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Abstract— This article presents an online parameter identifica-
tion scheme for advection–diffusion processes using data collected
by a mobile sensor network. The advection–diffusion equation
is incorporated into the information dynamics associated with
the trajectories of the mobile sensors. A constrained cooperative
Kalman filter is developed to provide estimates of the field values
and gradients along the trajectories of the mobile sensors so that
the temporal variations in the field values can be estimated.
This leads to a co-design scheme for state estimation and
parameter identification for advection–diffusion processes that
is different from comparable schemes using sensors installed
at fixed spatial locations. Using state estimates from the con-
strained cooperative Kalman filter, a recursive least-square (RLS)
algorithm is designed to estimate unknown model parameters
of the advection–diffusion processes. Theoretical justifications
are provided for the convergence of the proposed cooperative
Kalman filter by deriving a set of sufficient conditions regarding
the formation shape and the motion of the mobile sensor
network. Simulation and experimental results show satisfactory
performance and demonstrate the robustness of the algorithm
under realistic uncertainties and disturbances.

Index Terms— Distributed parameter systems, Kalman filters,
multi-robot systems, system identification.

I. INTRODUCTION

MANY environmental processes are characterized by
both spatial and temporal dynamics and often repre-

sented mathematically by partial differential equations (PDEs).
One of the typical PDEs is the advection–diffusion equation,
which has been widely used to model phenomena such as the
propagation of chemical in water or air [1]. In many practical
problems, parameters in the advection–diffusion equation such
as the diffusion coefficient may be unknown or inaccurate.
Therefore, to better understand the processes, there is a need
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to use parameter identification methods to refine, update,
or estimate these unknown parameters [2], [3]. The parame-
ter identification problem for PDEs has received significant
recent research interest [4]–[6] with emerging applications in
environmental monitoring, pollution control, and search/rescue
missions [7], [8]. In particular, the dispersion of biological
or chemical contaminant obeys the advection–diffusion equa-
tions. Knowledge of the diffusion coefficient would help in the
estimation and prediction of the degree of contamination [9].

In the case when large numbers of static sensors are
deployed in the spatial domain in question, various aspects of
parameter identification of PDEs have been investigated in [4],
[7], [10]–[16], and references therein. Many of these earlier
research follow a general framework of inverse problems in
which, given a model, it is necessary to identify the system
parameters from available information about the process [16].
Although the solutions to the inverse problems of PDEs are
achievable, specific inverse problems must often seek for
specific solutions [16]. Among recent works, the nonlinear
regression framework is used to estimate PDE parameters
from noisy data [17], [18]. This nonlinear regression method
requires the estimation of the initial conditions of the PDEs.
Furthermore, a number of contributions appear in the two-step
method aiming at decreasing the computational cost of nonlin-
ear regression [14], [19]. In the first step, all the state variables
and derivatives are estimated from the noisy data using the
multivariate polynomials or nonparametric regression meth-
ods. In the second step, PDEs’ parameters are estimated [14].
Although the second step can be significantly simplified, this
two-step method depends heavily on the estimation accuracy
of derivatives [20]. As shown in [21], the parameter cascading
method can provide more accurate PDE parameter estimates
than the two-step method. The Bayesian approaches are also
studied for estimating parameters in linear PDEs in [15].

It is rather difficult to envisage static sensor networks
continuously monitoring vast spatial regions over long time
horizons due to the size of the spatial domain and the high
cost of installing large number of static sensors [22], [23].
For parameter identification purpose, a preferable approach
would be using mobile sensor networks, which are collections
of robotic agents with computational, communication, sens-
ing, and locomotive capabilities [24]–[32]. There exist some
contributions on the issue of parameter identification of PDEs
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using mobile sensor networks [3], [27], [33]–[35]. One of the
general approaches of parameter identification is to first decide
optimal locations or trajectories of sensors offline, and then
formulate a least-square problem and search for the parameters
that minimize the error between the measurements of the
true state (with true parameters) and the estimated state [24],
[36], [37]. This is usually referred to as performing the twin
experiments in data assimilation literature [38], [39]. To find
parameters that minimize the least-square cost function, PDEs
have to be solved using finite element methods over the entire
spatial domain, and the optimal solution is obtained through
numerical methods for each time step, which generates high
computational load. Although these works provide a complete
sensor motion along with a parameter update scheme, most
of these studies develop offline schemes with few exceptions
that investigate online parameter identification [2], [40], [41].
A crucial factor in responding to an emergence chemical or
biological disaster is speed. Thus, it is desirable and more prac-
tical to achieve online parameter identification while a mobile
sensor network is exploring a field instead of performing para-
meter identification afterward. For example, in chemical plume
tracking, the mobile sensor network has no prior knowledge
of the diffusion process, and thus, it is preferable that the
mobile sensor network can estimate the unknown diffusion
coefficient while detecting and tracking the plume to obtain
real-time information about the process. Therefore, different
from the existing works on offline parameter estimation for
mobile sensor networks [24], [36], [37], we aim to develop
an online parameter identification algorithm that estimates
parameters along the trajectories of the mobile sensors, which
provides benefits of reduced computational needs.

There are a number of difficulties inherent in online para-
meter identification along the sensing trajectories of mobile
sensor networks. First, this is an ill-posed inverse problem,
which requires the identification of system parameters from
the collected finite-dimensional measurements [3]. As such,
one needs to assure that the unknown parameters are iden-
tifiable taking into account finite-dimensional measurements,
which has been discussed in [42]. For online implementation,
we would prefer a recursive design so that the estimated
parameters can track the measurement data and new measure-
ments can be effectively incorporated. This recursive design
becomes more difficult in a mobile sensor network scenario
than the static sensor network scenario, due to a limited
number of moving agents [3], [43]. With the extremely limited
measurement resources in space and time, developing a proper
recursive sensing and identification scheme is key to mission
success. Unfortunately, the number of publications to above
problems is limited so far owing to the inevitable increase in
problem complexity.

In this article, a novel cooperative filtering scheme is devel-
oped for online parameter identification of advection–diffusion
processes using a mobile sensor network. We incorporate the
advection–diffusion equation into the information dynamics
and develop a cooperative Kalman filter. Compared with the
cooperative Kalman filter in [26], the proposed filter deals with
a spatial–temporal-varying field instead of a static field. The
proposed Kalman filter can achieve online estimation of the

temporal variations in the field values along the trajectories
of a mobile sensor network. Using the estimates from the
filters, we use the recursive least-square (RLS) method to
iteratively update the estimate of the unknown parameter in the
advection–diffusion equation. Furthermore, we justify a set of
sufficient conditions regarding the formation shape and motion
of the mobile sensor network that guarantee convergence of the
proposed filter. We further provide necessary bias analysis of
the proposed method. The simulation and experimental results
are given to demonstrate the effectiveness of the proposed
approach.

In our previous conference paper [2], we designed a coop-
erative filtering scheme for online parameter estimation of
diffusion processes using four sensing agents arranged in a
symmetric formation. This work was extended in another
conference paper [44] where we initialized the discussion of
using the finite volume method to allow four agents in arbitrary
formation to perform parameter identification. We further
extended the work in our recent article [45] where the exper-
imental results on real mobile robots measuring a C O2 field
have been achieved. In this article, using the finite volume
method, we extend the cooperative filtering scheme [2], [45]
to the case with N ≥ 4 agents in an arbitrary formation
to allow flexibility in practical scenarios. This article also
rederived the discretized information dynamics and discovered
a simpler structure that better motivates the design of a
cooperative Kalman filter under state constraints, which is
not used in [44] and [45]. Furthermore, the new structure is
leveraged to perform convergence analysis of the cooperative
Kalman filter that has not been addressed in previous work.
The experimental data of a real C O2 field collected in [45]
are used in this article to verify the new algorithms, which
demonstrates the applicability of the algorithms in practice.

Other than the work already mentioned, some of our
earlier works explored the parameter identification problem
for DPS in different theoretical directions than this article.
You and Wu [41] developed a distributed online pas-
sive identifier to estimate the unknown parameter itera-
tively along the trajectory of the mobile sensor network.
You and Wu [46] proposed a multimodel structure to represent
the advection–diffusion equation, which was parameterized as
blended linear PDE models. These earlier works use very
different models and filtering techniques, and hence are com-
plement to the effort in this article.

The rest of this article is organized as follows. Section II
introduces the problem formulation. Section III presents the
discretization and numerical approximation. Section IV derives
the constrained cooperative Kalman filter for state estimation
and parameter identification. Section V provides convergence
analysis of the filtering scheme and bias analysis. The simu-
lation and experiments results are given in Section VI. Con-
clusions and further works follow in Section VII. To increase
the readability of this article, some proofs are given in the
Appendix.

II. PROBLEM FORMULATION

Consider the 2-D scalar field z(r, t) where r represents
the space coordinates and t represents the time. Suppose the
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spatial domain � ⊂ R
2 is given such that r ∈ �. The spatial

gradient of the field is represented by ∇z(r, t), and the time
variation is denoted as ((∂z(r, t))/(∂ t)).

A. Environmental Model

For real-life environmental modeling, it is often necessary
to accept certain restrictions for z(r, t) to reduce the complex-
ity and computational load. In this article, we consider the
restriction on the field z(r, t) where it must satisfy the 2-D
advection–diffusion process

∂z(r, t)

∂ t
= θ�z(r, t)+ vT ∇z(r, t)

∂∇z(r, t)

∂ t
= 0 (1)

where θ > 0 is a constant unknown diffusion coefficient,
� represents the Laplacian operator, and v is a known constant
vector representing flow velocity. Note that we require the time
derivative of the spatial gradient ((∂∇z(r, t))/(∂ t)) to vanish.
This will simplify the model for estimation.

Assumption 1: The field z(r, t) must satisfy the constrained
advection–diffusion equation (1).

Equation (1) can be viewed as a regularization constraint
for the agents aiming to learn the underlying field z(r, t). The
equality constraint (1) reduced the number of possible fields
that can be constructed from limited data.

