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1 INTRODUCTION

ESEARCHERS, scientists, and analysts need to extract
Rinformation from big data. Data is being collected in
enormous sizes and at ever-increasing rates, leading to an
analysis of new tools, techniques, and best practices for
data science. Industries are investing heavily in high per-
formance computational tools for advanced analytics. Data
analysis with topology has demonstrated excellent results
in several fields [1], [2], [3], [4], [5]. Researchers are studying
topological methods to mine data characteristics, especially
for complex, multivariate data. This type of analysis is
generally classified as Topological Data Analysis (TDA).

TDA techniques characterize the structure of data; they
have been successfully used to classify embedded structures
in large, complex data sets. For example, TDA approaches
have been used in network analysis [6], [7], [8], brain artery
classification [9], images and movies [10], [11], [12], [13],
[14], [15], protein analysis [16], [17], [18], and genomic
sequences [6], [19], [20], [21]. TDA techniques have the
ability to identify structure despite certain deformations of
a space, leading to discovery of relationships not discernible
by conventional methods of analysis [2], [3].

One of the principal methods in TDA is Persistent Ho-
mology [22], [23]. Persistent homology is a technique for
identifying the topological features of a point cloud at
different spatial resolutions. More precisely, multiple views
of the data are created by considering the connectivity of
the points at different distances. These views are sorted by
their connectivity distance and collectively called a filtration
of the point cloud. Persistent homology then examines
each member of the filtration sequentially and measures
homologies (i.e., features such as connected components,
loops, voids, and so on) persisting through the different
filtrations. Each individual feature is identified as it first
appears (denoted birth) and when it disappears (denoted
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death) in the filtration. Persistent homology has specifically
been used in fields such as bioinformatics [20], [24], [25],
networking [26], [27], classification [28], [29], [30], pattern
recognition [9], [31], [32], and more. Persistent homology
can discover topological features (such as loops and voids)
embedded in higher-dimensional spaces [33], [34].
Although persistent homology has demonstrated
promising results for data analysis, the approach suffers
from exponential space and run-time complexity [5]. This
leads to the pursuit of high-performance approaches to be
exploited for computing persistent homology on large and
high-dimensional data sets. This paper surveys approaches
for high-performance persistent homology to provide con-
text to engineers and data scientists entering the field.
Various aspects of persistent homology have been previ-
ously covered through surveys and tutorials, most notably
Chazal et al [1], Otter [5], Zhu [35], Fugacci et al [36], and
Pun et al [37]. Chazal provides an introduction to topological
data analysis including where PH fits within the tools of
TDA. The survey covers the theoretical framework of the ap-
proach alongside an example with protein and sensor data.
Otter surveys current techniques for persistent homology
and highlights multiple libraries and their uses. A roadmap
is presented for the computation of persistent homology
with description of different data types, complex types,
and statistical interpretation of topological summaries. Otter
presents a comprehensive analysis of several benchmark
data sets for persistent homology and results from several
different software libraries. Zhu presents a brief tutorial on
persistent homology as it relates to natural language pro-
cessing, demonstrating a similarity filtration on several text
examples. Fugacci contains a comprehensive background
of persistent homology alongside an interactive web tool
for introduction. Pun discusses the practical application of
persistent homology based machine learning models and
the combination of different topological feature selections
with machine learning pipelines. Pun also details a road-
map for practical application of persistent homology-based
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machine learning models. Each of these studies, along with
several other surveys [38], [39], [40], effectively describe the
background concepts of persistent homology.

This survey introduces current techniques for imple-
menting and optimizing the computation of persistent ho-
mology, including discussion of the key algorithm steps.
While previous publications have focused on the theoretical
background of persistent homology, this survey instead
examines computation of persistent homology on sizable
data sets to identify observed and measured bottlenecks
of the approach. The material is intended for an engi-
neering audience interested in the implementation methods
for computing persistent homology. As a result, the more
rigorous mathematical concepts and definitions of persistent
homology are omitted to provide an entry-point for data sci-
entists and engineers to study the practical implementation
techniques. Several high-performance sequential, parallel,
and distributed libraries are reviewed to introduce current
state-of-the-art implementations of persistent homology.

The remainder of this paper is organized as follows. Sec-
tion 2 illustrates several real-world applications of persistent
homology. Section 3 provides technical description of the
computation, coupled with related concepts. Section 4 de-
tails strategies for computing persistent homology. Section 5
presents several high-performance sequential, parallel, and
distributed libraries. Section 6 examines the performance
of persistent homology algorithms in various experimental
scenarios. The key ideas and concepts of this survey are
summarized in Section 7.

2 APPLICATION BACKGROUND

Persistent Homology (PH) is a data mining technique to char-
acterize topological features within a data set. Topological
features are algebraic structures identified by their dimen-
sion: H; represents connected components in the data, H;
algebraic loops, H3 voids, and so on. PH provides a way to
mine evolutionary relationships of the topological structures
present in a point cloud with respect to filtration. That is,
PH organizes the point cloud into a collection of graphs
(each graph is a subset of a complex [41] defined in Section
3.1) evaluated at different filtration values. PH then analyzes
the ordered collection of graphs to discover the filtrations at
which each topological feature appears (denoted birth) and
then disappears (denoted death) from the graph collection.
Applications can then be constructed to classify the set of
topological features as they persist across the filtrations.
Many applications of persistent homology examine the
input data in terms of proximity: how near or far points
are from one another in a metric space. This organization
of data forms a point cloud in the dimension of the data.
Proximity filtration examines the change in the point cloud
as the distance between points being connected is increased.
This creates many different topologies of the point cloud,
each a graph representing all points being connected less
than the filtration distance. In sequence, these topological
spaces created by the filtration can be used to track the
formation (and collapse) of the algebraic structures present.
Features that exist for a large interval of the topological
spaces are considered persistent, and can be used to estimate
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the homology of the space. This topic is explored further in
Section 3.

In this section, the algorithm to compute PH is presented
as a black-box with an input of a data set and an output
of persistence intervals that track the topological structures
found (Figure 1). The input data is evaluated with respect to
a distance metric with PH to produce persistence intervals.
In general, persistence intervals characterize the topological
features identified as a 3-tuple (Hy, €pirth,, €death) Where Hy
is the dimension that the feature occupies, €p;,¢, is the con-
nectivity distance that the feature first appears, and €geqzp,
is the connectivity distance that the feature is no longer
present. Persistence intervals are evaluated with respect to
a distance metric and can be utilized to compare topological
structures between data sets.

h . Output:
Input: Persistent |y porsistence Intervals
DEEE Homology [(Hg, €pirth> €geath)s -]

Fig. 1. Black-box diagram for PH application descriptions. The set of
resultant persistence intervals represent topological structures identified
from the input data.

