial Scale High-Resolution X-Ray Tomography
Instrument

Keith E. Duncan and Christopher N. Topp

Abstract

Phenotyping specific plant traits is difficult when the samples to be measured are architecturally complex.
Inflorescence and root system traits are of great biological interest, but these structures present unique
phenotyping challenges due to their often complicated and three-dimensional (3D) forms. We describe
how a large industrial scale X-ray tomography (XRT) instrument can be used to scan architecturally
complex plant structures for the goal of rapid and accurate measurement of traits that are otherwise
cumbersome or not possible to capture by other means. The combination of a large imaging cabinet that
can accommodate a wide range of sample size geometries and a variable microfocus reflection X-ray source
allows noninvasive X-ray imaging and 3D volume generation of diverse sample types. Specific sample
fixturing (mounting) and scanning conditions are presented. These techniques can be moderate to high
throughput and still provide unprecedented levels of accuracy and information content in the 3D volume
data they generate.

Key words X-ray tomography, Phenotyping, Excavated root system, Panicle, Inflorescence

1 Introduction

Plant phenotyping is in the midst of a technological revolution
driven by enhanced sensing, imaging, and computational analysis
tools [1–3]. Linking extensive genomics resources with the accu-
rate and precise measurement of often complicated traits across cell,
organ, tissue, plant, and ecological scales is the basis of the
emerging field of phenomics [4]. A key goal of this work is to
identify genetic mechanisms (single genes, gene families, quantita-
tive trait loci) that control or significantly influence traits of interest
and mobilize them into modern plant breeding systems for
improved crop production in the face of mounting environmental
challenges. Recent plant phenotyping approaches have predomi-
nately relied on optical two-dimensional (2D) image capture
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technologies to provide data on traits of interest that can be
measured by image analysis tools [5–7]. However, they are con-
strained to superficial measurements and typically can only poorly
estimate three-dimensional (3D) plant traits, especially those with
geometric complexity such as most shoot and root architectures.

X-ray tomography (XRT) is an effective way of capturing com-
plex topological, geometric, and internal morphological informa-
tion and providing rich 3D data sets that allow measurement and
analysis of a wide range of plant traits in ways not possible with any
2D imaging platform. The first X-ray computed axial tomography
(CAT) instruments appeared in the 1970s for medical imaging and
typically operated in the 1 mm resolution range [8]. In the early
1980s, researchers began to develop higher-resolution instru-
ments, “X-ray micro-computed tomography” or “X-ray microCT,”
that could image in the 20 μm range for materials science [9]. Cur-
rently, XRT is referred to relative to three levels of resolution, CT,
microCT, and nanoCT, which reflect the range of imaging resolu-
tions possible across the spectrum of XRT instruments rather than
referring to the specific instruments themselves [see Stock (2009)
[8] for an excellent review of X-ray imaging technology and
application].

For XRT in general, samples are placed between an X-ray
generation system (source) and a device for capturing X-rays that
travel through the sample (detector), today achieved with a
scintillator-coated digital panel, whereas this was done with film
in the past. Digital 2D images, or radiographs, are projected onto
the detector as X-rays pass through the sample and are differentially
absorbed due to variation in sample density (X-ray attenuation).
The 3D volume is produced by collecting dozens to thousands of
2D digital radiographs as either the sample or the source-detector
unit rotate over (typically) 360�. The 2D images are computation-
ally reconstructed to generate a fully detailed 3D volume, where
each 16-bit voxel (3D volume pixel) can represent 65,536 shades of
gray. This grayscale information represents the physical density of
various parts of the sample that form the contrast of objects of
interest relative to the background, providing the means for down-
stream image processing and trait measurement operations, gener-
ally referred to as “feature extraction.” These methods have been
employed for root phenotyping [10, 11], and a range of image
analysis strategies for 3D volume data are already being tested [12–
16]. Additional examples of using XRT imaging for plant pheno-
typing include assessment of stalk strength in maize [17–19] and
sorghum [20]; grain analysis in barley [21], wheat [22], rice [23],
and sorghum [24]; and measurement of developing shoots in garlic
cloves [25]. Here we describe a variety of phenotyping methods
that utilize XRT to generate detailed 3D volume data. The mani-
fold downstream feature extraction pipelines are necessarily tailored
to specific researchers’ application and outside the scope of this
chapter.
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The methods presented here deal with samples imaged in air–
inflorescences and root systems that have been fully or partially
excavated and washed rather than studied in situ. The root systems
of many plants become woody through lignification during devel-
opment, preserving well the 3D structure after excavation [10, 11,
14]. There is a growing body of research with the aim of using XRT
to scan roots in various media, and to computationally separate root
architecture from the surrounding growth medium (segmentation)
for trait analysis in feature extraction pipelines [26–29]. Although
progress with relatively small pots in low numbers has been demon-
strated [30, 31], significant challenges remain for imaging and
segmentation of larger root systems like maize or sorghum. Roots
imaged in situ will be discussed in future works.

2 Materials

2.1 Instrumentation There are numerous manufacturers of XRT instrumentation,
including but not limited to Bruker, General Electric (GE),
Nikon, North Star Imaging (NSI), Rigaku, VisiConsult, Yxlon,
and ZEISS, all with useful features and capabilities. We will describe
the specific instrument we are currently using for plant phenotyp-
ing; however, many of the features are universal to most commer-
cially available systems. For example, most systems have a tiling or
stitching capability whereby samples that exceed the detector
dimensions at the desired resolution can be fully imaged with
multiple overlapping scans that are computationally assembled in
the reconstruction or post-processing steps.

We are using a model X5000 instrument from NSI (Rogers,
MN) for working with a wide range of plant samples. The advan-
tages of this industrial scale XRT instrument for our phenotyping
purposes are as follows:

1. A large internal cabinet (292 cm wide by 203 cm deep by
248 cm tall) to accommodate a wide variety of sample sizes,
from large whole plants down to individual plant parts.

2. An X-RAY WorX microfocus reflectance X-ray source with
tungsten target capable of 10–225 kV energies.

3. A 20 � 24 cm Varian detector (1536 � 1920 pixels) with
127 μm pixel pitch capable of biological resolutions down to
~25 μm voxel resolution, depending on detector-sample-
source geometry and sample feature density. The detector
orientation can be switched between portrait and landscape
according to sample size requirements.

4. A rugged design combining durable parts and engineering with
precise motion control, originally optimized for aerospace,
automotive, and electronics industry applications where large
and often very heavy parts are scanned.
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5. A range of scanning modes: Standard, where the source, sam-
ple, and detector stay in one horizontal alignment during
sample rotation, and the sample image remains within the
borders of the detector; Helical, where the linked source and
detector move from sample base to apex during multiple sam-
ple rotations, generating a helical scan for samples taller than
the detector at the desired resolution; Tile, a tiling/stitching
program that allows the detector to be repositioned in a grid
layout of multiple overlapping 360� scans for imaging samples
wider and/or taller than the detector at the desired resolution.

6. The NSI software package generates full 3D volume recon-
structions and provides data export options across a range of
file formats for use in feature extraction pipelines.

2.2 Supplies 1. Extruded/expanded polystyrene (EPS). Widely available in
light blue or pink sheets of varying thickness from large hard-
ware and supply stores in North America. This material is
functionally transparent to most X-ray energies, and the sam-
ples mounted with EPS fixtures can be imaged as though
“floating in air.” This is important as metal fixtures contained
within the scan can produce imaging artifacts in the recon-
structed volume, particularly with low density samples.

2. Portable clamping system. There are numerous examples of
portable clamps or vises on the market; useful features include
a wide adjustable grip range, rubber or similar coated clamps, a
swivel mount to adjust clamped sample angle, and a weighted
base for stability. We use portable clamping units from Pana-
Vise (Reno, NV).

3. Carpet anti-slip fabric. This tacky rubberized material typically
comes in rolls for easy cutting with scissors, is available from
hardware and household goods stores, and is used underneath
carpets to prevent slipping. Squares of anti-slip fabric can be
used to prevent fixtures from slipping on the turntable when
the sample is rotating during scans.

4. Lab jack. These articulated platforms are useful for raising and
lowering fixtures to keep samples optimally positioned between
the source and detector, especially for helical scans. By placing
squares of EPS with a piece of anti-slip fabric on top of the lab
jack, samples can be raised into the X-ray beam without any
visible metal structures projected onto the detector during
scanning. Anti-slip fabric will also keep the lab jack from slip-
ping on the metal turntable during rotation.

5. Utility knife. Used for carving EPS blocks to secure and wedge
samples into fixtures; ideally choose a retractable box cutter
style to reduce injury risk.

6. Drywall or jab saw. Handsaw for cutting large blocks of EPS
into useful sizes and shapes.
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7. Gaffer’s tape. Gaffer’s tape is typically the black cloth style,
tears easily across and along its length, and does not leave
adhesive residue like silver duct tape. This tape will be visible
in most low energy scanning protocols so effort should be
made to keep it on the outside of the sample region of interest
so it can be easily cropped out of the final scan volume.

8. Hot glue gun. A conventional hobby shop or hardware store
hot glue gun is useful for assembling fixtures or making stacks
of EPS that can be carved to support samples of unusual
geometry. Use the glue on the fixtures and EPS shapes, and
avoid using the glue on the sample itself.

3 Methods

This chapter is focused on XRT scanning methods and parameters;
therefore, specific details on growth chamber, greenhouse, or field
conditions used to grow and harvest the plants are left to the
requirements of individual researchers.

3.1 Fixturing It is useful for all plant samples to have some length of stalk, stem,
petiole, or other structure to serve as a point of attachment for
mounting inside the XRT instrument. Larger samples like exca-
vated maize and sorghum root crowns (see Note 1) or mature
sorghum and quinoa panicles (see Note 3) can be clamped directly
by the stalk (Fig. 1a–c). Samples with small, thin stems like grape
rachises or Setaria panicles (seeNote 2) can be pressed between two
rectangles of EPS, and the EPS clamped with a portable vise so the
panicle or other structures of interest can be raised into the X-ray
beam during scanning (Fig. 1d, e). Very large root systems like
excavated switchgrass (see Note 5) can be fixtured in a frame cut
from a single large sheet of 8-cm-thick EPS, secured with a wide
base, and mounted directly to the sample turntable to prevent
wobble or tipping during the scan (Fig. 1f). When a convenient
clamping structure is not available on the sample itself, e.g., a
mature maize ear with the stalk snapped off (see Note 4), blocks
of EPS can be layered to form a base, a hole carved in the center,
and the sample wedged directly into the base (Fig. 2a). This fixture
can be placed on a lab jack and raised into the X-ray beam so that
just the ear image is projected onto the detector with multiple EPS
layers—functionally transparent to X-ray—separating the ear from
the dense metal base of the lab jack (Fig. 2b).

3.2 Scan Parameters In general, the greater the sample density, the higher kV levels must
be used to penetrate the sample. For our phenotyping work, sam-
ples are typically of low density so relatively low energies in the
50–80 kV range can be used. The goal is to use the lowest kV level
necessary to see all the way through the sample, and adjust the μA
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Fig. 1 Various fixtures for securely holding samples during rotation while scanning; the detector in each image
is 20� 24 cm for scale. (a–c) A portable vise is used to directly clamp a maize root crown (a), and panicles of
sorghum (b) and quinoa (c) in front of the detector for scanning. (d, e) Rectangular pieces of expanded
polystyrene (EPS) are used to hold thinner samples like grape rachis (d) and Setaria panicles (e) in the clamp
during scanning. (f) An excavated switchgrass root system is secured within a frame cut from a single EPS
board and mounted directly to the instrument turntable
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to control the brightness of the image on the detector. Examples of
2D digital radiographs from different plant samples are shown in
Fig. 3. The size of the sample will dictate how to arrange the
geometry inside the instrument so that the projected image is
fully contained within the edges of the detector. Alternating the
detector between landscape and portrait orientations will optimize
scan geometry for varying sample sizes. For tall and narrow sam-
ples, the helical scan mode will steadily raise the linked source and
detector, while the sample continuously rotates, until the entire
sample length is scanned bottom to top. This is a useful compro-
mise for imaging very tall samples (up to 1 m) that would otherwise
require the stitching of numerous standard scans and significantly
increase both computational difficulty and final file size. For wide
and tall samples, the tiling function can be used to collect multiple
overlapping 360� rotational scans in 1 � 2 or 2 � 2 tiles which the
NSI software automatically stitches together into a single 3D vol-
ume afterward during reconstruction. See Table 1 for detailed scan
parameters.

3.3 Data Export

Options

Most commercial XRT systems use their own set of geometry and
calibration tools for background adjustment of each scan to facili-
tate accurate measurement of reconstructed volumes. The NSI
software incorporates a geometry scan into the reconstruction
process and generates a 3D volume (Fig. 4) that can be exported
in a variety of formats, depending on what is required for individual
feature extraction pipelines. One export option is 2D slices in all

Fig. 2 (a) Mature maize ear secured within a stack of EPS blocks and mounted
on a lab jack for scanning. (b) Digital radiograph from scan of a mature maize ear
within blocks of EPS; note that although the maize ear is positioned within the
EPS stack, EPS is functionally transparent to X-rays (arrowheads)
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three imaging planes and in a range of formats (TIFF, JPEG, BMP,
PNG, DICONDE, RAW). There is the option to export a 3D
volume in RAW format, which also generates a DAT file with
volume size parameters. One can also use NSI software to render
the 3D volume as a surface file and export over a range of formats
(STL, PTY, OBJ, VRML, ASCII, DXF). With any export function,
care should be taken to understand all operations performed on the
original data, for example, downsampling from 16-bit to 8-bit,
converting or compressing to lossy formats such as JPEG, or vari-
ous options for rendering 3D volumes as surfaces.

Fig. 3 Examples of 2D digital radiographs from a variety of plant samples;
standard scans (a, d) where the sample projection fits entirely within the
detector borders, and helical scans of tall samples (b, c, e) where the linked
source and detector slowly travel from sample base to apex during continuous
sample rotation. (a) Excavated maize root crown, (b) quinoa panicle, (c) sorghum
panicle, (d) Setaria panicles, and (e) excavated switchgrass root system
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4 Notes

Below are observations and suggestions for a range of specific plant
sample types. For all these examples, tissues are most effectively
scanned when they are dried. Not only are they typically lighter in
weight and easier to fixture, but green tissue can also desiccate
during the scan and cause blurring of the 3D volume. Also,
researchers must be prepared to run pilot scans to determine the
minimum parameters (energy, resolution, number of projections,
scan time, file size, export format) that will still provide the required
3D volume data that yields biologically relevant features. This will
vary significantly between sample types, and the examples presented
here can be used as a range-finder depending on individual
researchers’ sample requirements, and the specific XRT instrument
being used. Finally, if sample density measurements are required
from the XRT scan data, density standards need to be incorporated
into each scanning session to allow computational calibration of
gray scale values to actual density. Commercial density standards are
available from instrument manufacturers. See Fig. 1 for examples of
sample fixturing.

Table 1
Summary of X-ray tomography scan parameters across a range of plant samples, using a model
X5000 instrument from North Star Imaging (Rogers, MN)

Scan
parameters

Maize/sorghum
root crowns Grape

rachis
Setaria
panicle

Sorghum
panicle

Quinoa
panicle

Switchgrass
root system

Mature
maize
ear

Mode Standard Tile Standard Standard Helical Standard Helical Helical

kV 70 70 60 60 60 70 70 60

μA 1700 1700 1200 600 750 1700 1900 1000

fpsa 10 10 10 10 12.5 10 10 10

Source-
sample
(mm)

1036 1024 767 300 400 885 943 258

Source-
detector
(mm)

1210 1203 912 523 625 1189 1209 705

Magnification 1.17� 1.17� 1.19� 1.74� 1.56� 1.34� 1.28� 2.73�
Voxel (μm3) 109 108 108 73 82 95 99 46

# Projections 1800 1800 1200 5000 7500 8400 36,000 4800

Time (min) 3 6 2 8 10 28 61 131

Sizeb (GB) 17 48 14 29 50 60 96 71

aFrames per second
bScan files plus reconstructed 3D volume
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1. Excavated maize (Zea mays L.) and sorghum (Sorghum bicolor)
root crowns. This approach works well with any root systems
that have some level of lignification which largely preserves the
3D root crown architecture. Maize and sorghum growth con-
ditions will vary based on the individual requirements of spe-
cific research programs, and potential methods for collecting
excavated root crowns have been described [6, 10]. It is impor-
tant to remove as much potting mix or field soil from root
crowns as possible since any foreign material clinging to roots
will be included in the scan volume, making the identification
and measurement of root traits more difficult during feature
extraction. When cutting off aboveground stalk tissue, be sure
to leave a minimum of 15–20 cm of stalk so the sample can be
clamped securely in the portable vise without wobbling or
slipping during the scan. When setting up scanning geometry,

Fig. 4 Full 3D reconstructions from scans of a variety of plant samples, each one
assembled from thousands of 2D digital radiographs. (a) Sorghum panicle, (b)
mature maize ear (cutaway shows internal detail), (c) quinoa panicle, (d)
excavated maize root crown, and (e) Setaria panicles
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the detector must be moved as far as possible away from the
source, with the sample very close to the detector without
touching during rotation, to allow as much of the root crown
to be projected within the borders of the detector without
showing the clamps in the scan volume. This also allows for a
level of scan-to-scan consistency, for example, always having
2 cm of stalk tissue above the root crown in each scan for
comparing all scans across a population. If significant features
of the root crown fall outside the edge of the detector, then
helical or tiled/stitched scans must be used to image the entire
sample. Note that these specialized scanning modes can
increase final file sizes by a significant amount (see Table 1).
Researchers should explore whether sampling at earlier time
points or developmental stages might provide smaller root
crowns that fit entirely on the detector but still yield biologi-
cally relevant root architecture features.

2. Grape (Vitis spp.) rachis. The rachis is the framework of stem
tissues that bears the individual berries, and rachis branching
architecture is highly variable across Vitis spp. [12, 13,
16]. Individual dried rachis samples can be secured between
two rectangles of EPS and clamped so that the entire rachis lies
within the detector frame for imaging, with enough EPS to
keep the clamps out of the scan volume.

3. Panicles from sorghum, quinoa (Chenopodium quinoa), and
Setaria viridis. Imaging sorghum or quinoa inflorescence
structures, e.g., panicles, typically requires a helical scan as the
projected panicle image is usually taller than the detector.
Panicles can vary in width so the detector will have to be
adjusted to either landscape or portrait orientations depending
on the required resolution of the final 3D volume. The
researcher must decide what features are to be measured in
the scan and adjust imaging parameters accordingly. If fine
details of individual grains are desired, then higher kV (greater
penetration) and higher scan resolution parameters (shorter
source-sample-detector distance) are required. These condi-
tions can be used for a wide range of inflorescence structures,
particularly grasses like maize, wheat, rice, barley, oats, and
others, to assess a variety of traits including grain fill, seed
number and distribution, and underlying panicle architecture.
Setaria panicles are much smaller allowing multiple samples to
be fixtured and scanned simultaneously, and the individual 3D
volumes separated computationally before feature extraction.
Setaria samples can be scanned by mounting one or more
panicles between rectangles of EPS and clamped as described
for the grape rachis above.
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4. Mature maize ears. Stacks of EPS can be combined and secured
with hot glue, and a hole carved in the center that supports a
single maize ear. Ears should be secured by a tight fit or by
using smaller pieces of EPS as wedges or shims to prevent any
movement or wobble from the ear during scanning. Blocks of
EPS with secured maize ears can be placed on lab jacks and
raised into the X-ray beam to image the entire ear using a
helical scan mode. Higher kV levels are required to adequately
penetrate the ear and provide sufficient structural information
about kernel number, size, shape, density, and distribution as
well as relevant cob data. Again, if density information is
required, a density standard should be incorporated into the
scanning protocol.

5. Switchgrass (Panicum virgatum) excavated root systems. Exca-
vated switchgrass root systems are large and complex, often
many meters deep in situ. Removal of soil or potting mix is
crucial for both reducing the weight of the root system and
improving the quality of scan data. The vertical travel of the
NSI X5000 has a limit of just over 1 m given the unique
fixturing requirements of stabilizing such a tall sample. To
capture sufficient imaging data for this sample, many thousands
of images must be collected over the course of the helical scan
which generates accordingly large data sets (see Table 1). Large
fixtures of EPS are required to suspend and stabilize excavated
switchgrass root systems, and the fixture should also help con-
fine the roots to a width narrow enough to be captured by the
detector in landscape mode. Ideally, use a single large piece of
EPS at least 8–10 cm thick and over 1 m long; this will improve
the fixture’s structural strength compared to smaller pieces
joined together with glue or tape, which will be visible in the
3D reconstruction. Mount the frame in an EPS base wide
enough to handle the upright frame and not wobble, but not
exceed the width of the turntable and potentially interfere with
the detector during sample rotation. The base can be secured
directly to the turntable with gaffer’s tape.
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Abstract

Due to climate change and expected food shortage in the coming decades, not only will it be necessary to
develop cultivars with greater tolerance to environmental stress, but it is also imperative to reduce breeding
cycle time. In addition to yield evaluation, plant breeders resort to many sensory assessments and some
others of intermediate complexity. However, to develop cultivars better adapted to current/future con-
straints, it is necessary to incorporate a new set of traits, such as morphophysiological and physicochemical
attributes, information relevant to the successful selection of genotypes or parents. Unfortunately, because
of the large number of genotypes to be screened, measurements with conventional equipment are unfeasi-
ble, especially under field conditions. High-throughput plant phenotyping (HTPP) facilitates collecting a
significant amount of data quickly; however, it is necessary to transform all this information (e.g., plant
reflectance) into helpful descriptors to the breeder. To the extent that a holistic characterization of the plant
(phenomics) is performed in challenging environments, it will be possible to select the best genotypes
(forward phenomics) objectively but also understand why the said individual differs from the rest (reverse
phenomics). Unfortunately, several elements had prevented phenomics from developing as desired. Con-
sequently, a new set of prediction/validation methodologies, seasonal ambient information, and the fusion
of data matrices (e.g., genotypic and phenotypic information) need to be incorporated into the modeling.
In this sense, for the massive implementation of phenomics in plant breeding, it will be essential to count an
interdisciplinary team that responds to the urgent need to release material with greater capacity to tolerate
environmental stress. Therefore, breeding programs should (i) be more efficient (e.g., early discarding of
unsuitable material), (ii) have shorter breeding cycles (fewer crosses to achieve the desired cultivar), and (iii)
be more productive, increasing the probability of success at the end of the breeding process (percentage of
cultivars released to the number of initial crosses).

Key words Phenomics, Breeding, HTPP

1 Introduction

There is global concern about the significant gap between projected
world food consumption in the coming decades and expected crop
yields for those periods [1]. In the specific case of wheat, due to the

Argelia Lorence and Karina Medina-Jimenez (eds.), High-Throughput Plant Phenotyping: Methods and Protocols,
Methods in Molecular Biology, vol. 2539, https://doi.org/10.1007/978-1-0716-2537-8_13,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2022

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-2537-8_13&domain=pdf
https://doi.org/10.1007/978-1-0716-2537-8_13#DOI


increase in world population, current production will likely have to
double by mid-century [2, 3]. To achieve that production, wheat
yields must increase at an annual rate of 1.6% [4], which is a far cry
from the 1.26% achieved in recent years [5]. Moreover, in many
agricultural areas, the current effects of global warming on annual
weather patterns and atypical climatic events threaten to increase
further yields [6–10]. Indeed, climate change is expected to nega-
tively affect the area available for crop production [11, 12]. It is
suggested that the most efficient way to address the food crisis is
through agronomic management and genetic improvement [13];
the former has a more immediate but short-range impact due to the
effects of climate change [14], while the latter requires a greater
effort over time, but addresses the problem more directly [15].

The use of high-throughput plant phenotyping (HTPP) allows
an indirect estimation of desirable traits through rapid, low-cost,
non-destructive, and simultaneous (sometimes) assessments of
thousands of genotypes. The phenotyping techniques commonly
used in plant breeding programs are spectrometry and
thermography [16].

In the case of spectrometry, the equipment can record the
reflectance of plants and their spectral signature (i.e., graphic char-
acterization of reflectance) related to specific traits or plant condi-
tions [17]. On the other hand, thermography uses radiometric
information to estimate plant temperature. This technology is a
valuable instrument to study the spatial and temporal heterogeneity
of plant water status, the photosynthetic apparatus, and the inter-
action with the ambient in terms of cooling capacity [18].

This book covers different HTPP tools, strategies, and meth-
odologies. The focus of this chapter is to review the aspects that are
probably limiting the massive implementation of phenomics in
plant breeding programs, especially in the field. Special emphasis
is placed on spectral reflectance.

2 The Relevance of High-Throughput Plant Physiology

Since the inception of civilizations, the domestication of crops has
depended on man’s ability to identify the individuals who best
behave in each location [19]. From then on, phenotyping and
selection have been the basis for plant improvement.

Due to the effects of climate change and food shortages
expected in the coming decades, along with the development of
cultivars with greater tolerance to environmental stress, it is also
imperative to shorten the breeding cycle time (from first cross to
cultivar release). The problem is that to develop tolerant cultivars,
breeders must anticipate an uncertain environmental scenario. A
couple of decades will probably have passed by the time the cross
that gave rise to a given cultivar is massively sown/planted. In other
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words, to effectively overcome environmental constraints in
another 15–20 years, crossbreeding must be strategically planned
today, not tomorrow.

Therefore, to effectively develop cultivars well adapted to
adverse conditions, breeders will have to rely on a new set of
morphophysiological and physicochemical traits, which are not
always easy to implement [15, 20]; many of these traits have been
related to heat and drought tolerance in Mediterranean crops [21–
26]. Unfortunately, due to the high number of genotypes that must
be screened (time consumption) and the complexity of the physio-
logical measurements, traditional breeding has not fully addressed
the challenge of a deep phenotype characterization [16].

This situation is more complex in breeding programs oriented
to ambient stress (e.g., heat or water deficit) where, in order to
evaluate individuals at their maximum expression of the response to
the stimulus, the measurement window is limited to a few hours per
day (�2 h from zenith). For example, considering a set of ecophys-
iological traits (e.g., gas exchange, chlorophyll a fluorescence, leaf/
stem water potential, and pigment content), it would be possible to
phenotype a maximum of 15–20 genotypes per day [27]. There-
fore, the massive use of these time-consuming assessments is
impractical to consider in plant breeding, especially under field
conditions. Consequently, breeders have continued with traditional
selection methodologies, focusing on sensory descriptions (e.g.,
leaf color, resistance to diseases, growth habit, phenology) sup-
ported by information from relevant evaluations (e.g., yield and
its agronomic components, grain or fruit quality, postharvest life).

In the case of marker-assisted selection (MAS), despite the
technological advances in gene sequencing (i.e., routine, cheap,
and fast) [28–30], for a correct analysis and interpretation of such
information, it is also necessary to count toward a more complex
phenotypic characterization, with the drawbacks above [31]. There-
fore, MAS may not have the expected impact on plant breeding
programs at the field level, where there is limited control of ambient
factors. Insufficient phenotype characterization has led to the devel-
opment of models with a narrow range of spatial and temporal
scales (basically at the molecule level), limiting the ability to predict
when the environmental scenario vary. Proof of this would be that,
despite the development of MAS during the last decades, the
relative gain in grain yield continues with negative growth
rates [32].

Probably, at present, the best alternative for a more detailed
characterization of the individual is the acquisition of high-
dimensional phenotypic data (high-throughput phenotyping),
which allows the researcher to generate information for a holistic
understanding of plant responses, or “phenomics” [33]. Several
traits are evaluated to understand the relationship between them
and then describe or at least hypothesize the tolerance mechanism
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(s) involved in a given genotype. In this sense, it is possible to
estimate complex traits that might be relevant for genotype selec-
tion ( forward phenomics) and understand why a given individual
excels in a specific environment (reverse phenomics) [15].

Although, in the last decade, some researchers have proposed a
physiologically oriented approach to breeding [34–36], it was not
until a few years ago that the term “high-throughput plant physiol-
ogy” started to be used in phenotyping and phenomics for plant
breeding [31]. Compared to the traditional selection, some studies
show that using physiological traits in wheat breeding programs
could double the number of advanced lines of high performance
under water deficit [36]. In Chile, spring wheat yield progress
between 1920 and 2008 was positively related to stomatal conduc-
tance to water vapor (gs), traits that breeders did not attempt to
characterize prior to the release of each cultivar [37].

Among the many techniques to characterize physiological traits
of plants growing under adverse conditions, chlorophyll a fluores-
cence has proven to be a powerful tool to consider in plant breeding
[25, 38]. Its relevance lies in the sensitivity of this technique to
distinguish differences in the photosynthetic capacity of plants
subjected to abiotic stress [39, 40], identifying changes in photo-
synthesis’s biochemical processes (e.g., damage of photosystems or
the electron transport chain), which directly limit CO2 assimilation
[41, 42]. Another relevant advantage is the time taken for each
measurement (<6 s) compared to those performed with an infrared
gas analyzer (<6 min) to characterize leaf gas exchange (net CO2

assimilation rate (An), gs, internal CO2 concentration, and transpi-
ration rate) [43–45], facilitating the performance of a more signifi-
cant number of readings in a day. For example, the maximum
photochemical quantum yield (Fv/Fm) of photosystem II (FSII),
a parameter related to An [46], has been used to identify spring
wheat genotypes that were tolerant to high temperatures
[47, 48]. To select wild wheat genotypes tolerant to water deficit,
along with Fv/Fm, other authors have also suggested reading the
minimum and maximum fluorescence under dark conditions (F0
and Fm, respectively) [49]. Working with 25 L potted blueberries
subjected to heat, drought, and their combination, other fluores-
cence parameters were identified that were related to water deficit
tolerance: maximum electron transport rate (ETRmax), PAR at
which PSII saturates (IK), and photochemical quenching coeffi-
cients (qP and qL; puddle and lake model, respectively) [25]. The
same authors indicate that to identify the signals linked to heat
stress and that of its combination with water deficit, the quantum
yield of non-photochemical energy conversion in PSII due to the
downregulation of the light-harvesting function [Y(NPQ)] and the
quantum yield of non-photochemical energy conversion in PSII
other than that caused by the downregulation of the light-
harvesting function [Y(NO)] are highlighted.
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Remote sensing techniques are non-destructive, rapid, and
large-scale integrated (i.e., at canopy level) assessments of the
crop performance. The spectrometers are capable of measuring
over a wide range of the electromagnetic spectrum (i.e.,
~300–2500 nm) and have been proposed as tools for crop improve-
ment, such as in durum wheat [50]. In general, the reflectance
pattern has been related to physiological and agronomic traits
through different spectral reflectance indices (i.e., relationships
between some wavelengths; SRI). The first SRI, known as the
simple ratio (SR), included band wavelength in the visible (VIS)
and near-infrared (NIR): SR ¼ RNIR/RVIS. One of the widely used
SRIs worldwide is the normalized vegetation index NDVI [(RNIR

� RVIS)/(RNIR + RVIS)]. NDVI and other SRIs have also been
used to estimate chlorophyll, stay-green [51], nitrogen status, and
GY in wheat and other cereals [50, 52]. For example, for continu-
ous measurement of leaf greenness and senescence (stay-green),
reflectance signature would be more informative than the index
from optical chlorophyll/nitrogen leaf-clip meters. A large number
of SRIs have been reported in the literature [24], some of them
employing wavelengths between 1000 and 2500 nm, like the nor-
malized water index (NWI), the normalized difference moisture
index (NDMI), or the shortwave infrared water index (SWWI).
These indices worked better than the NDVI to predict GY or
carbon isotope discrimination (Δ13C) in wheat [24]. However,
unlike SRIs, modeling a more significant proportion of the spectral
signature can better describe the agronomic and physiological traits
to be determined [26].

Thermometry is another field remote sensing technology for
phenotyping [16]. Underwater scarcity conditions, gs is reduced,
reducing energy dissipation (i.e., evaporative cooling), conse-
quently increasing leaf/canopy temperature [53]. Although ther-
mography does not directly measure gs, it is associated with changes
in canopy temperature [54]. In this sense, thermal imaging helps
characterize leaf transpiration’s spatial/temporal heterogeneity and
photosynthetic performance.

3 Phenomics: A Multidisciplinary Approach, from the Genome up to the Phenome

For decades, plant breeding focused its efforts on increasing yields.
However, without exploring the tolerance characteristics of these
genotypes, it will be challenging to estimate their behavior when
the effects of climate change become more severe. Thus, under-
standing the biological determinants of genotypic variability in the
field is one of the critical challenges for plant breeders and thus for
food security [55]. Furthermore, as mentioned in several chapters
of this book, the multidimensional information collected by
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HTTPs and their correct interpretation will help elucidate the
complex molecular mechanisms related to stress tolerance [55].

Like the gene (unit of inheritance) is part of the genome, the
phenotype or single trait unit was established as “phene”
[56, 57]. Later, in 1949, the word “phenome” was introduced as
the sum total of extragenic, non-autoreproductive portions of the
cell, whether cytoplasmic or nuclear [58]. Both words (i.e., phe-
nome and phenotype) were defined from a genetic perspective (i.e.,
meaning that the phenome is what the genome influences). How-
ever, there are more complex relationships than stated in this defi-
nition. It was not until two decades ago that the term “phenomics”
was introduced in analogy to genomics [59, 60].

Considering the underlying mechanisms of plant responses
under adverse conditions, it would be important to consider the
phenome as a complex system, with several levels of organization:
from genes to the population level [61]. Since it is now possible to
characterize the genome, it would be reasonable to expect it to be
considered part of the phenotype [33].

Therefore, combining all available approaches (from genome
to phenome) in an interdisciplinary effort (e.g., programmers,
bioinformaticians, statisticians, biologists, agronomists, geneticists,
physiologists) represents the next challenge for plant breeding,
especially for those in charge of data matrix fusion (e.g., hyperspec-
tral imaging and genome-wide association study (GWAS)) and trait
modeling [62]. There is a unique opportunity to join efforts and
expertise on common goals, such as understanding the complexity
of plant responses to field-stress [63–66].

4 The Environment as a Modulator of the Phenotype and the Impact in Trait
Modeling

Many genes control plant yield, but environmental conditions
modulate their expression [67, 68]. For various reasons, plant
breeding has focused on empirical selection for crop yield. How-
ever, this neglects traits that could be relevant for plant breeding in
adverse scenarios and undermines the understanding of the G � E
interaction [31, 69–71]. Furthermore, if agronomic management
(M) is considered as a third relevant factor (G � E � M), the
comprehension of the phenome is even more complex, especially
in the field [72].

Without an adequate characterization of the environment, the
generation of multidimensional information is not enough to
achieve consistent models. Genotypic sensitivity to macro- and
microclimate is recorded at each assessment; for example, the spec-
tral signature of a given genotype will vary according on the envi-
ronmental characteristics under which measurements are
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performer. Without environmental data such as temperature (Ta),
vapor pressure deficit (VPD), photosynthetic active radiation
(PAR), precipitation (PP), and soil water content (SWC), model
validation with data from new seasons will remain discrete [73–
75]. For example, using thermal imaging data from two consecutive
campaigns to estimate grain yield (GY) in 386 wheat genotypes
under contrasting water regimes (i.e., full irrigation (FI) and water
stress (WS)), the coefficients of determination within each condi-
tion were very dissimilar (i.e., 2011, 0.52 and 0.68, and 2012, 0.08
and 0.03, respectively) [68]. By averaging environmental (i.e.,
maximum daily Ta, maximum daily VPD, and SWC), phenological
(i.e., days between sowing, anthesis, and mature grain), physiolog-
ical (i.e., carbon isotope discrimination (Δ13C)), and productive
variables (i.e., GY), in a cluster analysis, could establish that the two
water regimes (i.e., FI and WS) did not cluster either within or
between seasons (2011, 2012, 2014, 2015), nor within or between
the two contrasting Mediterranean climates where said evaluated
panel in Chile (Santa Rosa (sr) and Cauquenes (c)) [68] (Fig. 1).
This result suggests that, in addition to characterization in terms of
the amount of water applied, other factors [76] appear to play a
more significant role in grouping environments with comparable
characteristics.

In other words, without having to resort to combining envir-
onments to improve model statistics, likely, the coefficients of
determination of a true validation (i.e., a model built with one year’s
measurements and validated with the next year’s data) proba-
bly cannot be increased much further [76].