Remark 2: The real-life spatial–temporal processes often
contain significant uncertainty and are affected by many
unknown factors. It is a common practice to use models
based on physical principles, such as the advection–diffusion
equation, and impose constraints on the model. Our filtering
method can also apply to the case where ((∂∇z(r, t))(∂ t))
behaves randomly with a known mean function.

Remark 3: There is no need to specify the boundary con-
ditions for the advection–diffusion equation because our goal
is to estimate z(r, t) from sensor measurements. In practical
applications, the exploration domain � is much larger than the
source and sensor dimensions so that the shape of the boundary
of the domain� does not play a role in the estimation of z(r, t)
from sensor measurements.

B. Model for Mobile Sensing Agents

Consider a formation of N coordinated agents moving in
the field, each of which carries a sensor that takes point
measurements of the field z(r, t). We consider the agents with
single-integrator dynamics given by

ṙi (t) = ui(t), i = 1, 2, . . . , N (2)

where ri (t) and ui(t) ⊆ R
2 are the position and the velocity

of the i th agent, respectively.
Let rc = [rc,x , rc,y]T be the center of the formation formed

by the mobile sensing agents at t , i.e., rc = (1/N)
∑N

i=1 ri (t).
The dynamics of the field value along the trajectory of the
formation center rc according to

ż(rc, t)= ∂z(rc, t)

∂rc

drc

dt
+ ∂z(rc, t)

∂ t
=∇z(rc, t) · ṙc + ∂z(rc, t)

∂ t
(3)

where ∇z(rc, t) is the spatial gradient of z(rc, t). Furthermore,
the gradient ∇z(rc, t) also evolves along the trajectory of the
formation center, which satisfies

∇̇z(rc, t) = H (rc, t) · ṙc + ∂∇z(rc, t)

∂ t
(4)

where H (rc, t) is the Hessian matrix.
In most applications, the measurements are taken by the

agents discretely over time. Let the moment when new mea-
surements are available be tk , where k is an integer index. Let
the position of the i th agent at the moment tk be rk

i and the
field value at rk

i be z(rk
i , k).

We have the following assumption for the sensing agents.
Assumption 4: We assume the number of agents to be

N ≥ 4. Each agent can measure its position rk
i and field

value z(rk
i , k). Each agent shares the measurements with all

other agents.
The measurement of the i th agent can be modeled as

p(rk
i , k) = z(rk

i , k)+ ni (5)

where ni is assumed to be i.i.d. Gaussian noise.

C. Formation and Motion Control

Control laws for the velocities of the agents are required
so that the mobile sensor network can move along a certain
trajectory while maintaining a desired formation. We can view
the entire formation as a deformable body with its shape
under control. We assume that the control laws used by the
agents have been designed to achieve both motion control and
formation control.

Motivated by [25], [26], [47], we apply the following con-
sensus tracking algorithm for each agent to achieve formation
control: ui (t) = ṙi (t) = ṙd

i − ϕi(ri − rd
i ), where ui (t) is

the control input of the i th robot, ϕi is a positive scalar,
and rd

i represents the desired position of the i th agent. rd
i is

determined by rd
i = rc + Ri · rd

i F , where rd
i F represents the

desired deviation of the i th agents relative to the formation
center rc and Ri is the rotation matrix from body frame to
inertia frame.

If the spatial gradient can be estimated, the motion con-
trol for the agents can be designed to achieve interesting
behaviors. For example, we may set the velocities of the
agents to be aligned with the estimated gradient direction
rk+1

c = rk
c + τ0(∇z(rk

c , k))/(‖∇z(rk
c , k)‖2), where τ0 is the

speed of the sensing agent and ∇z(rk
c , k) is the spatial gradient

at the center of the formation. Then the formation can move
along the spatial gradient for source seeking. For more details
about the motion design, interested readers can refer to our
articles [41], [48].

D. Design Goals

Now combining (1), (3), and (4) together, we obtain the
following equations, which we call the continuous time infor-
mation dynamics:

ż(rc, t) = ∇z(rc, t) · (ṙc + v)+ θ�z(rc, t) (6)

∇̇z(rc, t) = H (rc, t) · ṙc. (7)
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Our goal is to use measurements collected by the mobile
sensors to estimate the field z(r, t) and to identify the diffu-
sion parameter θ in the information dynamics. The difficulty
associated with this problem is that we rely on a relatively
small number of moving sensors. The measurements are
finite-dimensional time series that need to be processed to
estimate the field, which is an infinite dimensional object. This
problem is different from the case where large number of static
sensors are available to provide coverage of the spatial domain.

We solve this problem within the theoretical framework
of state estimation and parameter identification. A two-step
scheme, such as those in [14] and [19], can be used to solve
our problem. Specifically, we iteratively perform the following
steps.

1) Under Assumption II.1, we estimate the states z(rc, t)
and ∇z(rc, t), as well as the Hessian H (rc, t) and the
Laplacian �z(rc, t) based on the collected measure-
ments in (5).

2) Using the estimated states, an online parameter identi-
fication algorithm will estimate the unknown constant
diffusion coefficient θ .

For the first step, we have developed a cooperative filtering
algorithm that converts the measurement time series into the
estimates of the field modeled by (1). For the second step,
we have developed an RLS algorithm to estimate the diffusion
coefficient.

III. DISCRETIZATION AND NUMERICAL APPROXIMATION

We will discretize the information dynamics (6), (7) and
the constraint equation (1) properly to facilitate the state
estimation and parameter identification problem. The dis-
cretization involves both the spatial and time domains. The
errors associated with descretization can be controlled to be
small.

A. Finite Volume Approximation

Suppose the current time instant is tk . Let rk
c = [rk

c,x, r
k
c,y]T

be the center of the formation at tk , i.e., rk
c = (1/N)

∑N
i=1 rk

i .
Most terms in the information dynamics can be approximated
using finite difference method. The term that needs special
attention is the Laplacian term �z(rk

c , k). The finite difference
method only works for the case when four agents are arranged
in a symmetric formation [2]. Thus, we apply the finite volume
method [6], [49] to approximate �z(rk

c , k) with N ≥ 4 agents
in an arbitrary formation. The details of the calculations are
shown in Appendix I.

Using the finite volume approximation, and let δt = tk+1 −
tk = tk − tk−1 be the sampling interval, we discretize the
advection–diffusion PDE (1) at the formation center rk

c as

z
(
rk

c , k + 1
) − z

(
rk

c , k
)

δt
− vT ∇z

(
rk

c , k
) = θ�z

(
rk

c , k
)

(8)

where δt = tk+1 − tk is the sampling interval. Then we can
rewrite (54) as follows:
z
(
rk

c , k + 1
) − z

(
rk

c , k
)

δt
− vT ∇z

(
rk

c , k
) = 	kθ − e

(
rk

c , k
)

(9)

where 	k is defined in (60), and e(rk
c , k) is defined in (59) in

Appendix I.
The sampling time δt must obey the inequalities δt ≤

(4θ/|v|2) and δt ≤ (�c/4θ) for the discretization method to
converge to continuous dynamics when the volume of �c is
arbitrarily small [6]. Many results have shown the convergence
and accuracy of the above finite volume approximation (9)
under mild technical assumptions [6], [49], [50]. Therefore,
we make the following idealized assumption:

Assumption 5: We assume that the formation is sufficiently
small, and the discretization in both space and time is suf-
ficiently accurate so that the approximation error e(rk

c , k) is
arbitrarily small e.g., e(rk

c , k) ≈ 0.
The assumption is made for the convenience of theoretical
analysis. Violation of this assumption will not affect the
design of the filtering algorithm and the parameter estimation
algorithm. The effect of nonzero e(rk

c , k) is on the accuracy
of the filter and estimates. In simulation and experimental
studies, we observed some bounded errors, which caused
limited performance degradation.

B. Discrete Information Dynamics

We observe from (9) that both z(rk
c , k) and z(rk

c , k + 1)
need to be modeled by discretizing the information dynamics.
We first model z(rk

c , k). The finite difference approximation
of each term of (6) at time t = tk−1 and at position rc = rk−1

c
gives

ż(rc, t)| t=tk−1 ,rc=rk−1
c

≈ z
(
rk

c , k
) − z

(
rk−1

c , k − 1
)

δt

∇z(rc, t) · ṙc| t=tk−1,rc=rk−1
c

≈
(
rk

c − rk−1
c

)T ∇z
(
rk−1

c , k − 1
)

δt
.

(10)

Substituting (10) into (6) gives the information dynamics of
z(rk

c , k) as

z(rk
c , k) =

(
1 − αcθ̂kδt

�c

)
z
(
rk−1

c , k − 1
)

+ θ̂kδt

�c

N∑
i=1

αi · z
(
rk−1

i , k − 1
)

+ (
rk

c − rk−1
c + vδt

)T ∇z
(
rk−1

c , k − 1
)

+w1
(
rk−1

c , k − 1
)

(11)

where θ̂k represents the estimate of θ at time tk , which
will be obtained from parameter identification later. w1(rk

c , k)
represents the modeling error, which accounts for positioning
errors, estimation errors for the Hessian matrix, and other
approximation errors including e(rk

c , k) of (59) caused by
higher order terms omitted from the finite volume scheme.