There are numerous demonstrated uses for PH in scien-
tific research. The remainder of this section details several
examples for object classification, namely: brain artery tree
analysis, and protein analysis. Object classification is a broad
class of examining shapes, such as geometric objects, text,
triangulated meshes, and high-dimensional features of a
space. PH provides measures of these shapes that can char-
acterize the underlying structures in the data. This approach
is similar when examining brain artery trees representing
R® paths of brain arteries of labeled patient data. The un-
derlying structure of the data enables classification from the
output of PH. Finally, several protein analysis applications
are described to connect the approach to biological data.
PH can provide structural analysis over any type of data
provided a distance metric between samples is defined.

This section provides brief examples of the utility of
PH (a background in topology and homology groups is
assumed [38], [39], [42]). Applications of PH are presented to
familiarize the reader with its use in data mining and analy-
sis prior to algorithm specification. The details of computing
PH are continued in Section 3.

2.1 Obiject Classification

Object classification is common in the fields of data mining
and machine learning. TDA, based heavily in graph the-
ory, can provide relative characteristics of point clouds by
examining the graphs constructed when connecting points.
PH provides a representative view into these characteristics,
often useful in differentiating dimensional structures. Some
examples of object classification in PH include text recog-
nition, R? shape recognition, and triangulated mesh (R?®)
dissimilarity.

The MNIST data set [?] is a popular classification data
set for algorithm evaluation, consisting of labeled images
of handwritten digits for recognition. Classification with
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PH typically examines the inferred homology of the data;
that is, it is primarily concerned with persistent or “long”
topological features identified from PH. In the domain of
handwritten digits, a naive approach may recognize digits
with a loop, such as “0”or “4”, have an R? (H,) loop,
while many digits have none. PH can classify some of the
digits this way, while also including connected components
(Hyp) or additional features to further organize the space.
Notably Garin et al recently demonstrated classification of
the MNIST data set with a broader set of TDA techniques
for supervised learning [?].

Triangulated meshes, such as points sampled from a
continuous R? manifold, can be analyzed with PH to classify
different objects and structural representations. In these
cases the long topological features represent salient features
of the space; if the triangulated mesh densely approximates
a continuous manifold, the long topological features will
identify the homology of the manifold. Interestingly, the
small topological features can provide additional insight
into the structural composition [9], [43]. Not only can objects
be classified by larger topological structures, such as man-
ifolds encompassing voids of the space, but classification
based on the distribution of points from smaller persistence
intervals can differentiate results.

Persistent homology can be used to identify different
clusters (through H, connected components) and shapes
(H; loops) in R? [34], [44]. PH has also been used for
time series and spatial data clustering to extract signifi-
cant features; these features may be utilized to compare
topologically-similar objects, shapes, or clusters of a data set
[34]. Transforms such as the time delay embedding (Takens
embedding [45]) have been utilized to classify signals such
as gravitational waves detection [46] and dynamic state de-
tection [47]. In this case the embedding transforms the signal
to identify periodic features using persistence intervals.

Construction of the complex with measures other than
proximity can provide an alternate recognition of shapes,
as demonstrated by Carlsson et al [23] through the use of
filtered tangent complexes to recognize sharp corners and
smooth edges. Shape recognition, in general, may require a
broad analysis of different complex types and techniques to
fit the desired application.

Moitra et al [21] introduce a method of classifying
streaming data of real-world data sets examined under
a sliding-window model. The technique is applicable to
unbounded and evolving data streams, involving an online
summarization of topological structure that can trigger an
offline step to compute the full persistence intervals. Their
study demonstrates the ability to identify reticulate genomic
exchanges during the evolution of two viruses: Influenza A
and HIV. The results are promising for unbounded stream-
ing persistent homology applications.

Many more examples of PH can fall into the broad
category of object classification. In particular, two studies
that use PH are presented below to provide more concrete
and detailed examples of the utility of PH for object classifi-
cation.

2.2 Brain Artery Trees

Bendich et al [9] classifies patients from the PH of their re-
spective brain artery trees. The study presents evidence that

Fig. 2. R2 projection of MRA brain artery tree for a single patient (left)
and persistence diagram (right) for Ho (red) and H; (blue) features
identified. Analysis of the most persistent features reveals a correlation
of patients brain artery scans with their labeled features age and sex [9],
[48].

the computed persistence intervals correlate with character-
istics of the examined patients. The input data for the study
consists of labeled patients: each with a respective brain
artery scan, sex, age, and dominant hand. The scanned trees
represent blood vessels in the brain identified by Magnetic
Resonance Angiography (MRA) images in R®. Bendich’s
study of the connected components and loops persisting in
the brain artery trees identify relationships to the labeled
patients for Sex and Age characteristics.

The set of brain artery trees, consisting of roughly
100k points each, were individually subsampled to several
thousand points to compute PH over. This subsampling
preserves the spatial relationship of points in the brain
artery trees while limiting the PH computation from exceed-
ing memory limits of typical systems. This is a common
approach when handling data beyond the memory limits
of a system; exploration of this and other techniques for
improving PH memory bounds are covered in Section 4. An
example of the subsampled analysis of one patient’s brain
artery tree alongside the resultant persistence diagram is
displayed in Figure 2. Correlation was identified between
patient labels with the most-persistent features, those with
the longest intervals, displayed away from the 45-degree
line in the persistence diagram. Shorter intervals, generally
considered noise within the point cloud, lie closer to the
45-degree line. The red points indicate H connected com-
ponents while blue H; points represent R? loops oriented
in the point cloud.

The brain artery trees were recently examined by Malott
et al using Partitioned Persistent Homology (PPH) [48] to re-
construct the persistence intervals lost from subsampling of
the data. The technique approximates the large topological
features using centroids and smaller topological features
using regional reconstructions about the partitions. In a
similar manner, the results indicate that the differentiation
of the brain artery trees can determine the patient’s age and
sex with significant accuracy. The regional reconstruction
of smaller topological features introduces an additional
increase in the classification, confirming the original study
and extending the analysis further.