Spectral reflectance is closely associated with genotypic charac-
teristics and the environmental conditions in which the individual
develops and grows [16, 17, 77, 78]. Studying the impact of the
environment (i.e., control, WS, heat stress, and the combination of
both stresses) on the spectral signature in blueberry leaves (i.e.,
Vaccinium corymbosum L. and V. ashei R.), the magnitude of the
differences between spectra depended on the blueberry species
studied and, in the case of V. corymbosum cultivars, on their geo-
graphic origin (i.e., northern and southern highbush blueberry)
(Fig. 2) [79].

Likewise, when comparing gas exchange and spectral signature
stability as a proxy in wheat growing under the same environmental
stimulus (i.e., control, WS, and the combination of WS and heat
stress), the results varied according to the geographic origin where
the breeder performed the selection [79]. In the case of the geno-
type selected under high VPD (“Fontagro” from CIMMYT, Obre-
gón, Mexico), regardless of the environment, both gs and spectral
signature remained practically unchanged during the 3 days of
evaluation (nine different leaves were assessed per day). In turn,
under the same conditions, for the genotype that was selected in an
ambient with periodic rainfall throughout the year (“Martha” from
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INIA, La Estanzuela, Uruguay), gs increased, accompanied by an
evident shift of the spectral signature. Therefore, in theory, tracking
changes in the spectral signature with respect to a first measurement
(i.e., daily or hourly) would be a simple way to identify groups
of genotypes with contrasting transpiratory behaviors (Fig. 3).

In summary, to improve statistical indicators in individual con-
ditions (e.g., FI or WS), it will be necessary to reconsider the
importance of the environment as a modulator of genotype.

5 Spectral Reflectance Data Analyses

For modeling and interpretation of predictive results, reliable infor-
mation is essential [80]. However, when hundreds or thousands of
genotypes are screened daily, there is a high probability of errors,
especially in the field. For example, when spectral reflectance is
evaluated using an optical fiber without a light source, radiometric
calibration is required every 10–15 min, so the chances of inadver-
tently omitting this procedure are high. Something similar occurs
when the fiber deviates from the canopy for a few seconds, modify-
ing the mean spectral signature.

It is also necessary to preprocess the spectral signature and
identify the attributes (wavelengths) before modeling:

Fig. 1 Cluster dendrogram constructed with agronomic, phenological, and physiological information of
384 wheat genotypes, together with environmental information for each year and ambient studied: combina-
tion of the water regime applied (full irrigation (FI) or water stress (WS)), the experimental site (Santa Rosa
(sr) or Cauquenes (c)), and growing season (2011, 2012, 2014, or 2015), expressed as a trial code in the
figure. The cluster analysis was restricted to generate two (a) or three (b) groups. Data included phenological
dates, productive (grain yield), physiological (carbon isotope discrimination in kernels and the stress degree
day measured at the grain filling stage Z83 – SDD), and environmental information (seasonal averages of daily
maximum temperature and maximum vapor pressure deficit and the soil water content between 0 and 50 cm
depth). (Adapted from Romero-Bravo et al. [68])
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5.1 Spectral

Signature

Preprocessing

(a) Data normalization or scaling: due to the mathematical func-
tions involved, many of the machine learning algorithms are
sensitive to the range of the variables; for instance, attributes
whose ranges move between 0 and 100 will possess greater
importance in the value of the distance to those variables

Fig. 2 Spectral signatures (a, c, e, g, i) of V. corymbosum (“Bluegold,” “Liberty,” “Bluecrisp,” and “Star”) and
V. ashei (“Bonita”) growing in four ambients: at – FI, control without water deficit or heat stress; at – WD, only
water deficit; at+5– FI, only heat stress; and at+5– WD, with water deficit and heat stress. Comparisons
between control (at – FI) and each environmental condition are represented by the subtraction of reflectance at
each wavelength (b, d, f, h, j) [79]
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whose ranges fall between 0 and 1. In principle, when there is
no additional evidence, all the variables are assumed equal
importance. Therefore, the variables often conform to a
canonical form. Considering that the information collected is
represented as a data matrix, in which each row represents an
observation, and each column represents an attribute, several
normalizations or scaling schemes can be applied
[81]. Among the most relevant are as follows:

1. Normalization by area: this method normalizes the data
based on the area under the curve, and all samples will
have the same area [82].

2. The vector normalization, where the direction of the vector
is preserved but its magnitude is set to unity.

Fig. 3 Spectral signatures of leaves were recorded for three consecutive days at ~13:00 h (D1, red line; D2,
yellow line; and D3, blue line) (daily progression: a–f) and throughout the third day of evaluation (10:00 h, blue
line; 11:30 h, red line; 12:30 h, green line; 14:30 h, orange line; and 16:30 h, black line) (diurnal progression:
g–l) in spring bread wheat genotypes “Martha” (INIA, Uruguay: a–c, g–i) and Fontagro (CIMMYT, Mexico: d–
f, j–l), growing under control conditions (c, substrate ~75% pot water capacity and ambient temperature)
(a, d, g, j), soil water stress (WS, substrate of ~30 of the pot water capacity and ambient temperature) (b, e,
h, k), and the combination of water and thermal stress (WS + T, substrate ~30%, and ambient temperature
increased by 5–7 �C) (c, f, i, l). Nine different leaves were considered for each measurement
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3. Normalization by the mean, which is obtained by dividing
each observation by the mean of the data matrix [83].

4. Maximum normalization, obtained by dividing each obser-
vation by the maximum absolute value of the matrix, leav-
ing a range between �1 and 1.

5. Range normalization, dividing each observation by the
range of the matrix (maximum value – minimum value).

Depending on the selected modeling criteria, it is also
essential to consider that normalizations should also be
applied to environmental variables.

(b) Detection and elimination of atypical data: atypical data, also
known as outliers, are observations that are too distant from
the rest of the dataset. Frequently, the atypical data negatively
affects the modeling. Among others, one alternative is identi-
fying and removing the complete observation. Several families
of supervised algorithms perform outlier detection, among
which the local outlier factor (LOF) stands out. The LOF
uses the predictor variables and the dependent variables
together to determine a series of scores associated with each
instance [84]. Subsequently, observations possessing LOF
scores above a pre-specified threshold are identified as outliers
and thus removed from the dataset.

(c) Smoothing of the spectral signature: depending on the pur-
poses, the smoothing of the spectral signature may reduce the
spectral noise, preserving the number of predictor variables
[85]. In this process, a value is transformed or replaced by the
average of the values of the segment of the direct neighbors,
generating a smoothed value. Here, the neighborhood con-
cept is associated with a subset of data points whose dissimi-
larity (usually measured in the Euclidean distance) is slight.
Different preprocesing techniques are proposed in the litera-
ture, among them (1) moving average, which generates a new
value calculating the average of data within a segment of data
points; (2) the Savitzky-Golay filter, which takes advantage of
a moving window, selecting a subset of points adjusted based
on a polynomial function; (3) the median filter, which gener-
ates a new value calculating the median of neighboring data
points; and (4) the Gaussian filter, which generates a new value
by calculating a weighted moving average within a subset of
data points.

(d) Derivatives of the spectral signature: the derivatives (first,
second, and third order) help correct baseline effects on the
spectra and solve the problem caused by overlapping bands in
the spectral signature, providing a better understanding of the
data [86]. Derivatives allow identifying slight variations in the
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spectral sequences, tasks that can be difficult to perform
through a simple inspection.

(e) Dimensionality reduction: another critical step in data manip-
ulation prior to the generation of the model is dimensionality
reduction [87, 88]. An abridged version of the dataset is
constructed by compressing the data columns, minimizing
the information contained in the original dimensions. A
widely used preprocessing technique is PCA, a dimensionality
reduction procedure in which so-called eigenvectors are cal-
culated to indicate the directions in which the data are
dispersed.

(f) Elimination of spectral noise: the spectral noise is inaccurate
data caused by the natural presence of certain elements in the
atmosphere (e.g., water, carbon dioxide), which absorb spe-
cific wavelengths [89, 90]. Because of the large number of
genotypes to be screened in breeding programs, it is impossi-
ble to determine fixed or pre-established thresholds to relate
the elimination of the noisy values. For example, if the mea-
surement is taken with high relative humidity in the environ-
ment, the noise will be greater than when performed under
higher VPD conditions. The criterion for eliminating noise
has rarely been reported in the literature. In general, symmet-
rical noise cutoff is applied for all readings during the day,
which may discard relevant wavelengths [80].

5.2 Attribute

Selection

Modeling can consider the full spectral signature (all wavelengths)
or the use of some selected wavelengths that best describe the
response variable. The multi- or hyperspectral reflectance generates
a large amount of data with similar reflectance information, a
concept known as collinearity [91]. In other words, the neighbor-
ing spectral data contain similar information and whose high
dependency provokes unpredictable performance in certain families
of models [92, 93]. The detection of collinearity is usually carried
out by evaluating the correlation between neighboring attributes
(wavelength) (e.g., the correlation between pairs of neighbors,
analysis of variance, Kappa coefficient) [92]. When the collinearity
is identified, a variety of filters can be applied to reduce the adverse
effects (e.g., PCA, partial least square (PLS)) and others that can
select specific attributes (e.g., genetic algorithms (GA), analysis of
successive steps – stepwise). Another approach is to model directly
with techniques that incorporate inner methods to control the
collinearity. Examples of the latter are PLS regression (PLSr),
PCA regression (PCAr), ridge regression (RR), and support vector
regression (SVR). These methods allow the transformation of the
original dataset and regroup the data into non-collinear vectors
(PLSr, PCAr, SVR) or limit the effect of collinearity by applying a
weighting factor that reduces the contribution of collinear variables
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(RR) [93]. The most frequently used procedures for attribute
selection are:

(a) Genetic algorithms (GA): the GAs is a general-purpose meta-
heuristic whose goal is to find near-optimal solutions for opti-
mization problems. The GAs are initially inspired by biological
evolution, with operations based on the Darwinian principle
of reproduction and survival of the individuals that best adapt
to the environment. GA encodes the wavelength spectrum in
the so-called chromosomes (binary vector) whose genes
(binary values). In this encoding, a 0 means that the associated
interval is not considered in the final solution, and a 1 means
that the interval should be included. Following the biological
analogy, the fittest chromosomes (the subset of wavelengths
with more remarkable aptitude) are allowed to pass to the next
generation, mutate, or recombine, generating offspring. After
several generations (i.e., iterations of the algorithm), the infor-
mation contained in the excellent candidate solutions is pre-
served [94]. This computational method has been widely used
in the field of chemistry.

(b) Stepwise selection: there are two types of stepwise selection,
namely, forward and backward selection. On the one hand,
starting from an empty solution, forward selection attempts to
add attributes to a subset of characteristics incrementally. At
each iteration, the methodmeasures the quality of the solution
when the analyzed attribute is included in the partial solution,
identifying which of them lead to the best solution. This
process is repeated until no improvements are obtained in
the model or all the attributes are included in the final solu-
tion. In turn, the backward selection is analogous but this
time, starting from all attributes, which are systematically
removed one attribute at a time, until the model does not
improve its statistical parameters. There is also the possibility
of bidirectional elimination, which is a combination of the two
previous methods, in which the fit of the model is tested each
time a new variable is introduced or eliminated.

6 Generation of Predictive Models Through Spectral Signatures

Once the data has been preprocessed, it is necessary to select a
methodology according to the requirements. For this purpose,
there are three main strategies:

1. Analysis performed at the individual wavelength level.

2. Study the relationship between some wavelengths or bands of
the spectrum (SRIs).
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3. To model by linear and nonlinear methods, where the whole
spectrum, or a part of it (attribute selection), can be exploited.

6.1 Individual

Wavelengths

For the construction of new SRIs, and linear and nonlinear regres-
sion models, it would be desirable to know the degree of associa-
tion of each wavelength with the variable under studied. In
addition, although the association statistics could be considered
discrete, what is relevant is the magnitude of the differences with
the rest of the wavelengths.

6.2 SRIs Different combinations between wavelengths have been used to
generate SRIs [20, 95] to estimate phenotypic traits in plants.
Commonly, SRIs are composed of wavelengths with high and low
sensitivity to the expression of a given trait [96, 97]. The detection
of the most relevant wavelengths for the generation of SRI can be
performed by using several statistical methods, among others,
including stepwise analysis, principal component analysis (PCA),
or partial least squares (PLS) regression, and evaluating loading
[98–100]. It has been reported that, in the face of environmental
variability between seasons, which impacts the spectral signature,
SRIs would be more consistent than trait modeling by linear and
nonlinear regression [26, 101]. As the field spectrometer becomes
cheaper, it will be possible to massively increase the use of
SRI-containing bands from 1300 to 2500 nm, shown to have the
potential for predicting physiological traits under challenging con-
ditions [24]. As for SRIs databases, the SK-UTALCA software
contains more than 250, which can be calculated in few steps [80].

6.3 Predictive

Models

Until a decade ago, the literature focused mainly on the use of
partial least squares (PLS) regression. Today, a wide range of mod-
eling alternatives makes it challenging to compare methodologies
objectively [79]. All this leads to the underutilization of methodol-
ogies or procedures that could be more effective in predicting a
given trait. For example, PLS-DA stood out above all other simul-
taneously evaluated approaches: SRIs (255), multivariate regression
methods (PCAr, PLSr, RR, and SVR), and multivariate classifica-
tion algorithms (PCA linear discriminant analysis PCA-LDA, PLS
discriminant analysis PLS-DA, and k nearest neighbors kNN)
[26]. Although it would not be correct to compare the statistical
descriptors of the above methods, the magnitude of the differences
with PLS-DA indicates their potential use in plant breeding pro-
grams. In other words, it would be more efficient to identify the
group of superior genotypes (elite group) instead of estimating the
predicted values for each genotype.

To improve the statistical parameters of the models, it is also
important to incorporate other physiological or productive traits
(e.g., leaf temperature-TL, plant height, spike size, flag leaf color).
Thus, when leaf temperature is incorporated into the reflectance
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matrix of wheat subjected to three environmental conditions (i.e.,
FI, WD, FI + WS), the statistics of the regression models were
maintained or improved (Table 1). These results represent another
example that predictive power could only improve to the extent
that different databases, including those used in MAS, are merged.

Again, as shown in Table 1, predictions improved when the
databases of both conditions were combined (FI + WS) [26]. This
strategy, also reported by other authors [24, 102, 103], results
from the larger number of observations and the larger range on
the X-axis [26]. It is important to emphasize that, in general, the
practice of combining environments is not consistent with the
objectives of stress-oriented breeding programs, where genotypes
are evaluated under specific environments (e.g., overheating, water
deficit, salinity).

Although the categorical approach (PLS-DA) improved the
predictive power of the traits studied, nonlinear analyses could
help to improve the indicators under field conditions. An example
is the subfamily of machine learning algorithms based on tree-like
data structures. In computer science, tree-based learning methods
(TLMs) [104] have become a valuable tool for solving complex
problems [105–108], such as the degree of prediction in individual
environments.

However, state of the art does not identify a single learning
model as the most suitable for all situations. Therefore, there is no
roadmap leading to the best learning model for most morphophy-
siological and physicochemical traits. In practice, each learning

Table 1
Multivariate modeling (PCAr, PLSr, RR, and SVR) of grain yield as a function of reflectance
(350–2500 nm) and leaf temperature (LT) in wheat plants grown under full irrigation (FI), water deficit
(WS), and the combination of the databases of both environments (FI + WS)

Environment Model

PCAr PLSr RR SVR

RM
SE R2 IA

RM
SE R2 IA

RM
SE R2 IA

RM
SE R2 IA

FI Reflectance 1.44 0.05 0.41 1.42 0.08 0.47 1.51 0.23 0.68 1.49 0.26 0.70
Reflectance +
LT

1.42 0.08 0.47 1.41 0.09 0.50 1.25 0.38 0.78 1.23 0.40 0.79

WS Reflectance 0.99 0.10 0.49 0.91 0.23 0.65 1.18 0.18 0.64 1.32 0.12 0.59
Reflectance +
LT

0.98 0.11 0.51 0.89 0.26 0.66 1.07 0.18 0.66 1.18 0.17 0.64

FI + WS Reflectance 1.49 0.17 0.56 1.47 0.19 0.59 1.31 0.45 0.82 1.28 0.46 0.82
Reflectance +
LT

1.49 0.17 0.56 1.45 0.21 0.61 1.07 0.60 0.88 1.03 0.62 0.88

Santa Rosa (Chillán, Chile), during anthesis of the 2015 season

RMSE Root mean squared error, R2 coefficient of determination, and IA model fit index
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method has advantages and disadvantages, and the final choice is
usually a mixture of theoretical analysis and experimental
results [109].

Among the TLMs showing superior potentials are logistic
model trees (LMT), random forests (RF), and hierarchical neural
networks (HNN). LMTs belong to a family known as decision
trees, which build successive decision branches as an internal
model and whose end nodes in the tree correspond to logistic
functions. Instead of assigning categories at each leaf node, LMTs
use logistic processes to model subsets of data. This model builds a
tree for each attribute that is then combined into an ensemble
method that assigns the most likely category based on a voting
scheme. LMTs stop adding nodes when performance on a test set is
satisfactory (the test set considers only data not used in the training
process) [110].

The second type of TMLs is RFs, which belong to a more
prominent family known as ensemble methods. RFs are potent
models that produce successive random trees (on the order of
hundreds or thousands) that are then combined to create a robust
solution [111]. Each tree can produce a prediction, but combining
all the trees (i.e., the forest, hence the name) will improve the
predictive ability, for example, in specific environments [111, 112].

The third family of methods is hierarchical neural networks,
which are mathematical models inspired by the brain’s functioning.
One model that performs this type of learning is the tree topology-
oriented SOMs (TTOSOMs) [104]. TTOSOM succinctly repre-
sents data using structures known as neural trees trained in a series
of iterations. TTOSOM assumes that neurons have plastic capabil-
ities, allowing their internal design to be modified to represent the
analyzed data. During a process known as competitive learning, the
method chooses an observation from the dataset. It identifies the
most similar neuron (winner neuron), which then absorbs part of
the information provided by the observation. Then, the learning
process is propagated through the interconnections of the tree,
producing the other neurons which also absorb part of the infor-
mation, as if the tree were “learning a lesson.” Once the total
system of neurons has been successfully trained (convergence),
the method can make predictions by combining all neuron outputs
into a single response. The resulting TTOSOM tree has interesting
mathematical properties, such as a compact representation of the
original data distribution and preservation of the underlying topol-
ogy [113]. Table 2 shows an example of the predictive potential of
hierarchical neural networks. In this case, TTOSOM leads to the
accurate identification of elite genotypes, at least for net CO2

assimilation, stomatal conductance, and GY.
In summary, TMLs have the advantage of being organized in

simple but dynamic structures, called nodes, which communicate
with other nodes through the tree’s branches and, as a whole,
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represent the global model or tree [104, 113, 114]. As the global
model grows and varies according to the behavior and dispersion of
the data, each new data matrix will be associated with a specific
node or become a new one. With this approach, environments as
we know them (e.g., IF or WS) will no longer be an arbitrary code.
Thus, the predominant seasonal environmental characteristics will
not only be picked up in the spectral signature of each genotype, as
in the rest of the evaluated traits, but will be part of the overall
model.

7 Other Considerations to Accelerate the Development of Phenomics in Plant
Breeding

7.1 Worldwide

Standardization of

Measurements

It is important to concentrate efforts on determining the method-
ological details that are key to the coherence of the models devel-
oped, thus avoiding resorting to the combination of environments.
Establishing assessment protocols that address what, how, and
when is essential. For example, a practical question in annual crop
improvement is whether sensors recording Ta and RH should be
installed near the upper level of the canopy or use information from
weather stations with sensors located 2 m above the ground.

7.2 Phenomics in

“Non-cereal” Species

Although phenomics has evolved rapidly in cereals, work on other
species groups is discrete (e.g., fruit trees, fodder crops, flowers, or
forestry). In addition to the relevance for food security, cereals
generally have a continuous horizontal canopy, which facilitates
readings. In species such as fruit trees, vertical canopies often pose
additional methodological difficulties.

7.3 Aerial Platforms Aerial platforms are handy, especially in breeding programs where it
is necessary to evaluate hundreds or thousands of genotypes, ideally
at the same time. In the case of hyperspectral cameras (i.e., spectral
signature at the pixel level), prices do not yet allow their massive
implementation in field trials. Until this happens, it is suggested to
develop models using reflectance recorded on the ground to be
validated in aerial measurements.

Table 2
Percentage of correctly classified instances for multivariate classification method (PLS-DA) and
hierarchical neural network (TTOSOM), for data recollected in WS conditions

Model Net CO2 assimilation Stomatal conductance Grain yield

PLS-DA 0.77 0.77 0.46

TTOSOM 0.90 0.88 0.92

(Santa Rosa, Chillán) during grain fill, season 2015. Santa Rosa (Chillán, Chile), during grain filling of the 2015 season
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7.4 Software

Development

Since spectral signature modeling is still a growing field, it is essen-
tial to consider the development of customized software that allows
a more efficient and faster analysis, according to the researcher’s
requirements. Therefore, generating a phenotyping platform
(equipment + protocols + software) is essential to accelerate the
generation of information that will help speed up plant breeding
processes.

7.5 Joint Trials and

Interdisciplinary

Teams

The holistic conception of phenomics forces researchers from dif-
ferent fields to work on collective goals. Thus, joint trials have
advantages: (1) lower operational costs; (2) statistics and interpre-
tation of information will be based on more complex hypotheses;
and (3) by involving researchers from different disciplines, poten-
tially, it would be possible to apply for several competitive funds in
the corresponding fields (e.g., ecophysiology, molecular biology,
ecology, informatics), all under the same umbrella (i.e.,
phenomics).

7.6 Global Trials

Could Compensate for

the Number of Seasons

Needed to Generate a

Reliable Model

Model predictive ability depends, to a large extent, on the number
of seasons over which a given panel is studied. Even having many
years of data, predictions are likely to be more responsive in envir-
onments similar to those in which the panel has been evaluated.
Thus, it is expected that, with nonlinear modeling, a panel screened
globally with standardized protocols could achieve a similar or
greater degree of prediction than that established in the traditional
approach, but in fewer seasons.

8 Conclusions

The use of HTPPs, detailed characterization of the environment,
data matrix fusion, and the nonlinear modeling approach
should improve the scope of phenomics in breeding programs.

Consequently, breeding programs will be (1) more efficient
(e.g., discarding unsuitable material early) [105, 115, 116];
(2) with shorter breeding cycles (fewer crosses to achieve the
desired cultivar); and, therefore, (3) also increasing the probability
of success at the end of the breeding process (percentage of released
cultivars relative to the number of initial crosses) [15, 27].
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Chapter 14

Designing Experiments for Physiological Phenomics

Addie Thompson, Michael Kantar, and Katy Rainey

Abstract

Phenomics has emerged as the technology of choice for understanding quantitative genetic variation in
plant physiology and plant breeding. Phenomics has allowed for unmatched precision in exploring plant life
cycles and physiological patterns. As new technologies are developed, it is still vital to follow best practices
for designing and planning to be able to fully exploit any experimental results. Here we describe the basic –
but sometimes overlooked – considerations of a phenomics experiment to help you maximize the value
from the data collected: choosing population and location, accounting for sources of variation, establishing
a timeline, and leveraging ground-truth measurements.

Key words Remote phenotyping, Automated data collection, Experimental workflow, Correlated
measures, Phenomics, Experimental design

1 Introduction

1.1 Defining a

Phenotype and Why

We Measure

A goal of natural science has always been to understand the way the
world works, and in order to understand the world, things need to
be measured. These measurements are essential to develop an
expectation for the natural environment and human-mediated
environment. Historically, humanity has desired different things
of the environment; one of the major goals has been to produce
food. Plants have been central to food production since the advent
of agriculture [1]. A plant is an organism that is used to understand
a specific species or a specific genotype in order to gain insight into
how genotype, environment, and management interact. Plants are
central to agriculture and the natural environment. Measurements
are used to develop expectations which are foundational to improv-
ing populations based on the ever-shifting landscape of human
goals.

To reach human goals, science uses specialized terms, with the
same words often meaning different things even between
sub-disciplines [2]. Clarifying definitions and the goals of terminol-
ogy is important so that objectives can more readily be achieved.
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One of the most common terms is phenotype, which can be defined
as a measurable characteristic that is the physical outcome of the
combination of the genotype and the environment that an organ-
ism lives in [3]. New high-throughput phenotypes allow for an
unprecedented way to make measurements; these techniques
greatly increase the amount of data [4]. This new data can be data
that wouldn’t have been previously collected, or it can increase the
precision of the data that is collected [5].

However, the phenotypes that are commonly measured can be
the outcome of physiological important genetic pathways or simply
correlated with important genetic pathways. Frequently, this means
that measurements are conducted based on what is possible rather
than what is most relevant to the question; this is most frequently a
correlated phenotype [6].

1.2 History of Image-

Based Data Collection

Image analysis and remote sensing have been a technique used in
science since the mid-nineteenth century [7]. The first large-scale
landscape photos were taken in the 1850s from balloons either
suspended or free-floating. These simple black and white photo-
graphs formed the basis for the development of analytical techni-
ques that have been used in a diverse array of fields from sociology
to oceanography to agriculture. The basic workflow for processing
images has to do with spectral differentiation, radiometric differen-
tiation, spatial differentiation, and geometric transformations.

The first use of aerial vehicles for image collection was World
War I. The success of pictures is based on optical elements of the
camera as well as the conditions on the day pictures are taken.
Historically, different types of film, different shutter speeds, and
different types of optics led to different visual contrasts and thus
differential ability to identify elements on the ground. The ability to
ensure accuracy is dependent on being able to identify geometry
associated with each image and correct for individual geometric
differences between images.

The advent of orbital imagery allowed for a different spatial
scale than had previously been available. The first satellite systems
designed to monitor land resources (e.g., crops) were launched in
the early 1970s. New satellites have been sent up with regularity
since that time, each new satellite has increased the range in the
electrometric spectrum that has higher resolution to explore differ-
ent features across earth. The temporal resolution of satellites is
limited by the rate at which they orbit the earth.

The use of unmanned aerial vehicles allowed for a new wide
range of sites to be available for study and for much higher resolu-
tion both spatially and temporally for each site [8]. An additional
way to achieve temporal and spatial resolution is to mount cameras
on tractors and measure plants within rows [9]. These have been
expanded to include a wide range of sensors to measure a large
number of traits [10]. It is possible to have fixed cameras mounted
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to view entire fields that can take time series images at multiple
resolutions to understand spatial and temporal variation.

1.3 Approaches from

Earth Science,

Geography, and

Ecology

Recently, high-throughput phenotyping has focused on image
data. Once images have been created, it is necessary to be able to
understand and interpret them, and this can be challenging [11].
Image analysis has a long-standing history of use in many fields,
providing a large opportunity for interdisciplinary learning. Three
disciplines that have long used observational data to explore image
analysis to understand biophysical processes are geography/GIS,
earth science, and ecology.

Remote sensing has the goal of gaining information about land
surfaces and bodies of water based on long-distance measurements.
As the number of measurements increased and more types of
features were interrogated, algorithms were developed in order to
classify these features. The different types of imagery are varied and
lead to the classification of different types of features. These tech-
niques are based on contrast between features, on different visual
spectra. Pictorial images are generally transitioned to digital for-
mats which subdivide the images into grids of equal sizes. Classify-
ing land cover has been a major source of method development in
remote sensing and has been very useful for understanding large-
scale landscape changes over time and space. With respect to plant
material, the initial challenges were with respect to vegetation or no
vegetation; then to what type of vegetation (forest, grassland), life
history of plant material, and specific type of plant material; and
then finally to ask specific questions about the plant material. This
final approach is of most use to plant breeding and agronomy, as it
allows for the prediction of yield, disease incidence, insect inci-
dence, growth rate, and abiotic tolerance.

2 Materials

2.1 Options for

Plants

1. One or a few genotypes across multiple other non-genetic
treatment levels.

2. A small number of contrasting genotypes, species, or
mutant vs. wild-type.

3. A modest number (20–50) of diverse genotypes for surveying
variation, estimating heritability, and calibrating models to
predict phenotypes from correlated traits.

4. A moderate number (100–300) of genotypes for mapping
quantitative trait loci (QTL) in a segregating biparental
mapping population or recombinant inbred line population.
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5. A larger number (300–1000+) of diverse genotypes or breed-
ing lines for conducting genome-wide association studies
(GWAS) or genomic prediction.

2.2 Potential

Facilities

1. Growth chamber with carefully controlled temperature,
lighting, and humidity.

2. Phenotyping greenhouse with well-controlled temperature,
lighting, and humidity; plants may be on conveyor belts to
minimize spatial variation.

3. Standard greenhouse, level of control of temperature, lighting,
and humidity can vary; plants in pots on the floor or on shelves
or sometimes directly in the ground.

4. Hoop house or hot house, little to no climate control, clear
plastic-covered shelter to increase heat and extend growing
season.

5. Research field plots on your own land (university farm, industry
field test site).

6. On-farm field trial using land maintained by a farmer.

2.3 Example Data

Collection Platforms

1. Fixed-point installations: one or many networked cameras
mounted in place in a field, greenhouse, or chamber.

2. Balloon: tethered balloon with sensors fixed to the bottom.

3. Satellite: sensors carried in orbit in space and used to image the
earth.

4. Tower: tall pole-like structure in a field, greenhouse, or cham-
ber with sensors at the top looking out/down.

5. Imaging “box” or “imaging tower”: a self-contained structure,
usually in a greenhouse or lab, that plants enter (either auto-
matically on a conveyor belt or manually) with controlled
lighting and fixed-position sensors.

6. Gantry: moving suite of sensors on rails or cables that moves
over a fixed area.

7. Tractor, lawnmower, or all-terrain vehicle: can drive sensors
around a field, but must have special row spacing to drive in
the field or are limited by plant height.

8. Cart: low-cost usually human-powered set of sensors on wheels
to push over field plots.

9. Modified high sprayer: enables driving into a field with normal
row spacing and taller plant height.

10. Field robot: drives in between rows of plants carrying sensors at
potentially varying angles and heights to collect
in-canopy data.
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11. Unmanned aerial systems (UAS): fixed-wing or roto-copter
drone flying over a field site to collect above-canopy data on
crop performance or environmental conditions.

2.4 Potential Sensors 1. Black and white: very basic image that captures light and dark
contrasts; can be used for size/shape/height (collectively,
geometry).

2. RGB, or red-green-blue: most common type of camera imag-
ery that captures what the human eye sees; can be used for color
if well-calibrated, as well as geometry; overlapping images allow
for approximation of depth and height.

3. Multispectral: a few (usually 2–7) spectral bands that are often
used to calculate vegetative indices, indicative of traits like
chlorophyll content.

4. Hyperspectral: many (often 100 or more) high-resolution
spectral bands that are used to explore and model relationships
between spectral reflectance and plant health, status, and bio-
chemical composition.

5. Thermal: infrared measurements to estimate temperature.

6. LiDAR: sensor device containing spinning lasers that bounce
off structures and measure time-to-return as a way to map
complex shape and structure as point clouds in three-
dimensional space.

2.5 Ground

Reference Tools

1. Basic hand tools, such as a height stick, calipers, and scale (see
Note 1).

2. Chlorophyll meter, SPAD, or other handheld tool for plant
greenness.

3. Gas exchange system to measure photosynthesis and
respiration.

3 Methods

3.1 Consider the

Starting Materials

Careful consideration of the materials to be phenotyped is critical to
success with physiological phenomics. The objectives of the experi-
ment dictate the genotypes of interest, for example, if a contrast is
to be made between a mutant and wild-type plant. Often, multiple
genotypes (lines or varieties) will be compared to investigate a trait
of interest. The choice of genotypes, populations, or panels will
depend on your specific objectives. Some questions to consider:

1. What variation exists for your trait(s)? If you are the very first to
measure a particular phenotype, it is usually best to start with
replications of a few extremely diverse lines to estimate varia-
tion within and among genotypes and calculate heritability.
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2. What is the genetic architecture of the trait(s) of interest? If you
know your trait is highly quantitative and likely to be controlled
by many genes with small effects, you will need to use a greater
number of lines and likely more replications in order to accu-
rately estimate the effects of any one loci in a mapping experi-
ment, for example.

3. What is the heritability? Traits with low heritability and/or
those that are dramatically affected by the environment or soil
conditions will also challenge your ability to obtain accurate
estimates. Highly heritable traits can be measured using fewer
replications and/or locations. The relative importance of high
heritability will vary depending on your experimental goals, but
generally it is advisable to maximize the ratio of the genetic
variation to the total variation in an experiment. This increases
the likelihood that the experimental results can be replicated
and decreases the apparent level of “noise” in measuring the
trait. If phenotyping is being conducted as part of a breeding
program, sufficiently high heritability becomes essential to
ensure efficient gain from selection. If heritability is low for
your phenotype when measured directly, are there correlated
traits (related to or predictive of your phenotype of interest)
that are more highly heritable? If so, this would be beneficial to
consider.

4. What effect size are you looking for? If you hope to capture
very small effect sizes, you will need to increase your replica-
tions (for experiments involving direct comparisons) or num-
ber of genotypes (for genetic mapping projects). Increasing the
number of genotypes will help to offset the Beavis effect
[12, 13] of over-estimating small effects and under-estimating
the number of loci involved.

5. In which genotypes does variation exist for your trait(s) of
interest? The starting population will determine what contrasts
you are able to capture. For example, selecting a population of
highly elite lines will make it very difficult to identify significant
genetic contributions to yield, as the genetic variation and
phenotypic variance among the starting set will be low. In
fact, physiological phenomics often requires collecting yield
data on low-yielding material, which is not conventional to
agronomic research methods. Diversity panels often consist of
landraces which have been selected for yield and may be
reduced for genetic and phenotypic variance for yield-
associated traits as well. In a biparental population, it is possible
to have transgressive segregation (i.e., phenotypic values in the
offspring outside the range of the parents), but you will still be
limited to identify only the loci that are segregating.
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3.2 Consider the

Location and

Environment

How and where you intend to grow your plants will impact your
experimental planning and design. Your choice of environment
and/or platform will impact – and be impacted by – your chosen
genotypes, population, or panel.

1. Will you be growing your material in a growth chamber, green-
house, or field space? Often you will sacrifice some level of
experimental control in exchange for “real-world” relevance
at scale.

2. How many lines will realistically fit in your space, given the
number of replications you may need to estimate the trait? You
will have to consider the tradeoff between increasing replica-
tion and increasing the number of genotypes observed, with
the constraint of space in mind.

3. What costs are involved? You may have costs associated with
facility rental (chamber, greenhouse, field), equipment use
(planter/tractor/harvester, phenotyping equipment), supplies
(pots, soil, fertility, pesticides, stakes), technical support, and
additional labor for maintenance and data collection. Given
these costs, how many pots or plots can you afford?

4. How many pots or plots can you properly manage (planting,
watering, fertilization, weeding, etc.)? A smaller well-managed
experiment is often better than a larger poorly managed one.

5. At what stage(s) of growth and in what tissue(s) do you intend
to phenotype your plants? If you need to grow your material to
reproductive or maturity stages, are your chosen lines able to
mature in your environment? There are many environmental
and logistical considerations for this question. For example,
some genotypes and/or species require specific day lengths in
order to flower, some require vernalization (a cold period), and
some require the accumulation of a certain amount of heat
units prior to frost. Mature plant size may be an additional
concern for indoor facilities.

3.3 Consideration of

Non-treatment

Sources of Variation in

Multi-environment

Yield Trials

Decide whether and how to account for them or eliminate them
(Fig. 1).

1. Make valid assumptions about what variation is important to
your question. For example, if you are exploring a specific
abiotic stress (e.g., drought), make sure you can capture the
relevant variation associated with the expression of that stress
while eliminating or accounting for variation that may con-
found your conclusions, such as changes in soil type or eleva-
tion throughout a field or air circulation patterns in the
greenhouse or chamber.

Designing Phenomics Experiments 165



2. Can the source of error variation be controlled? If so, this is
incorporated into your technique including decisions about
management such as preparation of the seed bed, seeding
rate, plot size (often dictated by whether yield is being consid-
ered), and planting date. You can eliminate error with properly
calibrated equipment and data quality control protocols. Check
phenotypes as soon as possible after collection so that extreme
values (outliers) can be re-evaluated to determine whether they
are errors or true rare variants. If your experiment requires
destructive ground reference samples, then plots can have mul-
tiple rows to separate yield rows from sampling rows while
retaining borders.

3. Is the source of error variation predictable? If you can predict a
source of error but you can’t control it, then you can devise a
way to account for it. If a source of variance is unpredictable,
such as rainfall, then you should conduct your experiments in
multiple environments, both to eliminate risk and to obtain a
valid estimate of your treatment effect/model your environ-
mental variance.