Similarly, (7) can also be discretized at t = tk−1, rc = rk−1
c

as

∇z
(
rk

c , k
) = ∇z

(
rk−1

c , k − 1
) + H

(
rk−1

c , k − 1
)(

rk
c − rk−1

c

)
+w2

(
rk−1

c , k − 1
)
. (12)
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We define the information state as X a(k + 1) =
[z(rk

c , k),∇z(rk
c , k)T ]T . We define the noise vector wa(k) =

[w1(rk−1
c , k − 1),w2(rk−1

c , k − 1)]T . Then define the matrix

Aa
θ̂
(k) =

⎡
⎣ 1 − αcθ̂kδt

�c

(
rk

c − rk−1
c + vδt

)T

0 I2×2

⎤
⎦ (13)

and the input vector as

U a(k) =

⎡
⎢⎢⎣
θ̂kδt

�c

N∑
i=1

αi · z
(
rk−1

i , k − 1
)

H
(
rk−1

c , k − 1
)(

rk
c − rk−1

c

)
⎤
⎥⎥⎦. (14)

The information dynamics now has the simplified form

X a(k + 1) = Aa
θ̂
(k)X a(k)+ U a(k)+ wa(k). (15)

By applying formation control, rk−1
i can be controlled to

be close to rk−1
c . Therefore, the field value can be locally

approximated by a Taylor series up to second-order as

z
(
rk−1

i , k − 1
)

≈ z
(
rk−1

c , k − 1
) + (

rk−1
i − rk−1

c

)T ∇z
(
rk−1

c , k − 1
)

+ 1

2

(
rk−1

i − rk−1
c

)T
H

(
rk−1

c , k − 1
)(

rk−1
i − rk−1

c

)
. (16)

Let Z a(k) = [z(rk−1
1 , k − 1) · · · z(rk−1

N , k − 1)]T be the
vectors of true field values. Define the matrices Ca(k) and
Da(k) as

Ca(k) =

⎡
⎢⎢⎣

1
(
rk−1

1 − rk−1
c

)T

...
...

1
(
rk−1

N − rk−1
c

)T

⎤
⎥⎥⎦ (17)

and

Da(k) =

⎡
⎢⎢⎢⎢⎣

1

2

((
rk−1

1 − rk−1
c

) ⊗(
rk−1

1 − rk−1
c

))T

...
1

2

((
rk−1

N − rk−1
c

) ⊗(
rk−1

N − rk−1
c

))T

⎤
⎥⎥⎥⎥⎦ (18)

where
⊗

is the Kronecker product. The Taylor expan-
sions (16) for all sensors near rk−1

c can be rewritten in a vector
form as

Z a(k) = Ca(k) · X a(k)+ Da(k)H a(k) (19)

where H a(k) is a column vector obtained by rearranging
elements of the Hessian H (rk−1

c , k − 1).
Suppose Ĥ a(k) represents the estimate of the vector form

Hessian H a(k) at the center rk−1
c , (5) can be remodeled as

Pa(k) = Ca(k) · X a(k)+ Da(k)Ĥ a(k)+ Da(k)εa(k)+ na(k)

(20)

where Pa(k) = [p(rk−1
1 , k −1) · · · p(rk−1

N , k −1)]T is the mea-
surement vector, εa(k) represents the error in the estimation
of the Hessian matrices, and na(k) is the vector of Gaussian
measurement noise ni in (5).

The next goal is to model z(rk
c , k + 1). The information

dynamics (6) can also be discretized at time t = tk and at
position rc = rk−1

c using

ż(rc, t)| t=tk ,rc=rk−1
c

≈ z
(
rk

c , k + 1
) − z

(
rk−1

c , k
)

δt

∇z(rc, t) · ṙc| t=tk ,rc=rk−1
c

≈
(
rk

c − rk−1
c

)T ∇z
(
rk−1

c , k
)

δt
. (21)

Substituting (21) into (6) leads to

z
(
rk

c , k+ 1
) − z

(
rk−1

c , k
)

δt
=

(
rk

c − rk−1
c

)T ∇z
(
rk−1

c , k
)

δt
+ vT ∇z

(
rk−1

c , k
) + θ�z

(
rk−1

c , k
)
.

(22)

According to (8) and (9) at time tk and position rk−1
c ,

(22) can be rewritten as

z
(
rk

c , k + 1
) =

(
1 − αc θ̂kδt

�c

)
z
(
rk−1

c , k
)

+ θ̂kδt

�c

N∑
i=1

αi · z
(
rk

i , k
)

+ (
rk

c − rk−1
c + vδt

)T ∇z
(
rk−1

c , k
)

+w1
(
rk−1

c , k
)
. (23)

Equation (7) can also be discretized at t = tk, rc = rk−1
c to

obtain the following equation:
∇z

(
rk

c , k + 1
) = ∇z

(
rk−1

c , k
) + H

(
rk−1

c , k
)(

rk
c − rk−1

c

)
+w2

(
rk−1

c , k
)
. (24)

We define the information state as Xb(k + 1) = [z(rk
c , k +

1),∇z(rk
c , k + 1)T ]T , the state noise vector as wb(k) =

[w1(rk
c , k),w2((rk

c , k))]T , the state transition matrix as

Ab
θ̂
(k) =

⎡
⎣ 1 − αc θ̂kδt

�c

(
rk

c − rk−1
c + vδt

)T

0 I2×2

⎤
⎦ (25)

and the input vector as

U b(k) =

⎡
⎢⎢⎣
θ̂kδt

�c

N∑
i=1

αi · z
(
rk

i , k
)

H
(
rk−1

c , k
)(

rk
c − rk−1

c

)
⎤
⎥⎥⎦. (26)

The information dynamics now has the simplified form

Xb(k + 1) = Ab
θ̂
(k)Xb(k)+ U b(k)+ wb(k). (27)

By applying formation control, rk
i can be controlled

to be close to rk−1
c . Therefore, the field value can be

locally approximated by a Taylor series up to second-order
as

z
(
rk

i , k
) ≈ z

(
rk−1

c , k
) + (

rk
i − rk−1

c

)T ∇z
(
rk−1

c , k
)

(28)

+ 1

2

(
rk

i − rk−1
c

)T
H

(
rk−1

c , k
)(

rk
i − rk−1

c

)
. (29)
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Let Z b(k) = [z(rk
1 , k) · · · z(rk

N , k)]T be the vectors of true
field values. Define the matrices Cb(k) and Db(k) as

Cb(k) =

⎡
⎢⎢⎣

1
(
rk

1 − rk−1
c

)T

...
...

1
(
rk

N − rk−1
c

)T

⎤
⎥⎥⎦ (30)

and

Db(k) =

⎡
⎢⎢⎢⎢⎣

1

2
(
(
rk

1 − rk−1
c

) ⊗(
rk

1 − rk−1
c

))T

...
1

2

((
rk

N − rk−1
c

)⊗(
rk

N − rk−1
c

))T

⎤
⎥⎥⎥⎥⎦. (31)

The Taylor expansions (16) for all sensors near rk−1
c can be

rewritten in a vector form as

Z b(k) = Cb(k) · Xb(k)+ Db(k)H b(k) (32)

where H b(k) is a column vector obtained by rearranging
elements of the Hessian H (rk−1

c , k).
Suppose Ĥ b(k) represents the estimate of the vector form

Hessian H b(k) at the center rk−1
c , (5) can be remodeled as

Pb(k) = Cb(k) · Xb(k)+ Db(k)Ĥ b(k)+ Db(k)εb(k)+ nb(k)

(33)

where Pb(k) = [p(rk
1 , k) · · · p(rk

N , k)]T is the measurement
vector, εb(k) represents the error in the estimation of the
Hessian matrices, and nb(k) is the vector of Gaussian mea-
surement noise ni in (5).

Remark 6: We can observe that the discretized information
dynamics and measurement equations actually contain two sets
of equations. One set on (z(rk

c , k),∇z(rk
c , k)) and another set

on (z(rk
c , k + 1),∇z(rk

c , k + 1)). These two sets of equations
appear to be uncoupled. Hence, it may not be obvious why
both sets are needed. We will show next that using both sets
of equations will help guarantee the state constraints imposed
by the advection–diffusion equation after discretization. This
will also lead to the identification of the parameter θk .

C. Discretized State Constraints

The discretized advection–diffusion equation (9) will be
used in two ways in this article. First, if we assume that an
estimation of the parameter θ is available as θ̂k , then the states
z(rk

c , k + 1) and z(rk
c , k) are the “future and present” field

values at a given position r = rk
c . The constraint between the

states z(rk
c , k + 1) and z(rk

c , k) at each step is

z
(
rk

c , k + 1
) −

(
1 − αc θ̂kδt

�c

)
z
(
rk

c , k
) − vT δt∇z(rk

c , k)

= θ̂kδt

�c

N∑
i=1

αi · z
(
rk

i , k
)
. (34)

This provides an equality constraint on the states X a(k)
and Xb(k). Define X (k) = [X aT (k), XbT (k)]T . The state
constraint is an equality constraint induced by the discretized
advection–diffusion equation, which can be rewritten in a
vector form as

G(k) · X (k) = d(k) (35)

where G(k) = [(−1 + ((αcθ̂k−1δt)/�c)),−vT δt, 1, 0] and
d(k) = ((θ̂k−1δt)/�c)

∑N
i=1 αi · z(rk−1

i , k − 1).
Since the two systems marked by the superscripts a and

b are now coupled by the state constraint. We define a
set of equations without the superscripts to represent the
equations for the overall state dynamics and observation
equations. Let Aθ̂ (k) = diag[Aa

θ̂
, Ab

θ̂
], C(k) = diag[Ca,Cb],

and D(k) = diag[Da, Db] be the relevant matrices. Let
w(k)= [waT (k),wbT (k)]T, U(k)=[U aT (k),U bT (k)]T , P(k)=
[PaT (k), PbT (k)]T , H (k) = [H aT (k), H bT (k)]T , ε(k) =
[εaT (k), εbT (k)]T , and n(k) = [naT (k),nbT (k)]T be the rele-
vant vectors. Then the overall state and observation equations
are

X (k + 1) = Aθ̂ (k)X (k)+ U(k)+ w(k)

d(k) = G(k) · X (k)

P(k) = C(k) · X (k)+ D(k)Ĥ (k)+ D(k)ε(k)+ n(k).

(36)

The goal is to estimate the state X (k) and the parameter θ
given the measurements P(k) for time up to k.

IV. STATE ESTIMATION AND PARAMETER IDENTIFICATION

Our solution is based on the derivation of a constrained
cooperative Kalman filter. The following assumption is needed
to enable the Kalman filter.