Brain artery trees are a fascinating use case where persis-
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tent homology has been applied and correlated with labeled
data. The structures of the arteries are identifiable through
the Hy and H, features over the point cloud filtration. These
topological structures, captured in the output persistence in-
tervals, have significant correlation with the labeled patient
features.

2.3 Protein Analysis

Protein analysis is an inherently complex field that of-
ten requires massive computational resources for analysis.
Combinations of proteins may be analyzed as basic primary
structures such as amino acids or more complex structures
such as conformational chain interactions. One recent topo-
logical classification method utilizing Molecular Topological
Fingerprints (MTFs) was introduced by Xia et al [18] to track
geometric origins of topological invariants of proteins. MTFs
are demonstrated for protein characterization, identification,
and classification. The work establishes a topology-function
relationship of proteins that have been built on in several
other experiments and tools to further topological protein
analysis.

A study by Cang et al [16] explores the use of persistent
homology characteristics for protein classification. They in-
troduce a MTF-based support vector machine (SVM) classi-
fier and validate the tool against several experiments: pro-
tein drug binding, classification of hemoglobin molecules,
identification of protein domains, and classification of pro-
tein superfamilies. Features from the persistence intervals
are carefully selected for the SVM model and are detailed in
the study; these features differ slightly than those used for
the standard MTF approach in [18].

Kovacev-Nikolic et al [49] apply PH to the maltose-
binding protein (MBP), a complex bio-molecule with 370
amino acid residues. PH detects the conformational changes
between closed and open forms of the MBP; the study
confirms there is a statistically significant difference between
these two forms. The approach also demonstrates how
persistence landscapes [50], another method of analysis for
persistence intervals, can be applied to machine learning
methods such as SVM. Additionally, the authors determine
the sites of interest correspond with the most persistent
loop of the filtered complex, a finding not observed in the
classical model. Chazal [1] provides a tutorial and python
code for basic analysis of the data from [49] to compare the
persistence diagrams of the MBP.

In Benzekry et al [51], a linear correlation is identified be-
tween PH and cancer patient data when examining the Betti
numbers. The relationship predicted the most impactful
protein on cancer progression within the protein-protein in-
teraction network. In addition, by removing the individual
protein node from the protein-protein interaction network
and re-computing PH, researchers were able to evaluate
whether this inhibition will improve patient survival rate.

Persistent homology has demonstrated capabilities in the
field of protein analysis through several applications and
continues to be of great interest to bioinformatics in general.
The capabilities of PH to uncover topological features of the
space can provide discernible insight into structures present
in input data. Additional research into applications of PH
continue to be uncovered and reported within the research
community.

3 PERSISTENT HOMOLOGY

The application of Persistent Homology to various data
mining and machine learning applications demonstrates
promising results. However, the computational complexity
of persistent homology is exponential in both time and
space; this can limit the application of PH to relatively small
data sets. In this section the detailed steps for computing
persistent homology are provided and considered with re-
spect to the computational complexity of the algorithm.

Figure 3 presents an overview of the main steps in the
PH algorithm that are covered throughout this section. First,
the PH algorithm is split into three parts, namely: complex
construction, complex filtration, and boundary matrix reduction.
Although the complex filtration may influence the complex
construction technique, each of these steps is described
sequentially. The results of PH remain the same as Section 2:
compute and output persistence intervals that describe the
topological features identified in the data. The persistence
intervals can then be utilized for the desired application.

The encoding of the data into a complex is discussed
in Section 3.1. This encoding is used throughout the com-
putation and typically grows exponentially based on the
number of points. The filtration of the complex is pre-
sented in Section 3.2. The filtration of the complex defines
the metric space utilized to generate the boundary matrix.
Boundary matrix reduction is the final step in the technique;
it is detailed in Section 3.3. This step generates persistence
intervals, that can then be interpreted and analyzed using
the techniques described in Section 3.4.

3.1 Complex Construction

The first step in computing the persistent homology re-
quires an encoding of the point cloud into a relational,
graph-like structure referred to as the complex [41]. Complex
construction and filtration requires selection of a metric to
compare individual samples. In spatial data this is typically
the Euclidean distance; in other studies the metric may
need to be tailored to the application for measuring the
difference between any two samples. This paper covers
proximity complexes that examine the topological spaces
filtered over the chosen metric, regardless of whether that
metric describes spatial relationships of the vertices.

The simplicial complex [41] stores simplices; a simplex repre-
sents a basic structure within the point cloud. Simplices take
the form of hyper-tetrahedra; more abstract representations
of the space may provide alternate methods of analysis.
Other domain-specific complexes exist such as cubical com-
plexes [11] for image data. In this survey we will focus
primarily on the simplicial complex and hyper-tetrahedra'
to encode a point cloud.

The simplicial complex can be recognized as a higher-
dimensional generalization of graphs. Simplicial complexes
are applied to computational geometry to approximate con-
tinuous mathematical shapes such as surfaces and curves.
The mathematical representations of simplicial complexes

1. A hyper-tetrahedron is the generalization of a triangle or tetrahe-
dral region of space to d-dimensions. For example the 0-simplex is a
point; the 1-simplex is a line segment composed of two points; the 2-
simplex is a triangle face composed of three vertices; the k-simplex is a
k-dimensional polytope composed of k + 1 vertices.
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Fig. 3. The main steps of computing PH and processing PH results are shown. The steps with green backgrounds are discussed in this section.
The computation of persistent homology is broken into its principal components, namely: Complex Construction, Complex Filtration, and Boundary
Matrix Reduction. A short overview of persistence interval analysis is provided in Section 3.4 for PH applications.

have topological character and combinatoric specialty,
making them beneficial for persistent homology. Higher-
dimensional features can be recognized by constructing
generalizations of the point cloud at different dimensional
resolutions using simplices. This recognition and extraction
of features is defined more succinctly in Section 3.3.

There are several methods to construct the complex
including Vietoris-Rips [56], Witness [57], Cech [58], and
Flag [56] complexes. The remainder of this section details
these types of complexes and gives brief descriptions of
how the constructed complex differs. Table 1 compares each
complex with their principle use and includes a statement
of their construction complexity, storage complexity, and a
graph example for each. The complexity of the persistent
homology algorithm begins with the size of the complex
which can inhibit the computation on large data sets.