4. Can the source of error variation be blocked? Blocking for
effects such as soil gradients and slopes and treatment interac-
tions are your elements of experimental design. The three basic
principles of experimental design are replication, randomiza-
tion, and local control.

Sources of Non-treatment Variance in Agronomic Research

Can a source of error 
variance be controlled?

No

Yes
Field Plot 
Technique

Can it be 
blocked?

No Yes
Experiment 

Design
Can it be quantified?

NoYes
Model Spatial 

Autocorrelation
Covariates

• planting date
• weed management
• data QC
• equipment calibration
• plot size • replication

• randomization
• local control

• plants/plot
• row length
• pest infestation • row, column 

•1D, 2D

Is it 
Predictable?

NoYes

Multiple 
Environments

• kriging

+ valid 
assumptions

Fig. 1 Minimizing error in a large-scale phenotyping experiment by accounting
for non-treatment sources of variation
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5. Can the source of error variation be quantified? Predictable
sources of variation that can’t be controlled or blocked can be
quantified and used as covariates in statistically adjusted phe-
notypes (see Note 2). These include unintended phenomena
such as pest infestation and variation in seedling emergence and
plot size. High-throughput phenotyping platforms provide
new methods of accounting for these sources of error, such as
collecting stand counts, measuring exact row lengths, and
detecting stress from changes in growth rate and color.

3.4 Plan Out the

Experiment in Advance

with a Timeline

After considering the genotypes and environment, you will need to
consider the timing of your measurements. A detailed timeline will
keep all individuals involved in data collection informed of expecta-
tions and necessary planning.

1. When will measurements be taken? Determine what pheno-
types are most important and at what stages. Draw out a
calendar that contains all phenotyping activities, what labor
and equipment are involved in each step, and what priority
different activities have in case there is a conflict due to weather
conditions or other unforeseen events.

2. Decide whether you will time your measurements by days after
planting, growth stage, or thermal time. Days after planting
may be convenient for a large experiment, but timing by
growth stage might make your measurements of physiological
phenomena more comparable (and decrease the impact of
flowering time on your trait). Using thermal time (e.g., grow-
ing degree days or GDD) will be similar to days after planting
except that it accounts for the fact that warm, sunny days will
lead to more growth than cool, cloudy days. Thermal time
allows you to space measurements uniformly by plant growth
rather than calendar days to avoid wasting resources (measur-
ing too many times during slow growth) or missing key growth
stages (not measuring enough during rapid growth).

3. What is the temporal resolution that you need? Some traits are
only visible or relevant during a particular time frame – for
example, flowering. Some traits like stand count may only need
to be taken once during the season. Others, like biomass or
height, accumulate at varying rates over the course of the
growth cycle. Accumulation traits often follow a sigmoidal-
type curve that can be used to model changes throughout the
season. Knowing this, it is often more important to capture
multiple timepoints during the rapid growth cycle mid-season
than either the early or late stages. Time of day may also be
crucial to your trait(s). For example, spectral data is often best
acquired within 1–2 h of solar noon at your location. This may
impact how many plants you are able to measure during a
constrained time frame.
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4. What is the spatial resolution that you need? For image-based
phenotyping, higher resolution enables more accurate estima-
tion of more traits. However, high-resolution sensors and plat-
forms are often cost-prohibitive and create tremendous
quantities of data that may not be necessary for the questions
at hand. On the other hand, some specialized image techniques
may rely on a minimum number of pixels in a defined region in
order to correctly match or estimate patterns.

5. What other data need to be collected at the same time to add
value? If you are taking image-based measurements, what man-
ual measurements (“ground truth”) might you need to take for
modeling? Are there samples you should collect at the
same time? Consider taking note of growth stage, recording
weather and management data, and collecting soil information.

3.5 Phenomic

Inference: A Multi-

objective Framework

for Evaluating

Unmanned Aerial

Systems (UAS)

Phenotyping

Capabilities

Aim Combine quantitative genetics and physiological growth
analysis to make inferences for new remote sensing capabilities for
yield prediction.

Given A panel or population of lines (see Note 3) exhibiting:

– Temporal quantitative variation in physiological and/or longitu-
dinal phenotypes (i.e., biomass), replicated and assessed from the
ground and remotely using UAS

– A calibration panel of a randomly chosen subset of lines

– Quantitative genetic and phenotypic variation for grain yield
potential (see Note 4) measured empirically from all plots

– Control of factors that confound interpretation, such as flowering
time, height, or population structure

– Measures of development and phenology, i.e., growth stages

– Relevant physiological measurements to interpret results, i.e., gas
exchange parameters (see Note 5)

– High-density genome-wide markers to estimate kinship among
lines (K matrix)

Calculate

– Summary phenotypic parameters describing development via
multivariate mixed models, i.e., BLUPs and BLUEs (seeNote 6)

– Genetic and environmental variances for summary parameters
via variance decomposition using the K matrix

Determine

– Genome-wide analyses, including GWAS outputs (QTL, genetic
architecture, and associations of genomic regions throughout
development), and assessment of the contribution of the
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UAS-derived secondary traits to predictive ability for genomic
prediction [14]

– Quantitative genetic properties for application to breeding
including genetic correlations among traits, other measures of
association to yield, and narrow-sense heritability

– Remote sensing prediction equations via training/validation
approaches (see Note 7)

4 Notes

1. This is a small subset of potential materials for ground-truth
data collection, depending on experimental goals. For example,
prediction of chlorophyll, N status, and other molecules will
require reference samples and wet chemistry.

2. New advances in space-time analysis are making spatiotemporal
methods accessible. There are two major methods of approach:
descriptive and dynamic [15]. Descriptive modeling seeks to
characterize the mean and covariance function; this type of
modeling builds on spatial statistics (e.g., kriging [16],
reviewed in [17]) and tends to be very useful when processes
are not well understood. Dynamic models take a conditional
approach that attempts to model the mechanistic real-world
process that allows for more causal inference.

3. A recommended approach to creating a phenomic inference
panel is to subset a MAGIC or NAM population by using
published information to control for factors that confound
interpretation, for example, restricting to lines that flower
within a narrow time frame. The restricted subset can be ran-
domly sampled to further reduce the panel size. If possible,
confirm that the subset panel retains a high variance for grain
yield potential. A minimum of approximately 400 lines repli-
cated twice per environment is preferable. MAGIC and NAM
populations are ideal because they are unselected mapping
population that are segregating for grain yield potential and a
range of associated traits.

4. Or another highly quantitative and expensive trait of interest
such as resistance to biotic or tolerance to abiotic stress, etc.

5. If sampling or phenotyping must be spread over several days,
consider phenotyping certain lines repeatedly as a form of
control.

6. Summary parameters are ideally derived from a growth analyses
(i.e., logistic growth curve) and are adjusted by thermal time or
other measures of development and might include summaries
over growth stages and calculations of growth rate, etc.
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7. Training and validation of remote sensing prediction equations
for phenomic traits is necessary when ground reference sam-
pling is too expensive to collect on all plots, but a large number
of treatments are needed for genetic analyses. In addition to
your replicate blocks with plots of all treatments/lines, plant a
calibration block of a randomly selected subset of lines from
your phenomic inference panel. Collect ground reference data
(i.e., biomass) from the calibration block on every sampling
date. Collect ground reference data from a randomly chosen
subset of plots in the full-panel replicate blocks on some or all
sampling dates. Develop your remote sensing prediction model
using ground reference data from the calibration block, and
then validate that the model accurately predicts ground refer-
ence values in the full-panel replicate blocks. Then, apply your
best model to quantify your phenomic trait phenotypes for all
plots from UAS data. Ground reference phenotypes and
remotely determined phenotypes can be used in separate
GWAS analyses as a means of validation.
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Chapter 15

Design Considerations for In-Field Measurement of Plant
Architecture Traits Using Ground-Based Platforms

Piyush Pandey and Sierra Young

Abstract

This work provides a high-level overview of system design considerations for measuring plant architecture
traits in row crops using ground-based, mobile platforms. High-throughput phenotyping technologies are
commonly deployed in isolated growth chambers or greenhouses; however, there is a need for field-based
systems to measure large quantities of plants exposed to natural climates throughout a growing season.
High-throughput methods using ground-based mobile systems collect valuable phenotypic information at
higher temporal resolutions compared to manual methods (e.g., handheld calipers and measuring sticks).
Additionally, the close proximity to plants when using ground-based systems compared to aerial platforms
enables plant phenotyping at the organ level. While there is no single best platform for obtaining ground-
based plant measurements across crop varieties with different planting configurations, there are a wide
range of off-the-shelf systems and sensors that can be integrated to accommodate varying row widths, plant
spacing, plant heights, and plot sizes, in addition to emerging commercially available platforms. This
chapter will provide an overview of sensor types suitable for phenotyping plant size and shape, as well as
provide guidance for deployment with ground-based systems, including push carts or buggies, modified
tractors, and robotic platforms.

Key words Field-based phenotyping, Plant architecture, Row crops, High-throughput phenotyping

1 Introduction

High-throughput phenotyping technologies are commonly
deployed in isolated growth chambers or greenhouses [1]; how-
ever, there is an emerging need for field-based systems to measure
large quantities of plants exposed to natural climates throughout a
growing season [2, 3]. Field-based data collection is a critical part
of improving crop production as field conditions enable the expres-
sions of the relationships between environmental and genetic fac-
tors through phenotypic variation [4–6]. Specifically, plant
architecture traits, such as stem width and plant height, are highly
correlated with biomass [7–9], and biomass predictions through-
out the season can assist with the breeding process and enable site-

Argelia Lorence and Karina Medina-Jimenez (eds.), High-Throughput Plant Phenotyping: Methods and Protocols,
Methods in Molecular Biology, vol. 2539, https://doi.org/10.1007/978-1-0716-2537-8_15,
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specific crop management decisions. High-throughput methods
using mobile systems enable the collection of valuable phenotypic
information at higher temporal and spatial resolutions compared to
manual methods (e.g., handheld calipers or measuring sticks),
which can accelerate the breeding and crop improvement processes.

Mobile, ground-based field systems, such as modified tractors
or ground robots, are becoming increasingly popular for phenotyp-
ing applications because they enable the collection of high-
resolution data at the individual plot or plant level through the
combined use of high-precision GPS technology, image analysis,
and geospatial analysis. While there is no “one-size-fits-all” plat-
form for obtaining ground-based plant measurements across many
crop varieties, there are a wide range of systems that can be aug-
mented with sensors to accommodate differences in row widths,
plant spacing, plant heights, and plot sizes. These ground-based
platforms are especially useful if the trait of interest cannot be seen
from an aerial view after the canopy closes, such as measuring stems
in sorghum or brace roots in maize.

The type of mobile platform best suited for field-based data
collection varies widely; however, the requirements for capturing
usable, quality image data from onboard sensors are similar across
platforms. Care must be taken to ensure proper sensor placement,
synchronization, calibration, resolution, and collection rate. Addi-
tionally, climatic factors including sun, wind, precipitation, dust,
and temperature can affect both the performance of the platform
and the quality of the data collected. It is best practice to under-
stand and plan for these challenges prior to in-field data collection.
This chapter will provide an overview of technical approaches and
design considerations of choosing appropriate sensors and develop-
ing a ground-based system for measuring plant architecture traits in
the field.

2 Field-Based Systems: Approach and Technical Description

2.1 Mobile Platform

Form Factor

A common approach to collecting high-throughput phenotypic
data requires the use of a ground-based, mobile platform of some
form to traverse the field and continuously take measurements with
a variety of sensors. Modified tractor systems are a viable option if
they are readily available at the field site; otherwise, they can be
cost-prohibitive. Additionally, larger tractor systems may prevent
the collection of under-canopy measurements due to size limita-
tions. Portable buggies and push carts are a low-cost option that
can be fabricated in house, such as the systems used in [10–12]
(Fig. 1). Additionally, commercialized options exist, such as the
phenoMobile® Lite buggy system developed by the Australian
Plant Phenomics Facility (www.plantphenomics.org.au). However,
in tall row crops, such as maize or energy sorghum, systems that
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travel over the rows prohibit data collection late in the growing
season due to chassis clearance limitations.

Small, portable robotic systems, such as the Husky (Clearpath
Robotics, Waterloo, Canada, Fig. 2), or a programmable four-
wheel drive robot development platform manufactured by Super-
Droid Robots (Fuquay-Varina, NC, USA), can be driven between
rows through the field as an alternative if chassis clearance is a major
limitation and concern. Some off-the-shelf phenotyping robotic
systems are now being sold with an accompanying software inter-
face equipped with visualization from on-board cameras that can be
operated manually at the field site. For example, the TerraSentia
platform from EarthSense (www.earthsense.co) is a small, portable
integrated data collection and robotic platform capable of captur-
ing under-canopy data and measurements in row crops by traveling
between rows and can be operated autonomously or manually.
Note that platform modifications using methods of control theory,
navigation, and guidance are needed to enable autonomous opera-
tion for remote-controlled systems, the methods of which are
outside the scope of this chapter.

Fig. 1 “The Professor,” a mobile field cart for phenotyping applications.
Originally from Thompson et al. 2018 [11]. (Licensed under CC BY 4.0 https://
creativecommons.org/licenses/by/4.0/. No changes were made)
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2.2 Vehicle

Operation and

Positioning

2.2.1 Mobile Ground

Robots

Manual control is readily available with off-the-shelf systems and
requires either a hardware controller, such an RC transmitter, or a
tablet interface with a wireless connection to the platform. Both
options typically ship standard with most commercially available
robots. Manual physical controllers can enable more precise con-
trol, although they may be an expensive add-on. If tablets are
readily available, Wi-Fi-enabled robots can be controlled via soft-
ware interfaces; however, this may not be the best option if the
signal is too weak or degraded in field situations (e.g., far distances
in dense canopy cover). For platforms with autonomous capabil-
ities, positioning can be enhanced with precise GPS equipment
(i.e., real-time kinematic (RTK) positioning). While convenient
for operation, precise positioning systems may contribute signifi-
cantly to the overall cost of the platform.

2.2.2 Modified Tractors If tractors are available at the field site, their implements can be
augmented with phenotyping sensors and driven through the field
[13–15]; form factors for achieving this may include either a hori-
zontal sensor boommounted to the front of the tractor or a tractor-
pulled cart system. The operation of a modified tractor system
requires a trained operator or technician available during data
collection, and, if possible, the speed of the vehicle should be set
on cruise control to maintain a consistent desired speed for data
collection.

2.2.3 Push Carts and

Buggies

Push carts and buggy systems are operated by hand at the field site.
Because human operation is highly variable, it is recommended to
mount a speedometer to the cart so a consistent speed can be

Fig. 2 “Clearpath Husky,” courtesy of Jakub Halun. (Licensed under CC BY-SA
4.0 https://creativecommons.org/licenses/by-sa/4.0/. No changes were made)
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achieved. Alternatively, motor encoders and a cruise control mod-
ule can be added to the system to enable operation at a set speed
[11]. Relative to other systems, buggies and carts require the most
human effort to operate; however, they are often the most afford-
able systems.

2.2.4 Vehicle Speed Desired system speed should be maintained at a steady state. Most
systems operate in a range of approximately 0.1 m/s to 0.80 m/
s [11, 12, 14, 16, 17], although the exact desired speed will be
determined by sensor resolution, frame rate, and system capability
(see Note 3). There is typically a “sweet spot” between vehicle
speed, frame rate, and resolution to capture the required informa-
tion without storing and managing unnecessarily large amounts of
data. Data can always be down-sampled after field deployment if the
vehicle speed was determined too slow for a specified frame rate.

2.3 Sensors for

Measuring Plant

Architecture

Multiple types of sensors have been used to characterize and quan-
tify plant architecture traits. Time-of-flight (ToF) infrared depth
sensors, stereo camera systems, and light detection and ranging
(LIDAR) sensors are all suitable options to measure physical plant
attributes and are often fused with RGB or other spectral sensors
for obtaining additional phenotypes [18]. The following sections
provide detail about each of these sensor types and best use prac-
tices in the context of deployment with ground vehicles for mea-
suring plant architecture traits, including stem width, plant height,
aboveground biomass, and canopy cover. Table 1 contains a list of
sensor types suitable for measuring a variety of traits related to plant
size and shape.

Table 1
List of plant architecture traits and sensors commonly used to measure them

Physical trait

Sensor type

Time-of-flight LIDAR/laser imaging Stereo camera systems

Top view Side view Top view Side view Top view Side view

Plant height ✔a ✔ ✔ ✔ ✔ ✔

Stem width ✔ ✔ ✔

Canopy cover ✔ ✔ ✔

Leaf angle distribution ✔ ✔ ✔ ✔ ✔ ✔

Volume (biomass) ✔ ✔
aDepending on the sensor resolution
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2.3.1 Time-of-Flight

(ToF) Infrared Sensors

Depth imaging using ToF cameras works by illuminating the scene
with a light source and observing the reflected light. In general, the
depth resolution and accuracy depend on the emitting power of the
light source, and the depth accuracy of ToF sensors is normally
within a range of millimeters to centimeters. Although the light
entering the sensor has both an ambient and reflected component,
depth information is only embedded in the reflected component;
therefore, ToF sensors can be sensitive to changes in ambient
lighting. It has been shown that distance error increases with the
light intensity [19], so reducing the ambient lighting can improve
the signal-to-noise ratio.

Raw data for ToF systems is typically in the form of a 2D
grayscale depth image (Fig. 3) and can be processed using com-
puter vision techniques to extract desired measurements [20].
Compared to other 3D laser scanning devices, ToF sensors can
operate at much higher frame rates (up to 160 fps). One limitation
of active depth sensors, however, is low resolution [21–23],
although time-of-flight and stereo vision data create more precise
depth maps when combined [24].While ToF sensors normally have
lower spatial resolutions compared to laser scanners, the next gen-
eration of continuous ToF sensors will likely have improved resolu-
tion [25]. Table 2 contains examples of available ToF depth sensors
that are commercially available, with an emphasis on listing open-
source options.

Fig. 3 An example time of flight image of sorghum stems in the field. Note that
occlusion from tiller and other vegetation near the ground can occur, as the stem
in the box on the left is visible, while the stem in the box on the right is not

Table 2
A list of commercially available time-of-flight sensors

Manufacturer Model Resolution Frame rate Range Field of view

PMD Technologies Flexx 224 � 171 Up to 45 fps 0.1–4 m 62� � 45�

PMD Technologies Monstar 352 � 287 Up to 60 fps 0.5–6 m 100� � 85�

Lucid Vision Labs Helios 640 � 480 Up to 60 fps 1.5–6 m 65� � 46�

Basler AG tof640 640 � 480 Up to 20 fps 0–13 m 57� � 43�
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For in-field phenotyping, a relatively short depth measurement
range of a few meters is sufficient for deployment with ground
vehicles that operate in close proximity to the plants. A side view
and top view of the plant are both common configurations for
phenotyping with ToF sensors [16, 19, 26]. If these sensors are
deployed with a top-down view directly under the system, the
image area will be generally more shaded with strong, direct sun-
light being prevented from shining on the area of interest. In
general, a side view of the plant is required for measuring stem
width using ToF sensors, but for leaf angle distribution, plant
height, and canopy cover, a top-down view is sufficient. Note that
a depth resolution that is insufficient for measuring parameters of
small plants and plants during early emergence may become suffi-
cient later in the growing season as the crop growth progresses, or
vice versa.

2.3.2 Stereo Camera

Systems

Stereo imaging is the determination of 3D structure of a scene
using two or more images of the scene, each taken from a different
viewpoint. Three-dimensional information can be extracted by
examining the relative positions of objects in the two images, and
relative depth information is obtained in the form of a disparity map
(Fig. 4). Stereo vision techniques can be implemented using a
manufactured stereo camera or two independent cameras mounted
in stereo that are calibrated. Examples of off-the-shelf stereo camera
manufacturers and models are included in Table 3.

Camera calibration is a necessary first step to obtain intrinsic
system parameters, including focal length, principal point, and
radial and tangential distortion, as well as the extrinsic parameters
of the stereo rig, including rotation matrix and translation vector.
After calibration, the major steps of stereo imaging include the

Fig. 4 Sample stereo image (left) and disparity map (right) of a sorghum canopy
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following [27]: (i) pre-processing, where well-defined feature char-
acteristics are identified; (ii) feature matching, where correspon-
dence is established between features; and (iii) 3D structure
determination, which uses principles of epipolar geometry and
triangulation to complete the reconstruction process. Each of
these processes has been well-studied, and established algorithms
exist for processing stereoscopic data [28].

Stereo camera systems, when mounted to ground-based plat-
forms, afford the ability to measure a wide variety of physical traits.
When positioned from above, stereoscopic images have been used
to perform segmentation of leaf regions [29, 30] and canopy
structure changes [29]. When positioned to capture a side view of
the plant, stereo reconstructions can obtain leaf surface areas [31–
33], plant height [16, 20, 33, 34], and stem width [34]. For field
operations, it has been suggested that strong sunlight conditions
and poor matching processes due to a lack of texture in the images
can limit the applications of using stereo vision for phenotyping
[35]; therefore, stereo cameras may yield better results when col-
lecting data in shady conditions and positioning the camera such
that there are unique features, such as contrast between plant
and soil.

2.3.3 Light Detection and

Ranging (LIDAR)

LIDAR is an active remote sensing system that emits light from a
rapidly firing laser and records the reflected light energy that
returns to the sensor to measure distances. While LIDAR was
originally developed for airborne scanning, mobile laser scanner
(MLS) LIDAR sensors can be used for measuring 3D properties
of objects from moving vehicles. MLS LIDAR can measure three-
dimensional (x, y, z) information (usually in the form of a dense
point cloud, Fig. 5), obtain thousands of points per second, and
measure the intensity of the reflected light. Using LIDAR as an
active phenotyping sensor has two advantages, as noted by
Jimenez-Berni et al. [36]: (i) it can be operated regardless of
ambient lighting and (ii) it obtains direct measurements of plant
architecture. Additionally, LIDAR is fairly robust in outdoor

Table 3
A list of commercially available stereo camera systems

Manufacturer Model Resolution Field of view

Code Laboratories DUO MLX 752 � 480 @ 45 fps 165� (H)

Stereolabs ZED 3840 � 1080 @ 30 fps 90� (H) � 60� (V)

Point Grey Imaging Bumblebee XB3 1280 � 960 @ 16 fps 66� (H)

Bosch Stereo video camera 1290 � 960 @ 30 fps 50� (H)

Luxonis OAK-D 1280 � 800 @ 120 fps 71.8� (H)
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conditions; however, issues may occur if wind, rain, dust, and other
effects induce scanning noises [37].

While LIDAR sensors are advantageous, they generate large
amounts of data, can be cost-prohibitive, and require multiple post-
processing steps. Before LIDAR data can be used to calculate
architecture traits, the raw LIDAR must be transformed into a
point cloud; then, the point cloud must be filtered, and outliers
removed. To estimate traits from the point cloud, the data can be
transformed into a voxel-based format, after which plant features
(e.g., leaf, stem) and traits (e.g., leaf area, height) can be extracted.
LIDAR has been used successfully with ground-based phenotyping
systems to obtain estimates of plant height [36, 38], biomass
[36, 39], crop density [39], and canopy cover [36]. To measure
canopy height, LIDAR sensors can be placed either above or below
the canopy, so long as a fraction of the pulses penetrates the canopy.
Note that LIDAR data can provide direct estimates of biomass,
while stereo camera systems and active infrared depth sensors mea-
sure traits used in crop models to estimate aboveground biomass.

2.4 Sensor Control

and Data Acquisition

For phenotyping applications, it is critical that sensor data are
properly georeferenced so images can be referenced to the appro-
priate plot for extracting traits during post-processing workflows;
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Fig. 5 Example image of LIDAR plant point cloud data, originally from Garrido et al. 2015 [47]. (Licensed under
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additionally, the data acquisition parameters (frame rate, exposure,
etc.) must be controlled individually for each sensor. There are
many system architecture and control approaches that achieve syn-
chronized sensor operation, and an example system is outlined
below that attempts to reduce the number of required components
and utilize commercially available sensors that operate via standard
interfaces, such as Ethernet or USB. The components of this exam-
ple data acquisition system and their functions are described below.

2.4.1 On-Board

Computer System and

Server

An on-board computer system can be used to control the data
acquisition and synchronization via software and receive GPS infor-
mation over serial connection, and there are a wide range of suitable
systems for these tasks. The NUC Mini PCs (Intel Corporation,
Santa Clara, CA, USA) are powerful systems with customizable
memory, storage, and operating system, all at a convenient size
(11.700 � 10.200 � 3.900) and weight (around 500 g) for deployment;
however, these systems are not ruggedized and also require head-
less operation or additional displays. Ruggedized laptops, such as
the Latitude Rugged series (Dell, Round Rock, TX, USA), are
sealed from sand and dust, although they require larger mounting
space. All computer systems will typically require AC power
supplies on-board the platform.

2.4.2 Image Capture It is advantageous to choose camera sensors that are open source or
that operate via standard USB/serial connections, which allow for
the creation of specific software programs or tools that can custom-
ize multiple data capture parameters (sometimes through sensor-
specific software development kits [SDKs]). Additionally, programs
can be written so that data acquisition is event triggered or begins
on system startup, which is useful when the computer system (e.g.,
NUC or Raspberry Pi) requires headless startup and operation.

2.4.3 Sensor

Synchronization

The on-board server can be used to synchronize the data streams in
time using the system’s internal clock. All data should be time-
stamped and GPS-tagged to enable plot-level mapping of pheno-
typic traits during post-processing workflows. The GPS system
used on-board should provide the current time and a pulse per
second (PPS) signal that can be used for timing other devices.
Using the GPS as a time source can be more accurate than relying
on the system’s NTP clock, especially when the system is not
connected to a network in the field. The GPS time can be used to
update the system’s NTP server and can also be used in the sensor
log files.

2.4.4 Data Storage Image data can accumulate storage space quickly; therefore, it is
often necessary to utilize an external storage device, such as a solid-
state drive (SSD), where the data are immediately saved, organized,
and stored during the field trials (seeNote 6). Also, using portable,
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external storage devices facilitates manual data transfer from the
on-board system to a server for post-processing, such as a net-
worked desktop machine or workstation.

3 Materials and Equipment

3.1 Phenotyping

System Hardware

When choosing hardware for a phenotyping experiment, there are
many variables to consider that impact both the platform and
sensors, such as the crop, desired traits, resolution of the data,
cost, availability, and required expertise of operation. The lists of
materials provided in this section are intended to be a generic set of
minimum equipment required to collect phenotypic data using a
combination of stereo, ToF, and/or LIDAR sensors in the field,
from a ground-based platform.

1. Mobile, ground-based deployment system (tractor, robot,
push cart/buggy).

2. Sensor mounting hardware.

3. On-board power supply.

4. DC to AC converter.

5. On-board computer and mounting platform.

6. GPS device with appropriate connection (i.e., serial, Ethernet).

7. Phenotyping sensors with appropriate interface connector.

8. External storage device.

9. Optional: actively cooled electronics chamber.

A note about power supplies: A power load estimation can be
conducted for the sensor system by summing the predicted average
current draw for each subsystem. If the platform is an off-the-shelf
robotic system or a modified tractor, the power supply for the
mechanical drive system will likely already be integrated and will
be separate from the sensor and data acquisition power supply.
Sensor and computer system power usage can be estimated by
using programs developed for this purpose or by using a real-time
Watt meter during testing operations. Depending on power con-
sumption and desired length of operation, lead acid batteries are a
low-cost power supply option; however, they can be heavy and have
a large form factor. Alternatively, lithium-ion polymer (LiPo) bat-
teries can be used, which offer much higher capacities in smaller
form factors, although they require extra care for safe operation,
charging, and storage.

3.2 Field Deployment

Items

During initial development, additional items can be brought to the
field for rapid prototyping and data quality assurance. This list of
items and their suggested uses are given for best practices and can
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serve as a checklist. The items below are also useful for field
demonstrations and field days.

1. Video displays: Using a display in the field during initial testing
is important for data quality control to ensure correct position-
ing and capture (Fig. 6). These monitors can connect to the
on-board system over a wireless network through a screen
sharing software, such as TeamViewer for Windows or
Remmina for Linux and Unix-based systems (both are free to
use).

2. Wireless network hotspot: If the area of interest does not have any
wireless connection (which is often the case), it is useful to
establish a local, ad hoc network for establishing headless con-
trol of the on-board computer. A straightforward way to do
this is by using a device such as the Jetpack® MiFi® 8800L
(Verizon Communications, New York, NY, USA) or a personal
cellular device to set up a local wireless hotspot using the 4G
LTE network. Note that the device needs to stay within con-
nectivity range of the phenotyping system.

3. Pop-up tent: This is critical for safety reasons and to preserve
ground station and platform electronics when performing field
work in extreme heat or conditions with unexpected heavy
precipitation (Fig. 7).

4. Tables and chairs: These assist in safety and comfort when
conducting field work. They are not essential, but are highly
suggested, especially for field demonstrations.

Fig. 6 Screens showing sensor data streaming in real time from a phenotyping system in the field. During the
prototyping stage, viewing the data in real time can assist with determining optimal sensor placement
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5. Portable generator: A power supply such as a generator can be
used to power the visual monitor displays, as well as supply
backup power should the on-board power fail during critical
data collection.

6. Extension cables: Extension cables can be used to bring power
from the generator to the required devices in the tent and to
the system in the field during critical failure.

4 Field Deployment Methods

This section outlines general steps required for setting up and
deploying a phenotyping system using the example above, and
includes items to consider during deployment.

4.1 Data Acquisition

Setup (Pre-

deployment)

1. Calibrate the selected camera or sensor. This can be done using
manufacturer-specified procedures or standard functions avail-
able in the OpenCV library [40] depending on the sensor
selected.

2. Configure the computer system NTP clock to use the GPS PPS
signal.

3. Develop a custom program to operate the cameras as needed –
this is typically done using the sensor SDK, Python or C++ with

Fig. 7 Temporary tent, tables, and chairs set up in the field for a demonstration. This tent enclosure protected
the display electronics from heat and unexpected precipitation
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OpenCV, LabView, and/or JavaScript. The exact functions for
adjusting sensor parameters will vary depending on the manu-
facturer capabilities and software, but at a minimum the fol-
lowing should be addressed:

l Capture frame rate

l Exposure (static or auto)

l Image timestamp

l Image GPS stamp, using the system’s NTP clock

l IMU measurements (especially if using LIDAR)

l Filename

l Output directory/file location

l Image metadata

4. Create a startup script (e.g., bash shell or batch) that will run
the data acquisition script(s) from step 2 on machine startup if
using a headless system (optional).

4.2 Hardware Setup

and Deployment

1. Securely mount the following to the mobile system:

l On-board power supply and converters

l Computer system and/or server

l Phenotyping sensors and their connection cables

2. Make sure the cables are secured to the frame of the system, so
they do not snag during deployment.

3. Connect your computer/processor and sensors to the power
supply.

4. Optional: if operating in regions that get extremely hot, an
actively cooled chamber may be required to keep the electron-
ics at proper operating temperatures, for example, by mounting
a fan in an air-permeable enclosure or forced air conditioners.

5. Turn on the system and ensure all sensors are operational.

6. Begin moving the system through the field, either by a remote
controller or manually. Remember to maintain a stable position
and steady speed (use cruise control, if possible; otherwise,
monitor speed using speedometer).

7. Continue collecting data throughout the deployment area of
interest. Remember that all data will be time and GPS stamped,
so identifying data at the plot level can occur during post-
processing.

8. Optional: Aim for field deployment times early in the morning
to avoid extreme heat and direct sunlight conditions, especially
if infrared sensors are used (seeNotes 1 and 2). However, if also
collecting spectral data from other reflectance sensors, desired
deployment times may be different.
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9. Depending on the experimental setup, develop a map of the
area needed to measure. If using a system with sensors
mounted above the crop, one pass may be needed to image
an entire plot; if using a system that operates between the rows,
multiple passes may be needed for full plot coverage [although
one set of image data per plot may suffice [16]].

10. If required, collect ground truth data for each trait using a
“gold standard” method (see Notes 4 and 5).

11. When data collection of the desired area is completed, properly
shut down all electronics. Transfer the data to a central or
permanent server. Remove the data from the on-board storage
device to ensure capacity for future deployments.

5 Broad Overview of the Post-processing Workflow

After data collection, the post-processing workflow begins in which
there are a set of required, general steps for extracting the traits of
interest. These steps are outlined in Fig. 8. First, the data must be
georeferenced, and if needed, 3D reconstructions made. Then, the
data are reduced by extracting data at the plot level, after which
outliers and noise can be removed. Additional modifications can
also be made to image data to enhance the segmentation and trait
extraction procedures, such as applying a filter or modifying
contrast.

Before the traits of interest can be measured, the data must be
segmented to separate the plant from the rest of the image or data
set. Segmentation methods can be separated into two extremely
broad categories: (i) region-based approaches, which find sets of
pixels with corresponding sets of properties, and (ii) contour-based
approaches, which include edge detection and continuity analyses
[41]. Both supervised and unsupervised methods exist within each
of these categories. For a review of computer vision approaches for
phenotyping, see [42].

Fig. 8 A general overview of the required post-processing workflow steps for phenotypic data. The boxes
represent the major steps, while the text underneath includes examples of more specific approaches and
sub-processes for each step
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After image segmentation, plant architecture traits such as
width, area, and shape can be measured. To obtain direct measure-
ments, methods such as simple pixel or voxel counting are useful.
For more advanced shape analysis, a set of tools is available in
PlantCV [43]; additionally, a list of available plant image analysis
software (including PlantCV) is available at https://www.plant-
image-analysis.org/.

6 Summary

This chapter provided an overview the technical approach and
design considerations of choosing appropriate sensors and develop-
ing a ground-based system for measuring plant size and shape in the
field. Time-of-flight, stereo, and LIDAR sensors have all been
widely used to measure various plant architecture traits, including
stem width, plant height, canopy cover, leaf angle distribution, and
biomass estimations, among others. To deploy these sensors,
ground-based systems such as modified tractors, robotic systems,
carts, and buggies offer advantages in data resolution for phenotyp-
ing plants are the organ level. Regardless of platform, care must be
taken to ensure proper sensor placement, synchronization, calibra-
tion, resolution, and collection rate. Understanding best practices
and anticipating challenges that might arise during data collection
are important to ensure the collection of consistent, reliable phe-
notypic data. Field-based data collection is a critical part of improv-
ing crop production, and high-throughput methods using ground-
based systems enable the collection of valuable phenotypic infor-
mation to accelerate the plant improvement process.

7 Notes

1. To reduce ambient lighting, an enclosure can be fabricated
around the sensors to effectively block out sunlight
[14, 44]. If ambient light is needed for imaging (e.g., if RGB
sensors are also used), the enclosure can be artificially lighted to
specified, optimal conditions.

2. It is not recommended, even if the system is ruggedized, to
operate in weather conditions with strong winds, precipitation,
or strong sunlight. These conditions have the potential to
adversely affect both the operation of the system and the qual-
ity of data collected by introducing noise.

3. When determining vehicle speed and frame rate, we have found
that from experience this can be achieved by trial and error and
will depend on the sensor specifications, platform capabilities,
and exact phenotyping needs. For example, traveling at a speed
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of approximately 0.3 m/s with a sensor at 15 fps generated
more than enough data for extracting traits at the plant level
using a ToF sensor with a side view of the plant [16].

4. It is important that ground truth data are collected for enough
plants for each trait of interest during the initial deployment.
These data should be used for validation purposes during post-
processing and can be collected at the individual plant or plot
level, so long as it is possible to compare the sensor-made
measurements to the ground truth measurements.

5. Develop a standard for measurement of each trait for consis-
tency between the sensor-derived measurements and the man-
ually collected ground truth measurements. For example, when
measuring stem width of sorghum, the width varies depending
on proximity to the internode (Fig. 9); additionally, the stem
has an elliptical shape. Therefore, depending on orientation
and distance from the internode, the ground truth measure-
ment may vary significantly from the measurement extracted
from the image data. To remedy this, develop standards for
measurement that are consistent between ground truth data
and sensor-derived data. For example, stem width could be
measured perpendicular to the field midway between the first
and second internode.