Assumption 7: We assume that w(k), ε(k), and n(k)
are i.i.d Gaussian noises with zero mean. We assume
E[w(k)w(k)T ] = W , E[n(k)n(k)T ] = R, and E[ε(k)ε(k)T ] =
Q are known once the positions of the sensors are known.

Remark 8: The assumption is made for theoretical conve-
nience to enable convergence analysis of the Kalman filter.
The assumption that w(k) and ε(k) are i.i.d Gaussian with
zero mean may be unrealistic. However, this assumption is
needed to justify the application of filtering techniques for
state estimation. Once enough data are gathered, the estimates
of W , Q, and R can be performed through offline system
identification techniques. Therefore, the assumption about W ,
Q, and R is reasonable in many applications, for example,
oceanography and meteorology. In these applications, the
statistical properties of ocean fields and atmospheric fields are
usually known from accumulated observational data over a
long period of time [26], [43]. Since the error covariances
of w(k) and ε(k) are not theoretically characterized and
depend on heuristics and simulations [26], we will validate
the assumption through simulation.

A. Constrained Kalman Filter

We observe that discretized information dynamics is con-
strained. Extension to the Kalman filter was made by [51]
to incorporate equality constraints, leading to the cooperative
Kalman filter design as follows.

(1) The one-step prediction

X̂−(k) = Aθ̂ (k − 1)X̃+(k − 1)+ U(k − 1) (37)

where X̃+(k−1) is the current constrained state estimate
and X̂−(k) is a prior unconstrained state estimate.
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(2) Error covariance for the one-step prediction

R−
c (k) = Aθ̂ (k − 1)R+

c (k − 1)AT
θ̂
(k − 1)+ Q. (38)

(3) Optimal gain

K (k) = R−
c (k)C

T (k)[C(k)R−
c (k)C

T (k)

+ D(k)QDT (k)+ R]−1. (39)

(4) Updated unconstrained estimate

X̂+(k) = X̂−(k)+ K (k)(P(k)− C(k)X̂−(k)
−D(k)Ĥ(k)). (40)

(5) Error covariance for the updated estimate

R+
c (k)

−1 = R−
c (k)

−1+CT (k)[D(k)QDT (k)+ R]−1C(k).

(41)

(6) Updated constrained estimate

X̃+(k)= X̂+(k)
− G(k)T [G(k)G(k)T ]−1[G(k)· X̂+(k)−d(k)].

(42)

It should be noted that we derive the constrained Kalman
filter (42) by directly projecting the unconstrained state esti-
mate X̂+(k) onto the constraint surface [51]. This requires the
term G(k)G(k)T to be invertible. In our case, G(k)G(k)T =
(1 − ((αcθ̂kδt)/�c))

2 + 1 + vT v · δt2, which is nonsingular at
each time step.

B. Parameter Identification

The Hessian Ĥ(k) in the term U(k) can be viewed as a
parameter that needs to be identified to enable the cooperative
Kalman filter. By time step k−1, we have obtained an estimate
of X̃+(k − 1) from the cooperative Kalman filter. Using the
computed estimates X̃+(k −1) and U(k −1), before the arrival
of measurements at time step k, we can obtain a prediction
for X (k) as X̂−(k) = Aθ̂ (k − 1)X̃+(k − 1)+ U(k − 1). If we
assume that the number of sensors N ≥ 4 and the formation is
not collinear, we have P(k) = C(k) · X̂−(k)+ D(k)Ĥ(k). The
Hessian estimate can be solved using the least mean square
method

Ĥ (k) = (
D(k)T D(k)

)−1
D(k)T

(
P(k)− C(k)X̂−(k)

)
. (43)

Remark 9: To enable the Hessian estimation in (43), the
matrix D(k)T D(k) must be nonsingular. Thus, the minimum
number of agents that enables the Hessian estimation is
four in 2-D. In real applications, it is better to select some
redundant agents and a nonsymmetric formation to guarantee
the nonsingular property.

Remark 10: Since the sensor measurements p(rk
i , k) and

p(rk−1
i , k − 1) are available in the measurement vector P(k),

one straightforward and simple way is to replace z(rk
i , k)

and z(rk−1
i , k − 1) with the sensor measurements p(rk

i , k)
and p(rk−1

i , k − 1), which is adopted in this article. The
other way is to design a separate one-step filter to reduce
the noise of measurements [26]. Running the one-step filter
makes our closed-loop process more complex and increases

the computation cost, which is omitted here. Interested readers
can refer to [26] for more details.

Once the state of the cooperative Kalman filter is estimated
sequentially over time, we use the RLS method to iteratively
update the estimate of θ based on the discretized model (9).
An estimate of the information state X (k + 1) is available as
X̂(k + 1) = [ẑ(rk

c , k),∇ ẑ(rk
c , k), ẑ(rk

c , k + 1),∇ ẑ(rk
c , k + 1)]T ,

then by combining the terms on the left-hand side of (9),
we define the term Ŷ (rk

c , k) as

Ŷ
(
rk

c , k
) = ẑ

(
rk

c , k + 1
) − ẑ

(
rk

c , k
)

δt
− vT ∇ ẑ

(
rk

c , k
)
. (44)

Next, the field value z(rk
i , k) is replaced by the measurement

p(rk
i , k). Define the estimate of 	̂k as the estimate for 	k as

follows:

	̂k = 1

�c

[
N∑

i=1

αi · p
(
rk

i , k
) − αc · ẑ

(
rk

c , k
)]
.

This leads to

Ŷ (rk
c , k) = 	̂kθ + η(k) (45)

where ηk represents the approximation error.
Assumption 11: We assume η(k) is a noise term with zero

mean and bounded covariance matrix Rη.
Note that the term ηk contains approximation errors from

several sources of approximations. Hence, it might not be
Gaussian noise, and it may also be correlated in time k.
Nevertheless, based on the cooperative filtering scheme, the
diffusion coefficient can be directly estimated without the need
of numerically solving the diffusion equation. Given an initial
estimate for the diffusion coefficient, a simple application of
the RLS method can iteratively update the estimate of θ .
Following the canonical procedure of RLS estimation outlined
in [52], we derive the following equations to update the
estimate θ :

θ̂k = θ̂k−1 + Kθ (k)
(
Ŷ

(
rk

c , k
) − 	̂k θ̂k−1

)
(46)

Kθ (k) = 
(k − 1)	̂T
k

(
	̂k
(k − 1)	̂T

k + Rη
)−1

(47)


(k) = (
I − Kθ (k)	̂k

)

(k − 1) (48)

where θ̂k is the estimate of θ , Kθ (k) is the estimator gain
matrix, and 
(k) is the estimation error covariance matrix.

The proposed recursive cooperative filtering scheme is based
on two subsystems: the cooperative Kalman filtering subsys-
tem [(37)–(42)] and the RLS subsystem in (46). In the cooper-
ative Kalman filtering subsystem, assuming that the parameter
θ̂k is constant and known, we run the cooperative Kalman filter
to estimate the states based on the collected measurements.
In the RLS subsystem, assuming that the estimated states can
track true values, we use the RLS method to iteratively update
the estimate of θ .

V. CONVERGENCE AND BIAS ANALYSIS

In this section, we prove the convergence of the cooperative
Kalman filter. [53, Th. 7.4] states that if the time-varying
system dynamics are uniformly completely controllable and
uniformly completely observable, the Kalman filter for this
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system converges. With this result, we will establish a set
of sufficient conditions for the mobile sensors such that the
uniformly complete controllability and observability of the
unconstrained Kalman filter can be guaranteed.

A. Convergence of the Cooperative Kalman Filter

From Remark 6, the two subsystems marked by superscripts
a and b are uncoupled if the state constraint is not consid-
ered. In the proof of uniformly complete controllability and
observability of the unconstrained Kalman filer, the system
will be decoupled into two subsystems marked by superscripts
a and b. We will first analyze the convergence of the Kalman
filters for the two subsystems separately, and then analyze the
convergence of the Kalman filter for the whole system.

Let �(k, j) be the state transition matrix from time t j to tk ,
where k > j . Then, �(k, j) = Aθ̂ (k−1)Aθ̂ (k−2) · · · Aθ̂ ( j) =
�−1( j, k) and we define �(k, j) = diag[�a,�b], where
�a(k, j) = Aa

θ̂
(k − 1)Aa

θ̂
(k − 2) · · · Aa

θ̂
( j) and �b(k, j) =

Ab
θ̂
(k−1)Ab

θ̂
(k−2) · · · Ab

θ̂
( j). Since Aa

θ̂
( j) = Ab

θ̂
( j) for any j ,

we can have �a(k, j) = �b(k, j) for any j < k and the
following lemma.

Lemma 12: For �(k, j) as defined above and C(k) as
defined in (20), we can have

�a(k, j) = �b(k, j) =
[
ξθ̂ φT

0 I2×2

]

�a( j, k) = �b( j, k) =
⎡
⎢⎣

1

ξθ̂
−φ

T

ξθ̂

0 I2×2

⎤
⎥⎦ (49)

and

Ca( j)�a( j, k) =

⎡
⎢⎢⎢⎢⎢⎣

1

ξθ̂

(
r j−1

1 − r j−1
c − φ

ξθ̂

)T

...
...

1

ξθ̂

(
r j−1

N − r j−1
c − φ

ξθ̂

)T

⎤
⎥⎥⎥⎥⎥⎦

Cb( j)�b( j, k) =

⎡
⎢⎢⎢⎢⎢⎣

1

ξθ̂

(
r j

1 − r j−1
c − φ

ξθ̂

)T

...
...