The Cech complex [58] (or proximity graph) is constructed
from a point cloud in any metric space. The Cech complex is
widely used when higher-order intersections of the points in
the point cloud are needed to extract persistence intervals.
The Cech complex first inserts the proximity graph into the
complex data structure and then expands the complex if
necessary. The construction complexity for the Cech com-
plex is O(N? + N2m), where n is the average number of
neighbors in each cell (simplex) and N is the number of
cells (simplices) [52]. The storage complexity of the Cech
complex is shown in Table 1 as functions of the cardinality
of NV [5].

The Vietoris—Rips (VR) complex [56], also called a Rips
complex, is a simplicial complex induced from a one-skeleton
graph. The vertices in the complex correspond to the input
points; an edge is present if and only if the maximum
distance is smaller than the bounding radius, €,,42. The
Rips complex can then generalize proximity (e-ball) graphs
to higher dimensions through combinations of the lower
dimensional one-skeleton graph. Construction requires first
building the proximity graph and inserting it into the
complex data structure. Then an expansion process adds
the simplices corresponding to cliques until the dimension
arrives at the maximum dimension for persistent homology
computation. The Rips complex is an approximation of the
Cech complex; construction of a Cech complex is computa-
tionally more expensive than the Rips complex. However,
the VR complex will generally contain more higher-order
simplices than the Cech, such as the tetrahedron in the
respective example images of Table 1. The noted tetrahedron
still forms in the Cech complex, but later in the filtration
once the proximity balls have encompassed the tetrahedron.

The Witness complex [57] is a complex defined on two
sets of points in RP: the set of witnesses, W, and the

set of landmark points, L. Typically the set of landmarks
is a subset of the witnesses. Otter et al [5] states that
the storage complexity of the witness complex is O(2/%1),
where |L| is the number of landmark points. Boissonnat
and Maria [53] show that the witness complex construction
requires O((| K|+ |W|)k2D,,,) insertions, where |W| is then
umber of witness points, Dy, is log|L|, k is any integer in
{1,...,|L] — 1} that defines the k-skeleton of the witness
complex, and |K]| is the number of faces in the complex.
Landmarks represent the vertices of the simplicial complex
and witnesses can identify which simplices are inserted
through a predicate. When the data set is large, the witness
complex is a good choice for conducting data reduction
on the data set and helps alleviate the memory constraints
when directly applied to large data in R”. As shown in
Table 1, the example image for the witness complex demon-
strates the construction process from left to right.

Another well-known complex is the Flag (clique) complex
[56]. The Flag complex is a simplicial complex in which all
minimal non-faces are two-element sets. In other words,
if all edges of a potential face in a Flag complex are in
the complex, the face should also be in the complex. In
some conditions, if a set S of vertices that is not itself part
of the complex but each pair of vertices in S belongs to
some simplex in the complex, this simplicial complex is
called an empty simplex. A Flag complex is a simplicial
complex without empty simplices. Since the Flag complex
is closely related to the graph, it is highly efficient in the
field of studying directed networks in general and especially
neural networks. Typically insertion into a flag complex
is through a weighted graph; using the proximities of the
complete graph would be identical to the VR complex.
Chambers et al [55] show that the flag complex has the same
storage complexity as the Rips complex. The construction
complexity of a Flag complex is O(n*k?), where k is the
vertices number and n is the number of input points [54].

The construction of a simplicial complex is one of the
most common ways to associate a filtration to a point
cloud for computing persistent homology. The Vietoris—Rips
complex provides fast construction alongside a compressed
memory footprint that has proven to be useful in persis-
tent homology. In addition the Rips complex can utilize a
particular distance function or distance matrix to compute
the corresponding filtrations without requiring physical po-
sitions. The remainder of this paper will focus on the Rips
complex.

3.2 Complex Filtration

Filtration of the complex involves examining the nested
subsets of simplices representing the appearance and dis-
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TABLE 1
Complexity comparison of alternate representations for simplicial complexes. Graph example images depict structural differences between
complexes, such as the inclusion of a tetrahedron in the Vietoris—Rips complex over the Cech.

Complex name || Cech Vietoris—Rips Witness Flag

Points in Euclidean . . Curves and surface Directed networks in
Used for Distance matrix . .

space in Euclidean space Graphs
Construction . N o 2 . .
Complexiiy O(N? + N2m) [52] O(n%376) O((|K| + [Wk2Dym)  [53] O(nFk?) [54]
Storage . {
Complexity o(2N) [5] O(n¥) o(2l™) [5] O(n¥) [55]
Example - <>
image

appearance of topological features. In a simplicial complex
K, filtration is an ordering of the simplices of K such that
all prefixes in this ordering must be the subcomplexes of
K. In a sense the subcomplexes represent the addition of
simplices (edges, triangles, tetrahedrons) to the point cloud
as € grows. A complex with filtration is denoted as a filtered
complex Kp.

The filtration occurs over the metric used to construct the
simplicial complex; when the Euclidean distance is used the
connectedness of points in a point cloud are examined. The
filtration is varied by a scalar parameter, . As € increases
the points become more connected, representing different
topologies of the point cloud. Topological features identi-
fied during this filtration can be identified by their birth,
recorded as €p;,¢p, and their disappearance, €geq:5. Tracking
of the individual features, births, and deaths requires exam-
ination of the filtered complex through the boundary matrix
representation, detailed further in Section 3.3.

Figure 4 illustrates the VR complex filtration of a point
cloud along with the corresponding persistence intervals.
The top portion of the figure plots a synthetic point cloud at
varying levels of e distance. The corresponding homology
groups Hy (connected components) and H; (loops) iden-
tified in the point cloud are charted in the lower portion
of Figure 4. Each individual bar in the plot represents a
topological feature. Topological features are captured in
persistence intervals, which include the dimension of the
topological feature H,, the birth of the feature €45, and
the death of the feature €g.4¢5,. This filtration demonstrates
how features in the point cloud become more connected as
e is increased from 0.

The size of the VR complex grows exponentially in size
with both dimension and number of points. This filtration
can be limited by setting a bounding radius, €,,,,;, which
restricts the range of connectivity distances to a smaller
subset of simplices; this limit leads to a reduced space-time
complexity. With a proper selection of €44, connections
that do not affect the desired topological features may be
removed and not reported in the persistence intervals. This
filtration can thus significantly reduce the memory and run-
time complexities of persistent homology but limits the

identification of topological features to those smaller than
€mazx-

The simplicial complex paired with the filtration, Kp,
is required to extract the boundary matrix and perform
reduction to identify persistence intervals. This process is
described in the next section.