Fig. 9 A sorghum stem, illustrating the differences in width between different
locations along the stem
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6. Ongoing efforts are being made to standardize the collection
and storage of phenotypic observations to enable interopera-
bility between data providers [45]. MIAPPE, or Minimum
Information About a Plant Phenotyping Experiment, is a
checklist of metadata required to adequately describe a plant
phenotyping experiment and a software to validate, store, and
disseminate data [46]. It is recommended to follow these
working standards and the complementary implementation
tools that support its application, especially if the data will be
shared or made available. For more information, go to www.
miappe.org/.
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Chapter 16

Design and Construction of Unmanned Ground Vehicles
for Sub-canopy Plant Phenotyping

Adam Stager, Herbert G. Tanner, and Erin Sparks

Abstract

Unmanned ground vehicles can capture a sub-canopy perspective for plant phenotyping, but their design
and construction can be a challenge for scientists unfamiliar with robotics. Here we describe the necessary
components and provide guidelines for designing and constructing an autonomous ground robot that can
be used for plant phenotyping.

Key words Robotics, Phenotyping, Design, Construction, Sub-canopy

1 Introduction

Advances in genetics research have revolutionized the agricultural
industry in ways that have vastly improved crop yield and resistance;
however, progress has slowed due to the challenges of identifying
desirable genetic traits. Some beneficial traits are identifiable by
physically measuring features of plants and can be measured
non-destructively using portable handheld tools. While manual
field measurement is possible, given that there can be thousands
of plants per acre, and factoring in labor costs and variability
between human crop scouts, consistent data acquisition at the
scale necessary to integrate phenotyping into genetic pipelines can
be difficult to obtain. Fully and semi-autonomous robotic systems
offer a solution for gathering vast amounts of data in the field to
relieve the phenotyping bottleneck [1].

The goal of this manuscript is to offer a guide, in layman’s
terms, on how to design and construct a ground mobile robot. It
targets an audience of scientists or practitioners with little or no
prior knowledge in robotics. We begin with a general discussion on
component selection, to guide design choices for systems tailored
for sub-canopy data collection. Then, a detailed example outlines
the construction of a tracked robot platform (see Fig. 1) intended
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for sub-canopy terrain conditions in corn fields at the University of
Delaware.

2 Design Considerations

Whether a robot is to be built from scratch or purchased off the
shelf, there are many factors to consider when choosing the right
equipment. By combining our own experience with that found in
literature, we bring together important design considerations for
ground mobile robots. We step through each component of a
sub-canopy robot and provide some practical insights to streamline
the design process.

2.1 Application

Constraints

The scientist’s crop and traits of interest determine the robot’s
specifications and set quantitative robotic design metrics (i.e.,
width must be less than 50.8 cm; sensor height must be greater
than 243.84 cm) that help a robot designer compare tradeoffs
between features of the robot. For example, the amount of
money one can allocate to the development of a robot might put
a constraint on cost. Because sub-canopy robots operate in a par-
ticularly confined environment, some of the important metrics
relevant to sub-canopy phenotyping are discussed.

Fig. 1 Adjusting cameras on a modified SuperDroid LT2 Tracked ATR platform.
For simplicity, the design described in this method includes a single camera
sensor, but it is easy to add more sensing capabilities. Pictured here are
additional sensors, including one extra RGB camera, an RGBD camera, analog
video transmission, GPS, and external waterproof electronics housing. Camera
rails allow quick and easy outfitting of the robot for various phenotyping
experiments
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Minimum row spacing is one field characteristic that has an
important impact on the size of the robot. The width of the robot is
typically constrained to the planting row width minus two times the
maximum stalk diameter (seeNote 1). Ideally, a robot should be as
narrow as possible; a thin design can accommodate better motion
uncertainty and reduce the chances of collision with plants. There
are tradeoffs, however: decreased width will reduce stability in the
roll axis (tipping to the left and right when driving forward down
the row). If the terrain is expected to be very flat and dry, then the
tip-over risk is less significant.

Crop height and intended robot and/or plant localization
accuracy are factors that affect the robot’s height and sensing
capabilities. In general, it is best to keep the robot’s center of
mass low (see Note 2) in order to increase stability; however,
sub-canopy systems may be required to measure features at the
plant’s extrema where the top canopy can exceed heights of 4.5 m
(e.g., bioenergy sorghum [2]). If measurements are required at a
prescribed height along the stalk or information on average crop
height is to be measured, a lightweight mast can provide a solution.
This mast can double as a mount for an accurate global positioning
sensor (GPS) known as a real-time kinematic (RTK) GPS, but
coupled with rough or uneven terrain, a mast can also cause tipping
and positional errors and may interact with the top of the plants as
shown in Fig. 2.

Fig. 2 (a) Row width and maximum estimated crop height are important con-
straints for sub-canopy robot platforms. (b) Tipping angle θ, caused by uneven
ground or rough terrain, can cause instability of the robot and lead to a false
position estimate Pg due to a resulting offset of the GPS from the robot’s actual
position Pr
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2.2 Frame After setting the restrictions on the robot’s physical dimensions and
design configuration, the mechanical structure of the robot is
considered. Some off-the-shelf designs offer pre-built frames
(e.g., SuperDroid Robots, Inc.) that can be easily modified [3].
Generally, it is more practical to keep the frame lightweight because
weight impacts overall runtime; in addition, lighter robots are
easier to transport. A heavy robot can also leave depressions on
the ground and is more likely to get stuck in mud. Cost often limits
the use of exotic lightweight materials such as composites and
titanium. Painted and galvanized steel and aluminum are common
choices because they offer good structural rigidity at a relatively low
cost. Although steel is heavy and more difficult to machine, it is easy
to weld, and its low cost makes it a good choice for prototype
designs. Aluminum is a convenient, lightweight material that can
be bent into complex shapes, machined at low cost, while resisting
corrosion. Some designs offer modularity by using a combination
of clamps and tubes [4].

2.3 Drivetrain The drivetrain is the system that allows the robot to get around in
its environment. It can be configured in many different ways [5]
and typically includes as major components wheels or tracks, motor
(of different size and placement), motor drivers and controllers,
and batteries (see Fig. 3). Sub-canopy robots are most often
designed with either tracks or wheels. Tracks tend to cause less
rutting and are less likely to get stuck in rough terrain, but they
require more power, are more expensive, typically require more
complicated transmission mechanisms, and can pick up weeds or
tillers. Wheeled setups are often four-wheel drive, with one side

Fig. 3 Examples of the most common configurations for ground mobile robots used for sub-canopy
phenotyping. The arrows indicate a tensioner that moves in the direction of the arrowhead when it is tightened
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running independent of the other (differential drive), allowing the
robot to turn in place. Wheels, however, are susceptible to high
centering –when the center of the robot gets stuck on rough
terrain – but their low cost and ease of use make them a good
option when the terrain is not particularly challenging.

Motors come in several forms: there are brushed, brushless,
stepper, and servo motors, but the easiest to control and most
commonly used for ground mobile robots are brushed direct cur-
rent (DC) motors. Other types of motors require special sensing
and/or timing control to make them spin, whereas brushed motors
contain physical brushes (hence their name) that connect electri-
cally their spinning and stationary parts. The speed and torque
requirements are two specifications that guide the selection of
motor size. Knowing how much field coverage is desired is a
good place to start because it can narrow motor and gearing
combinations to a desired number of revolutions per minute
(RPM). For example, the TERRA-MEPP sub-canopy platform
used two 24VDC DG-158A wheelchair motors with a 135 RPM
no-load output speed to cover 0.4 hectares in 2 h [6]. Average
motor torque is difficult to compute a priori during the design
process because calculations rely on complex ground interactions
(depending on if it is muddy, dry, level of weeds, or tiller interac-
tion) and friction between transmission components; however, it is
possible to calculate upper bounds that help with motor selection.

Once the brushed DC motors are selected, they should be
paired with a brushed DC motor driver or motor controller.
These electrical components allow the robot’s on-board central
processing unit (CPU) to control the amount of power sent to
the motors. A motor controller is typically more expensive than a
motor driver, because it has additional functionality such as speed
and position control (when encoder feedback is provided) or
switching between remote control (RC) and autonomous control
modes. The specification sheet associated with the motors will give
information on “amperage at stall torque” which is an indication of
how much the motor driver/controller should be able to output in
the worst (most challenging) case. If a stall condition is encoun-
tered in the field, an undersized motor driver/controller can over-
heat causing thermal shutdown or damage to the circuitry (seeNote
3).

Battery selection bridges the gap between drivetrain and elec-
trical subsystem because it influences the entire system. Ultimately,
the size of the battery, described in Amp-hours (Ah), should be
determined based on the estimated power draw from the motors
plus the power draw of all sensors and the CPU. Most of these
values can be found on specification sheets, but the motor output is
heavily dependent on sizing, losses in power transmission, and
environmental conditions. Similarly, with motor sizing, a bound
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on maximum and minimum runtimes of the robot and average
working conditions can help establish an average battery power
consumption, helping to determining proper battery capacity.

2.4 Electrical It is unlikely that a robot will run on a common, consistent voltage,
as different components may require different input voltages. Once
the robot’s function and capabilities are well established, a designer
may assemble a wiring harness with carefully measured lengths and
connectors that are mounted with zip ties or cable clips along the
frame of the robot. During the prototyping phase however, it is
useful to have flexibility so that new sensors can be tested without
redesigning the entire electrical system. It is useful to include a
power and ground distribution block, which is a physical compo-
nent connecting wires to a single source, typically using convenient
screw terminals. Voltage regulators can help adjust the voltage
depending on the requirements of the motors, sensors, and CPU.
Depending on expected operating conditions, moisture can be an
important consideration affecting how to weather-proof the elec-
trical components. A completely sealed box integrated into, or
attached to, the frame can provide a waterproof setup, but
operating such a system in high-temperature environments may
cause overheating of the electronics. Off-the-shelf CPU coolers
are available with incorporated air filters to prevent dust from
entering the compartment and can be mounted to an electrical
box to maintain safe operating temperatures (see Note 4).

2.5 On-Board

Computer (CPU)

An on-board computer is necessary if a designer prefers to do any
computation on the robot. Selection of an on-board computer
depends heavily on both the desired level of autonomy and number
of sensors that will be connected to the system. For cases where very
little processing is required, a microcontroller such as an Arduino,
which can only run a single script, may suffice. For navigation and
real-time processing, however, a microprocessor is needed. The
processing power of microprocessors found on single board com-
puters, such as the Raspberry Pi 3, are generally limited but may still
be suitable for applications with minimal to moderate autonomy or
sensing. Fully autonomous or semi-autonomous ground robots
would likely require a mini PC. The Intel NUC is one commonly
used mini PC because of its highly compact form factor and range
of available options for processing power. Scientists who require
vast amounts of sensor data for processing feedback in real time
have also networked multiple dedicated computers serving differ-
ent subsystems to avoid processing conflicts between subsystems
[7].

For navigation, some off-the-shelf autopilots such as Pixhawk
or the Navio2 can be combined with freely available software to
streamline the problem of navigating the robot along a path, but
are limited to common robot configurations, and they are not as
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flexible for path planning as a custom setup. For systems where
geolocation is not required (i.e., when tags in the field identify
plants) or if the ground platform is to be teleoperated, then the
on-board computer and sensing system can be decoupled from the
motor control.

2.6 Navigation

Sensors

Data from several sensors can be fused together to get accurate
position and orientation of the robot as it travels through the field.
If precision planting coordinates are available, then paths through
the rows can be established; otherwise, the robot can be driven
manually while capturing GPS data to identify waypoints. If the
robot is to navigate without relying on some assumed plant
arrangement and/or centimeter-level accuracy is needed while fol-
lowing a predetermined path, then the accuracy of a real-time
kinematic (RTK) GPS is indispensable. For sub-canopy robots,
the GPS is typically placed on top of a mast in order to obtain a
good signal; the canopy will otherwise obstruct the connection and
make GPS unreliable. When the GPS unit is attached to a vertical
mast, then errors in position due to the roll and pitch of the robot
can be significant and naturally increase with mast length. An
accelerometer (see Note 5) on the base can mitigate the problem
by providing additional data for tilt correction. In conditions where
wheel slippage is minimal, encoders can be used to get reasonable
estimates of position, although one has to keep in mind that skid-
steer vehicles rely on wheel slippage during turns, and that intro-
duces errors in estimates of orientation. A gyroscope (see Note 6)
coupled with a magnetometer (see Note 7) can be used in tandem
to resolve unambiguously the platform’s orientation. Fusing sensor
data in a Kalman filter (see Note 8), a standard robot position/
velocity estimation algorithm, can help obtain better position esti-
mates; Kalman filter implementations are available in several open-
source software packages. Redundancy in sensor data becomes
increasingly important as the robot’s speed increases, especially
considering the relatively slow 5–10 Hz data rate from GPS, and
can make position estimation more robust to occasional sensor
outliers and failures. Using visual odometry (see Note 9), a state-
of-the-art method of camera feeds with other sensor measurements
and for which implementation software is also freely available, is
another promising strategy for localizing a robot; it does require,
however, relatively more processing power and careful calibration
and can be prone to errors when used in highly dynamic
environments.

2.7 Phenotyping

Sensors

There are many imaging modalities available for collecting data
relevant to phenotyping; however, for in situ field sensing, we
consider only non-destructive samplers, cameras, and sensors (see
Note 10) that can be readily mounted on a ground mobile robot.
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To help with the daunting task of selecting between the wide range
of available options, this section briefly describes some of the most
common sensor types and how they can be used for phenotyping.

2.7.1 RGB Camera Arguably the most common sensing modality, single-sensor cam-
eras capturing visible light (VIS) can be used with no geographic
data if some label is present on a plant to associate it to its images
[8]. Images can be taken at high resolution at the expense of a
larger file size. Many features can be identified from VIS data,
especially in structured environments when software tools such as
PlantCV (http://plantcv.danforthcenter.or) are available [9] How-
ever, differences in lighting and occlusions in the field may require
additional processing for data analysis. Recently, machine learning
algorithms have been used to extract features from plants by first
training such algorithms with datasets labeled by human experts
[10]. Some common features extracted include leaf area index
(LAI), plant height, stem thickness, yield estimates, and leaf and
stand count [11, 12].

2.7.2 Spectral Camera Spectral cameras are designed to pick up light from individual
spectra not visible to the human eye. By focusing light emission as
a result of excitation by specific wavelengths of light, scientists can
study internal characteristics of a plant non-destructively and before
they become apparent by sensing visible light. The Normalized
Difference Vegetation Index (NDVI) and Photochemical Reflective
Index (PRI) are two classical indices obtained by spectral imaging
and used to quantify plant health [13, 14]. There are two categories
of spectral cameras – hyperspectral and multi-spectral. Hyperspec-
tral cameras are orders of magnitude higher resolution than multi-
spectral cameras and are a recent focus of research. These cameras
can capture thousands of narrow bandwidths compared to multi-
spectral cameras which acquire data from 5 to 12 much wider
spectral bands; however, the data from hyperspectral cameras can
be overwhelming, and the requirement for careful calibration
makes these new cameras impractical for some applications [15].

2.7.3 Stereo Camera By combining two cameras with a known separation distance,
stereo cameras use correspondence between images to calculate
distances in the form of disparity maps and provide estimates of
depth for objects in the image. Accurate distance estimates rely on
matching features between images and perform poorly in low light
where features can be difficult to distinguish [16].

2.7.4 Time-of-Flight

(ToF) Sensor

By emitting infrared (IR) light andmeasuring the return time of the
reflected light on a low-resolution camera, distances can be esti-
mated directly. These sensors are generally low resolution com-
pared to RGB cameras but can offer depth without the
computation of stereo camera setups. ToF cameras work well in
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low light, but are susceptible to noise in direct sunlight because the
sun’s IR emission can conflict with the sensor’s output IR. Despite
their relatively low resolution and sensitivity to ambient light, ToF
are generally favorable for determining features in outdoor agricul-
tural settings [17].

2.7.5 RGBD Camera By combining RGB with a ToF camera, RGBD cameras give a
similar output as stereo cameras, but require less computation.
Similar to ToF sensors, RGBD can be sensitive to lighting condi-
tions, and they have limited range due to the necessary matching
between depth and RGB cameras. The Microsoft Kinect is an
example of a low-cost RGBD camera that is commonly
incorporated into robotics projects.

2.7.6 LIDAR Light detection and ranging (LIDAR) uses a pulsed laser to mea-
sure distances at very high resolution with minimal noise compared
to stereo and ToF camera sensors. Although these sensors can
capture features in very fine detail, they require accurate knowledge
of the position of the sensor and are significantly more expensive
than other remote sensing methods. Sensor feedback is expressed
in dense point clouds and can generate massive amounts of data
that can be challenging to abstract to useful features [18].

2.8 Communication Bandwidth and signal attenuation are the most important consid-
erations when deciding on how to communicate between the robot
and a ground station (a stationary computer where the human
operator tracks robot progress). While an autonomous robot is
capable of navigating on its own, keeping human operators in the
loop safeguards against unanticipated challenges. For remotely
controlled systems, communication delays (latency) should be
reduced because a lag in video or control command can result in
crop damage.

Generally, commands are sent over radio frequencies; the range
is exceptional, and real-time control commands usually require very
low bandwidth. Wi-Fi is another way for communication with field
robots offering higher bandwidth and allowing for video transmis-
sion, but at the expense of decreased range. For systems operating
in the range of cellular towers, LTE can also be used to transmit
high bandwidth data. Although cellular LTE offers superior range,
it can have fluctuating latency and is generally too slow for real-time
teleoperation. Analog video has been gaining popularity for remote
controlled vehicles, driving costs down and increasing reliability for
these components. Although the analog video feed is not directly
suitable for processing, it is a good option for teleoperation because
it provides a long-range option with low latency and very little
setup compared to other methods.
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2.9 Software Depending on the level of autonomy required, it can be relatively
quick to get a robot running in the field. Sensors usually come with
software for operating them on Windows, Mac, and Linux making
it possible to collect data out of the box. At a minimum, a robot can
be set up with teleoperated navigation and an RGB camera with
on-board data storage. Although this requires intervention by a
human operator, it can provide useful data from the hard-to-reach
sub-canopy region and is a good place to start. If plants are tagged
with visible identifiers, then a human can quickly assign images to
different plants, and computer vision algorithms can achieve mea-
surements of stalk thickness, leaf area index (LAI), canopy density,
and other useful characteristics.

3 Construction of a Tracked Robot Platform

To provide a concrete example, we describe next the construction
of a basic phenotyping robot. Off-the-shelf components are used
wherever possible to make this platform reproducible with very
little robotics background and at relatively low cost. Specifically,
the base is a SuperDroid LT2 Tracked ATR package including the
frame, drivetrain, power, and electrical components (see Note 11).

3.1 Materials • Frame (SuperDroid LT2 Tracked ATR robot platform).

• Drivetrain (tracks + tensioner + chain offset).

• Power and electrical (24VDC lead acid, RoboteQ MDC2460
2x60A 60 V motor controller, RC controller, RC receiver).

• On-board computer (Raspberry Pi 3 with 16GB SD
micro card).

• Phenotyping and navigation sensors (camera and camera rails).

• Communication (Wi-Fi and radio).

• Software (Linux operating system).

• Ground control computer (Linux operating system).

• Misc parts (mounting hardware, foam weather proofing tape,
5 lb mounting tape, USB AB cable, RS232 connector).

3.2 Tools • Phillips screwdriver.

• Adjustable wrench.

• 1/800 Allen wrench.

• 8 mm Allen wrench.

• Chain breaker.

• Measuring tape.

• ¼00 box end wrench.
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• Wire cutter.

• Crimping tool.

• Power drill.

• 3/800 drill bit.

• 15/3200 drill bit.

• HDMI cable.

• Monitor.

• Keyboard.

• Mouse.

3.3 Mechanical

Assembly

The mechanical assembly of a tracked robot requires accurate
spacing between track wheels and a mechanism for tensioning the
belt. Driving the wheels directly from the output of the motor’s
gearbox is not recommended and can lead to pre-mature failure of
expensive motor components. The schematic (Fig. 4) shows a
visual representation of the most important components through-
out the robot assembly, but purchase of a SuperDroid robot kit
comes with an instruction manual including images. Here we sum-
marize the steps to build the LT2 Tracked ATR robot – all compo-
nents listed are included in the SuperDroid robot kit except for the
camera rails and clamps which were purchased from a camera
accessory company, SmallRig.

1. Using a Phillips screwdriver and adjustable wrench, bolt front
axles (shafts for mounting the track wheels) to aluminum frame
with eight #10-32 bolts and nuts.

2. Mount two drive motors, IG52-04 24VDC 285 RPM Gear
Motors, using a Phillips screwdriver to tighten four M5
machine screws per motor.

3. Using the adjustable wrench, loosely mount track tensioning
blocks using #6 hardware.

4. Slide rear axle into the tensioning blocks (mounting points that
will be used to tension the tracks), and tighten two lock collars
using 1/800 Allen wrench to prevent the axle from sliding left or
right.

5. Slide #25 sprockets over motor shafts, but do not tighten their
set screws until Step 11.

6. Install back-handle strap using Phillips screwdriver to tighten
four tensioning screws.

7. Assemble two drive wheels with sprockets and two idler wheels
using a Phillips screwdriver and ten #10 screws per wheel.
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Fig. 4 A visual guide representing the mechanical assembly of a SuperDroid LT2 Tracked platform
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8. Slide wheel with sprocket on the front axle using a thrust
bearing as a spacer on the inner and outer faces of the wheel
followed by a lock collar tightened using a 1/800 Allen wrench.

9. Slide the motor forward toward the front wheel, and then wrap
the #25 chain around both sprockets.

10. Using a chain breaker, remove excess chain and connect chain
master link.

11. Slide motor sprocket along the motor shaft so it is aligned with
the wheel sprocket, and then tighten motor sprocket set screw
with a 1/800 Allen wrench.

12. Pull the motor away from the wheel until the chain is tight, and
then tighten motor mounting screws using Phillips
screwdriver.

13. Repeat Steps 8–12 for the other side.

14. Slide the tension blocks all the way forward, and then roll 2.75
inch molded spliceless tracks over the front and rear wheel on
each side.

15. Tighten the four tension screws with the Phillips screwdriver at
the rear of the robot evenly until the tracks are tight.

16. On each side, using a measuring tape, measure from the front
axle center to the rear axle center to make sure both sides have
equal separation. If the measurement on the right side is larger
than the left, then use the Phillips screwdriver to tighten the
tension screws on the left side until they are equal and vice
versa.

17. Insert a ¼00 box end wrench between the robot frame and the
track to tighten the four screws that hold each tension block to
the robot frame.

18. Cut ¼00 wide strips from the foam weather proofing tape, peel
off the adhesive backing, and attach the tape around the entire
perimeter of the top panel. This is used to cover the opening in
the top of the frame.

19. Mount top panel using 16 Phillips head screws using Phillips
screwdriver.

20. Drill four 3/800 holes 100 � 100 from the corners of the top
mounting plate, and then mount small rig camera rail clamps
using an 8 mm Allen wrench (see Note 12). The rail clamps
allow the mounting rails to be adjusted depending on the
application.

3.4 Electrical

Assembly

The electrical assembly describes the connection of batteries, motor
drivers, power regulators, and sensors. Here we use two 12VDC
lead-acid batteries in series to create a 24VDC power source. This is
fed directly to the motor driver and regulated down to 5VDC for a
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Raspberry Pi 3 (on-board computer) and 12VDC to power an
on-board Wi-Fi router. All components in this section are included
in the LT2 Tracked ATR package except for power and ground
distribution blocks, 5VDC regulator, 12VDC regulator, Raspberry
Pi 3, and Wi-Fi router. The regulators chosen should provide
enough Amps to power the electronics connected to them. A
more powerful Wi-Fi router will reduce latency, and its signal can
be improved by adding a long-range antenna on the ground con-
trol station, robot, or both. The camera is powered directly from a
USB port on the Raspberry Pi 3. IG52-04 24VDC 285-RPM gear
motors are connected to a RoboteQMDC2460 2x60A 60 Vmotor
controller. Make sure to consider locations for mounting the elec-
tronics and routing the wiring – these aspects are often overlooked
(see Note 13).

1. Install two 12 V 8 Ah sealed lead-acid batteries, one on each
side inside the aluminum LT2 chassis.

2. Slide threaded rods through the battery mounting tabs of the
aluminum frame, and tighten nuts over each end with an
adjustable wrench (see Note 14).

3. Use mounting tape or screws to attached power and ground
distribution blocks inside the frame.

4. Drill a 15/3200 hole at the rear of the robot (in black plastic
switch plate), and slide the power switch through the hole, and
then tighten the nut, securing the switch using an adjustable
wrench (see Note 15).

5. Use mounting tape or screws to mount power regulators
(5VDC, 12VDC) inside the frame.

6. Use mounting tape or screws to mount RoboteQ MDC2460
2x60A 60 V motor controller inside the frame.

7. Connect the RoboteQ motor controller to USB port of the
Raspberry Pi 3 using a USB AB cable.

8. Use RS232 connector to connect RC control to the RoboteQ.

9. Use camera rail clamp to mount camera in desired location on
camera rails, and then feed camera’s USB cable back to a USB
port on the Raspberry Pi 3.

10. Confirm connections with the schematic in Fig. 5 before
powering on the robot.

3.5 Software Setup Software is an important part of a robot and can be increasingly
complex depending on the level of autonomy desired. On the other
hand, without adding software, a teleoperated robot can still collect
useful data. A barebone system is possible where a GoPro or other
standalone camera can be attached to the robot as it is driven
through the field. Images can then be extracted afterward by
retrieving them from the camera’s memory card. This method is
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very limited because the robot has no control over the camera or its
data. Instead, we offer a middle-ground solution by describing a
setup that can be easily expanded upon. A single camera on-board
the robot streams video over Wi-Fi to the ground control station
where the user can collect images in real time while also using the
camera to navigate the robot using RC control. Additional cameras
or sensors can be added, and the control can be automated.

The robot uses the open-source Robot Operating System
(ROS) on a Linux Ubuntu Mate operating system and sends data
to a ground control computer running Linux Ubuntu 16.04 LTS.
We assume Linux is installed on both ground control station and
on-board computers (seeNote 16). ROS is a set of software utilities
and libraries that is convenient because it allows for easy implemen-
tation of new sensors and stores/handles sensor data in a conve-
nient organized structure. It’s worth mentioning that these steps
can be challenging to approach with no prior experience with
Linux, Raspberry Pi 3, or ROS. We hope that the steps provided
will help to guide an inexperienced reader and have provided links
where necessary to help reinforce more complex steps.

1. Startup (boot) Linux (Ubuntu Mate distribution) by powering
on the Raspberry Pi 3 (see Note 17).

2. Install ROS Kinetic using the command line (see Note 18).

(a) Boot Raspberry Pi 3 with Ubuntu Mate installed.

(b) Connect Wi-Fi to the internet, open a web browser, and
navigate to http://wiki.ros.org/kinetic/Installation/
Ubuntu where line-by-line commands can be copy/
pasted into the terminal (where command line text can
be run).

Fig. 5 Schematic representation of electrical connections
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(c) Highlight each command, and right-click on the com-
puter mouse to select copy, and then right-click in the
terminal window, and select paste.

(d) Press Enter to run each command.

(e) Once complete, test the installation by first navigating to
h t t p : // w i k i . r o s . o r g / R O S / T u t o r i a l s /
InstallingandConfiguringROSEnvironment in the web
browser.

(f) Create a ROS workspace by copy/pasting terminal com-
mands as in Steps 2.c–2.d.

3. Download the usb_cam ROS node (http://wiki.ros.org/usb_
cam) which is a collection of programs and camera utilities
packaged with the camera driver and various parameters that
make it easy to use. Calibration is one file that should be
updated depending on the camera that is used. In this step, it
is easiest to plug in an HDMI cable, mouse, and keyboard to
confirm the camera works directly on the Raspberry Pi 3.

(a) Once the ROS environment is created, open a new
terminal.

(b) Install the usb_cam ROS package by typing “sudo apt-get
install ros-kinetic-usb-cam” followed by Enter.

(c) Once installed, plug in the USB camera, and open two
separate terminal windows. In the first window, run
“roscore.” In the second terminal window, run “rosrun
usb_cam usb_cam_node.” This will publish the raw data
from the camera to the computer.

(d) To view the camera data, open one more terminal win-
dow, and run “rqt_image_view.” From the pull-down in
the top left of the popup window, select “/usb_cam/
image_raw” to confirm the camera output.

4. Setup remote camera triggering and video streaming over
Wi-Fi.

(a) Plug the Raspberry Pi 3 with Ubuntu Mate and ROS into
the robot’s Wi-Fi router using an Ethernet cable.

(b) Boot the Raspberry Pi 3 while connected to HDMI, and
type “ifconfig” into a new terminal. Find and take note of
the “inet addr” which will start with 192.168.1.x where x
is a unique identifier designated to the Raspberry Pi
3. Now the HDMI, keyboard, and mouse can be removed
from the Raspberry Pi 3.

(c) On the ground control computer, log into the robot’s
Wi-Fi network.
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(d) On the ground control computer, open a new terminal
and run “ifconfig” to identify the ground station’s “inet
addr.” It will start with 192.168.1.y where y is a unique
identifier designated to the ground control computer.

(e) Log into the Raspberry Pi 3 remotely using secure shell
(SSH) (see Note 19).

5. Stream live video from Raspberry Pi 3.

(a) Complete Step 4 making sure to note the unique
addresses 192.168.1.x and 192.168.1.y where x and y
are numbers unique to the Raspberry Pi 3 and ground
control computer, respectively.

(b) Boot the Raspberry Pi 3 and power the robot’s Wi-Fi
router (see Note 20).

(c) Open three terminal windows on the ground control sta-
tion’s computer.

(d) In the first terminal, log into the Raspberry Pi 3 remotely
as in Step 4.e (see Note 21).

(e) In the second terminal, run “roscore.”

(f) Return to the first terminal and run “rosrun usb_cam
usb_cam_node.”

(g) In the third terminal, run “rqt_image_view.” From the
pull-down in the top left of the popup window, select “/
usb_cam/image_raw.” The robot’s video feed should be
displayed.

(h) Save images by clicking on the save file icon to the far right
of the pull-down selection. This is not a fast way to collect
images from the robot but will give a feel for what it is like
to teleoperate a system and get data remotely. It will help
with understanding the challenges of latency and can be
extended to autonomously capture images or include
multiple camera.

4 Notes

1. It may be more relevant to consider an estimated maximum
stalk (base) diameter because branches, tillers, or brace roots
extending into the row can disturb the robot’s motion if they
are not considered.

2. It is best to keep heavier components closer to the ground.

3. For four-motor configurations, the 4WD operation will be
severely limited if current on each side of the robot is split
between a single motor driver. In this case, the designated
motor input will travel the path of least resistance, and
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insufficient traction for either wheel on a particular side will
result in wheel spinning and loss of forward motion. It is best
to allocate either one motor driver per motor or one dual
motor driver per side to get true 4WD traction.

4. It is practical to pair the motor voltage with the battery output
because motor output will be a heavy drain on the battery
capacity. If the voltages do not match, then a voltage regulator
can change the battery output at the expense of a loss in
efficiency during the voltage conversion. This would get you
less motor output for the same battery charge, and voltage
regulators can also limit the output current to the motors.

5. Typically, accelerometers measure acceleration along their local
x, y, and z axes. By measuring the force of gravity, an acceler-
ometer can help inform the robot which direction is down.
With additional computation, it can also help estimate the
robot’s position.

6. A gyroscope (digital) is used to determine orientation in roll,
pitch, and yaw.

7. A magnetometer measures magnetic forces and acts as a com-
pass for the robot. Magnetic fields from the motors can affect
magnetometer readings so they should not be placed close
together.

8. A Kalman filter combines measurements from multiple sensors
to reduce uncertainty.

9. Visual odometry is a method of determining position and
orientation based on analyzing changes between camera
images.

10. Cameras are also a type of sensor, but we typically see the
output in the form of an image. The raw data is similar to
other sensors. For example, an array of 10 � 10 individual
photo (light)-absorbing semiconductors would be a
100-pixel camera sensor. Digital values for red, green, and
blue are captured for each pixel and then processed into the
color image typically viewed.

11. The LT2 Tracked ATR package can also be purchased
pre-assembled.

12. Four SmallRig 15mm camer rails, four SmallRig quick release
clamps, and four SmallRig 90-degree rod clamps are need to
mount the small rig camera rail.

13. We have found it useful to use 5 lb outdoor mounting tape to
mount electronics semi-permanently for when aspects of the
robot are still in development. This prevents unnecessarily
drilling extra holes in the robot’s frame and saves time, but
electronics should be mounted more permanently once the
robot is complete. Alternatively, a mounting panel can be
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made with many holes drilled into it for mounting small parts.
This way the mounting panel can be replaced when compo-
nents change and as a result less holes are required in the
robot’s frame. The goal is to keep wiring neat and to keep
wires short if possible. Zip ties can be helpful for securing wires
along the frame. We leave the selected method of mounting the
electronics up to the reader.

14. These rods act as battery tie downs to make sure the batteries
don’t shift into the CPU or other electronics.

15. A fuse that prevents too much current from flowing through
the system can be added but is not required.

16. These operating system (OS) procedures are well documented
and outside the scope of this work.

17. In order to install Ubuntu Mate on a Raspberry Pi 3, a 16 GB
(minimum) SD micro memory card is needed. If it must be
installed, then download Ubuntu Mate for free (https://
ubuntu-mate.org/download/), and format the SD card; then
using free Win32DiskImager (https://sourceforge.net/pro
jects/win32diskimager/), the .img file for Ubuntu Mate can
be added to the SD card. Insert the SD into the Raspberry Pi
3, and follow the prompts to set up Ubuntu Mate. If the
ground control station’s computer does not have Linux, then
a “bootable USB” can be created using a .iso image of Linux
distribution Ubuntu 16.04 LTS. Booting the computer from
the USB will guide setup alongside windows or as a standalone
operating system. These Linux distributions were chosen
because they have been shown to cause the fewest difficulties
in installation and use, but they can be switched with newer
versions as long as they support ROS.

18. The command line is a text interface where you can launch
commands (run programs) by typing specific text into the
interface window, called the terminal. You can open a terminal
by pressing CTRL+ATL+T.

19. SSH is a way of sending commands to a computer on the same
network. Knowing the login name and password to the Rasp-
berry Pi 3, log into it from the ground control station com-
puter by opening a new terminal and running the command
“ssh login@address,” where “login” is the login name of the
Raspberry Pi 3 and “address” is the inet address found by
running “ifconfig” in Step 4.b. A prompt will request the
password from the Raspberry Pi 3. Now this terminal window
on the ground control computer can be used to run programs
on the robot remotely.
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20. If the Raspberry Pi 3 and Wi-Fi router are connected to the
robot’s power source, then flipping the power switch on the
robot will power both on. Otherwise, if they are not yet
installed in the robot, power them independently.

21. If the Raspberry Pi 3’s inet address is not recognized, then
make sure the ground control station’s computer is connected
to the robot’s Wi-Fi network. Sometimes when it is powered
off, it will default to a previously saved network and lose
connection with the robot.
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Chapter 17

Nighttime Chlorophyll Fluorescence Imaging
of Dark-Adapted Plants Using a Robotic Field Phenotyping
Platform

Maria Newcomb and Nadia Shakoor

Abstract

Photosynthetic efficiency is increasingly recognized as an integration of plant responses to dynamic
environments, establishing the need for data sets from both field trials and controlled environments. A
robotic field scanner phenotyping platform at the University of Arizona is equipped with a high-throughput
chlorophyll fluorescence imaging system capable of collecting data on field trials for genetic studies of a
photosynthetic trait (Fv/Fm). A description of the fluorescence imaging system is provided in addition to
methods for measurements across experimental field plots and a test to determine the impact of variable
plant heights. The overall focus is on aspects of field applications of a chlorophyll fluorescence imaging
system that differ from analogous systems in controlled environments.

Key words Field scanner, PSII, Chlorophyll fluorescence, Quantum efficiency, High-throughput
phenotyping, Field phenotyping

1 Introduction

Chlorophyll fluorescence imaging has been widely applied as a
non-contact plant phenotyping method for characterizing the
activity of photosynthetic systems in indoor controlled environ-
ments [1]. Photosynthetic activity is a fundamental determinant
of plant health and productivity and is the result of complex genet-
ics. This provides opportunities for phenotype to genotype studies
to guide breeding for improved crop varieties with enhanced pho-
tosynthetic traits [2]. There is increasing awareness of the impor-
tance of studying photosynthetic parameters in field environments
and associated interest in chlorophyll fluorescence imaging systems
that can be used as a tool in field phenotyping programs. While
there are multiple benefits to controlled environment studies that
can isolate particular variables of interest, the fact that photosyn-
thesis efficiency is an integration of plant responses to dynamic
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environments establishes the need for data sets from both field trials
and controlled environments [3].