1

ξθ̂

(
r j

N − r j−1
c − φ

ξθ̂

)T

⎤
⎥⎥⎥⎥⎥⎦ (50)

where ξθ̂ = (1 − ((αcθ̂k−1δt)/�c))(1 − ((αc θ̂k−2δt)/
�c)) · · · (1 − ((αc θ̂ jδt)/�c)),

φT = (
rk−1

c − rk−2
c + vδt

)T

+
k− j−1∑

n=1

(
n∏

m=1

(
1−αc θ̂k−mδt

�c

))(
rk−n−1

c −rk−n−2
c + vδt

)T

and C( j)�( j, k) = diag[Ca( j)�a( j, k),Cb( j)�b( j, k)]
Let us first restate the definitions of uniformly complete con-

trollability and uniformly complete observability, respectively
(modified from Definitions in [53]).

Definition 13: The proposed cooperative filter is uniformly
completely controllable if there exist τ1 > 0, λ1 > 0, and

λ2 > 0 such that the controllability Grammian C(k, k − τ1) =∑k
j=k−τ1

�(k, j)W�(k, j)T satisfies λ1 I6×6 ≤ C(k, k − τ1) ≤
λ2 I6×6 for all k > τ1. Here, W is the covariance for the state
error w(k).

In the following procedures, we provide a set of sufficient
conditions such that the uniformly complete controllability
and observability of the proposed filter can be satisfied by
showing the upper and lower bounds of the controllability
and observability Grammian. In the procedure, there exist
some positive real numbers λ1, λ2, . . . , λ23. All these real
numbers are time-independent bounds for various quantities,
the values of which do not affect the correctness of our
discussions. Note that in this article, a relationship between
two symmetric matrices A1 ≤ A2 means that for any vector s
with compatible dimension, there exists sT A1s ≤ sT A2s.
We have the following proposition for uniformly complete
controllability.

Proposition 14: The proposed cooperative filter is uni-
formly completely controllable if the following conditions are
satisfied.

(Cd1) The covariance matrix W is bounded, i.e., λ3 I ≤
W ≤ λ4 I for some constants λ3, λ4 > 0.

(Cd2) The speed of each agent is uniformly bounded, i.e.,
‖r j

i − r j−1
i ‖ ≤ λ5 for all time j , for i = 1, . . . , N , and

for some constant λ5 > 0.
(Cd3) The estimated parameter θ̂ j is bounded, i.e., 0 ≤

θ̂ j < λ6. By properly selecting the sampling interval
δt and formation size �c, we can make θ̂ j satisfy that
0 < 1 − αc θ̂ jδt/�c ≤ 1 for all time j , which means
λ6 = �c/αcδt.

Proof: See the Appendix.
Definition 15: The proposed cooperative filter is uniformly

completely observable if there exist τ2 > 0, λ9 > 0, and
λ10 > 0 such that the observability Grammian O(k, k − τ2) =∑k

j=k−τ2
�T ( j, k)CT ( j)[D( j)QDT ( j) + R]−1C( j)�( j, k)

satisfies λ9 I6×6 ≤ O(k, k −τ2) ≤ λ10 I6×6 for all k > τ2. Here,
Q and R are the covariance matrices for Hessian estimation
error ε(k) and the measurement noise n(k), respectively.

To prove the uniformly complete observability, we also
require one elementary lemma [26]. The proof just uses basic
linear algebra knowledge, and thus omitted here.

Lemma 16: Suppose two 2 × 1 vectors a = [a1 a2]T and
b = [b1 b2]T form an angle � such that 0 < � < π . Then the
minimum eigenvalue λmin of the 2×2 matrix M = a·aT +b·bT

is strictly positive, i.e., λmin > 0
For uniformly complete observability, the following suffi-

cient conditions are established for a moving formation.
Proposition 17: The proposed Kalman filter is uniformly

completely observable if (Cd2), (Cd3), and the following
conditions are satisfied:

(Cd4) The number of agents N is greater than or equal to 3.
(Cd5) The covariance matrices R and Q are bounded, i.e.,

λ11 I ≤ R ≤ λ12 I and 0 ≤ Q ≤ λ13 I for some
constants λ11, λ12, λ13 > 0.

(Cd6) The distance between each agent and the formation
center is uniformly bounded from both above and
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below, i.e., λ14 ≤ ‖r j−1
i − r j−1

c ‖ ≤ λ15 for all j , for
i = 1, 2, . . . , N , and for some constants λ14, λ15 > 0.

(Cd7) There exists a constant time difference τ2, and for all
k > τ2, there exists a time instance j1 ∈ [k − τ2, k],
as well as two agents indexed by i1 and i2, such that
r j1−1

i1
, r j1−1

i2
, r j1−1

c are not collinear; and for all k > τ2,
there exists a time instance j2 ∈ [k − τ2, k], such that
r j2

1 , . . . , r
j2
N are not collinear.

Proof: See the Appendix.
By applying [53, Th. 7.4], we guarantee the convergence of

the unconstrained filter from the uniformly complete control-
lability and observability properties.

Now consider the state equality constraint (35), the conver-
gence analysis for a Kalman filter under equality constraints
on the states has been performed in [51]. Our problem can
be addressed similarly. Equation (42) indicates that the con-
strained estimate X̃+ can be viewed as the projection of the
unconstrained state estimate X̂+ on to the constrained state
space defined by G(k) and d(k). Given that G(k) is full rank,
according to [51, Th. 4], if X is the true value of the state,
then the following holds:

‖X − X̃+‖ ≤ ‖X − X̂+‖ (51)

where ‖·‖ is the l2 norm. This shows that the estimation
error of the constrained Kalman filter is bounded by the
estimate error of the unconstrained Kalman filter. Because the
unconstrained Kalman filter is convergent, the convergence of
the constrained Kalman filter can also be guaranteed.

Remark 18: Compared with the cooperative Kalman filter
in [26], the proposed filter deals with a spatial–temporal-
varying field instead of a static field. Thus, the performance of
the filter depends on the parameters of the spatial–temporal-
varying field. It should be noted that (Cd3) is essential, which
indicates that if the estimated parameter θ̂ is bounded by
0 ≤ θ̂ < (�c/αcδt), the convergence of the cooperative
Kalman filter can be guaranteed. That means the cooperative
Kalman filter can successfully track the states even though the
estimated parameter θ̂ is biased or slightly different from the
true parameter.

B. Parameter Identification

First, We can show that the Hessian estimate is unbiased.
Proposition 19: The estimate of the Hessian term Ĥ(k)

given in (43) is unbiased with error covariance mat-
rix

(
D(k)T D(k)

)−1
D(k)T [R − C(k)R−

c (k)C(k)]D(k)[(D(k)T

D(k)
)−1]T .

Proof: From the analysis of the property of Kalman filter,
we have P(k) = Z(k) + n(k) and X̂−(k) = X (k) + ψ1(k),
where E[n(k)n(k)T ] = R and E[ψ1(k)ψ1(k)T ] = R−

c (k).
Then we have

Ĥ (k) = (
DT D

)−1
DT

(
P − C X̂−)

(k)

= (
DT D

)−1
DT (Z−C X + n − Cψ1)(k)

= H (k)+ (
D(k)T D(k)

)−1
D(k)T (n(k)− C(k)ψ1(k)).

(52)

Since n(k) and ψ1(k) have zero mean, the expectation value
E[Ĥ(k)] equals E[H (k)]. The error covariance can be directly
calculated to be

(DT D)−1 DT [R − C R−
c C]D[(DT D)−1]T (k).

�
Unfortunately, the RLS method in (46) may not produce

an unbiased estimate for θ . It is well-known that least-square
methods generate biased parameter estimates when time-
correlated noise terms are presented (see Sec.7.3 [52]). In our
case, even though the online estimate of θ may be biased,
the performance of the parameter identification method can
be further refined offline using methods such as the bootstrap
method [54], [55]. We will use this method in the simulation
results to improve the accuracy of the estimation of θ .

It should be noted that the convergence of the Kalman filter
is not sensitive to the biases in parameter θ̂k . In other words,
the estimated states from the cooperative Kalman filtering can
successfully track the true values even though the estimated
parameter θ̂k is biased or slightly different from the true
parameter.

Remark 20: One may conjecture that the extended Kalman
filter (EKF) approach [7], [52] can be used to treat unknown
parameters θ̂k as an additional state variable and define an aug-
mented system. However, this augmented system is nonlinear,
since parameter θ̂k is multiplied by state variable X (k) in (36).
In this case, the corresponding state dynamics are nonlinear
and time-varying, which makes it difficult to analyze the
convergence of the resulting constrained cooperative Kalman
filter.

VI. SIMULATION AND EXPERIMENTAL RESULTS

A. Measuring a Simulated Field

To demonstrate the performance of the proposed approach
for online parameter estimation, we consider the 2-D
advection–diffusion equation (1) with the nominal value of
θ = 0.066 and the flow velocity v = (0.05, 0) for a simu-
lated domain. The initial condition is illustrated in Fig. 1(b),
in which the maximum value is at point (20, 30). The whole
domain of PDE is a rectangular area 0 ≤ x ≤ 90, 0 ≤
y ≤ 90 with spatial discretization of 1. We implement
an alternating direction implicit (ADI) finite volume scheme
in MATLAB, with 90-by-90 spatial grid. To simulate the
modeling error of discrete presentation, a Gaussian noise with
a magnitude of about 1% of the noise-free field value is added
to the field values. We also add 5% (in variance) Gaussian
noise to measurements taken by sensors. A computational time
step of 0.1 s is chosen for the simulation, which satisfies the
stability requirement of the finite volume method.

In the simulation, we select the asymmetric initial locations
of four sensing agents represented by red, blue, green, and
black stars as shown in Fig. 1(a). In Fig. 1(b) and (c), the
contours represent the level curves of the field values and the
blue dotted line is the trajectory of agents. At each time step,
the agents take measurements of the field, run the proposed
cooperative Kalman filter and the RLS algorithm to obtain the
estimates of the diffusion coefficient θ , and move along the
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Fig. 1. Gradient climbing trajectory of the mobile sensor network and
evolution of the field values. (a) Asymmetric formation of the mobile sensor
network at beginning time (formation at t = 0 s). (b) Field values at beginning
time (t = 0 s). (c) Field values at final time and the trajectory of agents
(t = 100 s).