3.3 Boundary Matrix Reduction

A convenient way to extract the persistence intervals from
the filtered simplicial complex is to reduce a matrix record-
ing the incidences between dimensional simplices. Given a
simplicial complex K, the d** boundary matrix can be rep-
resented as the rows with o4_;-simplices and the columns
with o4-simplices. Incidences where the o4_i-simplex is
a face of the og4-simplex in the matrix are recorded and
subsequently reduced to extract €p;r¢1, and €geqsp times for
features in the complex. This process is repeated for each
dimension up to H,,., (a user defined parameter that is
bounded above by the dimension of the point cloud).

In summary, the boundary matrix representation enables
identification of algebraic chains reducing to zero, indicating
the presence of loops, voids, and so on. These chains can
be recognized from the face relationship of the simplex;
the birth and death times are the filtration values of the
complex where the chain first appears (and reduces to zero)
and disappears (is covered by additional simplices). Multi-
ple features can be identified simultaneously, in multiple
dimensions, and of different sizes in the space with the
technique, demonstrating the utility of PH.

Typically the approach has two parts: generation of the
boundary matrix and extraction of persistence intervals us-
ing matrix reduction. Complex representations are designed
to provide incident simplices efficiently for fast enumeration
of the boundary matrix. Matrix reduction optimizations for
extracting persistence intervals are generally algorithmic
improvements that include co-homology [59], [60], twist and
clear [61], co-reduction [62], and implicit matrix representa-
tion [63].

While each approach improves the performance of the
boundary matrix reduction step, the boundary matrix itself
is still very large, representing an array of size o2, where
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Fig. 4. Filtration of a point cloud (fop) and the corresponding barcodes (bottorn) showing birth and death of features at different filtrations of a
Vietoris—Rips complex. The subcomplex relationship as 0 < € < emaqz increases is depicted through the point cloud plots from left to right.

o represents the total number of simplices in the complex.
Storing the entire boundary matrix in memory prior to
reduction is costly and typically limits the computation due
to memory bounds of the system. Bauer [63] introduces
a method to represent the Vietoris-Rips boundary matrix
implicitly due to the combinatoric structure of dimensional
simplices in the VR complex. This implicit representation
of the boundary matrix significantly reduces the memory
footprint of persistent homology, but has only been demon-
strated with VR filtrations. These optimization concepts are
discussed in greater detail in Section 4.3.

Computing the persistent homology on big data is still
difficult with these optimizations. Using substantial com-
puting hardware, current state-of-the-art tools can still only
compute higher dimensional homologies for a few hundred
points. Techniques to continue to improve the memory
footprint and space-time complexity of the persistent ho-
mology algorithm are necessary in the approach for high-
performance computing. Boundary matrix reduction and
optimizations to the approach are a highly active area of
study within persistent homology research.

3.4 Analysis of Persistent Homology Output

The output of the persistent homology computation is a
set of persistence intervals. Persistence intervals provide a
direct measure of the topological features identified within a
point cloud. The resulting persistence intervals can be inter-
preted in several ways, most notably through diagrams and
distance metrics. Visual diagrams, such as the persistence
diagram and barcode diagram [5], give a qualitative analysis
of the topological features. A comparison between two sets
of persistence intervals with a distance metric can give
a quantitative difference between the topological features

identified [37], [64], [65]. Both have significance in TDA;
there are varying methods to represent and utilize either
of these outputs.

Each topological feature is represented by a persistence
interval of the form: (Hy, €pirth; €deatn), Where Hy is the
dimension of the feature and € is a scale parameter. The
values can be defined as: € = (eg, €1, €y) and ¢ <
e; for 0 < i < j < m. Each 3-tuple of (Hg, €pirth; €death)
represents a single persistence interval. Depending on the
topological structures present in the data, the full set of
persistence intervals may contain zero or more intervals
at each homology dimension H, to H,,q,; each persistence
interval exists iff there is a corresponding topological feature
in that dimension.

Direct visualization of high-dimensional data is difficult
to provide. Several methods have been developed to extract
the embedded structures from the data set and identify
those structures qualitatively. For example, the seeds point
cloud in Figure 5 is used to generate the barcode diagram and
persistence diagram displayed. In the barcode representation,
each persistence interval is plotted as a horizontal line
colored by the dimension of the feature. The horizontal
line begins at €p;¢, and ends at €4eq:0,. Generally long bars
represent salient topological features while shorter intervals
are interpreted as noise.

Alternatively in the persistence diagram representation
(Figure 5), the birth and death time are plotted over the
r-axis and y-axis respectively, colored again by dimension.
Salient topological features in the persistence diagram repre-
sentation lie far away from the 45-degree line; the line where
the birth and death of the feature are relatively close. In
general, persistent homology can fetch the birth and death
times of the topological features and visualize the results
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Fig. 5. Example of barcode and persistence diagrams on the seeds classification data set. From left to right: (i) 3D scatter plot for the leading 3
dimensions of the data set, (ii) the distribution of inner-point euclidean distances, and resulting persistence intervals (ii) as a barcode diagram and

(iv) as a persistence diagram.

in the form of barcode or persistence diagrams to quickly
identify homologies of the space.

Several measures are available for quantitative analysis
between sets of persistence intervals, such as when classify-
ing or determining the dissimilarity. The most notable mea-
sures include the Bottleneck distance, Wasserstein distance,
and Heat Kernel distance. These metrics can be utilized for
machine learning models such as SVM or other learning
algorithms.

The Bottleneck distance [66] measures the largest differ-
ence between two sets of persistence intervals. The measure-
ment is a bijection from one persistence diagram to another.
For example, if Dgm, and Dgm, are two persistence dia-
grams, the bottleneck distance records the supremum of the
distance between Dgm, and Dgm, and take the infimum
over the bijection. The bottleneck distance is bounded by the
Hausdorff distance, a popular measure in graph analysis.

The Wasserstein distance is more sensitive to details in the
diagram compared to the Bottleneck distance, but requires
additional properties to be stable. The Wasserstein distance
is defined between probability distributions with a metric
space M. It holds similar stability results and computes
the maximum weighted matching in bipartite graphs. The
Wasserstein distance represents the total difference in paired
mappings between two sets of persistence intervals.