To date, studies using in-field automated phenotyping systems
to assess photosynthesis in fluctuating light conditions have been
rare [4]. Over half a decade ago, Murchie and Lawson (2013)
predicted the incorporation of remote fluorescence measurements
into automated high-throughput crop phenotyping methods and
techniques. Here we describe a novel field imaging system and
methods for chlorophyll fluorescence measurements of dark-
adapted plants using the robotic field scanner system at the Univer-
sity of ArizonaMaricopa Agricultural Center. The field fluorescence
imaging system has been utilized in 2 different field trials to mea-
sure the maximum quantum efficiency of photosystem II (esti-
mated as Fv/Fm) of dark-adapted plants for a genotyped
bi-parental sorghum mapping population of 160 RILs planted in
2 replicates (320 plots) and a genotyped durum wheat diversity
panel of 223 lines in 2 replicates and 2 irrigation treatments plus
repeating checks (924 plots). These phenotyping scans are part of
the first applications of a robotic semi-automated field phenotyping
platform to obtain high-throughput chlorophyll fluorescence
image data for genetic studies of a photosynthetic trait (Fv/Fm).

Quantification of chlorophyll a fluorescence is a useful indica-
tor of the status of photosynthetic processes since emitted photons
inform the relative rates of photochemical and non-photochemical
quenching. Several reviews describe the process by which light
energy absorbed by plant photosystems is dissipated as either pho-
tochemistry, heat, or re-emitted photons (fluorescence) [5–7]. The
maximum quantum yield of the photosystem II (PSII) system can
be determined by measuring fluorescence at known states: fully
dark-adapted when PSII reaction centers are electrically neutral or
open (F0 minimal fluorescence) and following a saturating illumi-
nation when reaction centers cannot use the excitation energy as a
result of charge separation and are closed (Fm maximum fluores-
cence) [7]. Together the fluorescence measurements at these two
states can be used to determine the quantum efficiency of PSII
photochemistry using the equation Fv/Fm ¼ (Fm � F0)/Fm [6].
Fv/Fm values for plant leaves in the absence of any stress are close
to 0.83 across species and indicate plant stress and overall metabo-
lism that directly or indirectly reflects photosynthetic functions
[4, 6, 8].

Incorporating chlorophyll fluorescence image data in
high-throughput phenotyping programs in field environments has
tremendous value and also challenges. In field studies, imaging
platforms allow chlorophyll fluorescence measurements at the
scale of whole plants and plant canopies and capture the variability
among plants as well as within plants under natural conditions [9].
A complete system includes an illuminating light with sufficient
intensity to saturate the photosystems of plant leaves over the
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imaged area, a synchronized and robust camera fit with a bandpass
filter, cooling capacity to accommodate the light source, and
importantly a mechanism for moving the system across a field
trial. The design and installation require engineering expertise
and knowledge of the biophysics of fluorescence and photosynthe-
sis parameters [9]. While commercial options for automated field
imaging systems are currently limited, for example, PhenoVation
[10] and Qubit Systems, it is likely that available options will
increase in the near future.

The field scanner at the University of Arizona Maricopa Agri-
cultural Center is a large robotic gantry system constructed and
employed by the TERRA-REF project funded by the Department
of Energy ARPA-E to reduce the phenotyping bottleneck that has
slowed the improvement of crop varieties (www.terraref.org)
(Fig. 1). The field scanner can cover a total of 0.75 hectares of
field plots to collect high-resolution, high-frequency, and accurate
data on phenotypic traits of interest for diverse sets of germplasm.
The scanner system is semi-automated and can scan during day and
night hours. It is capable of motion along three axes at velocities of
1.0 m/s on the long axis and 0.33 m/s on the short axis. An array
of imaging and sensor systems are integrated with scan motion and
data transfer systems, including a thermal infrared camera, hyper-
spectral imagers, Fraunhofer 3D laser systems, stereo RGB cameras,
and NDVI and PRI analog sensors. Additionally, the field pheno-
typing platform includes a chlorophyll fluorescence imaging system
that is a LemnaTec prototype instrument (www.lemnatec.com). A
description of the fluorescence imaging system follows in addition
to the basic methods for measurements across experimental field
plots and a test to determine the impact of variable plant heights.
The overall focus is on aspects of field applications of a chlorophyll
fluorescence imaging system that differ from analogous systems in
controlled environments.

2 Materials

The prototype imaging system is a novel deployment of a chloro-
phyll fluorescence instrument on a robotic platform in a field
setting. The integrated imaging system includes a large panel of
red light-emitting diodes (LED). It is operated at night to measure
photosystem II activity on dark-adapted plants (Fig. 2). At an
operating distance of 80 cm from the plant canopy, the area imaged
per measurement is 1.1 � 0.7 m. The illuminating flash has a
dominant wavelength in the range of 620–630 nm and sufficient
intensity (up to 7000 μmol/m2/s at 70 cm from plant target) to
saturate the photosystem of plants. The system is modular and
scalable with a controller that interfaces by Ethernet to the camera
driver on one end and interfaces with other drivers to synchronize
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triggering of the flash. The camera is manufactured by Allied Vision
(Manta G-235b) and is fit with a bandpass filter mounted on the
camera objective in replacement of the UV filter for emitted fluo-
rescence light (690–730 nm, minimum bandwidth 40 nm). The
camera is operated at a maximum frame rate of 50 fps, resolution
1936� 1216 pixels. The exposure is set at 28 ms with a gain setting
of 3000. Data outputs include a series of 101 images captured over
2 s, including the 1 s saturating flash. The images are saved as bin
files along with a metadata file that includes the field location and
timestamp of the measurement.

Fig. 1 The field scanner at the University of Arizona Maricopa Agricultural Center

Fig. 2 The chlorophyll fluorescence imaging system includes an LED panel that provides a saturating flash of
light over the imaged area
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3 Methods

3.1 High-Throughput

Chlorophyll

Fluorescence Imaging

of Experimental Field

Trials for Dark-

Adapted

Measurements of Fv/

Fm

Procedures for chlorophyll fluorescence imaging in controlled
environments are described comprehensively in [10]. The focus
here is on the unique aspects of chlorophyll fluorescence imaging
in field environments at a scale that accommodates experimental
plantings of diversity and mapping panels (~300–900 field plots).
While protocols and methods will vary among imaging systems and
for different user objectives, several common factors need to be
addressed when taking measurements of Fv/Fm on dark-adapted
plants in field trials.

1. Plants must be in a fully dark-adapted state prior to the mea-
surement. Restricting scan hours for measurements on dark-
adapted plants to nighttime hours 2 h after sunset and before
sunrise ensures that plants will be in a dark-adapted state. The
intensity of the saturating flash is such that diffuse light dis-
perses to neighboring plants (Fig. 2). Subsequent measure-
ments on plants in the vicinity of a light flash will need to be
far enough away to ensure that the measured plants remained
fully dark adapted (see Note 1).

2. Trigger a saturating flash of light for a duration of 0.8–1 s at an
intensity sufficient to saturate the plant photosystems of field-
grown plants across the entire imaged area. The illuminating
light source needs to provide an irradiance of >4000 μmol/
m2/s to capture an accuratemeasurement of Fm [9, 10]. Results
from tests adjusting the illumination intensity in our field
scanner system indicate that irradiance of 3500 μmol/m2/s is
not sufficient, as expected. However, 4200 μmol/m2/s is also
not quite adequate (see Note 2).

3. The saturating flash needs to be synchronized with the camera
images and with the programmed robotic motion between
measurements. This engineering challenge in the field scanner
system is addressed by adjusting the timing of the first image
frame to the LED trigger function and programming motion
functions that allow for a few seconds delay after the measure-
ment and before movement to a new plot. The requirement for
a rapid high-intensity saturating flash creates associated techni-
cal challenges in capturing the minimal level of fluorescence
(F0) at exactly the time just after the excitation light is applied
[1, 7]. Moreover and perhaps unique to a field setting is that
there are sources of background nighttime light that cannot be
controlled, for example, moonlight or diffuse light from park-
ing lot lamps (see Note 3).

4. A field imaging system needs to be robust against a wide range
of environmental conditions. Supplementing the primary com-
ponents with climate control notably adds to the size and
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weight of the complete system. An air conditioner (KTS
Hengstberger GmbH) that is able to cool as well as heat is
incorporated within the interior chamber above the LED panel
that houses the camera and electronics to provide climate
control within ambient temperatures in the range from 0 to
50 �C. See Note 4.

3.2 Evaluation of the

Influence of Variable

Plant Heights

Given that the illuminating flash and the fluorescence camera
remain at a constant height throughout a data collection scan, it
is important to determine the influence of variable plant heights on
the data outputs. Differences in plant heights can potentially influ-
ence Fv/Fm values as the intensity of the saturating pulse is
decreased with increased distance from the light source to the
plant target. Additionally, the ability to detect emitted photons
may decrease with increased distance from the plant target. To
evaluate the influence of variable distances from the plant target
to the imaging system, a comparison test can be conducted taking
repeat measurements over time on target plots of known height
while adjusting the height of the fluorescence camera system. To
maintain plants in a dark-adapted state, the measurements need to
be separated by spatial distance (>4 m) or by time (~30 min or
more). Test results completed with an illumination intensity of
4900 μmol/m2/s suggest that measurements of mean Fv/Fm on
durum wheat at heading stage show a slight decreasing trend as the
distance from the plant target to the imaging system increases
(simulating a decrease in plant height) in the range from 70 to
140 cm. However, the differences in Fv/Fm are not significant
(p > 0.05) between standard operational distance (80 cm) com-
pared to distances ranging from 70 to 140 cm (Fig. 3). It is likely
that the influence of variable plant heights differs across species with
different leaf angles and plant architectures.

4 Notes

1. Preliminary tests on our system indicate that 4 m separation
between measurements is sufficient.

2. We find that 4900–7000 μmol/m2/s appears to be sufficient at
the standard operating distance from the target.

3. In order to screen out background light, the camera system is
synchronized to trigger a single frame before the LED light to
establish a baseline intensity in the absence of the red flash. The
baseline correction in our system is completed within the cam-
era before images are saved.

4. The instruments need to be protected not only from the exter-
nal environment but also from internal heating in the electron-
ics and LEDs. Additionally, protection from dust and air
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particulates is needed. The air conditioning unit has separated
ventilation circuits to allow the clean air inside the chamber to
recirculate without mixing with the outside air.
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Chapter 18

A Method for Rapid and Reliable Molecular Detection
of Drought-Response Genes in Sorghum bicolor (L.) Moench
Roots

Juan B. Fontanet-Manzaneque, David Blasco-Escámez,
Damiano Martignago, Andrés Rico-Medina, and Ana I. Caño-Delgado

Abstract

Drought is a major environmental stress that limits growth and productivity in agricultural ecosystems
limiting crop yield worldwide. Breeding crops for enhanced drought tolerance is a priority to preserve food
security on the increasing world population. Recent work in Arabidopsis has shown that vascular brassi-
nosteroid receptor BRL3 (Brassinosteroid insensitive like-3) transcriptionally controls the production of
osmoprotectant metabolites that confer drought resistance without penalizing growth, offering new and
exciting possibilities for biotechnological improvement of drought-resistant crops. In cereals, understand-
ing transcriptional responses to drought is an essential step for the production of gene-edited drought-
resistant cereals. In this chapter, we present a method to analyze the transcriptional responses to drought in
Sorghum bicolor (L.) Moench, our cereal of choice. Among the genes we tested, we found that drought
marker gene SbDHN1 has a 1000-fold increase only after 1 day of drought, bringing possibilities for the
development of molecular sensors for testing drought. Overall, this analysis is useful to set up conditions of
high-throughput transcriptomic analysis of drought stressed plants before drought phenotype is observed.

Key words Sorghum, Drought, Root, Drought marker genes, qRT-PCR

1 Introduction

Drought is the most important cause of agricultural losses world-
wide, accounting for 29 billion dollars in world agriculture between
2005 and 2015 (FAOSTAT 2018, http://www.fao.org). For
instance, drought in the United States in 2012 and in Australia in
2006–2008 led to low levels of cereal stock and steep increases in
food prices [1]. Consequences of these losses are also affecting
developing countries, and drought is a major cause of hunger. In
many regions in Asia, rain-fed fields account for 20% of the total rice
cultivation area and are vulnerable to the impact of drought [2].
Global population growth, estimated at some 9 billion inhabitants
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by 2050, poses a higher pressure on food security [3]. Considering
that, engineering drought-resilient crops is one of the most
promising solutions to ensure food security in the planet.

Several approaches have been attempted to genetically improve
cereals to obtain drought-tolerant varieties. For instance, barley has
been genetically modified to increase cytokinin degradation in
roots and to reduce stomatal density to improve drought tolerance
[4, 5]. Maize has also been genetically modified to delay drought-
induced leaf senescence and to reduce the energy consumed in
respiration during stresses [6, 7]. Wheat has been genetically engi-
neered to reduce the stomatal density and to obtain higher contents
of free proline and soluble sugars, thus maintaining the cellular
homeostasis during drought periods [8, 9]. In Arabidopsis, our
recent work demonstrates that increasing brassinosteroid signaling
in the vascular cells confers drought resistance without penalizing
growth, by increasing osmoprotectant metabolites in the root [10].
This study prompted us to translate our findings to cereals. We
selected sorghum as a cereal of choice to obtain cereal plants with
enhanced drought tolerance because it holds several physiological
and genetic advantages [11], such as having a diploid and relatively
small genome that is amenable to the application of CRISPR-Cas9
for genome editing [12].

Sorghum (Sorghum bicolor (L.) Moench) is the fifth most
important cereal grass (Poaceae) in terms of production, behind
wheat, rice, maize, and barley. Current world production is about
64 million tons of grain from 44.7 million ha. It is grown in
110 countries in all the continents, and the major producers are
the United States, Nigeria, Sudan, Mexico, Ethiopia, India, Argen-
tina, China, Niger, and Australia (FAOSTAT 2016, http://www.
fao.org). Sorghum is a multipurpose crop. It is produced mainly for
animal feeding, but it is also produced in developing countries,
being consumed as a dietary staple in the form of flat bread and
porridges. Nowadays, it is becoming more popular in the brewing
industry and to produce bioethanol and bioplastics [13]. From an
agronomical perspective, sorghum is one of the better adapted
crops to dry environments. This adaptation is mainly based on its
biochemical and structural features as C4 photosynthesis, the CO2-
concentrating mechanism in C4 leaves that endows them with
higher water use efficiency [14], deep root architecture, and a
thick waxy cuticle, maximizing the water uptake from the soil and
minimizing the transpiration rate [15]. Some cultivars of sorghum
have also a post-anthesis drought resistance, commonly termed
stay-green trait, controlled by QTLs [16].

Together with its agronomic and physiological advantages,
sorghum offers great genetic advantages for plant breeders. It is a
self-pollinating diploid (2n ¼ 20) plant with a relatively small
genome size (732.2 MB), that is, about 25% of maize genome
size (2300 MB) [17]. Agrobacterium tumefaciens and particle
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bombardment-mediated transformation from immature embryos
have been adapted for sorghum [18, 19]. Furthermore, the high
degree of synteny among grass genomes led the plant genetic
community to view the grass family as a single genetic system
[20]; thus, methods presented here could be adapted to other
cereals.

Roots are responsible for uptaking water from the soil and
transporting it to the aerial plant organs. Roots can rapidly sense
the lack of water, and root traits affect the amount of water and
nutrient absorption for maintaining crop yield under water stress
conditions [21]. The sorghum root architecture is similar to other
cereals like maize, being fibrous and composed of seminal roots,
which appear at germination, and nodal, crown, or adventitious
roots, which emerge later from the shoot [22]. Seminal roots play
an important role in initial water and nutrient uptake, whereas
nodal roots gain relevance during the later stages of growth and
play a fundamental role in plan adaptation to adverse soil conditions
[23]. QTLs and genes related with drought resistance have been
associated with sorghum root traits, such as nodal root angle
[24, 25], but many of these genes, or QTLs, have not been tested
toward the genetic engineering of sorghum roots. Therefore, fur-
ther investigation is required to understand how these genes act in
drought-stress conditions in order to evaluate their potential for
future editing-guided breeding.

In this chapter, we investigated the transcriptional changes in
sorghum roots under laboratory conditions and provide a detailed
methodology to set up physiological and transcriptional drought
assays in sorghum plants. By using quantitative reverse
transcription-polymerase chain reaction (qRT-PCR), a series of
genetic markers have been identified that serve to evaluate early
drought-stress responses at the molecular level. In brief, we have
defined the experimental design and a series of genetic markers to
the early detection of drought stress in sorghum. These methods
can be scaled to genome-wide expression analyses.

2 Materials

2.1 Sorghum

Germination and

Growth for Drought

Assays

1. Sorghum bicolor (L.) MoenchM35-1 variety seeds (seeNote 1).

2. Sterile distilled water.

3. 1 g/L Captan general use fungicide (ethyl mercaptan).

4. Round Petri dishes.

5. Filter paper.

6. Parafilm ®.

7. Rounded tweezers.

8. 65 � 65 � 65 mm square pots.
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9. Fertirrigation solution (see Note 2).

10. Vermiculite substrate.

11. Perlite substrate.

2.2 RNA Purification

and Reverse

Transcription of

Sorghum Root for qRT-

PCR

1. Liquid nitrogen.

2. Rounded tweezers.

3. Sterile-RNase free 2 mL tubes.

4. Sterile-RNase free 4 mm Ø glass beads (see Note 3).

5. Precision balance.

6. Maxwell® 16 LEV Plant RNA kit.

7. NZY First-Strand cDNA Synthesis kit.

8. Centrifuge.

9. Nanodrop™ (ND1000, Thermo Fisher Scientific).

10. TissueLyser™.

2.3 qRT-PCR 1. SYBR Green I.

2. Nuclease-free water.

3. Primers (10 μM).

4. cDNA samples (200 ng/μL).
5. Real-Time PCR 480 LightCycler platform from Roche.

6. qPCR 96-well plates.

7. Optical adhesive sealing sheets.

3 Methods

3.1 Sorghum

Germination and

Sowing for Drought

Assays

1. Place the seeds between two filter papers on liquid medium
plates containing Captan solution to avoid fungal growth at the
early stages. Keep the seeds in a growth chamber at 28 �C, 60%
relative humidity, and photoperiod of 12 h light and 12 h dark.

2. Two days after germination, transfer the seedlings individually
to 65 � 65 � 65 mm pots containing 150 g of saturated
substrate composed by vermiculite/perlite 6:1 (see Note 4).

3. As the substrate is inert, fed plants with a fertirrigation solu-
tion. Fertirrigation program must be monitored to assure all
plants have the same water volume daily.

4. After 5 days of growth in a chamber at 80% relative humidity,
photoperiod of 12 h light and 12 h dark, at 28 �C/24 �C, high
light regime (150 μmol/m2/s), and fertirrigated, subject
plants to drought stress by water-holding, whereas the control
plants must remain in the same fertirrigation program.
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5. Photograph the plants including an appropriate scale bar to
measure phenotyping parameters (root length, plant height,
etc.) at each time point of your experimental design (see Fig. 1
and Table 1).

Fig. 1 Phenotype of sorghum seedlings without treatment (control) (+) and exposed to drought conditions
(withholding water) (�). (Day 1) Seedlings 1 day after applying the drought conditions. (Day 3) Seedlings
3 days after applying the drought conditions. (Day 7) Seedlings 7 days after applying the drought conditions

Table 1
Fertirrigation solution used in the drought experiment. All the nutrients supplied are shown in the first
column. The concentrations used of each nutrient are specified in parts per million (PPM). There are
also described the minimum, maximum, and optimum concentration values of each nutrient and the
soluble form

Nutrients
Atomic
mass PPM Minimum Optimum Maximum

Soluble
form

Macronutrients Nitrogen (N) 14.00 231.58 47.00 200.00 400.00 NO3
�/

NH4
+

Phosphorus (P) 31.00 68.38 20.00 50.00 100.00 P2O5

Potassium (K) 39.00 394.94 50.00 400.00 600.00 K2O
Calcium (Ca) 40.00 172.41 50.00 250.00 500.00 CaO
Magnesium
(Mg)

24.30 29.60 25.00 30.00 150.00 MgO

Sulfur (S) 32.00 38.98 0.30 400.00 700.00 No soluble
form

Iron (Fe) 55.80 5.40 2.00 5.00 10.00 FeO

Micronutrients Boron (B) 10.80 0.26 0.25 0.50 5.00 B2O3

Manganese
(Mn)

55.00 1.40 0.50 0.80 1.60 MnO

Zinc (Zn) 65.40 0.28 0.01 0.05 0.50 ZnO
Molybdenum
(Mo)

96.00 0.12 0.01 0.02 0.05 No soluble
form

Copper (Cu) 63.50 0.11 0.01 0.05 0.50 CuO

Setting Markers for Detecting Drought Stress in Sorghum Bicolor 227



3.2 RNA Purification

of Sorghum Roots for

qRT-PCR

1. Separate root tissue samples from the substrate by carefully
removing substrate residues by hand. Handle the roots with
care to avoid mechanical damage. Do not clean the root sample
with water; otherwise, it could invalidate the drought condi-
tions. After cleaning, place the sample rapidly in a tube, and
then quickly place it in liquid nitrogen. Samples could be stored
at �80 �C for further RNA extraction.

2. Add two 4 mm Ø glass beads to each tube containing the
samples.

3. Grind the frozen plant material to a fine powder using Tissue-
Lyser (TissueLyser II, Qiagen) at 30 Hz for about 4 min (see
Note 5).

4. Weigh and transfer 60–200 mg of the grinded root tissue into a
2 mL tube.

5. From now the RNA extraction protocol is performed with
Maxwell® 16 LEV Plant RNA kit as indicated in the technical
manual (Maxwell® 16 LEV Plant RNA kit Technical Manual
#TM415). However, some modifications are implemented for
sorghum root samples.

6. Add 600 μL of the chilled homogenization solution (Subhead-
ing 3.B of the manual), including the L-thioglycerol, to the
tube. If plant material is not dissolved in the solution, place
tubes on TissueLyser until the sample is homogenized. If
foaming occurs, let the sample settle on ice.

7. Transfer 400 μL of the homogenate to a 2 mL tube.

8. Add 200 μL of lysis buffer and vortex vigorously for 15 s.

9. Incubate at room temperature for 10 min.

10. Spin the sample at 20,000 RCF in a centrifuge for 4 min. If the
debris is not precipitated, repeat this step.

11. Transfer the supernatant to well #1 of the Maxwell® 16 LEV
Cartridge; avoid transferring the precipitate, which might be
inadvertently resuspended from the bottom of the tube.

12. Follow the last steps of Maxwell® 16 LEV Plant RNA technical
manual, as no more modifications are implemented (Subhead-
ing 4 of the manual from step 10 to the end).

13. Measure RNA concentration in Nanodrop (see Note 6).

3.3 Reverse

Transcription of

Sorghum Root RNA

1. Use 1 μg of RNA for cDNA synthesis using NZY First-Strand
cDNA Synthesis kit (NZYTech®) as described in the manufac-
turer’s manual.

Previous analysis by Sudhakar Reddy et al. (2016) selected refer-
ence genes which were tested in five different sorghum genotypes,
including M35-1 that is used in the present work [26]. Three genes
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3.4 Evaluation of

Sorghum Reference

Genes in Root Tissues

Under Drought Stress

Conditions for qRT-

PCR Data

Normalization

3.4.1 Housekeeping

Gene Identification

resulted the most stable and reliable reference genes in different
abiotic stresses and different plant tissues. The genes serine/threo-
nine-protein phosphatase 2A (SbPP2A) and cyclophilin/peptidyl-
prolyl isomerase (SbCYP) were identified as the most stable genes
in abiotic stress conditions; and eukaryotic initiation factor 4A-1
(SbEIF4α) was the most stable among different tested tissues.
However, these conditions did not comprise any drought or
osmotic stress. Therefore, a validation experiment needs to be
performed to test SbPP2A, SbCYP and SbEIF4α gene expression
stability in the experimental conditions used in this work.

3.4.2 qRT-PCR Analysis

for the Selected

Housekeeping Genes

The qRT-PCR is performed in 96-well plates using Real-Time PCR
480 LightCycler platform from Roche. The PCR cycling condi-
tions are 95 �C for 10 min, followed by 45 cycles of 95 �C for 10 s
and 60 �C for 30 s. Run the qRT-PCR product in a 1% agarose gel
to verify primer specificity (see Note 7).

3.5 Differential Gene

Identification and

Experimental

Validation to Stablish

Drought Marker Genes

in Sorghum Roots

3.5.1 Gene Identification

Candidate drought marker genes were identified by literature
search within various databases and scientific papers. RNA-Seq
and cDNA array results from different research articles in sorghum
revealed transcriptional activity of more than 28,000 genes differ-
entially expressed under osmotic, dehydration, and ABA-treated
conditions [27–29]. From these articles, a series of putative root
drought markers were selected, and its transcriptional profile was
checked in Morokoshi Sorghum transcriptional database [30].
Finally, genes which were transcriptionally expressed in seedling
roots and differentially expressed between these and Root_PEG
and Root_ABA datasets were selected to perform an experimental
validation. The selected genes were (Fig. 2):

Fig. 2 qRT-PCR analysis in sorghum roots for relative expression of the putative markers under drought stress
conditions at different time points (1, 3, and 7 days after drought) where the SbCYP gene was used as an
internal control to normalize the expression level. (a) Relative gene expression of upregulated markers. (b)
Relative gene expression of downregulated markers. (c) Relative gene expression of highly sensitive marker
Sorghum bicolor dehydrin (SbDHN1). The SbDHN1 fold change is reaching values of 1000 to 600,000 because
of the low expression levels of this gene in basal conditions, with an absolute value of 1.03 � 10�5. Bars and
asterisks denote standard errors and significant differences against unstressed plants using a Student’s t-test
of three independent biological replicates (P value <0.05), respectively
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• Sorghum bicolor dehydrin 1 (SbDHN1): Sb09g018420

• Sorghum bicolor xyloglucan endotransglucosylase/hydrolase
(SbXTH26): Sb04g010980

• Sorghum bicolor heat shock protein 17.4 KDa (SbHSP17.4):
Sb01g039990

• Sorghum bicolor glutathione S-transferase U6 (SbGSTU6):
Sb03g031780

• Sorghum bicolor cellulose synthase A catalytic subunit
8 (SbCESA8): Sb02g007810

• Sorghum bicolor alpha/beta hydrolase (SbABH): Sb01g045300

• Sorghum bicolor respiratory burst oxidase E (SbRBOHE):
Sb02g025660

3.5.2 Primer Design Primers were designed using Primer-BLAST (NCBI). Optimum
primer parameters for qPCR were PCR product size from 70 to
200 bp with a primer melting temperature from 57 to 63 �C, being
the optimum at 60 �C and with a maximum melting temperature
difference of 1 �C. Exon junction span is prioritized when possible
(see Note 8). Primer pair specificity to the intended PCR template
should also be checked (see Note 9). Primer pair sequences are
specified in Table 2.

3.5.3 qRT-PCR Primer

Efficiency Standard Curve

Analysis

Primers pairs should be tested using a standard curve. To perform a
qPCR standard curve, set up a qPCR reaction to amplify different
amounts of the same cDNA sample; efficient primers will result in a
proportional dose-response curve. Test four different concentra-
tions with a dilution factor of 1:5, doing sequential dilutions. To
detect contaminations in the reaction and to discriminate back-
ground amplification, a negative control must be included, using
nuclease-free water.

3.5.4 qRT-PCR Analysis

for the Selected Putative

Drought Marker Genes in

Sorghum Roots

Analyze the expression of the selected putative drought marker
genes under drought stress treatment by qRT-PCR. Use the
SbCYP gene as an internal control to normalize the sample
amounts (see Note 10). qRT-PCR is performed in 96-well plates
using Real-Time PCR 480 LightCycler platform (Roche). PCR
cycling conditions are 95 �C for 10 min, followed by 45 cycles of
95 �C for 10 s and 60 �C for 30 s (seeNote 11). qRT-PCR product
was run in an agarose gel to verify primer specificity.

3.6 Mathematical

Method for Relative

Quantification of qRT-

PCR Data (2-ΔΔct)

The relative quantification is calculated using the 2-ΔΔct method
[31], in which ct indicates cycle threshold. ΔΔct ¼ (ct drought
marker (stressed plants) – ct SbCYP (stressed plants)) – (ct drought marker

(control plants) – ct SbCYP (control plants)).
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4 Notes

1. Accession number of M35-1 variety seeds: “PI656047.”

2. The fertirrigation program is specified in Table 1.

3. For the removal of RNase, the glass beads are treated with
0.1 N NaOH overnight. Then the beads are rinsed with dis-
tilled water and kept at 200 �C for 4 h.

4. An inert substrate composed by vermiculite and perlite 6:1 was
used to facilitate the cleaning of the root samples for RNA
extraction as vermiculite is a fine substrate and it is easily
removed by hand.

5. For grinding root samples, it is preferable to use 2 mL Eppen-
dorf, and glass beads should have a diameter bigger than 4 mm,
due to the thickness of cereal roots. In addition, when grinding
the root plant material in the TissueLyser, it is necessary to do it
in 2 min intervals. Meanwhile, keep the samples in liquid
nitrogen after each interval to prevent RNA degradation.

Table 2
Details of reference and drought marker genes, nomenclature, primer sequences, product size, and
melting temperature

Gene annotation Oligo sequence Amplicon length Tm (�C)

Sb04g007570 (SbPP2A) Fw-AACCCGCAAAACCCCAGACTA 138 59
Rv-TACAGGTCGGGCTCATGGAAC

Sb04g019590 (SbCYP) Fw-GTATCTGTGCTCGCCGTCTCT 108 59
Rv-TTCACCCAACTCCTCAACCCC

Sb04g003390 (SbEIF4α) Fw-CAACTTTGTCACCCGCGATGA 144 58.3
Rv-TCCAGAAACCTTAGCAGCCCA

Sb09g018420 (SbDhn1) Fw-CCACAAGGACAACCAGCAC 191 57
Rv-TTCACACGCCAGAGAGAGC

Sb04g010980 (SbXTH26) Fw-TGACACCAGGAAGGACAGTG 114 55.5
Rv-TGGAACTAAACACCCCCAAA

Sb01g039990 (SbHSP17.4) Fw-CGACATCAAGAACGTCCAGA 100 54.4
Rv-CGAAAGCACGTCCCTTTTAC

Sb03g031780 (SbGSTU6) Fw-CATCGACGACAAGTTTATCCTG 109 54.4
Rv-CTCCAACGTCTCCATCACG

Sb02g007810 (SbCesA8) Fw-CGGCCAGATGGTTGATGACA 118 57.8
Rv-GAGGTTGGGATCTGCGAAGG

Sb01g045300 (SbABH) Fw-CACCGATACCTCAGGACGTG 170 57
Rv-GACCTTGTTGAAGCGAGCAG

Sb02g025660 (SbRbohE) Fw-AGTACAGGAGCTGATCGTGC 120 57
Rv-ATGTAGCCAAGGTTCTCGGG
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6. The RNA concentration is expected to be in the range from
200 to 500 ng/μL and the ratio of absorbance at 260 nm and
280 nm (260/280 ratio) from 2 to 2.2.

7. Primer sequences used to test the housekeeping genes by
qRT-PCR were taken from Sudhakar Reddy et al. (2016) arti-
cle [24], specified in Table 2.

8. It is advisable that primers span an exon-exon junction to be
specific for the amplification of cDNA and therefore not ampli-
fying genomic DNA residues.

9. When checking the primer specificity to your PCR template,
you can narrow down your search to Sorghum bicolor RefSeq
mRNA database (taxid: 4558) present in Primer-BLAST tool.

10. SbCYP is used as an internal control because it was the most
stable one in our experimental conditions.

11. The SbDHN1 is the most recommendable drought marker
gene due to its high sensitivity, being strongly upregulated
even before the plants showed any phenotypical change. For
early drought responses, the drought markers SbABH and
SbCESA8 are recommendable as well, due to their significantly
twofold decrease at 1 day after applying the stress. For later
drought responses, the use of the marker SbHSP17.4 is pro-
posed because of its 5- and 15-fold increase at 3 and 7 days
after applying the stress, respectively.
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N et al (2017) The primary root of Sorghum

232 Juan B. Fontanet-Manzaneque et al.

https://doi.org/10.1596/978-0-8213-6807-7
https://doi.org/10.1596/978-0-8213-6807-7
https://doi.org/10.21825/af.v30i2.8080
https://doi.org/10.21825/af.v30i2.8080
https://doi.org/10.3389/fpls.2018.00997
https://doi.org/10.3389/fpls.2018.00997


bicolor (L. Moench) as a model system to study
brassinosteroid signaling in crops. In: Brassi-
nosteroids. Humana Press, New York

12. Li A, Jia S, Yobi A et al (2018) Editing of an
alpha-kafirin gene family increases, digestibility
and protein quality in sorghum. Plant Physiol
177(4):1425–1438

13. Taylor JR, Schober TJ, Bean SR (2006) Novel
food and non-food uses for sorghum and mill-
ets. J Cereal Sci 44(3):252–271

14. Ghannoum O (2008) C4 photosynthesis and
water stress. Ann Bot 103(4):635–644

15. Rostamza M, Richards RA, Watt M (2013)
Response of millet and sorghum to a varying
water supply around the primary and nodal
roots. Ann Bot 112(2):439–446

16. Buchanan CD, Lim S, Salzman RA et al (2005)
Sorghum bicolor’s transcriptome response to
dehydration, high salinity and ABA. Plant
Molec Biol 58(5):699–720

17. Paterson AH, Bowers JE, Bruggmann R et al
(2009) The Sorghum bicolor genome and the
diversification of grasses. Nature 457(7229):
551

18. Howe A, Sato S, Dweikat I et al (2006) Rapid
and reproducible Agrobacterium-mediated
transformation of sorghum. Plant Cell Rep
25(8):784–791

19. Belide S, Vanhercke T, Petrie JR et al (2017)
Robust genetic transformation of sorghum
(Sorghum bicolor L.) using differentiating
embryogenic callus induced from immature
embryos. Plant Methods 13(1):109

20. Hamblin MT, Casa AM, Sun H et al (2006)
Challenges of detecting directional selection
after a bottleneck: lessons from Sorghum
bicolor. Genetics 173(2):953–964

21. Wasaya A, Zhang X, Fang Q et al (2018) Root
phenotyping for drought tolerance: a review.
Agronomy 8(11):241

22. Singh V, van Oosterom EJ, Jordan DR et al
(2010) Morphological and architectural

development of root systems in sorghum and
maize. Plant Soil 333(1–2):287–299

23. Smith S, De Smet I (2012) Root system archi-
tecture: insights from Arabidopsis and cereal
crops. Phil Trans R Soc B 367:1441–1452

24. Mace ES, Singh V, Van Oosterom EJ et al
(2012) QTL for nodal root angle in sorghum
(Sorghum bicolor L. Moench) co-locate with
QTL for traits associated with drought adapta-
tion. Theoret Appl Genet 124(1):97–109

25. Harris-Shultz KR, Hayes CM, Knoll JE (2019)
Mapping QTLs and identification of genes
associated with drought resistance in
sorghum. In: Sorghum. Humana Press,
New York

26. Sudhakar RP, Srinivas RD, Sivasakthi K et al
(2016) Evaluation of sorghum [Sorghum
bicolor (L.)] reference genes in various tissues
and under abiotic stress conditions for quanti-
tative real-time PCR data normalization. Front
Plant Sci 7:529

27. Dugas DV, Monaco MK, Olson A et al (2011)
Functional annotation of the transcriptome of
Sorghum bicolor in response to osmotic stress
and abscisic acid. BMC Genomics 12(1):514

28. Buchanan CD, Lim S, Salzman RA et al (2005)
Sorghum bicolor’s transcriptome response to
dehydration, high salinity and ABA. Plant
Molec Biol 58(5):699–720

29. Johnson SM, Lim FL, Finkler A et al (2014)
Transcriptomic analysis of Sorghum bicolor
responding to combined heat and drought
stress. BMC Genomics 15(1):456

30. Makita Y, Shimada S, Kawashima M et al
(2014) MOROKOSHI: transcriptome data-
base in Sorghum bicolor. Plant Cell Physiol
56(1):e6–e6

31. Livak KJ, Schmittgen TD (2001) Analysis of
relative gene expression data using real-time
quantitative PCR and the 2� ΔΔCT method.
Methods 25(4):402–408

Setting Markers for Detecting Drought Stress in Sorghum Bicolor 233



Chapter 19

High-Throughput Profiling of Metabolic Phenotypes Using
High-Resolution GC-MS

Nishikant Wase, Nathan Abshire, and Toshihiro Obata

Abstract

Metabolite profiling provides insights into the metabolic signatures, which themselves are considered as
phonotypes closely related to the agronomic and phenotypic traits such as yield, nutritional values, stress
resistance, and nutrient use efficiency. GC-MS is a sensitive and high-throughput analytical platform and has
been proved to be a vital tool for the analysis of primary metabolism to provide an overview of cellular and
organismal metabolic status. The potential of GC-MS metabolite profiling as a tool for detecting metabolic
changes in plants grown in a high-throughput plant phenotyping platform was explored. In this chapter, we
describe an integrated workflow of semi-targeted GC-high-resolution (HR)-time-of-flight (TOF)-MS
metabolomics with both the analytical and computational steps, focusing mainly on the sample preparation,
GC-HR-TOF-MS analysis part, and data analysis for plant phenotyping efforts.