Fig. 2. State estimation at the formation center along trajectory. (a) Field
value estimation. (b) Gradient estimation.

gradient direction estimated by the cooperative Kalman filter
while converging to a desired formation. The performance of
the state estimation and the gradient estimation is illustrated
in Fig. 2(a) and (b).

Initially, we set the estimate θ̂0 = 2. The online estimate
of the parameter is compared with the nominal diffusion
coefficient in Fig. 3, to show its accuracy. One can see that
θ̂ converges to the nominal value with 1.95% error, confirming
the effectiveness of the proposed algorithm. Even though
the online RLS only can provide a generally biased result,
we show that this slight bias in Fig. 3 can be further tuned
offline using the bootstrap method.

The bootstrap method is a Monte Carlo simulation-based
statistical technique. The basic idea of bootstrap methods for
refining bias estimation is resampling the original training
samples of size n to produce M bootstrap training sets of
size n, each of which is used to train a bootstrap esti-
mate. To obtain an efficient bootstrap estimate, the number
of resampling times M is ordinarily chosen in the range
of 25–200. In this work, we set M = 50, which is often
enough to give a good estimate [55]. Readers can refer to [55]
for more details of the bootstrap methods.

To achieve a fair validation, we randomly choose 100 nom-
inal values in the range of [0.3–0.7] and compare the per-
formance of RLS and bootstrap methods. We tabulate the
standard deviation of the errors and specify some results in
Table I. One can see that with the bootstrap method [54], [55],
the bias of the parameter has now been significantly reduced.

We also look into the case with bad initial guess where
we set the initial estimate θ̂0 = 2, ẑ0 = 85.9156 and
∇ ẑ0 = [45.6427, 53.7009]ᵀ with true initial state value z0 =
0.5510 and ∇z0 = [−0.0365,−0.0082]ᵀ. The estimated field

TABLE I

COMPARISON OF RLS AND BOOTSTRAP METHODS

Fig. 3. Estimation of diffusion coefficient θ with the initial value 2. The
blue solid line represents the estimated coefficient θ̂ and the red solid line is
the nominal value, which is set to 0.06.

value soon converges to the true field value. Here, the nominal
value of the parameter is set as θ = 5.5834, and the estimated
parameter converges to θ̂ = 5.7382 with bias = −0.1548. This
shows that even with bad initial guess, the state estimation and
parameter estimation still converge to the true value using our
proposed method.

B. Experimental Data and Simulated Agent Motion

A controllable CO2 diffusion field in a laboratory setup was
introduced in [45]. As illustrated in Fig. 4, the CO2 field
is distributed in an area with 3.5 × 3.5 m2. A sensor grid
which consists of 24 C O2 sensors is assembled to measure the
concentration of gas over the area. The sensors are calibrated
so that they all have consistent measurement values when we
reproduce the experiment in the same environment. During
the diffusion process of C O2 gas, the sensor grid measures
the gas concentration at fixed locations and sends the data
to MATLAB running in the central computer. The MATLAB
then reproduces the diffusion process by interpolating the field
values collected by the sensor grid at every discrete time
instant. The diffusion process obtained from the real field on
November 7, 2016, is shown in Fig. 5. CO2 begins diffusing at
step t = 0 s and ends at t = 120 s. The computational time step
is 1 s. Given the measurements collected from the sensor gird,
the nominal value of diffusion coefficient θn can be determined
as θn = 0.239. For more details about the experimental data
collection, refer to recent work [45].

We verify the experimental performance for diffusion
coefficient identification with four simulated sensing agents
deployed in the reconstructed field based on the experimental
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Fig. 4. Experimental setup. (a) Test-bed with a sensor grid, microcontrollers,
a CO2 outlet, and a steel support. (b) Illustration of the sensor grid.

Fig. 5. Snapshots of the diffusion field collected by the sensor grid and
visualized by MATLAB [45]. (a) Field at T = 0 s. (b) Field at T = 83.65 s.

Fig. 6. Trajectories of the agents in the two experiments. The black star
marks the source of the field.

data. To achieve a fair experimental validation, the experiment
is performed using two different starting points for the agents
marked by “A” and “B” in Fig. 6. Note that the field data are
collected while there is no air movement. Hence, our filtering
equations do not contain the advection terms.

We control the sensing agents to move along the esti-
mated gradient direction while keeping a constant formation.
In Fig. 6, the contours represent the level curves of the
diffusion field, the colored dots represent the four sensing
agents, the black star represents the source, and the orange line
and purple line represent the trajectories of the center of the
mobile sensor network staring from A and B, respectively.
The experiment begins at step t = 0 s and ends at t = 120 s.
The measuring frequency of the sensors is set to 0.5 Hz. As can
be observed from the figure, the agents trace the gradient of
the diffusion field in both the experiments to find the diffusion
source of the CO2 gas, which is the point with the highest
CO2 concentration.

Fig. 7. Estimated diffusion coefficients staring from A and B points are
shown in the dotted black line and dashed blue line, respectively. The nominal
value of diffusion coefficient (the red line) is 0.239, which is estimated from
measurements collected by the static sensor grid.

While the mobile sensor network is moving toward the
source, it also achieves real-time identification of the diffusion
coefficient by implementing the cooperative Kalman filter and
the RLS algorithm. Initially, we set the estimate θ̂0 = 1. The
estimation results of the diffusion coefficient are shown in
Fig. 7. As can be observed from Fig. 7, the estimates of the
parameter converge to stabilized values in both the experi-
ments, both of which are very close to the estimated nominal
value. The two values differ by a small amount of 0.0212.
Nevertheless, it demonstrates that the proposed algorithm is
robust under realistic uncertainties and disturbances.

VII. CONCLUSION

This work presented a cooperative filtering and parameter
estimation algorithm for advection–diffusion processes mea-
sured by a mobile sensor network. We provide an approach to
discretize the advection–diffusion equation in both space and
time domains leading to the information dynamics equations.
Based on information dynamics, a constrained Kalman filter
is proposed for state estimation, and an RLS estimation is
proposed for parameter estimation. Theoretical justifications
are provided for the convergence analysis of the cooperative
filter. The simulation and experimental results are provided
to demonstrate the efficiency of the proposed method. Future
work includes extending the proposed algorithm to PDE
models with spatially varying parameters.

APPENDIX I

Finite Volume Approximation of �2z

We first construct a volume �c around the formation
center rk

c . The constructions can be performed in different
ways, such as the cell-centered scheme and the vertex-centered
scheme [49], [50]. In this work, the volume �c is constructed
as a closed polygon that is formed by the perpendicular
bisectors of the line segments rk

1 rk
c , r

k
2 rk

c , . . . , r
k
N rk

c . We choose
the midpoints of the line segments rk

1 rk
c , r

k
2 rk

c , . . . , r
k
N rk

c . For
segment rk

i r k
c , a perpendicular bisector is a line that passes

through the midpoint on rk
i r k

c . These perpendicular bisectors
will intersect each other and form a closed polygon with a
simple loop boundary. The area enclosed by this polygon is
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Fig. 8. Finite volume construction for a mobile sensor network in 2-D.

the finite volume �c. To illustrate the idea, we plot the case
when N = 4, in Fig. 8. �c is the volume that is enclosed by
the polygon A1 A2 A3 A4. The points M1,M2,M3, and M4 are
the midpoints of the line segments rk

1 rk
c , r

k
2 rk

c , r
k
3 rk

c , and rk
4 rk

c ,
respectively.

Let Si = Ai Ai+1 where AN+1 = A1, and let n̂i be the
outward unit normal vector on the boundary segment Si . Let
the boundary of �c be S that now contains the segments
Si for i = 1, 2, . . . , N . We can see that n̂i is constant and
aligned with rk

i r k
c for each segment Si for i = 1, 2, . . . , N .

Our construction using the perpendicular bisectors guarantees
that n̂i is perpendicular to the boundary on each segment Si .

By applying Green’s theorem to the integration of equation
�z(r, t) over the finite volume �c, we can have the following
expression [56]:∫ ∫

�c

�z(r, t) d�c =
∮

S
(∇z(r, t))T n̂dr. (53)

The integration of (53) over a finite volume �c shown in
Fig. 8 results in a spatially discretized equation that holds
when the volume of �c is small

�z(rk
c , k) = 1

�c

(
N∑

i=1

∫
Si

(∇z(r, t))T n̂i dr

)
. (54)

Next, we will derive ∇z(r, t), r ∈ Si in (53) at time step k.
For any given i = 1, 2, . . . , N , with rk

i being close to rk
c ,

z(rk
i , k) can be locally approximated as follows:

z
(
rk

i , k
) − z

(
rk

c , k
) ≈ (∇z(r, k)

)T (
rk

i − rk
c

)
+

∫ 1

0

(
Hrk

i
(ξ)− Hrk

c
(ξ)

)
ξdξ, r ∈ Si (55)

where Hrk
i
(ξ) = (rk

i − r)T H
(
ξr + (1 − ξ)rk

i , k
)
(rk

i − r) with
H

(
ξr + (1 − ξ)rk

i , k
)

being the Hessian matrix at the point
ξr +(1−ξ)rk

i , r ∈ Si . By the construction of the finite volume,
we have

(∇z(r, t))T n̂i = (∇z(r, k))T
(
rk

i − rk
c

)∣∣rk
i − rk

c

∣∣
≈ z(rk

i , k)− z(rk
c , k)∣∣rk

i − rk
c

∣∣
− 1∣∣rk

i − rk
c

∣∣
∫ 1

0

(
Hrk

i
(ξ)− Hrk

c
(ξ)

)
ξdξ. (56)

Substituting the expression of ∇z(r, t)·n̂i into
∫

Si
θ∇z(r, k)·

n̂i dr gives∫
Si

θ∇z(r, k) · n̂i dr

≈ θ
| Si |

| rk
i − rk

c |
(
z(rk

i , k)− z(rk
c , k)