While persistence diagrams and the Wasserstein distance
can form a metric space, sometimes the Wasserstein distance
fails to directly apply persistent homology to the large class
of machine learning techniques (such as SVM or PCA). As a
result, several different kernel metrics have been proposed
to provide stable learning metrics. One such approach is
the continuous Heat-based Kernel Distance (HKD) metric [67].
HKD provides a multi-scale kernel based on the scale space
theory. The kernel is used for the set of persistent diagrams
and is defined through a feature map. Since the feature map
is Lipschitz continuous with respect to the 1-Wasserstein
distance the stability of persistent homology is preserved.
The scale parameter in the kernel has the ability to control
the robustness to noise. HKD provides a method to approx-
imate the geodesic distance between two sets of persistence
intervals. There are several other kernel metrics used for
machine learning that have varying qualities pertaining to
certain applications. A detailed analysis of kernel metrics
with persistent homology is available in Pun ef al [37].

4 HIGH-PERFORMANCE COMPUTATION OF PER-
SISTENT HOMOLOGY

Persistent homology has computationally evolved as faster,
more efficient techniques are discovered for various steps
in the process. While these approaches provide moderate
speed and memory improvements, the underlying concepts
to build a complex, perform the filtration, and reduce the
boundary matrix remain largely the same. This section
expands upon the descriptions of these steps in Section
3 by detailing specifications used for building persistent
homology applications in practice.

High-performance computation of persistent homology
relies on balancing the memory footprint and the run-time
for extracting persistence intervals. Compact data structures
representing the complex and reduction matrix are nec-
essary to control the memory footprint. Relatively small
data sets can generate millions of simplices in higher di-
mensions, requiring efficient storage through representative
complexes. These representations must also provide fast ac-
cess for the generation of the boundary matrix for reduction.

Several steps are required to compute the persistent
homology of an input point cloud. The first is to generate
the complex from the input data. This process includes
cleansing and normalization of the data, selection of an
appropriate distance metric, dimensionality encoding using
the distance matrix, and insertion into the complex.

Once the complex is formed the filtration is performed
to construct the boundary matrix. The boundary matrix
is then reduced to extract the persistence intervals. The
boundary matrix reduction has been largely targeted to
accelerate the extraction of persistence intervals; several
optimizations have been studied over the standard algo-
rithm [68]. Recent optimizations can significantly increase
performance, including twist and clear [61], computing the
co-homology [59], Morse matching [69], and emergent and
apparent pairs [63] . One of the highest performance tools
for computing the Vietoris—Rips persistence intervals using
these enhancements is Ripser [63]. Ripser has made numer-
ous advancements in the sequential computation of persis-
tent homology and has inspired several multiprocessor and
GPU-accelerated variants that have enabled computation on
even larger data sets; these include Ripser++ [93], giotto [?],
[94], and LHF [48], [76].
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Fig. 6. Dimensional limitations of Ripser based on number of points in
source point cloud on Ryzen Threadripper 1950X with 128GB of RAM.

Even with the reduced memory footprint and speedup
of Ripser, the approach suffers as H,,q; and the number
of points increase. The limitations of Ripser on a Ryzen
Threadripper 1950X with 128GB of RAM on a synthetically
generated d-sphere are shown in Figure 6. Detection of Hy
voids in the point cloud with no limiting radius (emaz)
exceeds the system’s RAM capacity after several hundred
points. Higher dimensions are even more severely limited
(as the Figure 6 shows). Further exploration of the compu-
tational limitations of sequential persistent homology are
explored in Section 6.1. The sequential algorithm for PH
is limited to fairly small data sets, especially for higher
dimensions of homology.

Parallel and distributed approaches provide more re-
sources for the computation but still suffer based on the
number of simplices generated in the simplicial complex.
As the dimension of homology groups increases (Hpqz),
the generated simplices grow exponentially and can quickly
bound the algorithm. These memory limitations are the
study of several optimizations and approximations pro-
posed to reduce the complexity.

The remainder of this section details specific steps in the
computation of persistent homology. Section 4.1 describes
the creation of the simplicial complex, including normal-
ization, distance metric and distance matrix construction,
different complex types, and construction and storage of
the complex. Section 4.2 describes filtration of the complex
and boundary matrix construction in the approach. Finally,
Section 4.3 identifies the steps for reducing the boundary
matrix and provides brief detail on several of the notable
optimizations for reduction.

4.1 Creation of Simplicial Complex

Several design decisions in a persistent homology approach
are necessary for the construction of the complex. In the
case of a simplicial complex, qualification of simplices and
storage for the persistent homology algorithm need to be
determined. These include defining a distance metric for
quantifying connectedness of the space, a choice of the type
of complex to be constructed, and the storage of the complex
into an efficient data structure enabling fast processing and
a low-memory footprint.
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Storage of the simplicial complex requires fast insertion
of simplices into the complex. Insertion of a single point
can affect several or all members of the complex, depending
on the graph complexity and €,,q, limitation. The simplex
tree [53] is a compressed data structure that is efficient in
memory and management of the complex. Bauer provides
a more efficient VR algorithm that eliminates the need for
a static reduction matrix by storing the co-face relationships
between the simplices [63]. In some cases the complex may
need to be maintained online and updated as new data is
discovered, necessitating a compressed and maintainable
data structure. Fast construction of the simplicial complex
combined with necessary interfaces for boundary matrix
reduction are an area of study to reduce the complexity of
the algorithm.

This section provides detailed information on construc-
tion of the complex, specifically using proximity-based sim-
plicial complexes to represent an input point cloud. Various
design decisions at this step affect the resulting persistence
intervals and performance of the algorithm. The complex
construction does not typically dominate the run-time and
memory footprints in the standard approach, although inef-
ficient data structures can become limiting as the complex
grows in simplices.

4.1.1 Normalization of Input Point Cloud

One common step in any data analysis is some normaliza-
tion of the input data to prevent features from dominating
the distance metric used between points. Normalization
techniques have been thoroughly explored in other studies,
such as feature normalization and z-score normalization.
Using a normalization technique may be necessary to scale
and interpret the data. Figure 7 compares the resultant
barcodes and distance matrix histogram for the seeds data
set. FeatureNormalization scales all features into the range of
0 to 1. Alternatively using ZScoreNormalization centers the
mean of each feature on 0.0 with a standard deviation of 1.0.
The right plots showing the histogram distribution of the
distance matrix indicate the normalization reduces inner-
point distances while retaining the general distribution of
distances between points.