Key words Metabolomics, GC-HR-TOF-MS, Plant phenotyping, Phenomics

1 Introduction

In recent years, plant phenotyping has received increased interest to
bridge the gap between genotype-to-phenotype knowledge. At
present, there is an urgent need for expanding the phenotypic
capabilities to measure more complex phenotypic traits. As aptly
quipped by Tuberosa, “Phenotyping is king and heritability is
queen” [1]. The classical plant phenotyping tools generally rely
on manual measurement of selected traits from limited sampling
of plants, have limited throughput, and hence are the main hurdle
in the comprehensive analysis of phenotypic traits within a single
plant species and different cultivars. This is sometimes also referred
to as a phenotyping bottleneck [2]. To functionally describe the
metabolism of plants, metabolomics has turned out to be a power-
ful and indispensable tool.

Metabolism can be defined as the large array of chemical reac-
tions taking place inside the cell. Enzymes present in the cell guide
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these reactions, and the resultant products are called metabolites.
Metabolites are the products of essential metabolic processes such
as respiration, photosynthesis, and biosynthesis of building blocks
for macromolecules. Metabolites such as proteinogenic amino
acids, nucleotides, lipids, and carbohydrates can be categorized as
primary metabolites which have close relationships with crop per-
formances due to their essential roles in growth, development, and
life cycle. On the other hand, secondary metabolites play important
roles in the interaction with the environment. Thus, a plant’s
metabolite profile is a component that can bridge the genotype-
phenotype gap and facilitate the selection of superior traits in plant
breeding programs [3]. Metabolomics is an excellent tool to char-
acterize metabolic phenotype rigorously and link the traits to asso-
ciated gene expression changes and changes in the phenotype and
improve our understanding of the genotype-phenotypic association
of desired traits [4]. Hence, metabolomics can be largely viewed as
a physiological analysis enabling us to come to a biological conclu-
sion of plant productivity and interaction with abiotic and environ-
mental stressors [5]. An excellent example is a recent study by
Steinfath et al. using metabolite profiling to predict the phenotypes
of agriculture importance [6]. In this study, 20 potato cultivars
were analyzed to identify biomarkers responsible for the suscepti-
bility of potato to mechanical damage and browning of potato
during frying due to Millard’s reaction. Authors found that serine,
valine, tyrosine, threonine, and glutamine are the biomarkers for
mechanical bruising, while glucose and fructose are identified as
biomarkers for browning of potato during frying [7]. Thus, metab-
olite profiling can also be used to predict crop product quality and
identify biomarker metabolites which can be used for diagnostics
and marker-assisted breeding [8].

Metabolic profiling studies have been performed using a range
of analytical platforms, including gas chromatography-mass spec-
trometry (GC-MS) and liquid chromatography (LC)-MS. There
are other variants such as capillary electrophoresis (CE)-MS,
nuclear magnetic resonance (NMR) spectroscopy, or direct infu-
sion MS. Because of the diversity of the physical and chemical
properties of the metabolites, no single analytical platform can
profile all metabolites in a sample [9]. Therefore, the platform
must be chosen depending on the classes of metabolites to be
analyzed. The most widely used methods are GC- or LC-MS and
NMR, and each offers different advantages and disadvantages
[10]. The main strength of GC-MS, which makes it suitable for
high-throughput metabolite profiling, is its reproducibility and
wide dynamic range. These allow us to compare the data from
different analytical batches and to minimize the possibility of satu-
ration and misdetection. Additionally, the GC retention time and
MS fragmentation pattern information are reproducible and can be
shared between instruments even when they are using slightly
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different settings. This makes the semi-targeted metabolite
profiling possible by using publicly available data libraries typically
containing the information of thousands of metabolites belonging
to a wide variety of chemical classes. Especially the GC retention
time information makes the peak annotation reliable. Electron
ionization (EI) fragmentation method fragments molecules very
reproducibly according to their structure which helps in identifica-
tion and overrides the need for tandem mass spectrometry. For
these reasons, GC-MS has been widely used for profiling of the
primary metabolites, as it can quantify compounds of molecular
weight smaller than 600 a.u. Using a high-resolution (HR)-time-
of-flight (TOF)-MS is beneficial over conventional GC-quadrupole
(Q)-MS whose resolution is limited to the nominal mass or up to
one decimal place. With the GC-HR-TOF-MS, the data can be
acquired at a high full-scan rate of up to 50 spectra/sec, high mass
accuracy and resolution with four decimal places, the increased limit
of detection, and enhanced measurement precision [11]. GC-HR-
TOF-MS also has an excellent ability to separate ion signals at
different exact masses but equal nominal masses, which greatly
contribute to avoiding incorrect annotation of peaks and eliminat-
ing the effects of co-eluting metabolites on peak quantification. For
example, a characteristic fragment of citric acid (nominal mass of
the monoisotopic fragment is 273.0 m/z) is detected as a single
fragment by GC-Q-MS in a plant sample. However, two fragments
with m/z 273.0843 and 273.1207 were detected using GC-HR-
TOF-MS (Fig. 1). The fragment with m/z 273.1207 is not derived
from citrate but most likely from a metabolite co-eluted with
it. These two fragments cannot be separated by GC-Q-MS, leading
to an error in the quantification of citrate. Additionally, the
GC-HR-TOF-MS system has the ability to detect and identify
trace-level metabolites within a complex matrix. A GC-Q-MS in
selective ionmonitoring (SIM)mode or GC triple quadrupole mass
spectrometer operating in multiple reaction monitoring (MRM)
mode offers better selectivity and dynamic range, but these techni-
ques are optimal for targeted analysis. Thus, using the GC-HR-
TOF-MS system for phenotyping analysis has clear advantages over
the other GC-MS systems.

Metabolite profiling is a multistep procedure, and an optimal
workflow is required for various steps, including preparatory, ana-
lytical, and computational steps [12, 13] . The preparatory steps
involve paying due diligence to the experimental design, consider-
ing both biological and analytical constraints, sample collection,
sample handling, metabolic quenching, and storage of the material.
As a rule of thumb, special care should be given to the sample
collection and handling routines in any metabolite profiling analysis
to minimize perturbations of the sample’s physiological state. For
example, harvest time in the day, shading, and wounding can
significantly affect levels of many metabolites. Moreover,
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optimization of this step is very critical considering the fact that
metabolism is a very dynamic cellular process. Quenching is gener-
ally carried out by flash freezing of the sample in liquid nitrogen.
Samples should be stored at�80 �C before analysis and transported
on dry ice. An ideal metabolite extraction should satisfy three
criteria [14, 15]: (i) method should completely extract all intracel-
lular metabolite pools, (ii) metabolite conversion should be pre-
vented or minimized during the extraction or subsequent steps and
this can be achieved by effective inactivation of enzymes, and (iii)
metabolite degradation should be minimized. Although there is no
single universal extraction method for the entire metabolome,
extraction of water-soluble metabolites can be achieved using
organic solvents, high/low temperature, mechanical cracking,
extreme pH, or combinations of these [16–21]. In the 1990s,
biphasic liquid extraction with chloroform/methanol was

Fig. 1 Comparison between high- and low-resolution GC-MS analyses. The upper and lower panels show parts
of mass spectra of citric acid in a biological sample acquired on high- and low-resolution GC-MS analysis,
respectively. The ion with m/z 273.0843 is detected by HR-MS separately from the one with m/z 273.1207,
which is not derived from citric acid, while these are recognized as a single ion by a conventional MS
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introduced [14] and has been the mainstay of the metabolite
extraction procedures and employed in the protocol introduced
here too.

Once the data is acquired by the GC-HR-TOF-MS, the
computational analysis of data processing can be divided into
three main sections:

(a) Peak detection by spectral deconvolution and identification of
the peaks of metabolites using MassHunter Unknowns
Analysis

(b) Quantification of the identified metabolite peaks by Mas-
sHunter Quantitative Analysis

(c) Statistical analysis and biological interpretation

The entire workflow is shown in Fig. 2. Once the GC-HR-
TOF-MS data for a batch is acquired, the first step in our workflow
is the identification of the compound peaks using Unknowns Anal-
ysis. This is primarily done using MassHunter Unknowns Analysis
software. A mix of the samples (pooled reference sample) is used for
the identification of the metabolite peaks assuming that the refer-
ence sample represents all the samples and should contain all the
metabolites present in samples under consideration. The data is
deconvoluted, and resulting fragmental peaks are aligned to gener-
ate “components” which are sets of fragmental ion peaks supposed
to be derived from the single metabolites. The components are
then compared with a standard spectral library, i.e., Fiehn GC-MS
mass spectral library [22], which contains GC retention index
(RI) information for each metabolite. The spectral search and RI
matching result in a peak list with library hits (tentatively identified)
and non-hits (not identified) peaks. The library hits are then
exported out as a reference library specific for the analytical batch
after a rigorous curation process (see Subheading 3.5, Notes 8 to
15). All the samples, including the blanks and reference samples,
are then loaded into MassHunter Quantitative Analysis software as
a batch. Batch-specific quantitation method is created based on the
reference library generated by the MassHunter Unknowns Analysis
software. The quantitation software matches the retention time and
mass spectra of the target peaks present in the reference library to
those of peaks present in each sample to identify metabolite peaks.
Ion intensity of the “quantification ion,” which represents the
abundance of the metabolite, is determined as the peak height for
each detected metabolite in each sample. Thus, starting from raw
GC-TOF peaks, the user can confidently identify metabolite peaks
in the complex mixture and quantify its peak height. These peak
height values can further be normalized and used for statistical
analysis to draw biological insight related to the phenotypic traits
as discussed in Subheading 3.7.
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Taking all the considerations, we present a protocol for data
analysis that can be applied to any biological sample (with some
adaptation). The protocol integrates the experimental and compu-
tational parts. The experimental part deals with polar metabolite
extraction, derivatization, and GC-HR-TOF-MS data acquisition
and then metabolite peak identification and quantification using
MassHunter software suit. Further data processing practice includ-
ing data normalization, filtering, and statistical analysis will also be
described. Our research group routinely uses this protocol to
acquire profiles of plants, animal and human tissues, cell cultures,
and other biological samples.

2 Materials

2.1 Consumables 1. Two mL microcentrifuge tubes (Eppendorf; Cat. #
022363352 (see Note 1).

2. Pipette tips.

3. One and a half mL autosampler glass vials with PTFE crimp cap
(Agilent Cat # 5181-3376 or similar) with 200 μL glass insert
with plastic spring (Cat # 5181-1270).

Fig. 2 Overview of the data analysis workflow. This workflow is broadly divided into three main steps. Step 1 is
performed using MassHunter Unknowns Analysis software to identify the metabolite peaks to be analyzed in
the batch. The identified compounds are then exported as a reference library and used in the quantification
workflow (step 2). The quantification part starts with creating a quantification method in MassHunter
Quantitative Analysis software using the user-created reference library in step 1. Metabolite peaks are
identified and quantified in each sample. Generated peak height data for individual metabolites are filtered and
normalized to represent relative metabolite levels and used for statistical analysis to draw biological
interpretation
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4. Argon gas (purity 99.99%; Cat # AR UHP 1L, MATHESON,
166 Keystone Drive, Montgomeryville, PA).

5. Liquid nitrogen. Liquid nitrogen is a cryogenic liquid. It is
liquefied under high-pressure and low-temperature conditions
and can expand to a very large volume of gas. Liquid nitrogen
and its vapor can rapidly freeze skin tissues and eye fluids,
resulting in a cold burn, frostbite, and permanent damage
even by brief exposure. It also causes asphyxiation as nitrogen
can replace oxygen in the air. Always use only approved con-
tainers that can withstand low temperatures. Always wear eye/-
face protection, skin protection, thermally insulated leather
gloves, long sleeve shirts, and safety shoes.

2.2 Reagents 1. HPLC-grade water.

2. HPLC-grade methanol (Sigma; Cat # 34885). Methanol is
toxic and highly flammable and should be handled in a
chemical hood.

3. HPLC-grade chloroform (EMD Millipore; Cat # CX1050).
Chloroform is toxic and highly flammable and should be han-
dled in a chemical hood.

4. Ribitol/adonitol (Sigma; Cat # A5502) (as internal standard).

5. Pyridine anhydrous (EMDMillipore; Cat # PX2012). Pyridine
is harmful and highly flammable and should be handled in a
chemical hood.

6. Methoxyamine hydrochloride (Sigma; Cat # 89803). Methox-
yamine HCl is corrosive and harmful and should be handled in
a chemical hood.

7. MSTFA (N-methyl-N-(trimethylsilyl)trifluoroacetamide; 98 +
%) (CovaChem; Cat # 12104-10x1). Methoxyamine HCl is
irritant and flammable and should be handled in a
chemical hood.

8. Fatty acid methyl esters (FAMEs) mixture containing C:8
to C:30 FAMEs. Weigh 10 mg each in 1.5 mL Eppendorf
tubes, and add 1 mL of chloroform. Combine all of the stocks
in a clean glass bottle, and make up the volume 25 mL with
chloroform. Aliquot into glass vials and store at �20 �C. Che-
micals are irritant, wear appropriate personal protection, and
perform operations in a chemical hood. [Methyl caprylate
(C8); methyl pelargonate (C9); methyl caprate (C10); methyl
laurate (C12); methyl myristate (C14); methyl palmitate
(C16); methyl stearate (C18); methyl eicosanoate (C20);
methyl docosanoate (C22); lignoceric acid methyl ester
(C24); methyl hexacosanoate (C26); methyl octacosanoate
(C28); triacontanoic acid methyl ester (C30).]
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2.3 Equipment 1. Microcentrifuge.

2. Mortar and pestle (for the homogenization of a small amount
of plant tissue such as leaf/stem/root).

3. Stainless steel Dewar flask for liquid nitrogen.

4. Weighing balance.

5. Centrifugal vacuum concentrator with cold trap (e.g., Centri-
Vap, Labconco Corp. Kansas City, MO).

6. Thermomixer (i.e., MultiTherm, Benchmark Scientific).

7. TissueLyser II (Qiagen, Germantown, MD).

8. Vortex mixer.

2.4 GC-HR-TOF-MS

System

1. 7890B GC system (Agilent Technologies, Santa Clara, CA).

2. 7200 series GC-QTOF system (Agilent Technologies, Santa
Clara, CA).

3. 7893 autosampler (Agilent Technologies, Santa Clara, CA).

4. GC capillary column: Agilent J&W HP-5MS,
30 m � 0.25 mm � ID 0.25 μm.

2.5 Software 1. MassHunter GC/MS Acquisition (Agilent Technologies,
Santa Clara, CA).

2. MassHunter Workstation VB.08.00 (Agilent Technologies,
Santa Clara, CA).

3. Qualitative Navigator module VB.08.00 (Agilent Technolo-
gies, Santa Clara, CA).

4. Quantitative Analysis module VB.08.00 (Agilent Technolo-
gies, Santa Clara, CA).

5. Quantitative Unknowns Analysis module VB.09.00 (Agilent
Technologies, Santa Clara, CA).

6. Agilent Fiehn GC/MS Metabolomics RTL Library
(2013) [22].

7. Microsoft Excel 2015 (Microsoft, Redmond, WA, USA).

3 Methods

3.1 Sample

Preparation and

Metabolite Extraction

1. The tissue should be pulverized to a fine powder under liquid
nitrogen temperature using TissueLyser or mortar and pestle.
Take 50–100 mg (see Note 2) of pulverized material in a 2 mL
Eppendorf microfuge tube (round bottom shaped). Weigh the
plant material with precision. The precision on sample weight is
essential as it would be later used for normalization. Perform
this operation under liquid nitrogen temperature.
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2. Add 730 μL of methanol premixed with 20 mg/mL ribitol in
water at 700:30 ratio (see Note 3 for optimization of internal
standard concentration), and vortex immediately and vigor-
ously. Keep the samples on ice.

3. Transfer the tubes to a thermomixer set at 70 �C, and shake the
tubes for 15 min at 950 rpm. After 1–2 min, open the Eppen-
dorf tubes for a moment to release the extra pressure. All
enzymatic activities should be stopped here, and the following
procedures can be performed at RT.

4. Centrifuge 10 min at 17,000 � g and transfer the supernatant
(without disturbing the pellet) to a new tube. Add 325 μL
chloroform and 750 μL water, and vortex the tubes vigorously
for 30 sec.

5. Centrifuge the tubes for 15 min at 1500� g. Take an aliquot of
50 μL from the upper polar phase into a fresh 2 mL Eppendorf
tube (seeNote 4 for optimization for the volume of metabolite
extract). Dry the samples with a centrifugal vacuum concentra-
tor. The rest of the supernatant can be divided into 2–4 aliquots
and kept as backup samples after drying. The tubes are filled
with argon gas immediately after vacuum drying and are tightly
closed to prevent the oxidation of metabolites. The samples can
be stored at either RT or �80 �C for several months.

3.2 Derivatization GC-MS-based metabolite profiling requires the derivatization of
metabolites to make them volatile and thermally stable [23]. The
derivatization procedure is a two-step procedure involving (a) the
methoximation of the metabolites containing aldehyde and ketone
group to inhibit ring formation and (b) the silylation of all meta-
bolites from the previous step to form TMS derivatives
[24]. Although methoximation and silylation of the metabolites
are effective procedures, they are also marred with errors in GC-MS
data variance in thermal stability of the metabolites, derivatization
efficiency, and generation of multiple peaks [25–27].

1. Vacuum dry stored samples for 30 minutes to remove any
residual humidity (see Note 5).

2. Add 40 μL methoxyamine hydrochloride solution (20 mg/mL
in pyridine). When this chemical is not well dissolved in pyri-
dine, warm the solution by hand. Follow the procedures below
with one additional empty tube to be analyzed as “blank.”

3. Incubate the tubes at 37 �C for 2 h with shaking at 950 rpm.

4. Add 70 μL ofMSTFAmix (1 mL ofMSTFA + 20 μL of FAMEs
mix), and incubate at 37 �C for 30 min with shaking at
950 rpm.

5. Create a pooled reference sample by aliquoting 10 μL of deri-
vatized material from each sample into a separate tube.

6. Transfer the derivatized metabolites to autosampler vials with a
glass insert, and seal the vials with a crimper.
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3.3 GC-MS Data

Acquisition

Set the inlet temperature to 230 �C and the auxiliary transfer line
temperature to 280 �C. The GC oven temperature gradient pro-
gram is as follows: set the initial oven temperature to 80 �C and
hold for 2 min, and then ramp the temperature up to 330 �C at a
rate of 15 �C/min. Finally, hold the temperature for 6 min. The
total runtime is 24.6 min. The helium carrier gas flow is set to
1 mL/min. Operate the mass spectrometer over a scan range of
60–600m/z at�70 eV. Provide a solvent delay of 5 min so that the
injection peak data is skipped. Inject 1 μL metabolite mixture to
acquire its metabolic profile (see Note 6). Include TOF calibration
at the beginning of the sequence and after every 20 to 30 samples to
gain accurate m/z values (add empty sample with Type column
“Keyword” and Keyword column “MassCal” in the sequence).

3.4 Generation of

Experiment-Specific

Retention Index (RI)

Calibration File

Calculations of relative retention were adapted for temperature
programmed GC separations, and these values are known as
RI. This allows us the comparison between the retention times in
the library and in own analyses even if those are based on different
analytical platforms. RI calculation requires a mixture of standard
analytes (in the current protocol, FAMEs mixture with C8 to C30)
that covers the elution range of the metabolites of interest. Each
FAME species is assigned an RI value based on the number of
carbon atoms multiplied by 100, e.g., methyl caprylate (C8),
methyl pelargonate (C9), and methyl caprate (C10) are assigned
RI values of 800, 900, and 1000, respectively. The RI of a given
metabolite is calculated according to the retention time relative to
those of the FAMEs species that elute immediately before and after
it.

1. A RI calibration (RTC) file must be created for the first time of
analysis on your system. A technical brief regarding this can be
downloaded from the Agilent website (MassHunter Quant
Software: Incorporating Retention Index Results in Deconvo-
luted GC/MS Library Search Data, https://www.agilent.
com/cs/library/datasheets/public/MassHunter_Technical_
Brief_v3.pdf). A detailed workflow for generating the RTC file
is provided in Note 16. Refer to Subheadings 3.5 and 3.6 for
the detail on the MassHunter Unknowns Analysis and Quanti-
tation Analysis, respectively.

2. Once the RTC file is created for the specific analytical setup, the
same file can be repeatedly used for different batches. However,
RTmust be updated for each batch to avoid errors due to slight
RT shifts. The batch-specific retention time of each FAME can
be obtained from the FAMEs mix sample data file by Mas-
sHunter Qualitative Navigator. Open the data file of the
FAMEs mix sample in the batch, and display EIC for m/z
87.0 (go to Chromatogram menu from the main window,
select Extract chromatogram, and select QC sample, Type
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“EIC,” and m/z value(s) ¼ “87”) since all the MSTFA deri-
vatized FAME species generate an ion of m/z 87. Record the
retention time of each FAME peak.

3. Open the RTC file using excel or a text editor. Replace the
retention time information for each FAME with the recorded
values, and save the file as a batch-specific RTC file (Fig. 3).

3.5 Peak Annotation

by MassHunter

Unknowns Analysis

Software

A batch-specific metabolite library is created in this step. Peaks in
the reference sample are annotated by library search using Fiehn
library to make a list of metabolites to be quantified in the batch.
The idea is that the reference sample should contain all metabolites
in the samples analyzed in the batch and the peaks annotated in that

Fig. 3 Updating the retention time calibration file for each batch. An available *.RTC file can be updated for
individual batches by editing the retention time of each FAME (lower panel). The batch-specific retention time
can be obtained by reading the retention time of each FAME in MassHunter Qualitative Navigator. The FAME
peaks are easily identified by the extracted ion chromatogram for m/z ¼ “87”
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sample are the ones to be quantified in the next step. Additionally,
the resulting library contains precise retention time and high-
resolution mass spectrum information, which greatly enhance the
detection of metabolite peaks in the quantification step.

1. Open the “MassHunter Unknowns Analysis” software, and
create a new analysis (File -> New Analysis; create this new
batch file in the same folder as the *.D files are located).

2. Add data of the QC sample (Home -> Add samples; select *.D
folder of the QC sample).

3. Go to Home->Method->Edit method. Change following in
the Peak Detection tab:

(a) Peak Detection: select Deconvolution from the drop-
down menu.

(b) In Peak filter: Exclude m/z: add 73:75,147:149. In the
GC-MS protocol described here, the fragments with m/z
73,74,75,147,148, and 149 are ubiquitously generated
from compounds carrying a trimethylsilyl moiety. It is
beneficial to exclude them from subsequent analysis.
Apply a height filter: Check the Absolute height box and
add 2000. The height filter 2000 usually works well, but
this value can be adjusted depending on the concentration
of the samples.

(c) Keep default setting in the Deconvolution tab. Set the RT
window size factor as 25,50,100,200 (see Note 7).

(d) In the Library Search tab, add library -> select
Fiehn-2013.L file. Keep pre-search type: Normal; check
Adjust Score; check Remove Duplicate hits; keep Pure
Weight Factor: 0.7. In the Match factor section, uncheck
Use RT Match. By selecting Adjust Score will give the
closest match in the library. Selecting remove duplicate
hits will help to minimize duplicates for a given target
spectrum and returns a single library hit with the highest
match score. Select the RT calibration file by clicking the
Choose button, and select the RT calibration file created
in Subheading 3.4.

(e) In the Compound Identification tab, set Max hit count to
1;Minmatch factor, 50; MinMZ, 60; Library search type,
spectral search; and Multi-library Search Type, ALL (use
this option in case multiple libraries are being used for
peak search).

(f) In the Target Match tab, check the Within target RT
window. Check Use compound name and Use CAS#.
These parameters are related to the quantitation of targets
by the quantitation analysis described in Subheading 3.6.
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(g) In the blank subtraction tab, uncheck Perform Blank
subtraction.

(h) Click “apply to all samples” and close.

(i) Save the newly created Unknowns Analysis method for
future use (Home -> Method ->Save Method).

4. Run peak detection and library search (Home -> Analyze ->
Analyze All).

5. Once the analysis is finished, display all hits (Home > Compo-
nent Filter; highlight only “Hit”; remove “Best Hit”). Order
the hits according to the RI difference (click “Delta RI” col-
umn name of the “Components” table), and delete results with
RI difference <�150 or >150. Display only the best hits
(Home > Component Filter; highlight “Best Hit”).

6. Manual curation of peak annotation and delete/correct
according to the following criteria. For more details, see
Notes 8 to 15.

(a) The RI should be close to the library data. Generally, delta
RI should be within �50 till RI ~ 1500, within �100 RI
between 1500 and 2500, and within �150 in RI beyond
2500. The delta RI values of closely eluted compounds
should be very similar especially when they are eluted in
the same section of retention time divided by two FAMEs.
This is a more reliable criterion than the absolute delta RI
values.

(b) Mass spectra should be similar to those in the library data.
Ideally, more than three monoisotopic fragment match-
ings should be found with the library data excluding the
fragment with m/z 73–75 and 147–149. However, a
lower number of matching fragments can be allowed
when only one or two prominent ions can be produced
from the compound.

7. Delete incorrect annotations (right-click the row; select
“Delete components/hits”). To change annotation, right-
click the row; select “Show Alternative hits.” This will open a
new window showing alternative hits. The top panel shows the
mass spectrum of the component, the middle panel shows the
component and library match, and the lower panel shows the
mass spectrum of the library compound. Manually inspect each
alternative hit and select a compound that is more likely accord-
ing to the criteria in Subheading 3.5, step 6. Press the “Set Best
Hit” button to replace the alternative hit with the original
annotation.

8. Once all the satisfactory annotations are selected (Fig. 4),
export the Best Hit annotation as a library (File -> Export,
Export Component Table, Export from: All components/hits,
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Export to: Library, no check on Automatically -> OK). Save
the created library in the same folder as the *.D files. Save the
annotation information also as a *.csv file (File -> Export,
Export Component Table, Export from: All components/
hits, Export to: CSV files, no check on Automatically -> OK).

9. Generate a report of the Unknowns Analysis to record the
parameters used for peak annotation (Home-> Report ->
Generate Report). Under the report method, choose New,
check Selected Sample(s), and select Generate reports now.
This will open up a new pop-up window. Right-click on the
Templates area -> Add template and select the best-hits.tem-
plate.xml file in MassHunter -> Report Templates -> Quant -
> PDF-Reporting-> Unknowns. Report format can be
selected between PDF, TEXT, and CSV. Save the method in
the same folder with that of *.D folders and exit. The report file
is shown in the Report method area. Click OK. An example of
Unknowns Analysis with hits and generated reports is shown in
Figs. 4 and 5.

3.6 Peak

Quantification Using

MassHunter

Quantitative Analysis

Software

The peaks annotated to metabolites are quantified in all samples in
this step using batch-specific library created in Subheading 3.5 [8].
Due to the precise retention time and high-resolution mass spec-
trum in the batch-specific library, very strict parameters can be
applied for library search, allowing the detection of identical peaks

Fig. 4 Screenshot showing completed Unknowns Analysis. Component window (lower left) shows each
manually curated identification of components with RT, compound name, Match Factor, whether it is the
best hit or not, delta RI, and Library RI information. The Chromatogram window (upper right) shows the
compounds identified by library search in green. The Ion peaks window (lower middle) shows the extracted ion
chromatogram of each EI fragment contained in the annotated component. The upper and lower panels of the
Spectrum window (lower right) show detected and library spectra to check fragment match
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from all samples in the batch. The peak height of the selected
quantifier ion represents the relative abundance of the metabolite.
This process is computationally demanding and takes a long time. It
is recommended to store *.D files in a local drive. Also, consider
determining suitable settings first with selected samples, and then
import all samples for quantitative analysis of that batch.

1. Create a new batch inMassHunter Quantitative Analysis. Open
the software and create New Batch in the same folder as the *.D
files (Home -> Batch -> New Batch). Load all the blanks,
reference samples, and sample files to be included in the
batch. Select the reference sample first in the batch to be used
to generate the quantitation method (as this file is used in
Unknowns Analysis to identity and annotate the peaks).

2. Create a new quantitation method based on the library file
created by the Unknowns Analysis in Subheading 3.5 (Method
-> New -> New method from file and choose the library file
created by the Unknowns Analysis in Subheading 3.5). On the
“Method from Library” window, change the following set-
tings, and then press OK, Library, leave as it is (library file

Fig. 5 An example of a best-hits report from Unknowns Analysis. The top part of the report shows information
and metadata of the sample, including the name of the sample, name of the operator, sample acquisition date,
and sample location. The middle panel shows the chromatogram of the components. The lower part indicates
the identified compounds with RT, name, match factor, molecular formula, the spectral library used for
identification, Hit RI, Library RI, Delta RI, and peak height of the component
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created by the Unknowns Analysis in Subheading 3.5); Tar-
gets, All compounds; Spectra, Create targets per spectrum in
the library; Target ion, Weighted; and Retention time calibra-
tion, Use RT Calibration; choose the *.RTC file generated in
Subheading 3.4 and used for the library search in Unknowns
Analysis; uncheck “Update RT from sample data”; for Quali-
fiers, uncheck Sum qualifier(s); and set “Number of Qualifiers
to add” to 5.

3. Go to the View menu and click Panes to open the Methods
Task Panel. Set deconvolution parameters (Method Tasks >
Workflow > Target Deconvolution) as follows: Setup Refer-
ence Library, select the “Obtain reference library from lookup
library” option, and select the library generated previously in
Subheading 3.5. Create reference library at: select the folder
containing *.D files. Press OK.

4. Create a new library method (Method Tasks> Library Method
>New). Follow the setting used in the peak detection method
for the Unknowns Analysis (Subheading 3.5, step 3). Go to
the “Library Search” tab, and change the library to the refer-
ence library just created in step 3. Set RT calibration file to the
*.rtc file used for Unknowns Analysis. In Match factor tab,
check “Use RT Match”; select “Gaussian” with standard devi-
ation of 1 sec; and select RT mismatch penalty “Multiplica-
tive”. In Blank Subtraction tab, check off “Perform Blank
Subtraction”. Save the library method. Then, check “Show
reference spectrum,” “Show override spectrum,” “Show
match scores” and check off “Deconvoluted” and press OK.

5. Adjust extractionMZwindow (Method Tasks>Method Setup
Tasks > Compound Setup; show columns “MZ Extraction
Window Units,” “Extract Left m/z,” and “Extract Right
m/z”; set MZ Extraction Window unit “PPM,” Left m/z
“200,” and Right m/z “200”).

6. In Retention Time Setup, adjust Left and Right RT Delta to
0.05 minutes.

7. Select appropriate quantifier and qualifier ions in Qualifier
Setup. Add the Ion Polarity column to the Qualifier, select
Positive, and fill it down to avoid an error due to the lack of
ion polarity information. Remove ions with m/z 70–79 and
147–149. If these ions are selected as the quantifier ion, swap it
with one of the qualifier ions. Set “Ion Polarity” to “Positive”
when the quantifier is swapped. In case the automatically
selected ion is not the one representing the abundance of the
metabolite due to the reasons including too high or too low
abundance and intensity affected by co-eluting compounds,
select a quantifier ion free from these effects.
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8. Adjust global setting (Method Tasks > Method Setup Tasks >
Globals Setup): Check the Bracketing Type “Overlapped” and
“Ignore Peaks Not Found.” Library Method and Reference
Library should be updated from the Deconvolution Setup.
Add Non Reference Window value 200 minutes, no Reference
Pattern Library, and Reference Window 80 Percent; uncheck
all other settings.

9. Save the method file as Quantification Method in the same
folder as the *.D files. Click “Exit” and analyze all samples
(do not need to convert to DTA files).

10. Manually curate the quantification result and refine the
method.

(a) Click the “Display Multiple Compounds/Samples in
Batch Table” button. Check if there are compounds
with many missing data and highly varying values.

(b) Check the precise mass of the quantifier ion if it is differ-
ent from the library value. Consider changing the product
ion m/z to detect. Sometimes a very prominent fragment
peak is not detected by Quantitative Analysis software. In
most cases, this is due to a slight difference of precise mass
in the range of three decimal points between Unknowns
Analysis and Quantitative Analysis software. The differ-
ence of m/z 0.010 sometimes compromises peak detec-
tion. This can be solved by manually obtaining the precise
mass values using MassHunter Qualitative Navigator. The
target peak is identified by the retention time and the EIC
of nominal mass in the Qualitative Navigator. Precise mass
can be checked by showing the mass spectrum of the peak.
When the correct precise mass is used for the quantitative
method, narrower MZ ranges (e.g., 100 ppm for both
directions) tend to give better results. Alternatively, if a
minor ion was selected as the quantifier ion, consider
swapping it manually to a major one.

(c) Check the retention time if some samples showed reten-
tion time shift. Consider setting a wider RT window. In
case the target compound elutes closely to other com-
pounds with a similar ion, consider a narrower RT
window.

(d) Click the “Display Single Compound/Sample in Batch
Table” button.

(e) Check that each compound has at least one qualifier ion
which is in an acceptable intensity ratio with quantifier ion
for most of the samples.

If the compound has only one prominent ion, it may
have no qualifier ion in a good range. Other compounds
with no good qualifier ion may be due to co-eluted
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compounds, low abundance, or too high abundance
exceeding detection limit (overloading). Consider chang-
ing the quantifier ion or removing the compound from
the analysis.

(f) Change Quantification Method and run analysis. Repeat
the steps above till all the samples show acceptable results.

11. Repeat method refinement till all metabolites in all samples
show acceptable results. When it is difficult to gain consistent
values among samples, check the raw chromatograms of
selected samples by MassHunter Qualitative Navigator
whether it is due to the variation of peak heights, detection of
different peaks, or too low/high peak intensities. In the latter
two cases, repeat method refinement or consider removing the
peak from the analysis.

12. Export the data. Click the “Display Multiple Compounds/
Samples in Batch Table” button. Right-click a compound
name and select “Add/Remove Columns” and display only
“Height.” Right-click somewhere on the table, and select
“Export Table” to save the peak height as a .csv table. Repeat
this for “Product ion” and “RT.” Combine all of them into a
single Excel workbook as the result file. Examine the product
ion and RT data, and make sure that the same product ion was
selected as the quantifier ion for a particular metabolite across
all the samples. These data, together with the report from
Unknowns Analysis, can be used to assess the quality of peak
annotation and recommended to submit together with the
results when they are published.

3.7 Initial

Normalization,

Filtering, and

Statistical Analysis

1. To investigate whether all profiles are acquired at the same
analytical precision, analyze the peak heights of the internal
standard (ribitol). The peak height of the internal standard is
log-transformed and plotted as a scatter plot. If the peak height
of ribitol is nearly constant (barring some random variance,
max allowable percentage of cumulative variation is 20%), the
constant condition can be validated throughout the experi-
mental procedure. In case some samples show abnormal values,
check the chromatogram, and remove them from further anal-
ysis if the samples have critical problems such as injection errors
or failure in derivatization.

2. To remove the peaks which are not derived from biological
samples, the peak height values of each metabolite in the blank
sample are subtracted from those in each sample. If multiple
blank samples were analyzed in the batch, the average peak
height in the blank samples can be subtracted. In case the
resulting values are very small (i.e., smaller than 20% of blank
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values) or negative in most of the samples, discard the annota-
tion since it unlikely reflects metabolite levels in the samples.

3. To normalize the technical errors, the height values of each
metabolite peak are divided by that of internal standard, ribitol,
within each sample. A second normalization is performed using
sample weight to normalize the differences derived from the
deviation in the amount of material used for the extraction.
The values of each metabolite are divided by the weight of that
sample. This will bring the normalized peak height values per
unit mass of the sample. This value represents the relative level
of a metabolite which can be used to compare the abundance of
each metabolite between samples. Note that the values cannot
be used to analyze across metabolites.