)

− θ

| rk
i − rk

c |
∫

Si

∫ 1

0

(
Hrk

i
(ξ)− Hrk

c
(ξ)

)
ξdξdr (57)

where | Si | is the length of the boundary segment Si .
Define the coefficients αi and αc as follows:

αi = |Si |∣∣rk
i − rk

c

∣∣
αc =

N∑
i=1

|Si |∣∣rk
i − rk

c

∣∣ . (58)

Define an approximation error term as

e(rk
c , k)= 1

�c

N∑
i=1

θ∣∣rk
i −rk

c

∣∣
∫

Si

∫ 1

0

(
Hrk

i
(ξ)−Hrk

c
(ξ)

)
ξdξdr

(59)

where e(rk
c , k) is the sum of integration of the differences of

two Hessian matrices at rk
i and rk

c , which is the higher order
term relative to the geometric distance ‖rk

i − rk
c ‖. To further

simplify the notations, we define

	k = 1

�c

[
N∑

i=1

(
αi z

(
rk

i , k
)) − αcz

(
rk

c , k
)]
. (60)

Then

θ�z
(
rk

c , k
) = 	kθ − e

(
rk

c , k
)
. (61)

It should be noted that αi and αc coefficients are related
to the shape of the formation that the mobile agents form.
In a special case where four agents form a symmetric for-
mation, α1 = α2 = α3 = α4 = 1, and αc = 4, which
agree with the coefficients obtained by the finite difference
method [2].

APPENDIX II

Proof of Proposition 14: Based on condition (Cd1),
we obtain that the controllability Grammian satisfies

λ3

k∑
j=k−τ1

�(k, j)�(k, j)T ≤ C(k, k − τ1)

and

C(k, k − τ1) ≤ λ4

k∑
j=k−τ1

�(k, j)�(k, j)T

for any k and τ1 such that k > τ1. Therefore, if we can find
the uniform bounds for each of these semi-definite symmetric
matrices, i.e., �(k, j)�(k, j)T , the overall bound for the
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controllability Grammian can be obtained readily. We first
apply Lemma 12 to compute �a(k, j)�a(k, j)T , that is,

�a(k, j)�a(k, j)T =
[
ξθ̂ φT

0 I2×2

][
ξθ̂ φT

0 I2×2

]T

=
[
ξ2
θ̂

+ ‖φ‖2 φT

φ I2×2

]
. (62)

Using basic linear algebra, we can obtain the eigenvalues
of matrix (62) as follows:
λ1 = 1

2

(
1 + ξ2

θ̂
+ ‖φ‖2 +

√(
1 + ξ2

θ̂
+ ‖φ‖2

)2 − 4ξ2
θ̂

)
λ2 = 1

λ3 = 1

2

(
1 + ξ2

θ̂
+ ‖φ‖2 −

√(
1 + ξ2

θ̂
+ ‖φ‖2

)2 − 4ξ2
θ̂

)
= ξ2

θ̂

λ1
.

It is easy to show that

λ1 = 1

2

(
1 + ξ2

θ̂
+ ‖φ‖2 +

√(
1 + ξ2

θ̂
+ ‖φ‖2

)2 − 4ξ2
θ̂

)

≥ 1

2

(
1 + ξ2

θ̂
+ ‖φ‖2 +

√(
1 + ξ2

θ̂

)2 − 4ξ2
θ̂

)

= 1

2

(
1 + ξ2

θ̂
+ ‖φ‖2 + 1 − ξ2

θ̂

)
≥ 1

and

λ1 = 1

2

(
1 + ξ2

θ̂
+ ‖φ‖2 +

√(
1 + ξ2

θ̂
+ ‖φ‖2

)2 − 4ξ2
θ̂

)

≤ 1

2

(
1 + ξ2

θ̂
+ ‖φ‖2 +

√(
1 + ξ2

θ̂
+ ‖φ‖2

)2
)

= 1 + ξ2
θ̂

+ ‖φ‖2.

Due to condition (Cd3), we can see that 0 < ξθ̂ ≤ 1

‖φ‖
=

∥∥∥∥(
rk−1

c − rk−2
c + vδt

)T

+
k− j−1∑

n=1

(
n∏

m=1

(
1− αcθ̂k−mδt

�c

))(
rk−n−1

c −rk−n−2
c + vδt

)T
∥∥∥∥

≤
∥∥∥(

rk−1
c − rk−2

c + vδt
)T

∥∥∥
+

k− j−1∑
n=1

(
n∏

m=1

(
1−αc θ̂k−mδt

�c

))∥∥∥(
rk−n−1

c −rk−n−2
c +vδt)T

∥∥∥
≤

∥∥∥(
rk−1

c −rk−2
c +vδt)T

∥∥∥+
k− j−1∑

n=1

∥∥∥(
rk−n−1

c −rk−n−2
c +vδt)T

∥∥∥
≤ ∥∥rk−1

c − rk−2
c

∥∥+‖vδt‖+
k− j−1∑

n=1

(∥∥rk−n−1
c −rk−n−2

c

∥∥+‖vδt‖)
≤ (k − j)(λ5 + ‖vδt‖)
≤ τ1(λ5 + ‖vδt‖).

Hence, we can show that λ1 is bounded both above and
below

1 ≤ λ1 ≤ 2 + τ1(λ5 + ‖vδt‖)
and the maximum value of λ1 is λ8 = 2 + τ1(λ5 + ‖vδt‖).

Since λ3 = (ξ2
θ̂
/λ1), we can have that

0 <
ξ2
θ̂

2 + τ1(λ5 + ‖vδt‖) ≤ λ3 ≤ ξ2
θ̂

≤ 1

and the minimum value of λ3 is λ7 = ((min ξ2
θ̂
)/λ8) > 0.

Therefore, we can conclude that λ7 I3×3 ≤ �a(k, j)
�a(k, j)T ≤ λ8 I3×3 for all time j ∈ [k − τ1, k].
Since �a(k, j) = �b(k, j), we can also have λ7 I3×3 ≤
�b(k, j)�b(k, j)T ≤ λ8 I3×3 for all time j ∈ [k − τ1, k].
This means that for �(k, j) = diag[�a,�b], λ7 I6×6 ≤
�(k, j)�(k, j)T ≤ λ8 I6×6 holds for all time j ∈ [k − τ1, k].
Hence, λ3λ7τ1 I6×6 ≤ C(k, k − τ1) ≤ λ4λ8τ1 I6×6. Let λ1 =
λ3λ7τ1 and λ2 = λ4λ8τ1. Thus, according to Definition 13,
we have proved the uniformly complete controllability
claim. �

Proof of Proposition 17: Based on condition (Cd6),
we first observe that every element in D(k) is bounded. Hence,
from conditions (Cd5) and (Cd6), we can prove that there
exists two positive constants λ16, λ17 such that λ16 IN×N ≤
[D(k)QDT (k)+ R] ≤ λ17 IN×N . Then, the observability Gram-
mian satisfies λ−1

17

∑k
j=k−τ2

�T ( j, k)CT ( j)C( j)�( j, k) ≤
O(k, k − τ2) ≤ λ−1

16

∑k
j=k−τ2

�T ( j, k)CT ( j)C( j)�( j, k) for
any k and τ2 such that k > τ2. Then the uni-
formly complete observability can be proved by find-
ing the positive uniform upper and lower bounds for∑k

j=k−τ2
�T ( j, k)CT ( j)C( j)�( j, k) for all k > τ2.

Since C( j)�( j, k) = diag[Ca( j)�a( j, k),Cb( j)�b( j, k)],
we can have

�T ( j, k)CT ( j)C( j)�( j, k)

= diag

[
(Ca( j)�a( j, k))T Ca( j)�a( j, k),

(
Cb( j)�b( j, k)

)T
Cb( j)�b( j, k)

]
.

To find the positive uniform upper and lower bounds for∑k
j=k−τ2

�T ( j, k)CT ( j)C( j)�( j, k) for all k > τ2, we will
look into subsystems marked by a and b first.

According to Lemma 12 and the definition of formation
center that r j−1

c = 1/N
∑N

i=1 r j−1
i , we can get the matrix

�aT ( j, k)CaT ( j)Ca( j)�a( j, k) in (63) for subsystem with
superscript a

�aT ( j, k)CaT ( j)Ca( j)�a( j, k)

=

⎡
⎢⎢⎢⎢⎢⎣

1

ξθ̂

(
r j−1

1 −r j−1
c − φ

ξθ̂

)T

...
...

1

ξθ̂

(
r j−1

N −r j−1
c − φ

ξθ̂

)T

⎤
⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

1

ξθ̂

(
r j−1

1 −r j−1
c − φ

ξθ̂

)T

...
...

1

ξθ̂

(
r j−1

N −r j−1
c − φ

ξθ̂

)T

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

N

ξ2
θ̂

− N

ξ2
θ̂

φT

− N

ξ2
θ̂

φ

N∑
i=1

(
r j−1

i − r j−1
c

)(
r j−1

i − r j−1
c

)T + N

ξ2
θ̂

φφT

⎤
⎥⎥⎥⎦.

(63)

Due to conditions (Cd2) and (Cd6), we can observe that
each element of the matrix (63) is bounded above, i.e.,
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�aT ( j, k)CaT ( j)Ca( j)�a( j, k) ≤ λ18 I3×3 for some constant
λ18 > 0.

Similarly for subsystem with superscript b, we can get the
matrix �bT ( j, k)CbT ( j)Cb( j)�b( j, k) in the following:

�bT ( j, k)CbT ( j)Cb( j)�b( j, k)

=

⎡
⎢⎢⎢⎢⎢⎣

1

ξθ̂

(
r j

1 − r j−1
c − φ

ξθ̂

)T

...
...