Normalization notably has an effect on the persistence
intervals produced by the persistent homology computa-
tion. Few directed studies on the effect of normalization
on the persistent homology of a point cloud have been
examined. Normalization can create additional small fea-
tures which may be considered as noise as shown in Figure
7 in the barcode diagrams. While the plots show slight
differences in the persistence intervals the overall concept
preserves the significant topological features of the space.
These topological features may experience slight shifts in
their birth or death times due to the normalization. However
limiting the scale of € using normalization can lead to an
easier selection of ¢,,,, while preventing features of larger
scale from dominating the distance between related points
in the space.

4.1.2 Distance Metric and Matrix Construction

The complex encodes the spatial relationships of points
within the point cloud. A distance metric is defined to mea-
sure the proximities of all points in the space; the Euclidean
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for the seeds data set with normalization prior to persistent homol-
ogy. The top row shows the raw data results, the middle row with
FeatureN ormalization, and the bottom with ZScoreNormalization.

distance in this example. The inner point distances can be
represented with a distance matrix for fast lookup when
inserting points and distances for filtration in the complex.
This simply involves computing the upper (or lower) tri-
angular matrix entries due to the inherent symmetry of the
distance matrix.

In the case of creating a triangular distance matrix, the
distance metric computation requires O(nlogn) insertions.
Determination of the distance metric used can affect the
speed of this representation. Euclidean distance requires
exponential functions which are costly from a computation
perspective; the Manhattan L, distance may provide better
performance for larger point clouds and higher dimensions.
Using an alternative distance metric will affect the scale of
the resulting persistence intervals. Generally the distance
matrix construction does not dominate the run-time or
memory requirements of computing PH.

In some applications a different type of distance metric
may be computed and used for the simplicial complex
construction. The distance metric must be filterable with
e such that 0 < € < €,,4;. Non-numeric data may need
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encoding or alternative distance metric definition such as
hash functions to compute PH. These should be considered
separately, and may be inserted as a preprocessed distance
matrix for persistent homology.

4.1.3 Simplicial Complex and Filtrations

Several different simplicial complexes can be utilized to
build the graph of the point cloud. A simplicial complex
K requires that every simplex o; from K is also in K, and
the non-empty intersection of two simplices, 01,02 € K, is
a face of both oy and 5. This representation precedes the
algebraic construction of the boundary matrix.

Notable proximity complexes within topology include
the Vietoris—Rips [56], Witness [57], Cech [58], and Flag [56]
complexes. Each complex provides slightly different inter-
pretations of the point cloud leading to differing resultant
persistence intervals. Performance of the complex, in both
construction and storage, should be considered when ef-
ficiency is required. Characteristic differences and uses of
several notable complexes are described in Section 3.1.

The design of a persistent homology application must
determine a specified type of complex to implement. Several
libraries, such as GUDHI [70], provide users a choice of com-
plex to represent the point cloud. The run-time and memory
complexity of each type can become an integral factor in
designing high-performance persistent homology applica-
tions. For example, the Vieforis—Rips complex is similar in
nature to the Cech complex, but only requires pairwise in-
tersection of simplices to form a higher dimension simplex.
With the Cech complex the common point of intersection
must be included in the e-balls in order to consider the
higher dimensional simplex. While fewer simplices will be
inserted with the Cech complex, the evaluation of intersect-
ing e-balls is inefficient in higher dimensions.

It is evident that the choice of complex will lead to
structural differences and change the resultant persistence
intervals; in some cases a choice of complex may be influ-
enced by the type of data being analyzed. Performance and
initialization of the complex is an important design deci-
sion as well. Enumeration of higher-dimensional simplices
becomes costly in some complex types, such as the Cech
complex, whereas fast algorithms for higher-dimension con-
struction of the Vietoris—Rips complex are readily available.
For example, the incremental construction of the Vieforis—
Rips complex detailed by Zomorodian [71] provides faster
construction than the inductive or maximal construction for
higher dimensional simplices. As the dimension of simplices
generated increases the need for fast complex construction
becomes readily apparent.

4.1.4 Simplicial Complex Construction and Storage

Construction of a simplicial complex from the distance
matrix can be expensive. The number of generated simplices
becomes exponential with higher-dimensional persistent
homology and requires a fast insertion structure coupled
with a low-memory footprint. Several techniques have been
identified to store the simplicial complex: the simplex array
list, the simplex tree, and the compressed annotation matrix.
These are each detailed further to provide the strengths of
each structure. An alternative approach to enumerating the
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Vietoris—Rips complex alongside implicit boundary matrix
representation is detailed in Section 4.2.

The simplex array list stores the simplices into lists based
on the dimension of the simplex. For computing persistent
homology in low dimensions, such as Hy or H, the simplex
array list is easily maintained. However, as the dimensions
of persistent homology grow, the number of entries in each
of the higher dimensional lists are exponential and quickly
become costly to insert, sort, and retrieve for filtration and
boundary matrix construction. The simplex array list is
not well suited for high-dimensional persistent homology
analysis, and is limited even in low dimensions by the
number of simplices inserted. A faster structure is often
necessary if the simplicial complex is to be constructed and
stored.

The simplex tree stores the simplices into a tree structure
that is significantly more efficient than the simplex array list
[53]. The tree provides fast insertion, sorting, and memory-
efficient storage of the simplices and their weights. The
structure of the tree also enables fast lookup of cofaces,
one of the primary approaches in constructing the boundary
matrix for reduction.

Further improvement can be achieved using the Com-
pressed Annotation Matrix (CAM) [72] which stores the sim-
plicial complex in a separate representation from the coho-
mology groups. Results with CAM have shown consider-
able improvement in both time and memory performance
for extracting persistence intervals. An implementation of
CAM is available in the GUDHI library.

Ultimately the data structure and storage of the simpli-
cial complex depends on several factors. First, the construc-
tion of the complex needs to be fast, indicating a structure
that can provide efficient insertion of new points, simplices,
and respective faces or homology groups. Once the complex
is constructed, the reduction of the boundary matrix from
the filtered simplicial complex needs to be also considered
for fast access of faces and simplices of the complex.

4.2 Filtration and Boundary Matrix Construction

Filtration of the complex provides identification of the
features present as the proximity parameter, ¢, is varied
from 0 to €pq,. Fortunately there are several techniques
that reduce the complexity of examining the complex at
each level of connectedness through the boundary matrix.
The boundary matrix represents all incidences between
simplices within the complex. For any simplicial complex
K, the d'" boundary matrix is represented by rows of o4_1-
simplices incident with columns of o4-simplices. Reduction
of the boundary matrix identifies the algebraic relationships
captured through simplices in the complex.