4. Further normalization by the mean metabolite level in control
samples or by the median metabolite level in all samples is
useful to make the data more understandable depending on
the experimental design. Additional log transformation should
be considered to achieve normal distribution of the data and to
give equal impact on increased and decreased metabolites.

5. Data of known technical artifacts from column bleeding,
reagents, and internal standard including FAMEs should be
removed. Some metabolites appear as multiple peaks, and
redundant data should be deleted at this point (see Note 8).

6. The metabolite profile data matrix after normalization and
filtering can be further used for statistical analyses. Multivariate
statistical analysis methods can be applied to group metabolites
and samples which showed similar profiles. Principal compo-
nent analysis (PCA) [28] is a widely used unsupervised
dimensionality reduction method. It ranks the principal com-
ponents based on the variance in the features (here metabo-
lites). But PCA is performed without considering the sample
trait or experimental group under investigation. To detect the
similarities and differences between the samples based on the
overall metabolite profile, methods such as hierarchical cluster-
ing analysis (HCA) [29] can be applied. HCA will cluster
samples that have overall similar profiles and thus can be used
to discriminate samples without the prior knowledge of sample
class. Using the combination of variable importance in the
projection (VIP) and partial least square-discriminate analysis
(PLS-DA) [30] discriminative power of each metabolite can be
quantitatively estimated. This regression and classification
method relies on the class label of the sample (here experimen-
tal group/phenotypic trait) and identifies important individual
features that have the greatest effect on the classification
[31, 32].
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7. Further, univariate analysis can be used to detect metabolites
that are statistically significantly changed across different exper-
imental groups. As the number of metabolites to be analyzed in
this protocol is typically dozens to 100 and multiple metabo-
lites are not detected for all metabolic pathways, a classical
analysis of individual metabolites is often useful. If data has
two experimental groups (e.g., control and treatment), fold
change analysis can be performed to compute the log2 fold
change values of each metabolite. By applying a t-test, a raw
p-value and FDR corrected p-value (using either Holm, Hoch-
berg, Bonferroni, or BH (Benjamini and Hochberg)) should
be computed. For multi-group analysis, analysis of variance
(ANOVA) and associated post hoc tests can be performed to
identify significant metabolites that follow a given pattern.

8. A short compiled list of software tools and workflow available
for analysis of metabolomics data is provided in Table 1. An
excellent repository for different analysis tools is provided by
OMICtools [33]: a website of manually curated tools for the
analysis of different omics data (both commercial and open-
source). It provides basic information on functionality, com-
puter skills, licensing, programming language, and interface,
but it does not contain information that a user will be required
or a decision tree to decide which tool to use and the data
format for as input in the tools.

4 Notes

1. It is advisable to use tubes produced by Eppendorf as the inner
surface of these tubes is inert and ideal for sample preparation
and long-term storage. Tubes from other makers can be used,
but some cause huge background and artifact peaks derived
from compounds from the inner surface. An initial test is
strongly recommended before using a new product.

2. Metabolite contents in plant samples are typically high due to
low water contents compared with animal and microbial sam-
ples. Metabolite amount is usually enough with less than 10 mg
of fresh plant material. However, taking 50–100 mg of material
ensure that the material is weighed accurately to minimize
sample-to-sample variation.

3. Ribitol concentration should be optimized according to the
GC system and metabolite amount in the sample. When the
metabolite contents in the starting material are low and the
internal standard peak is overloading, the normalization by
ribitol in Subheading 3.7, step 4 does not work to cancel the
technical errors.
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Table 1
Software tools and workflow for the statistical analysis of metabolomics data

Tool/workflow Data type
Software
type Website Short description/utility

Metabolomics MS,
NMR

R package https://cran.r-project.
org/web/packages/
metabolomics/

A collection of functions
for statistical analysis of
metabolomics data

MetaboLyzer MS,
NMR

Command
line

https://sites.google.
com/a/georgetown.
edu/fornace-lab-
informatics/home/
metabolyzer

A python-based statistical
analysis toolset for
metabolomics

Muma MS,
NMR

R package https://cran.r-project.
org/web/packages/
muma/

R package for
preprocessing of
metabolomics data.
This package includes
functions for univariate
and multivariate
analysis of
metabolomics data

Ropls MS,
NMR

R package https://www.
bioconductor.org/
packages/release/
bioc/html/ropls.
html

This package implements
the PCA, PLS-DA, and
OPLS-DA algorithms
for multivariate analysis
of omics data

Workflow4metabolomics LC-MS,
GC-MS

Web-based http://workflow4
metabolomics.org

A full web-based suite for
LC/MS, GC/MS, and
NMR analysis pipeline
using Galaxy
framework for
preprocessing,
normalization, and
statistical analysis of
metabolomics data

XC-MS online LC-MS,
GC-MS

Web-based https://xcmsonline.
scripps.edu/landing_
page.php?
pgcontent¼mainPage

A web-based
implementation of
xcms R package for data
analysis of
metabolomics
experiments

MetaboAnalyst LC-MS,
GC-MS

Web-based http://www.
metaboanalyst.ca

Web-based tool for
statistical analysis of
metabolomics data
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4. Based on the sensitivity of the analytical instrument, the
amount of extract to be dried should be optimized. Although
the dynamic range of GC-MS instruments is fairly wide, it is
advisable to determine a suitable amount of metabolite extract,
especially prior to large-scale analysis. The metabolite content
can also be adjusted by the volume of derivatization reagents
and by changing the split ratio although these are less flexible.

5. In the presence of water, MSTFA derivatization efficiency sig-
nificantly reduces. Especially in a humid region, the use of a
glove box filled with dry nitrogen should be considered. More-
over, introducing water in the GC-MS system is not advisable
as this will ruin the column, reduce the sensitivity of the detec-
tor, and might cause oxidation of the filament. It is beneficial to
use anhydrous reagents for the derivatization of metabolite
extract. This will minimize water contamination during deriva-
tization and keep the GC-MS in excellent condition.

6. Before running all samples in the batch, the split ratio should
be optimized according to the expected metabolite concentra-
tion for the sample under consideration. We usually test split-
less and split ratios of 1:10, 1:100, and 1:500 with the pooled
reference sample as a preliminary test and then decide which
ratio works best. In many plant materials, sugars, including
glucose, fructose, and sucrose, are highly accumulated, and
more than one split ratio is required to determine all metabo-
lites. In this case, the same sample set can be run repeatedly for
multiple split ratios.

7. The window size factor is a dimensionless scale of correlation
window for grouping ion peaks (equivalent to Resolution in
AMDIS). Selecting smaller value separates closely spaced peaks,
finds more components, but runs longer. It is advisable to use
multiple values to cover all kinds of peaks with minimum
manual intervention.

8. Especially for sugars and polyols, check the alternative hits. If
there is another hit with close RI, select that as the best hit.
Molecules with TMS 1 and 2 (e.g., L-Valine 1 and L-Valine 2)
are the different forms of the same molecule; both can be
selected. Both should behave in the same way, and one of
them can be selected when the final result table is created. If
the same annotation appears multiple times, only one of them
is correct. If the delta RI is too high, check the alternative hits,
and close library retention time to neighboring compounds.
The library RI of the alternative hits cannot be seen in the
Unknowns Analysis but can be found by Library Editor.

9. Norvaline is most likely valine; check alternative hits. Similarly,
leucine, isoleucine, and norleucine are often mis-annotated.

256 Nishikant Wase et al.



10. Usually the most abundant sugars in plant samples are fructose,
glucose, and sucrose; they are often misannotated as psicose,
tagatose, and others.

11. Alanine shows only one or two fragments and tends to show a
low match factor. Check alternative hits for the components
which have RI close to 777 (may need to check the hits other
than the best hits).

12. Fumarate tends to be mis-annotated as maleate; check
alternative hits.

13. Ribitol is sometimes mis-annotated as other polyols or sugars.
This peak can be easily distinguished by the intensity since the
internal standard shows a large peak height, which should be
consistent among samples.

14. Citric acid can be annotated as isocitric acid. Both are possible
and most likely show mixed peaks. Select citric acid and calcu-
late later using specific fragments to isocitric acid (m/z
245.0333).

15. Minor sugars, disaccharides, and polyols are very hard to anno-
tate with the library data due to their close retention times and
almost identical mass spectra. Keep a record on your lab book
to remember that the annotation might not be correct. The
annotation should be checked using standard compounds and
backup extracts.

16. Detailed workflow for generating new RTC file:

(a) Acquire GC-MS profile of a sample containing FAMEs
standard mix. The blank sample (MSTFA with FAMES
mix) included in Subheading 3.2, step 2 is suitable for this
purpose.

(b) Using MassHunter Unknowns Analysis, deconvolute and
search the spectra of components in FAMEs mix sample
against Fiehn 2013 library. Retain only the FAME hits,
and use the export function in MassHunter Unknowns
Analysis to create a user library in *.xml format. See Sub-
heading 3.5 for more details.

(c) Create a new batch file in MassHunter Quantitative Anal-
ysis containing only the FAMEs mix sample (Fig. 6a; see
Subheading 3.6 for detail). Create a new quantitation
method in the Method section: New > New Method
from Acquired Scan Data with Library Search. This will
open up the library method editor. Go to the Libraries on
the Library Search tab, and change the library file to the
FAMES library newly created by Unknowns Analysis at
step b. This step creates a quantitation method file for the
identification of FAME peaks. Refine the quantitation
parameters as described in Subheading 3.6 until all
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FAME peaks are correctly detected. Save the quantitation
method as a new MassHunter Quantitative Analysis
method file.

(d) The RTC file is created in the Library Method editor in
MassHunter Quantitative Analysis software (Method tab
> Library > Library Method). Choose the method file
created in step c and click Edit. This opens up the Library
Method editor (Fig. 6b). Go to the Library Search tab and
select the library created in step b. Then go to the RT
calibration file option at the bottom of the window and
click New (Fig. 6b). This opens up the Retention Time
Calibration window (Fig. 6c). Browse to select the Quan-
titation batch file created in step c. In the Library section,
specify the library file as the one created in step c. The
output path and the name of the RTC file are specified in

Fig. 6 Steps for generating initial RT calibration (*.rtc) file. (a) Add the blank sample containing the FAMEs mix
to the batch in MassHunter Quantitative Analysis software. (b) Library Search panel in the MassHunter
Quantitative Library Method editor, where FAMEs library generated by the Uknowns Analysis is loaded. (c)
Retention Time Calibration window to define the files required to generate RTC files. (d) Example of a *.RTC
file. This can be edited by Excel or a text editor to update
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the Output section, and then click OK. This creates a new
RTC file that is a simple text file containing the names,
CAS numbers, nominal RI values, and the retention time
in minutes of the FAME species (Fig. 6d).
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Chapter 20

Gene Co-expression Network Analysis and Linking Modules
to Phenotyping Response in Plants

Qian Du, Malachy T. Campbell, Huihui Yu, Kan Liu, Harkamal Walia,
Qi Zhang, and Chi Zhang

Abstract

Environmental factors, including different stresses, can have an impact on the expression of genes and
subsequently the phenotype and development of plants. Since a large number of genes are involved in
response to the perturbation of the environment, identifying groups of co-expressed genes is meaningful.
The gene co-expression network models can be used for the exploration, interpretation, and identification
of genes responding to environmental changes. Once a gene co-expression network is constructed, one can
determine gene modules and the association of gene modules to the phenotypic response. To link modules
to phenotype, one approach is to find the correlated eigengenes of given modules or to integrate all
eigengenes in regularized linear model. This manuscript describes the method from construction of
co-expression network, module discovery, association between modules and phenotypic data, and finally
to annotation/visualization.

Key words Gene co-expression network, Module discovery, Data integration, Association between
co-expression network and phenotyping data

1 Introduction

Study on the link between genotype and phenotype is challenging
because it involves numerous changes in biological pathways and
processes. Since many genes are involved in the response to the
perturbation of the environment, traditional approaches that exam-
ine one or a few genes may fail to capture and characterize the
complex responses at the molecular level. Therefore, identifying
functional gene clusters would be more meaningful than searching
for a single gene. With the advent of next-generation sequencing
technology, transcriptional responses to environmental stimuli can
be examined at a genome-wide level and provide a comprehensive
understanding of the complex processes underlying environmental
adaptation and stress responses. In this manuscript, we discuss a
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method to link a gene co-expression network constructed based on
RNA-seq data to phenotyping data.

Environmental factors, including different stresses, can have an
impact on the expression of genes and subsequently the phenotype
and development of plants. High-throughput manner and low cost
of sequencing technologies enabled the biologists generating a
plenty of data for quantifying the relationship among genes that
are involved in the response to environmental changes. These genes
and interactions could be modeled as nodes and edges in a network
model. Genes are represented as nodes in a network, and transcrip-
tional interaction is the connection between nodes [1–3]. Specifi-
cally, the gene co-expression network models have been used for
the exploration, interpretation, and visualization of the relationship
among genes in a wide range of biological applications, including
disease-gene association [4], identification of genes responding to
environment changes, tissue-specific gene identification [5], and
functional gene annotation [6]. For example, RNA sequencing data
provide valuable information on gene expression across different
conditions, time points, tissues, or genotypes. In co-expression
network analysis, genes with similar expression pattern are grouped
together, with the underlying rationale being “guilt by associa-
tion.” This extensively validated principle states that transcription-
ally coordinated genes are often functionally related. Gene
co-expression networks can also be used to study the association
between genotype and phenotypes, such as identifying functional
eQTLs [7] and studying gene-phenotype association [8] after
being combined with other biological data in various downstream
analysis.

Many construction tools and analysis tools were developed for
gene co-expression network. WGCNA [9] is based on the marginal
correlation of the gene pairs. GeneTS [10] and BicMix [11] built
Gaussian graphical models (GGM) among gene pairs based on their
conditional dependence under the multivariate Gaussian assump-
tion. CorSig [12] can estimate the statistical significance of correla-
tion for co-expression network analysis. The R package, PCIT, can
construct a weighted gene co-expression network based on partial
correlation and information theory approaches [13]. FastGCN can
apply GPU to accelerate gene co-expression network construction
[14]. VCNet can build a vector-based gene co-expression from
RNA-seq data [15].

Once co-expression modules are identified, one can determine
which modules are associated with the phenotypic response and
which biological processes genes in the same module are involved.
To link modules to phenotype, one approach is to calculate the
correlation between physiological traits and eigengenes of given
modules, which are defined as the first principal component of a
specific module [16], and the other way is to integrate all eigen-
genes together to fit a linear model to the phenotyping data. The
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genes in the selected modules that are associated with the pheno-
type data are candidates to respond to the environmental changes.
These genes can undergo Gene Ontology term enrichment analysis
and/or have visualization.

2 Method

2.1 Construction of

Co-expression

Network

In a gene co-expression network, one gene is represented as one
node, and two genes are connected by an edge if the similarity of
their expression profiles is high (see Note 1). The data used for
constructing a gene co-expression network is represented as a
m � n matrix, i.e., m genes for n samples (see Notes 2 and 3).
Network construction has two steps: calculating co-expression
measure and selecting significance threshold [17, 18].

For co-expression measure, a gene expression similarity score
between each pair of gene expression profiles needs to be defined.
The expression values can be represented as a vector, so evaluating
similarity score between a pair of genes is similar to evaluating
measure for two vectors of numbers. Usually, Pearson’s correlation
coefficient, which can be calculated in R with cor(expression_matrix,
methods ¼ “pearson”), is used to construct gene co-expression net-
works (see Note 4).

To construct a unweighted gene co-expression network, for all
gene expression similarity scores, a cutoff is selected to determine
the co-expressed genes [19]. For example, one can use the top 0.5%
correlated pairs [20] (see Note 5). The WGCNA method uses soft
thresholding, which outputs a weighted gene co-expression net-
work after a power transformation of the raw similarity matrix. It
constructs co-expression network using several thresholds and
chooses the threshold which produces a network with scale-free
topology.

2.2 Module

Discovery

Many evidences have already showed that genes grouped together
in the same module of a network work on a certain function, and
hence, we tried to discover the functional modules from the gene
co-expression network by identifying the intensively connected
subgraphs, i.e., modules. One module, a group of co-expressed
genes, can be identified using clustering algorithms [21]. Cluster-
ing is used in grouping genes which have similar expression patterns
in several samples to build groups of co-expressed genes (see Note
6). The R package, WGCNA [9], identifies functional modules in
our constructed co-expression network using hierarchical cluster-
ing. For using the R functions, cutreeDynamic() and blockwiseMo-
dules(), their parameters need to be tuned carefully for each dataset,
and the parameter of minModuleSize is recommended to set as 5 to
get the reasonable sizes of modules (see Note 7).
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2.3 Link Phenotyping

Data to Gene Modules

Due to multiple genes in one module, representative genes of the
given module need to be defined, and usually, one can define an
eigengene that is the first principal component of a specific module
[16]. To link modules to phenotype, there are at least two types of
approaches: one is to select associated modules based on the high
correlation between physiological traits and eigengenes of the given
module (see Note 8), and the other is to integrate all eigengenes
together to fit a linear model with the phenotyping data as the
response. To generate a given type of phenotyping data, many
genes or pathways work together to respond to the environmental
perturbation, and their contribution can be described by a linear
combination, described by the following equation:

y ¼
XK

k¼1
wkgk þ ε,

where y is the phenotyping data vector, the response of the plant,
and gk is the eigengene of module k, and wk is weight of one
eigengene contributing to the phenotypic response (see Note 9).

2.4 Gene Function

Annotation

For modules and genes in modules that are linked to the pheno-
typic response, one can use enrichment analysis to annotate their
functions. Functional enrichment analysis is a method to identify
the overrepresentation of functional categories in a group of genes.
If the co-expressed genes have a functional relationship, enriched
functions of genes can be assigned to some poorly annotated genes
in the module. This approach is known as guilt by association. The
most popular way for enrichment analysis is to identify the enriched
GO terms by using tools, such as GO::TermFinder [22] and Pan-
ther (http://pantherdb.org/). The P-value of enrichment can be
calculated with hypergeometric distribution and further adjusted
with Bonferroni correction for multiple testing. The cutoff of
adjusted P-value can be 0.05 (see Note 10).

2.5 Visualization of

Modules and

Phenotyping Data

It is important to visualize the link between gene models and
phenotyping data vectors. Cytoscape [23] can be used to draw
the co-expression network of each module. In each module,
genes with the same function can be displayed with the same
color. The edge between two genes is shown if their correlation is
statistically significant, i.e., adjusted P-value<0.01 to reject the null
hypothesis. The R function, cor.test(), will be applied for this test.

3 Materials

3.1 Databases of

Gene Co-expression

Networks in Plants

l ATTED II, http://atted.jp/ [24].

l CoP, http://webs2.kazusa.or.jp/kagiana/cop0911/ [25].

l GeneCAT, http://genecat.mpg.de/cgi-bin/Ainitiator.py [25].
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l PlaNet, http://aranet.mpimp-golm.mpg.de/ [26].

l ComPlEx, http://complex.plantgenie.or [27].

l AtGGM2014, http://dinesh-kumarlab.genomecenter.ucdavis.
edu/downloads.htm [28].

l GeNET, bengi.cs.mun.ca/gene [29].

l VTCdb, http://vtcdb.adelaide.edu.au/home.aspx [30].

l OryzaExpress, http://riceball.lab.nig.ac.jp/oryzaexpress/ [31].

l RiceAntherNet, https://www.cpib.ac.uk/anther/riceindex.
html [32].

4 Notes

1. The node degree is identified as the number of connections of a
specific node with other nodes.

2. Sequencing depth cutoff thresholds for RNA-seq data are usu-
ally selected arbitrarily. Several studies have used a cutoff of
10 million reads per sample. It is suggested that co-expression
networks built using this cutoff will have a similar quality to
microarray co-expression networks if constructed using the
same sample size [18, 33]. Therefore, some genes will be
discarded if their normalized read counts < the cutoff, such
as 15, for all samples or all read counts have variable of coeffi-
cient < 0.3. Usually for a genome, 4000–6000 genes will be
kept for the gene co-expression network construction.

3. Twenty samples at minimum have been suggested to create
co-expression network from RNA-seq data. Certainly, a larger
sample size can produce networks with a higher functional
connectivity.

4. Pearson’s correlation coefficient, Spearman’s rank correlation
coefficient, mutual information [34], and Euclidean distance
are the four mostly common co-expression measures that are
widely used in defining gene co-expression. Comparing with
Pearson’s correlation, etc., mutual information could also cap-
ture the nonlinear association [35].

5. Butte and Kohane used random permutations for the expres-
sion data to select a cutoff representing significant interactions
[36]. Zhang and Horvath used soft thresholds instead of hard
thresholds, to build weighted gene networks [37].

6. The clustering method should be selected carefully as it can
greatly change the outcome and subsequently the biological
meaning of this analysis. Several clustering methods are avail-
able, for example, hierarchal clustering and k-means
clustering [38].
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7. The default value of minModuleSize is 25, but here 5 is
recommended.

8. The first PC accounts for the largest variance of the gene
expression for the genes within the module and thus can
describe the major expression pattern. This method is reason-
able when the major variation in the data is caused by a treat-
ment or condition. However, in practice, genes in the same
module are not necessarily in the biological process due to
different locations of gene products in cells, and mathemati-
cally, module-discovery methods may introduce large variance
in the clustering process. The correlation approach based on
single average patterns may fail to identify modules associated
with the trait.

9. Linear model works with few modules and large samples. If the
number of all eigengenes is large, then feature selection is
necessary before the fitting step.

10. Wrong interpretation of low p-values may result in incorrect
conclusion about the role of all genes enriched in a biological
process [17, 18, 39].
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Chapter 21

Statistical Methods for the Quantitative Genetic Analysis
of High-Throughput Phenotyping Data

Gota Morota, Diego Jarquin, Malachy T. Campbell, and Hiroyoshi Iwata

Abstract

The advent of plant phenomics, coupled with the wealth of genotypic data generated by next-generation
sequencing technologies, provides exciting new resources for investigations into and improvement of
complex traits. However, these new technologies also bring new challenges in quantitative genetics, namely,
a need for the development of robust frameworks that can accommodate these high-dimensional data. In
this chapter, we describe methods for the statistical analysis of high-throughput phenotyping (HTP) data
with the goal of enhancing the prediction accuracy of genomic selection (GS). Following the Introduction
in Sec. 1, Sec. 2 discusses field-based HTP, including the use of unoccupied aerial vehicles and light
detection and ranging, as well as how we can achieve increased genetic gain by utilizing image data derived
from HTP. Section 3 considers extending commonly used GS models to integrate HTP data as covariates
associated with the principal trait response, such as yield. Particular focus is placed on single-trait, multi-
trait, and genotype by environment interaction models. One unique aspect of HTP data is that phenomics
platforms often produce large-scale data with high spatial and temporal resolution for capturing dynamic
growth, development, and stress responses. Section 4 discusses the utility of a random regression model for
performing longitudinal modeling. The chapter concludes with a discussion of some standing issues.

Key words Genetic gain, High-throughput phenotyping, Image data, Longitudinal trait, Quantita-
tive genetics

1 Introduction

The predicted rise in global temperatures, increased variability of
precipitation events, and increased competition for freshwater
resources and arable land threaten to place unique constraints on
global agriculture. Plant breeders in the twenty-first century will
need to develop cultivars that are both high-yielding and resilient to
climate change. The evaluation and development of breeding mate-
rial requires a multifaceted approach, necessitating the consider-
ation of multiple complex, and often interdependent traits.
Successful germplasm development is not only dependent on the
increase in the performance of breeding material that is achieved
each cycle but also the amount of time before a cultivar is released
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to the end-users. Moreover, the development of elite cultivars
tolerant to abiotic stresses requires careful consideration of a suite
of morphological and physiological traits that facilitate adaptation
(e.g., plasticity and stability) to a range of environmental condi-
tions. Thus, genetic improvement in this respect is a highly
demanding process that requires extensive phenotypic evaluation
in multiple environments. Advancements in sequencing have led to
new genomic tools and have opened new avenues of research that
aid breeders in their selection procedure. For instance,
next-generation sequencing techniques such as genotyping-by-
sequencing [1] have significantly increased the number of markers
discovered and the number of individuals that can be sequenced,
providing a cost-efficient tool for breeders to obtain the genotypic
profiles of individuals.

In parallel with next-generation sequencing advancements,
new statistical methods have been developed to enable utilization
of the vast amount of available genomic information for selection
purposes. This is known as genomic selection (GS), and its funda-
mental concept was first introduced by Meuwissen et al. [2]. GS
predicts the performance of unobserved individuals based on the
linkage disequilibrium between markers and causal loci and the
genomic relatedness between observed and unobserved indivi-
duals. It has been shown that GS can increase genetic gain by
reducing the number of cycles and the number of progeny that
need to be phenotypically tested, thus reducing the cost of a
breeding pipeline. Since Meuwissen et al. [2], there have been
improvements in the prediction accuracy of GS through the incor-
poration of pedigree information [3–6], environmental covariates,
and genotype by environment interactions [7–10].

One of the main advantages of GS over phenotypic selection is
that phenotypic information is not required for the validation set.
However, the acquisition of accurate phenotypic information is still
a crucial component for the training or calibration set in the model
building process. In other words, the phenotypic information of
selection candidates is not used directly for selection, but the pre-
dictive ability of the models is negatively affected by the absence of
accurate phenotypes. Obtaining precise phenotypic values is not
trivial, but it is a critical part of genome-enabled breeding [11–13].

In recent years, high-throughput phenotyping (HTP) has
become an emerging technology that can assist breeders in improv-
ing selection procedures and developing commercial cultivars more
rapidly and efficiently [14]. In particular, image-based plant phe-
notyping enables frequent, non-destructive evaluation of multiple
traits for a large number of plants with high precision. Image-based
phenotyping offers several advantages, including being generally
non-destructive, requiring low or no physical human labor input,
being cost effective, and the ability to measure multiple traits at the
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same time in different locations and at different developmental
growth stages [11, 15].

There are a wide range of HTP platforms that have been
developed for the purpose of providing dense phenotypic informa-
tion [16]. Remote sensing and robotic systems developed in green-
houses and growth chambers have a high initial cost but can be fully
automated. Alternatively, HTP data can also be collected in the
field, as described later. In general, these field-based systems are
associated with a high initial cost and also require a well-trained
operator for collecting high-quality data [15]. Reynolds et al. [15]
characterized and compared the available platforms in terms of
associated costs and purposes. Despite such costs, a growing num-
ber of breeding programs are utilizing HTP platforms to better
understand the genetics of quantitative traits and leverage these
high-dimensional data to enhance selection. Specifically, HTP can
be used to both generate dependent phenotypic variables for the
training set in prediction models and provide additional informa-
tion on genetic predictor variables in GS models, thereby improv-
ing prediction accuracies for conventional breeding targets, such as
yield. Thus, this type of data can serve two main purposes: (1) as a
primary trait response (e.g., plant height, canopy coverage, and
number of leaves), and (2) as a covariate associated with the target
trait response (e.g., yield). We discuss these points further in the
following sections.

2 Field-Based High-Throughput Phenotyping Using UAV

In this section, we show that HTP accelerates plant breeding by
improving the response to selection [17]. HTPmethods allow us to
measure plants efficiently and accurately via automatic or semi-
automatic analysis of data collected by cameras and sensors
[18]. Methods for measuring plants cultivated in a field are collec-
tively known as field-based HTP. Field-based HTP enables the
measurement of a large number of plots in an experimental field
using cameras and sensors mounted on different platforms, such as
unoccupied aerial vehicles (UAV) [19], carts [20], tractors [21],
and gantry cranes. Field-based HTP not only improves the effi-
ciency and accuracy of phenotyping of plants in a field but also
makes it possible to evaluate traits that are difficult to measure with
conventional phenotyping methods. In particular, the UAV is one
of the most cost-effective and easy-to-use platforms
[22, 23]. Although the type of camera or sensor that can be
mounted on a UAV is restricted by the payload capacity of the
UAV, light-weight and small cameras and sensors have been devel-
oped, and their precision and cost-efficiency have rapidly improved
in recent years. The UAV is commonly equipped with digital
cameras, multispectral cameras, and thermal infrared imagers in
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field-based HTP [24, 25]. In contrast, hyperspectral cameras
and LiDAR (light detection and ranging) are currently not com-
monly mounted on a UAV but are mainly ground-based HTP
platforms [26–30] because of their weight, size, and cost. The
commercialization of the UAV and related equipment is progres-
sing in various fields, and various measurement devices will be
available for HTP in the near future.

Plant characteristics that can be measured using UAV are
roughly divided into three types of traits: (1) geometric traits,
(2) spectral traits, and (3) physiological traits. For geometric traits,
plant height, canopy cover, and canopy volume are measured
mainly with RGB cameras or multispectral cameras [26, 28–
36]. To measure these traits, a method called Structure from
Motion (SfM) is used to estimate the three-dimensional
(3D) structures of plants or plant canopies from a sequence of
images acquired by a UAV. The structure is obtained using a set
of data points, called a point cloud, in a 3D space. The 3D coordi-
nate information of a point cloud is converted into a digital surface
model (DSM) and an orthomosaic image. DSM is used for measur-
ing plant 3D structural traits, such as plant height and canopy
volume, while orthomosaic images are used for traits evaluated
from above the ground, such as canopy cover. Lodging of plants
can also be measured by DSM analysis [37]. The numbers and
locations of flowers, blooms, and heads are also measured as geo-
metric traits [38, 39]. In these studies, image-based machine
learning has been used for the detection of target objects (i.e.,
flowers, blooms, or heads) from images acquired by UAV. Guo
et al. [38] employed a two-step machine learning method for the
detection of sorghum heads and attained high accuracy on various
genotypes with different head morphologies and at different
growth stages. Xu et al. [39] used a convolutional neural network
to detect cotton blooms and estimated the 3D coordinates of the
blooms using a dense point cloud constructed by SfM. These two
studies demonstrated the potential of the combinatory use of
image-based machine learning and HTP. Moreover, these studies
suggest that simple but labor-intensive measurements, such as the
monitoring of flowering and heading, can be performed on a much
larger scale with HTP and image-based machine learning than with
conventional methods.

For spectral traits, vegetation indices (VI) calculated from mul-
tispectral images acquired by UAV are used for evaluating vegeta-
tion properties, such as plant structure, biochemistry, and plant
physiological and stress status [31, 33, 34, 40–48]. A large number
of VIs have been proposed and have been used in ground-based
platforms, aircraft, and satellite remote sensing. The fine spatial
resolution of a UAV enables the removal of soil and shadow pixels
from images and can improve the estimation of vegetative proper-
ties. Jay et al. [47] used 6-band multispectral cameras to evaluate
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the structural and biochemical plant traits of green fraction, green
area index, leaf chlorophyll content, and canopy chlorophyll and
nitrogen contents, showing that the fine spatial resolution of the
UAV always improved the estimation accuracy of these traits.
Although multispectral images allow us to estimate various VIs
better than RGB images, multispectral cameras are usually more
expensive and have lower resolution than RGB cameras. To resolve
this issue, Khan et al. [49] proposed a method for model-based
estimation of VIs using RGB images. In this method, mean VI
values were computed from the near infrared and red channels of
corresponding plots, and then a deep neural network was trained
with the RGB images as the input source and the VI values as the
target output. A similar approach can be applied to the estimation
of hyperspectral VIs from multispectral or RGB images and will be
useful because hyperspectral cameras are usually much more expen-
sive than multispectral cameras.

As for physiological traits, traits such as leaf chlorophyll con-
tent, protein content, biomass, crop vigor, nutrition status, and
water status are measured by various methods including 3D con-
struction and spectral VIs. A method that is specific to physiological
traits is thermal infrared imaging, which enables the measurement
of canopy temperature and can be used as a tool to indirectly
evaluate the transpiration rate of a plant. Tattaris et al. [24] used a
thermal infrared camera and a multispectral camera coupled with
UAV to measure canopy temperature and the VI of wheat and
found that data acquired by UAV generally exhibited stronger
correlations with yield and biomass than data obtained from
ground-based phenotyping. Ludovisi et al. [50] applied thermal
infrared imaging to measure the canopy temperature of black pop-
lar using UAV and found that the canopy temperature showed a
good correlation with ground-truth stomatal conductance.
Although the canopy temperature is an important indicator of
stress status, it is extremely sensitive to small environmental
changes, making it difficult to assess through slow ground-based
methods [37]. HTP using UAV provides a good solution for this
problem.

2.1 Application of

HTP in Breeding

Populations

When selecting breeding populations using HTP, two relatively
simple methods are considered: (1) indirect selection and
(2) index selection. Another method, selection based on prediction
with HTP and genomic information, will be described later. When
genetic correlations exist, selection for one trait will cause
corresponding changes in other traits that are correlated
[51]. This change in response due to genetic correlation is called
a correlated response and may be caused by pleiotropy or linkage
disequilibrium.
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In the indirect selection method, a target trait, X, is selected
indirectly by selection for trait Y, which has a genetic correlation
with trait X and can be measured by HTP. It is possible to improve
the selection efficiency of the target trait, the measurement of which
would be costly, time consuming, or labor intensive, with traits
readily measured by HTP. For example, Madec et al. [26] measured
wheat plant height with HTP using LiDAR and UAV and found
that it was highly correlated with the plant height measured at the
ground level. They also demonstrated that heading date could be
estimated based on a growth curve of plant height measured by
LiDAR. Kyratzis et al. [44] evaluated the potential use of VIs
acquired by UAV for durum wheat phenotyping and found that
one index was significantly correlated with grain yield.

In the index selection method, a target trait, X, is selected based
on an index calculated from phenotypes of a set of m traits, Ys,
related to the target trait. The simplest index is a linear combination
expressed as

I ¼ P

m

j¼1

bj yj

where bj and yj are the weight and phenotypic value of trait Yj,
respectively. If we consider bj and yj as the effect and state of marker
j in a set of genome-widemarkers, index selection becomes GS. The
weight, which represents the relative importance of each trait, can
be determined by multivariate regression. For example, Kefauver
et al. [25] built a model regressing the grain yield on VIs acquired
by HTP using UAV with stepwise regression and found that the
regression model explained 77.8% of the grain yield variation. Yu
et al. [27] performed hyperspectral imaging of a wheat canopy and
used the resulting data to detect Septoria tritici blotch disease and
to quantify the severity of infection. They used partial least squares
regression to build a prediction model for severity and found that
the accuracy of prediction (correlation between observed and pre-
dicted values) was 0.38–0.60 for three disease metrics. Non-linear
relationships between trait X and a set of traits Ys can also be
modeled in a selection index. Various types of models, including
known and ad hoc machine learning models, can be used for
building an index. Thorp et al. [52] proposed a method for deriv-
ing daily evapotranspiration based on a daily soil water balance
model named FAO-56 [53], which was derived from an index
acquired by HTP using UAV, to evaluate and improve the crop
water use efficiency of cotton varieties. Collectively, indirect or
index selection based on traits measured by HTP has strong poten-
tial to streamline the selection of important agronomic traits, such
as plant height, heading date, grain yield, and disease resistance.
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2.2 Genetic Gain in

HTP-Based Selection

HTP-based selection and GS can accelerate plant breeding by
improving the efficiency of selection. Response to selection is an
index for evaluating the efficiency of selection [54]. The response to
selection R is defined as the difference between the mean pheno-
typic values (yo) of progeny generated from the selected parents and
the mean phenotypic values (yp) of the parental population before
selection.

R ¼ yo � yp:

If we denote the heritability of a trait targeted in the selection as h2

and define the selection differential as the product of the pheno-
typic standard deviation σp and selection intensity i in the parent
population,

R ¼ ih2σp:

This is an important formula in breeding known as the “breeder’s
equation.” If a breeder knows the heritability of the target trait h2

and the standard deviation of the phenotype σp in the parent
population, it is possible to calculate the expected response to
selection R under intensity i. Using the definition of heritability,

h2 ¼ σ2g∕σ
2
p, we can rewrite the formula as

R ¼ ihσg ,

where σg is the square root of the genetic variance in the parent
population.