1

ξθ̂

(
r j

N − r j−1
c − φ

ξθ̂

)T

⎤
⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

1

ξθ̂

(
r j

1 − r j−1
c − φ

ξθ̂

)T

...
...

1

ξθ̂

(
r j

N − r j−1
c − φ

ξθ̂

)T

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

N

ξ2
θ̂

1

ξθ̂

N∑
i=1

(
r j

i − r j−1
c − φ

ξθ̂

)T

1

ξθ̂

N∑
i=1

(
r j

i − r j−1
c − φ

ξθ̂

)
�

⎤
⎥⎥⎥⎥⎦

(64)

where � = ∑N
i=1(r

j
i − r j−1

c − (φ/ξθ̂ ))(r
j

i − r j−1
c − (φ/ξθ̂ ))

T .
Due to conditions (Cd2) (Cd6) and that φ and ξθ̂

are bounded above, we can observe that each element
of the matrix (64) is bounded above, i.e., �bT ( j, k)
CbT ( j)Cb( j)�b( j, k) ≤ λ19 I3×3 for some constant λ19 > 0.

Hence, the upper bound for �T ( j, k)CT ( j)C( j)�( j, k)
exists and �T ( j, k)CT ( j)C( j)�( j, k) ≤ λ20 I6×6, where
λ20 = max{λ18, λ19}.

For the lower bound, we can first show that the
matrix �aT ( j, k)CaT ( j)Ca( j)�a( j, k) and �bT ( j, k)CbT

( j)Cb( j)�b( j, k) are positive semidefinite for any j ∈
[k − τ2, k]. Then we can use conditions (Cd4), (Cd6),
and (Cd7) to show that �aT ( j, k)CaT ( j)Ca( j)�a( j, k) and
�bT ( j, k)CbT ( j)Cb( j)�b( j, k) are strictly positive definite
for some time instance j1 ∈ [k − τ2, k], which means that
there exists the lower bound λ21 > 0 such that λ21 I6×6 ≤∑k

j=k−τ2
�( j, k)T C( j)T C( j)�( j, k).

Consider any nonzero vector x ∈ R
3, and for any subsystem

we can find that

x T�y( j, k)T Cy( j)T Cy( j)�y( j, k)x

= (Cy( j)�y( j, k)x)T (Cy( j)�y( j, k)x) ≥ 0, y ∈ {a, b}.

This shows that the matrix �( j, k)T C( j)T C( j)�( j, k) is
positive semidefinite for any j ∈ [k − τ2, k], which implies
that

∑k
j=k−τ2

�( j, k)T C( j)T C( j)�( j, k) is also positive
semidefinite.

Consider the time instance j1 given in (Cd7), and the matrix
�a( j1, k)T Ca( j1)T Ca( j1)�a( j1, k) can be reduced using row
operations as follows:

�a( j1, k)T Ca( j1)
T Ca( j1)�

a( j1, k)

=

⎡
⎢⎢⎢⎣

N

ξ2
θ̂

− N
ξ 2
θ̂

φT

− N

ξ2
θ̂

φ

N∑
i=1

(
r j1−1

i − r j1−1
c

)(
r j1−1

i − r j1−1
c

)T + N

ξ2
θ̂

φφT

⎤
⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎣

N

ξ2
θ̂

− N

ξ2
θ̂

φT

0
N∑

i=1

(
r j−1

i − r j−1
c

)(
r j−1

i − r j−1
c

)T

⎤
⎥⎥⎥⎦.

Since for each i ∈ {1, . . . , N} matrix (r j−1
i − r j−1

c )(r j−1
i −

r j−1
c )T is positive semidefinite,

∑N
i=1(r

j−1
i − r j−1

c )(r j−1
i −

r j−1
c )T is also positive semidefinite.

Consider the two agents i1, i2 ∈ {1, . . . , N} given condition
(Cd7). Since r j1−1

i1
, r j1−1

i2
, r j1−1

C are not collinear, the two
vectors (r j−1

i1
− r j−1

c ) and (r j−1
i2

− r j−1
c ) form an angle �

such that 0 < � < π . According to Lemma 16, the
minimum eigenvalue of the 2 × 2 symmetric matrix M =
(r j−1

i1
− r j−1

c ) (r j−1
i1

− r j−1
c )T + (r j−1

i2
− r j−1

c )(r j−1
i2

− r j−1
c )T

is strictly positive and M is strictly positive definite. This
means that

∑N
i=1(r

j−1
i −r j−1

c )(r j−1
i −r j−1

c )T is strictly positive
definite and has full rank. Since (N/ξ2

θ̂
) �= 0, the matrix

�a( j1, k)T Ca( j1)T Ca( j1)�a( j1, k) is strictly positive definite,
and

∑k
j=k−τ2

�a( j, k)T Ca( j)T Ca( j)�a( j, k) is strictly posi-
tive definite. Hence, there exists a lower bound λ22 > 0 such
that λ22 I3×3 ≤ ∑k

j=k−τ2
�a( j, k)T Ca( j)T Ca( j)�a( j, k).

For subsystem marked by superscript b, consider
the time instance j2 given in (Cd7), and the matrix
�b( j2, k)T Cb( j2)T Cb( j2)�b( j2, k) can be reduced using row
operations as follows:
�b( j2, k)T Cb( j2)

T Cb( j2)�
b( j2, k)

=

⎡
⎢⎢⎢⎢⎣

N

ξ2
θ̂

1

ξθ̂

N∑
i=1

(
r j2

i − r j2−1
c − φ

ξθ̂

)T

1

ξθ̂

N∑
i=1

(
r j2

i − r j2−1
c − φ

ξθ̂

)
�

⎤
⎥⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎢⎣

N

ξ2
θ̂

1

ξθ̂

N∑
i=1

(
r j2

i − r j2−1
c − φ

ξθ̂

)T

0
N∑

i=1

(
r j2

i − r j2−1
c − φ

ξθ̂

) N∑
k=1

(
r j2

k − r j2
i

)T

⎤
⎥⎥⎥⎥⎦

where � = ∑N
i=1(r

j2
i −r j2−1

c − (φ/ξθ̂ ))(r j2
i −r j2−1

c − (φ/ξθ̂ ))T .

For the term
∑N

i=1(r
j2

i − r j2−1
c − (φ/ξθ̂ ))

∑N
k=1(r

j2
k − r j2

i )
T ,

exchanging index will not change the result, which implies
that

N∑
i=1

(
r j2

i − r j2−1
c − φ

ξθ̂

) N∑
k=1

(
r j2

k − r j2
i

)T

=
N∑

k=1

(
r j2

k − r j2−1
c − φ

ξθ̂

) N∑
i=1

(
r j2

i − r j2
k

)T

= 1

2

(
N∑

i=1

(
r j2

i − r j2−1
c − φ

ξθ̂

) N∑
k=1

(
r j2

k − r j2
i

)T

+
N∑

k=1

(
r j2

k − r j2−1
c − φ

ξθ̂

) N∑
i=1

(
r j2

i − r j2
k

)T

)

= 1

2

N∑
i=1

N∑
k=1

((
r j2

i − r j2−1
c − φ

ξθ̂

)(
r j2

k − r j2
i

)T

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: San Jose State University. Downloaded on August 19,2022 at 17:46:16 UTC from IEEE Xplore.  Restrictions apply. 



YOU et al.: COOPERATIVE FILTERING AND PARAMETER IDENTIFICATION FOR ADVECTION–DIFFUSION PROCESSES 15

+
(

r j2
k − r j2−1

c − φ

ξθ̂

)(
r j2

i − r j2
k

)T
)

= −1

2

N∑
i=1

N∑
k=1

(
r j2

k − r j2
i

)(
r j2

k − r j2
i

)T
.

Since for any i, k ∈ {1, . . . , N} (r j2
k − r j2

i )(r
j2

k − r j2
i )

T is
positive semidefinite,∑N

i=1

∑N
k=1(r

j2
k − r j2

i )(r
j2

k − r j2
i )

T is also positive semidefinite.
According to condition (Cd7), r j2

1 , . . . , r
j2
N are not collinear,

which implies that there exists at least two vectors (r j2
k1

−
r j2

i3
) and (r j2

k2
− r j2

i4
) which form an angle � ′ such that

0 < � ′ < π . According to Lemma 16, the minimum
eigenvalue of the 2 × 2 symmetric matrix M ′ = (r j2

k1
−

r j2
i3
)(r j2

k1
− r j2

i3
)T + (r j2

k2
− r j2

i4
)(r j2

k2
− r j2

i4
)T is strictly posi-

tive and M ′ is strictly positive definite. This means that∑N
i=1

∑N
k=1(r

j2
k − r j2

i )(r
j2

k − r j2
i )

T is strictly positive def-
inite and has full rank. Since N/ξ 2

θ̂
�= 0, the matrix

�b( j2, k)T Cb( j2)T Cb( j2)�b( j2, k) is strictly positive definite,
and

∑k
j=k−τ2

�b( j, k)T Cb( j)T Cb( j)�b( j, k) is strictly posi-
tive definite. Hence, there exists a lower bound λ23 > 0 such
that λ23 I3×3 ≤ ∑k

j=k−τ2
�b( j, k)T Cb( j)T Cb( j)�b( j, k), and

there exists a lower bound λ21 = min{λ22, λ23} > 0 such that
λ21 I6×6 ≤ ∑k

j=k−τ2
�( j, k)T C( j)T C( j)�( j, k).

Therefore, we can conclude that λ21 I6×6 ≤ ∑k
j=k−τ2

�( j,
k)T C( j)T C( j)�( j, k) and �( j, k)T C( j)T C( j)�( j, k) ≤
λ20 I3×3 for all j ∈ [k − τ2, k]. Hence, λ−1

17 λ21 I3×3 ≤ O(k, k −
τ2) ≤ λ−1

16 λ20τ2 I3×3. Let λ9 = λ−1
17 λ21 and λ10 = λ−1

16 λ20τ2.
Thus, according to Definition 15, we have proved the uni-
formly complete observability claim. �
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