Now we consider the case in which we select trait X indirectly
by selecting for trait Y, measured with HTP. In this case, the
response to selection of the indirect selection of trait X with trait
Y is

RXY ¼ iY hY rXY σgX ,

where iY is the selection intensity of trait Y, hY is the square root of
the heritability of trait Y, rXY is the genetic correlation between trait
X and trait Y, and σgX is the square root of the genetic variance of
trait X in the parent population. To improve the efficiency of
selection with HTP, this value should be larger than the response
to selection of direct selection of trait X, i.e.,RX¼ iXhXσgX. That is,
the condition for improving the selection efficiency with HTP is

iY hY rXY > iXhX :

When the selection intensities of the two traits are the same
(iY¼ iX), the following two conditions should be satisfied: (1) trait
Y measured by HTP has a higher heritability than trait X, and
(2) the genetic correlation between trait X and trait Y is high.
With HTP, however, it is often possible to evaluate a large number
of genotypes (strains or individuals) as compared with direct selec-
tion of trait X using a conventional phenotyping method.
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Therefore, the selection intensity of trait Y can be increased com-
pared to the selection intensity of trait X. If iY > iX, even when the
heritability of trait Y is not larger than that of trait X, it may be
possible to perform indirect selection on trait X with higher effi-
ciency than that of direct selection.

Index selection with HTP and GS both involve indirect selec-
tion of trait X based on the index I, which is calculated based on
traits measured by HTP or genome-wide marker genotypes. The
response to selection is represented as

RXI ¼ iI rXIσgX ,

where iI is the selection intensity of the index I and rXI is the
accuracy of selection of trait X based on index I. The condition that
the response to index selection is greater than the response to direct
selection of trait X is

iI rXI > iXhX :

When the selection intensities of index I and trait X are the
same (iI¼ iX) and the accuracy rXI of selection of trait X based on
index I exceeds the square root of the heritability of trait X, hX, the
efficiency of selection by index selection exceeds the efficiency of
direct selection of trait X. As in the case of indirect selection using
trait Y, if iI> iX, even when the accuracy rXI of selection of trait X
based on index I does not exceed the square root of the heritability
of trait X, index selection has a higher efficiency than direct
selection.

When we consider the efficiency of a breeding program, it is
important to evaluate the genetic gain per unit time. Dividing the
reaction to selection R by the time δX required for one cycle of
selection, we obtain

ΔGX ¼ ihXσgX
δX

,

where ΔG is the genetic gain per time. The genetic gain of indirect
selection of trait X with trait Y is

ΔGXY ¼ ihY rXY σgX
δY

,

and the genetic gain of index selection of trait X with index I is

ΔGXI ¼ iI rXIσgX
δI

:

Here, δY and δI are the times required for one cycle of indirect and
index selection, respectively. The time required for one cycle of
selection can be shorter for trait Y and index I than for trait
X. For example, the yield and quality of a grain crop are usually
evaluated with multiple plants on a plot-by-plot basis. However, in
indirect and index selection, it may be possible to perform selection
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on a single plant basis in earlier generations, such as second-
generation hybrids (F2). In such a case, δY (or δI) < δX, and even
when the response to selection RXY or RXI is smaller than the
response to selection RX, the genetic gain per unit time becomes
greater under indirect and index selection than under direct
selection.

As described above, the efficiency of selection can be improved
by taking advantage of HTP, especially in terms of improvements in
selection intensity and the time required for one cycle of selection.
Field-based HTP is useful for increasing selection intensity because
of its scalability, while HTP in the greenhouse is good for reducing
the time required for one cycle of selection because it is often
performed on a single-plant basis and year-round. In the applica-
tion of HTP in plant breeding, the factors described earlier should
be taken into account to optimize selection methods for target
traits.

2.3 Use of HTP for

GWAS and GS

Although HTP alone is expected to improve the response to selec-
tion, response to selection can be further improved by using HTP
in combination with genome-wide association studies (GWAS) and
GS. HTP with UAV is particularly suited for this purpose, as it can
measure a large number of small- to medium-sized plots in which
plants are cultivated. HTP with UAV has been applied to the
evaluation of a large number of genotypes (germplasm accessions,
varieties, and breeding lines) in many species, including wheat
[26, 40, 42, 55, 56], maize [31, 33], sorghum [32, 36, 38], and
black poplar [50]. Condorelli et al. [42] performed GWAS with
248 elite durum wheat lines to compare the results obtained with
two UAVs and a ground-based method to measure a VI (Normal-
ized Difference Vegetation Index, NDVI). More associations were
detected by HTP using UAV than with the ground-based method,
suggesting an improved ability of HTP using UAV over the
ground-based method. Spindel et al. [36] undertook GWAS with
648 diverse sorghum lines for 460 combinations of traits, treat-
ments, time points, and locations. Four traits related to biomass,
plant height, and leaf area were measured by HTP using UAV. In
total, 213 high-quality, replicated, and conserved associations were
detected in genomic intervals, including many strong candidate
genes. Watanabe et al. [32] measured the height of 115 sorghum
germplasm accessions with HTP using UAV and evaluated the
potential of HTP to provide phenotypic training data in a GS
model. Although phenotypic correlation was not high, GS of
plant height as measured by HTP using UAV was highly correlated
with those measured manually. These results suggest the consider-
able potential of HTP using UAV for genomic-assisted breeding
through GWAS and GS.
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To successfully combine HTP with GWAS or GS, a novel
viewpoint different from the analysis of conventional phenotypic
data is necessary. Since HTP enables non-destructive and frequent
measurements for large-scale field tests, a target trait can be
measured as high-density time series data and as high-density data
with coordinate information. Thus, spatial-temporal continuity and
change can be taken into account in GWAS and GS models. For
instance, Elias et al. [57] fitted a model with a spatial kernel as well
as a kernel-based genomic relationship matrix to cassava agronomic
trait data to account for the spatial heterogeneity in the field and
showed that the prediction accuracy increased after accounting for
the spatial variation. Moreover, multiple sensors are commonly
employed in HTP, each of which can acquire high-dimensional
data (e.g., hyperspectral images). Thus, for GWAS and GS using
phenotypic data collected by HTP, it is necessary to consider the
high dimensionality of the data and the large number of data
points. Spindel et al. [36] conducted a GWAS on a number of
features collected with HTP using UAV and constructed a method
and pipeline to fuse and organize numerous GWAS results. Pheno-
typic data measured by HTP can also be used in the prediction of
genotypic values of a target trait by leveraging genetic correlations
between the target trait and traits measured by HTP. Rutkoski et al.
[56] proposed a method for predicting a target trait with correlated
HTP traits, as described in the next section.

3 Integration of HTP Data into GS

3.1 Single-Trait

Analysis

Recently, there have been several studies that have integrated geno-
mic data and HTP data for prediction purposes in several crops
using different modeling techniques [13, 56, 58–63]. The integra-
tion of genomic and HTP data provides opportunities to improve
existing GS models, thus enabling breeders to select their material
more accurately and increase genetic gain. We summarize some key
methods developed for integrating high-throughput genomic and
HTP information for the purpose of increasing the accuracy of
prediction by extending the standard GS models.

We can include secondary image traits in a quantitative genetics
model using two model parameterizations. The first model explains
the ith phenotypic observation as the sum of an intercept μ com-
mon to all observations, a linear combination of p markers xij and
their corresponding marker effects bj, a linear combination of
Q secondary traits siq and their corresponding effects aq, and resid-
ual ɛi as follows:

yi ¼ μþ P

p

j¼1

xij b j þ
P

Q

q¼1

s iqaq þ ɛi:
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The second model parameterization is based on covariance struc-
tures and can be obtained from the previous model by assuming
that the effects of marker bj and secondary traits aq are independent
and identically distributed draws from normal densities of the form

b j � N ð0, σ2b Þ and aq � N ð0, σ2aÞ . Then, gi ¼
Pp

j¼1xij b j and

wi ¼
PQ

q¼1s iqaq are genetic and environmental values of the ith

genotype using information from genomics and secondary traits.
From properties of the multivariate normal density, the vectors of
marker and secondary trait effects are also normally distributed,
such as g ¼ fgig � N ð0,Gσ2gÞ and w ¼ fwig � N ð0,Cσ2AÞ, where
G¼XX0∕p is a covariance matrix whose entries describe genomic
similarities between pairs of genotypes; X is the matrix of molecular
markers of order n� p; σ2g ¼ p � σ2b ; C¼SS0∕Q is a covariance
matrix whose entries describe phenotypic similarities based on
image secondary traits data for each pair of observations; S is the
matrix of secondary traits of order n�Q; and σ2A ¼ Q � σ2a . This
parameterization assumes that all of the secondary traits equally
contribute to explain the phenotypic variations of the traits of
interest. One of the advantages of using this second parameteriza-
tion is that it is possible to evaluate the contribution of the genomic
and HTP components for explaining phenotypic variability by
comparing the estimated variance components associated with
each of these terms.

The majority of models developed focus on predicting a single
trait, namely, grain yield. HTP can measure traits that are shown to
be highly correlated with grain yield, such as the spectral reflectance
of the canopy and canopy temperature [64]. A VI is used to sum-
marize the spectral reflectance of the canopy scores [61]. However,
because the VI is calculated using only a subset of the available
wavelengths, it does not take advantage of all of the HTP data.
There are several approaches for incorporating all of the HTP
wavelengths and the plot-level VI measurements into GS models.
Rutkoski et al. [56] showed that the integration of VI and canopy
temperature into a genomic best linear unbiased prediction
(GBLUP) model could increase the prediction accuracy by 70%
compared to that of a univariate baseline model in wheat data.
Aguate et al. [65] showed that using bands as predictors increased
prediction accuracy over that of VI. They used ordinary least
squares, partial least squares, and a Bayesian shrinkage model to
incorporate wavelengths into a GS model in maize. A similar obser-
vation was made by Montesinos et al. [66], who compared predic-
tion model performance when all of the wavelengths were
incorporated with that of a subset of the wavelengths in wheat.
They concluded that using all of the wavelengths resulted in higher
prediction accuracy.
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3.2 Multi-Trait

Analysis

Sun et al. [59] predicted grain yield in a two-step procedure in
wheat data. First, they collected data on canopy temperature and VI
as secondary traits (which are correlated with grain yield) and
modeled the secondary traits using the genetic marker and envi-
ronmental effects. They applied a mixed model for predicting grain
yield without considering the secondary traits as covariates. How-
ever, they used the secondary traits to develop a multivariate model
to predict grain yield, which is the primary trait. The secondary
traits were measured in a longitudinal fashion, i.e., at several time
points throughout the growing season. They implemented and
compared the repeatability, multi-trait, and random regression
(RR) models that can be used for modeling longitudinal data. In
the second step of the GS, the results from the repeatability, multi-
trait, and RR models were used as BLUP, and a univariate predic-
tion model was compared to bivariate and multivariate models.
Only grain yield was included, and the secondary traits were
excluded in the univariate model. In one of the multivariate predic-
tion models, the secondary traits were included both in the training
and testing sets, and in the other multivariate prediction model the
secondary traits were included only in the training set. The bivariate
prediction model included grain yield and one of the secondary
traits. Their results showed that the multivariate prediction model
that incorporated the secondary traits in both the testing and
training sets had an advantage over the other models in terms of
prediction accuracy. However, it was not clear which of the first
models (repeatability, multi-trait, or RR) performed the best
because the results depended on the environmental conditions.
Nonetheless, the results clearly demonstrated the advantage of
using HTP data in GS applications.

Crain et al. [13] compared four models using wheat data: (1) a
regular GS model, (2) a univariate model in which grain yield was
the response and HTP data were predictors, (3) a model that was
the combination of models 1 and 2, and (4) a multi-trait model that
included grain yield, canopy temperature, and VI measurements.
The results showed that the addition of HTP data increased the
prediction accuracy. They found that the multi-trait model exhib-
ited a 7% gain in terms of prediction accuracy, indicating that
collecting multiple HTP measurements has the potential to
increase genetic gain through the improvement of prediction mod-
els. Juliana et al. [62] applied multivariate prediction models to
compare standard GS with a pedigree- and HTP-based prediction
model. They discussed the situations in which each model can be
useful and the importance of implementing the correct models in
the correct stage of the breeding pipeline. The authors elaborated
on the importance of the family structure and of the secondary
HTP traits being highly correlated with the primary phenotypic
trait, as these components are influencing factors in prediction
performance.
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3.3 Genotype by

Environment

Interaction

Although all of the studies described above considered approaches
to integrate HTP into GS, they did not apply interaction effect
models. However, there are multiple lines of evidence that GS
models with interaction effects have the potential to outperform
competing models with only additive effects [67–69]. Montesinos
et al. [70] presented one of the first studies of HTP showing the
impact of including the interaction between hyperspectral bands
and environments (band � environment). These authors found
that the model with the band � environment interaction outper-
formed all of the models without this interaction term. Jarquin
et al. [63] used prediction models that incorporated line, environ-
ment, marker genotype, canopy coverage image information, and
their interactions in soybean. They evaluated six main effects’mod-
els that included combinations of line, environment, marker geno-
type, and canopy coverage image information; seven models with
two-way interactions among the components; and two models with
a three-way interaction between environment, marker genotype,
and the canopy coverage data. Under the GBLUP model, they
modeled the interaction components as the Hadamard product
[71] of the relationship matrices obtained from genetic marker
and canopy coverage image information according to the reaction
normmodel [9]. Themodel performance was evaluated using three
cross-validation (CV) schemes: CV2, CV1, and CV0. CV2 assumed
an incomplete field trial, in which some lines are observed in some
environments but not in others. CV1 was the case in which one
predicts the performance of a new line in environments in which
some other lines were evaluated. The goal of CV0 was to predict
the performance of already tested lines in untested environments.
When grain yield was the target trait, the advantage of including the
canopy coverage measurements and the interactions among
marker, environment, and canopy coverage measurement was
clearly shown. The highest predictive abilities for CV2 and CV1
were delivered by the models that included a three-way interaction
among marker genotype, canopy coverage image data, and envi-
ronment, while for CV0, the model with interactions between
marker genotype and environment, and between canopy coverage
image information and environment produced the greatest accu-
racy. The study also evaluated the effectiveness of canopy coverage
image data from early stages and compared it with the case in which
the canopy coverage image data was collected throughout the
growing season. The results indicated that the information col-
lected in the early stages was sufficient for prediction and that the
additional data collected in the later stages did not improve the
prediction models significantly. The practical implication of this
finding is important, as it shows that the same prediction accuracy
can be achieved using fewer resources (time, measurements, and
costs).
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Krause et al. [61] used multi-kernel, multi-environment
GBLUP models including genetic marker or pedigree, environ-
mental, and hyperspectral band information for predicting grain
yield in wheat. They found that when marker genotype or pedigree
data are not available, the main effects model using the hyperspec-
tral band data provided a similar accuracy of prediction compared
to the main effects models including marker or pedigree informa-
tion. Additionally, the model with interactions outperformed the
main effects models. Their findings differed from those of Jarquin
et al. [63] with regard to the effectiveness of including partial HTP
data. They concluded that the prediction accuracy increased when
the HTP data from later stages were included. However, this dif-
ference is expected, as the crop development for wheat is signifi-
cantly different from that for soybean. Finally, Montesinos et al.
[70] and Montesinos et al. [72] showed the advantages of
performing functional analysis for reducing data dimensionality to
extract a higher signal-to-noise ratio for each observed value. In
addition, Montesinos et al. [70] showed that when the HTP col-
lected over multiple time points are combined using functional
analysis, a small increase in prediction accuracy can be achieved
relative to that of models that use data from a single time point.

4 Utilizing Image-Derived Longitudinal Traits for Genetic Studies in Plants

The observable phenotype at a given time is the culmination of
numerous biological processes that have occurred prior to observa-
tion. For example, consider a cereal such as wheat at maturity. The
total above-ground biomass can be separated hierarchically into a
number of distinct organs. The whole plant can be partitioned into
main and auxiliary tillers, which can be further partitioned into leaf
blades, leaf sheaths, and stems. This process can proceed further to
lower organization levels, separating these organs into tissues and
cellular components. At each level, the pattern timing of develop-
ment is tightly controlled by complex genetic networks that, at the
organ level, control the onset of primordial development and initi-
ation of growth and, at the plant level, the transition from vegeta-
tive to reproductive development.

An additional layer of complexity is added to this when the
effect of the environment on these processes is considered. The
appearance of the plant at maturity is certainly a product of its
genetic makeup; however, the processes mentioned above are all
tightly linked to the environment. The total size of the plant at
maturity is a product of the resources (e.g., light, nutrients, and
water) that were available throughout its life cycle. Plants need light
and carbon dioxide to produce sugars through photosynthesis.
Nutrients are combined with these sugars to generate nucleotides,
proteins, and metabolites. Limitations on any of these inputs will
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slow or stunt growth. In addition to plant growth, the transition
between developmental states is also linked directly to the environ-
ment. Several studies have shown that drought events can lead to
earlier flowering and accelerated post-anthesis development
(reviewed by Shavrukov et al. [73]). Therefore, the phenotype is
not a static entity. The observable phenotype is the result of
dynamic genetic processes, the changing external environment,
and the dynamic interplay between the two.

For most genetic applications, plants are often phenotyped at
only one or a few time points. These phenotypes are an incredibly
informative summation of the processes that have occurred over the
life cycle of the plant, and they have been used quite successfully to
select for a variety of complex traits. While for many applications
these single time point phenotypes may be sufficient, they fail to
capture the dynamic processes that have led to the observable
phenotype. In most genetic studies, phenotypic evaluation is the
largest, most time-consuming activity. Typical genetic studies con-
sist of a mapping population with hundreds to thousands of indi-
viduals that are grown in replicates. Thus, for these studies,
phenotyping at one time point is often a huge commitment, while
evaluation at multiple time points is often unfeasible.

In the last decade, the construction and accessibility of high-
throughput phenotyping platforms have provided an attractive
means for generating phenotypic data throughout the duration of
a study in a non-destructive manner for a number of economically
important crop species [14, 32, 37, 74]. These platforms have been
successfully deployed in controlled environments to quantify
growth and physiological processes in response to drought and
salinity [75, 76]. Moreover, with the growing popularity of UAVs
in the consumer market, a vast selection of hardware can be
obtained at relatively low cost [32]. These can be outfitted with
various sensors or cameras and deployed routinely in the field to
capture trait development over the growing seasons. In crop spe-
cies, these temporal phenotypes have been used as covariates in
genomic prediction frameworks to improve prediction accuracy
for end-point phenotypes, such as yield [13, 59, 63]. However,
analysis of the longitudinal trait itself has been largely confined to
genetic inference in crops species, while genomic prediction has
been applied largely to perennial species [77–79]. In the following
section, we describe several approaches for genomic prediction of
the longitudinal phenotype itself.

4.1 Single Time Point

Genetic Inference

A seemingly straightforward approach for assessing dynamic
genetic effects underlying longitudinal traits is performing linkage
or association analysis at each time point independently [80–83]. In
one of the first applications of HTP for genetic studies in plants,
Moore et al. [83] used an image-based platform to quantify root
gravitropic responses in Arabidopsis biparental mapping
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populations. The authors used a step-wise mapping approach at
each time point to identify time-dependent quantitative trait loci
(QTL) and used a post hoc approach to combine information on
QTL detected across multiple time points. The post hoc approach
effectively used two metrics to classify QTL into a persistent class,
by averaging the LOD scores across time points, and transient
QTL, by taking the maximum LOD across all time points. While
this post hoc approach effectively combines statistics across time
points and successfully classifies the temporal genetics of root grav-
itropism, the single time point mapping approach itself does not
explicitly model the covariance across time points. Thus, the actual
genetic inference step does not fully capture the phenotypic
trajectories.

4.2 Functional

Mapping

Several other approaches have been proposed that directly consider
the trait trajectories for genetic analyses. With these approaches, the
trait values across all time points can be modeled using parametric
or non-parametric mathematical functions. These models describe
the phenotypic trajectories using a few parameters (for a review of
parametric models in the context of plant growth, see Paine et al.
[84]). Once an appropriate model has been chosen, genetic infer-
ence or prediction can proceed using a single-step or two-step
approach.

4.2.1 Single-Step

Functional Mapping

In the single-step functional mapping approach, model fitting and
genetic analyses are performed within a single statistical framework.
In the plant community, the single-step approach for functional
genetic inference/mapping was first proposed by Ma et al. [85] to
map QTL for stem diameter in Populus. Since then, the functional
mapping approach has been applied to longitudinal traits in other
species, such as humans and mice, and has been extended into the
mixed model framework used for GWAS [86–90]. The advantages
of the single-step functional mapping approach are that it considers
the full trait trajectories over time, yielding loci that influence the
curve itself, and captures the covariance across time points, which
should reduce residual variance and improve statistical power
[88]. Essentially, at each locus, the single-step functional mapping
approach models the mean trajectories for each genotype and tests
whether the time-dependent genetic effects are non-zero.

There are two important considerations for the single-step
functional mapping approach: (1) the choice of function to model
the mean trajectories of each genotype, and (2) the appropriate
residual covariance structure to account for the temporal nature of
the data. The function to model the mean trajectories can be
parametric or non-parametric and can be selected based on some
prior knowledge of the phenotypic trajectories. For well-studied
traits, such as growth, a number of parametric options exist, are
biologically meaningful and can be easily applied to the
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longitudinal data set [84]. In cases in which no prior knowledge
exists about the phenotypic trajectories, a nonparametric function,
such as orthogonal Legendre polynomials or B-spline functions,
can be utilized. The nonparametric functions are described in
greater detail below. A number of covariance structures can be
used to account for the temporal relationships among observations.
The choice will be dependent on the balance between statistical
efficiency and robustness. In the most robust case, the unstructured
covariance matrix, the variance and covariance at each time point
are unique and estimated from the data. While this places no con-
straints on the variance–covariances, the number of parameters that
must be estimated can be prohibitively large for most studies. In
many cases, simpler structures may be nearly as robust while esti-
mating far fewer parameters.

4.2.2 Two-Step

Functional Mapping

In contrast to the single-step functional mapping approach, the
two-step approach performs the model fitting and genetic analysis
in two separate steps. First, the phenotypic trajectories are modeled
for each individual, and the model parameters are used as derived
traits for subsequent genetic analyses (e.g., GWAS, linkage analysis,
or GS). This two-step approach has been successfully used to
examine the genetic basis of rosette growth in Arabidopsis and for
GWAS and GS of early vigor in rice [91, 92]. The advantages of this
approach are that it is conceptually simple and easy to implement.
Moreover, for most popular growth models, the parameters have
biological meaning. For instance, growth can be modeled over the
life cycle of the plant using a 3-parameter logistic function. Here,
the inflection point can be calculated, which represents the transi-
tion from vegetative to reproductive growth. Thus, the researcher
can select a specific attribute to study and select a specific model
parameter that represents that attribute for analysis. Moreover,
outside of genetic mapping, these parameters may provide
biological insight into a plant’s phenotypic development. For
instance, Campbell et al. [92] targeted a specific model parameter
that described a plant’s growth rate and showed that the plant
hormone gibberellic acid may influence natural variation for the
rate-controlling parameter. However, the major disadvantage of
this method is that information is lost between the functional
modeling and genetic analysis steps. Since environmental factors
are not included in the functional modeling step, the residuals likely
contain important information regarding non-genetic components
of the phenotypic variance for the longitudinal phenotype.

4.3 Insights from

Animal Breeding for

Genomic Prediction

Using Longitudinal

Traits

While the use of longitudinal phenotypes is relatively new in plant
science, animal breeders have targeted longitudinal traits for dec-
ades [93]. In animal breeding, breeders are often interested in the
development of a trait across an animal’s life. For instance, in dairy
cattle, test-day milk yields are collected routinely. Moreover, other
traits, such as feed intake, growth, and egg production [94–97],
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have also been examined in a longitudinal framework. With the
extensive use of these traits in animal breeding, numerous frame-
works have been well developed to accommodate the time axis and
have been used extensively for inference on genetic and environ-
mental variance components, as well as pedigree and GS.

In the following subsection, we discuss several approaches that
have been used for pedigree- or genomic-based prediction in ani-
mal breeding in a context that is applicable to plant breeding with
HTP platforms. As mentioned above, a naive approach for GS using
longitudinal data would be a univariate approach, in which a con-
ventional mixed model is fitted at each time point. Here, we intro-
duce the concept of longitudinal GS from a multivariate
framework, as this is a relatively simple extension of the univariate
approach, and extend these concepts to covariance functions and
RR models that have been pioneered in animal breeding.

4.4 Multivariate

Approaches for

Longitudinal Genomic

Prediction

To capture the covariance between time points, a logical progres-
sion from the univariate approach is to utilize a multivariate frame-
work for longitudinal data. Thus, rather than considering the
longitudinal trait as a consecutive series of measurements on the
same trait, with the multivariate approach, we essentially ignore the
order of the series and treat each time point as a separate trait. The
multivariate framework allows each time point to have a unique
variance and unique covariances between time points. The multi-
variate GS framework is well developed and has been widely utilized
in both plant and animal systems. Moreover, the extension from the
univariate approach is relatively straightforward.

Assume a simple case in which we are given three consecutive
measurements for each individual. The model for each trait can be
written as

y1 ¼ X1b1 þ Z1u1 þ ɛ1 ð1Þ

y2 ¼ X2b2 þ Z2u2 þ ɛ2 ð2Þ

y3 ¼ X3b3 þ Z3u3 þ ɛ3 ð3Þ
where yi is the vector of observations for trait i; Xi and Zi are the
incidence matrices for fixed effects and random effects, respectively,
for trait i; ui is the vector of random genetic effects for trait i; and ɛi
is the vector of residuals for trait i. Thus, the multivariate model is

y1

y2

y3

2

6

6

4

3

7

7

5

¼
X1 0 0

0 X2 0

0 0 X3

2
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7

7

5

b1

b2

b3

2
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4

3

7

7

5

þ
Z1 0 0

0 Z2 0
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2
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þ
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5

ð4Þ
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Moreover, as mentioned above, we assume unique variances
and covariances for each trait/time point.

var

u1

u2

u3

ɛ1

ɛ2

ɛ3
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¼

Gσ2g11 Gσ2g12 Gσ2g13 0 0 0

Gσ2g21 Gσ2g22 Gσ2g23 0 0 0

Gσ2g31 Gσ2g32 Gσ2g33 0 0 0

0 0 0 Iσ2ɛ 11 Iσ2ɛ 12 Iσ2ɛ 13

0 0 0 Iσ2ɛ 21 Iσ2ɛ 22 Iσ2ɛ 23
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ð5Þ

Thus, for this simple case, we are capturing the full covariance
across the three time points and leveraging this covariance to
predict unique genetic values at each. However, notice the dimen-
sions of the covariances σ2g and σ2ɛ . Here, we must solve for 12 para-
meters. If we have a very large population, this may not be an issue.
However, if we consider a more realistic data set from HTP, it is
likely that we will have many more time points. Thus, for t time
points, we will need to estimate t variances and t(t�1)∕2 covar-
iances for both the genetic effects and residuals. For most HTP studies,
this will create unnecessary computational demands. Moreover, addi-
tional challenges could be experienced if the parameter estimates are
near the bounds, which may yield inaccurate estimates of variance
components. Thus, when faced with larger longitudinal data sets (t >
5), the researcher should question whether it is necessary to esti-
mate each covariance. In cases in which the measurements are taken
at short intervals within a given developmental period, it is likely
safe to assume that the genetic variances between adjacent time
points will be very similar. Therefore, a much simpler model may
still capture much of the covariance while estimating fewer para-
meters. This is discussed in detail below. For other cases in which
fewer measurements are recorded over more widely spaced inter-
vals, the previous assumption may not hold true, and the full,
unstructured matrix used in the multi-trait framework may be a
more accurate model.

4.5 Covariance

Functions and Random

Regression Models for

Longitudinal Genetic

Prediction

In the multi-trait framework, we treat the longitudinal phenotype,
say growth, as a collection of independent traits; as a result, we are
limited to making predictions at time points with records. How-
ever, in most longitudinal studies, we are interested in learning
about the development of a continuous trait over time and do so
by taking measurements at discrete time points. The time points or
intervals themselves may be selected somewhat arbitrarily, and we
seek to fill in information between time points. Thus, to capture the
full trajectory of trait development, we can separate the trajectory
into infinitely smaller intervals. Therefore, if we view the longitudi-
nal trait as an “infinite-dimensional” trait, we can see that the
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multivariate framework is inadequate, in that it does not directly
consider the time axis and it does not allow us to make predictions
at time points without observations.

Kirkpatrick et al. [98] initially proposed the use of covariance
functions (CFs) for the analysis of “infinite-dimensional” traits. A
CF is simply the infinite-dimensional equivalent of a covariance
matrix for a given number of time points. Using this approach,
the covariance between any two records measured at given time
points can be obtained using only the time points and some coeffi-
cients. For an “infinite-dimensional” trait, there can be an infinite
number of coefficients; however, in practice, the number of coeffi-
cients is dependent on the number of time points with records, with
the maximum number of coefficients being t(t+ 1)∕2.

Following the example described in the multi-trait section
above, we provide a brief example of the CF approach. Assume
we have a trait measured at three time points using the covariance
matrix in Kirkpatrick et al. [98]. Using the multi-trait approach, we
estimate the 3�3 additive genetic covariance matrix (Σ̂) and esti-
mate the variances and covariances at each of the three time points.
The goal of the approach described by Kirkpatrick et al. [98] is to
represent the additive generic covariance matrix (Σ̂) as a continuous
covariance function (K ) given data collected at discrete time points.
Although a number of methods can be used to estimate K from Σ̂,
orthogonal polynomials are used most often due to the low corre-
lations among the estimated coefficients [99].

Given a covariance function with a full rank fit (e.g., order of
polynomials is equal to the number of time points, k¼ t),
Kirkpatrick et al. [98] showed that the observed covariance matrix

Σ̂ can be expressed as Σ̂ ¼ ΦKΦ0 , where K is a coefficient matrix
associated with the CF, and Φ is a matrix of Legendre polynomials
of order t by k, the order of Legendre polynomials (in this case
k¼ t). Φ is defined by the Legendre polynomial functions via
Φ¼M Λ. With Legendre polynomials, the time points are standar-
dized so that they span an interval of -1 to 1, and here,M is a matrix
of the polynomials of standardized time points. Λ is a matrix of
coefficients of Legendre polynomials of order k� k. The first two
Legendre polynomials are P0(t)¼1 and P1(t)¼ t, and the
subsequent jth Legendre polynomials are given by P jþ1ðtÞ ¼
1
jþ1 ð2j þ 1ÞtP j ðtÞ � jP j�1ðtÞ. These can be normalized to ϕj via

ϕ j ¼
ffiffiffiffiffiffiffiffiffiffiffi

ð2jþ1Þ
p

2 P j ðtÞ . Thus, the first three normalized Legendre

polynomials will be P0(t)¼0.707, P1(t)¼1.2247t, and P2(t)¼�
0.7906+2.3717t2. Thus, Λ is
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Λ ¼
0:7071 0 �0:7906

0 1:2247 0

0 0 2:3717
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5

ð6Þ

It is of particular importance to note that Φ is not dependent on
the values nor the time points in the data set; onlyK is. Thus, given
the 3�3 covariance matrix, Σ̂ , the covariance between any two
time points, can be obtained using K ða1, a2Þ ¼
P1

i¼0

P1
j¼0Kijϕiða1Þϕ j ða2Þ , and the breeding value at any time

point can be obtained using t ¼
Pk�1

i¼0ϕiðdtÞui . Moreover, with a
full rank fit, the covariance matrix obtained is equivalent to that
obtained using the multivariate approach in the previous section.

In most cases, the full covariance matrix Σ̂ is unknown; there-
fore, it must be estimated directly from the data. As shown by
Meyer and Hill [100], this can be done by a reparameterization of
the multivariate or “finite-dimensional” approach. However, in
many studies, particularly those focused on the analysis of longitu-
dinal milk production in dairy cattle, RR models (e.g., test-day
models) are most commonly used. The RR approach proposed by
Schaeffer [93] regresses the phenotypic trait trajectories directly on
Φ to estimate K. As demonstrated by Meyer and Hill [100], both
the CF and RR approaches are equivalent. The general form of the
RR model is

ytij ¼ FEi þ
P

nf

k¼0

ϕ j tkβk þ
P

nr

k¼0

ϕ j tku jk þ
P

nr

k¼0

ϕ j tkpe jk þ ɛtij

ð7Þ
Here, FEi is the fixed effect for the ith group; ϕjtk is the kth
Legendre polynomial for individual j at time t; βk is the fixed
regression coefficient for the kth Legendre polynomial, which
represents the overall mean trait trajectory for the population or
group; ujk is the genetic value for the kth Legendre polynomial for
the jth individual; and pejk is the permanent environmental effect
for the kth Legendre polynomial for the jth individual. This perma-
nent environmental effect is a stable, perpetual, non-genetic effect
that influences an individual’s trait trajectory. It is assumed to be
common to all repeated observations on the same individual. Thus,
e can be considered temporary environmental effects. In matrix
form, the RR model can be written as y¼Xb+Za+Qp+ ɛ.

In the examples above, we used a full-order polynomial to
model the covariance across time points. As in the multivariate
example, this requires estimation of a large number of parameters
and in most cases is computationally unfeasible and could lead to
convergence problems or inaccurate parameter estimates. In most
cases, it is much more advantageous to fit a simpler model using a
reduced-order polynomial (k< t). This effectively allows fewer
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parameters to be estimated while still adequately describing Σ̂ .
Generally speaking, the goodness of fit will increase as the number
of function parameters describing the curve increases
[101]. Campbell et al. [102] used RRmodels for rice shoot growth
trajectories and demonstrated that the model could be used for
longitudinal genomic prediction. Baba et al. [103] showed the
utility of a multi-trait RR model for genomic prediction of daily
water usage in rice through joint modeling with shoot biomass.

5 Conclusions

This chapter described statistical methods for analyzing large-scale
HTP data in quantitative genetics. We contend that the integration
of HTP data into quantitative genetics models triggers a great leap
forward in plant breeding. In particular, we discussed (1) the
genetic gain that can be achieved using HTP data, (2) the use of
HTP data as predictive covariates in GS models, and (3) the mod-
eling of temporal HTP data using RR models. In GS, it is known
that the accuracy of genomic prediction, and thus the response to
selection, decreases as the selection cycle advances [104, 105]. To
maintain the response to selection, it is necessary to update the
model on a regular basis [105–107]. In order to update the model,
it is necessary to conduct a field test to measure phenotypes and to
obtain genome-wide markers for many genotypes. At this step,
phenotypic measurement for model updating may become a serious
bottleneck of GS breeding. Thus, it is important to utilize HTP,
which can evaluate many genotypes and possibly shorten the time
required for selection.

High-throughput phenotyping and phenomics offer numerous
opportunities to understand plant development, the genetics of
quantitative traits such as yield, and their connection to the envi-
ronment. The utilization of HTP data that are correlated with traits
of interest can change how breeders select their material for
advancement. Incorporating HTP data into prediction models has
the potential to increase prediction accuracy, thus enabling plant
breeders to select and discard more accurately. Although the
reviewed studies considered different models, they concluded that
regardless of the model configuration, the inclusion of HTP data
increased the prediction performance when it was combined with
different data types (marker genotype, pedigree, and environment).
Additional gains can be expected when considering interactions
with environmental factors.

The RR approach offers several advantages compared to the
multivariate approach. As mentioned above, the RR approach
allows environmental effects to be partitioned into permanent and
temporary environmental effects. Moreover, the RR approach
models the individual-specific deviations from the mean phenotypic
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trajectories of the population. This allows the shape, amplitude, and
intercept of the phenotypic trajectories to be unique for each
individual and assumes that the genetic and permanent environ-
mental effects are not constant throughout trait development.
Thus, the RR model should more accurately reflect the biological
processes that give rise to the phenotype. Furthermore, RR models
offer a robust framework for fitting reduced-fit covariance func-
tions. This offers a computational advantage over the multivariate
approach in that it allows the model to converge more quickly.
Moreover, by only estimating the parameters that are necessary to
describe the data, sampling errors can be minimized. Finally, the
RR approach provides a robust framework that allows the
researcher to study how genetic variability changes over time and
enables selection of individuals to alter phenotypic trajectories
over time.
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Pérez-Rodrı́guez P, Montesinos-López O,
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OA, Cuevas J, Mata-López WA, Burgueño J,
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79. de Souza Marçal T, Salvador FV, da Silva AC,
Machado JC, Carneiro PCS, et al (2018)
Genetic insights into elephantgrass persis-
tence for bioenergy purpose. PloS One
13(9):e0203818

80. Wu WR, Li WM, Tang DZ, Lu HR, Worland
A (1999) Time-related mapping of quantita-
tive trait loci underlying tiller number in rice.
Genetics 151(1):297–303

294 Gota Morota et al.



81. Yan J, Zhu J, He C, Benmoussa M, Wu P
(1998) Molecular dissection of developmen-
tal behavior of plant height in rice (Oryza
sativa L.). Genetics 150(3):1257–1265
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