The faces of a simplex represent these incidences with
o4—1-simplices. Storage of the faces enables fast construction
of the boundary matrix from the simplices, which each
are ordered by their weight and represent the augmented
boundary matrix by face relationships. This can lead to a
fast boundary matrix construction that enables extraction of
the persistence intervals by ordered filtration. Reduction of
the boundary matrix from left to right performs the filtration
based on the weights (€) of the simplices resulting in the
output persistence intervals as described in Section 4.3.
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Persistent homology requires construction of a large
portion of the boundary matrix from the simplicial complex
during reduction. The full boundary matrix construction
creates a matrix of size Zfz"})” lloal|?, which is exponential
in number of points and H,,q,. The size of the boundary
matrix becomes a major constraint on the memory footprint
to perform a full reduction. One approach is to represent
the boundary matrix as a set of cascading matrices by
dimension; i.e., the first boundary matrix would examine
the oy simplices and respective cofaces, o1, the second o
cross o2, and so on. This still results in a large representation
of the boundary matrix, especially as H,,q, increases and
higher-order boundary matrices are necessary. However,
this method (with various optimizations) is a common
implementation of the boundary matrix for persistent ho-
mology.

More recent optimizations have been implemented with
an implicit representation of the boundary matrix in order to
construct and reduce the boundary matrix for Vietoris-Rips
filtrations [63]. The approach takes advantage of several
key features of the Vietoris—Rips filtration to only compute
necessary cofaces for boundary matrix reduction (Section
4.3). Implicit representation of the boundary matrix can
reduce the memory footprint even further, consequently
improving the run-time performance of the algorithm.

Construction of the boundary matrix is one of the pri-
mary bottlenecks for persistent homology. Implicit represen-
tation of the boundary matrix provides a reduced memory
footprint and faster run-times with several optimizations;
however, it may be less suitable for maintaining a complex
in a streaming or evolving approach [21]. Attempts to pro-
vide fast construction of the complex and boundary matrix
continue to yield further enhancements to the persistent
homology pipeline for both exact and approximate methods
to extract persistence intervals.

4.3 Boundary Matrix Reduction

Once the boundary matrix is constructed it must be reduced
to identify algebraic loops, voids, and higher order topolog-
ical features. The standard concept for homology consists
of attaching to a topological space a sequence of homol-
ogy groups to obtain the global topological features. These
global topological features represent topological structures
of the continuous shape, including holes, curves, and so
on. The background theory consists of topological spaces,
homology groups and an evolution scheme; these topics are
discussed more thoroughly in [1], [5].

A generalized approach to extract persistence intervals,
the standard approach, utilizes a tracking array with a slot
for each simplex in the filtration [68]. This approach relies
on the observation that if pivots in the boundary matrix
are eliminated in decreasing order the entire description can
be identified from row echelon form without the need to
reduce to normal form. Algebraic chains identified from the
reduction can then be analyzed for their birth and death
times by examining the minimal face of the topological
feature and collapsing filtration value. These results describe
a general approach to computing persistence intervals up to
Hy.
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The boundary matrix reduction step is a computationally
expensive process due to the number of the generated sim-
plices in the complex. The standard approach for reduction
of the boundary matrix quickly becomes the dominant per-
formance inhibitor when computing persistent homology
on larger data sets. Many optimizations for reduction of
the boundary matrix have been proposed; however, several
provide a current best approach to boundary matrix reduc-
tion. These include twist and clear, cohomology, implicit
matrix reduction, and emergent pairs. Tools using these
optimizations such as Ripser [73], GUDHI [70] and Ripserer
[90] perform comparably well.

Co-reduction is an algorithm that can compute the ho-
mology of large cubical and simplicial complexes [62]. It
is essential for low-dimensional topological sets embedded
in high dimensions. The algorithm is based on the theory
of one space homology, enabling the dual process of co-
reduction. The experimental results in [62] demonstrate that
the algorithm performs much faster than other homology
algorithms for low-dimensional sets embedded in high di-
mensions.

de Silva et al [59] suggested using the co-homology for
persistence computation due to the close relationship be-
tween absolute and relative persistent co-homology. de Silva
establishes that the homology and cohomology groups of a
filtered cell complex contain equivalent information, lead-
ing to a reduced dual algorithm for computing persistent
cohomology. While cohomology itself provides a notable
performance increase over traditional persistent homology,
it implicitly employs the clearing algorithm to achieve addi-
tional gain demonstrated through the study.

The standard boundary matrix reduction algorithm fails
to exploit the special structure of a boundary matrix in
which the boundaries are always cycles. This phenomenon
introduces a large number of unnecessary matrix operations
in the reduction. The twist optimization [61] avoids the
computation of cycles in decreasing dimension by “killing”
or “zeroing” the higher-order pivot columns (set them to
zero) without reduction. This optimization can improve the
performance by reducing number of columns processed in
the boundary matrix. The algorithm processes the complex
in decreasing dimension, noting that columns can be killed
(set to 0) when the corresponding d + 1 boundary matrix
row is fully reduced in the boundary matrix.

While the twist and clear observation is identified as
the dimension decreases, increasing dimensions produces
a similar optimization; the null space of d + 1 are formed by
the pivots columns of d. This indicates when a pivot column
is found in increasing dimension of boundary matrix d, the
corresponding row in the boundary matrix d 4+ 1 can be
removed with no effect on the persistence intervals. This
increasing-dimension approach is generally referred to as
the clearing algorithm. Interestingly, the clearing algorithm
is included in de Silva’s introduction of co-homology; it
accounts for a portion of the improvement in de Silva’s
technique.

The use of clearing and computing the cohomology with
an efficient data structure, such as the simplex tree, pro-
vide a sufficient approach for computing lower-dimensional
persistent homology on several thousand points. The ap-
proach is still generally limited to several thousand points
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when H,,q; < 2, and several hundred points in higher
dimensions. Bottlenecks to the approach in this manner are
the construction of the boundary matrix from the complex
and reduction of the boundary matrix when the number
of simplices becomes increasingly large. This has led to
an alternative representation of the complex to refactor
the construction of the complex into a more space-efficient
approach.

Implicit representation of the boundary matrix is a recent
optimization that reduces the need for constructing the
entire boundary matrix by representing coface incidences
through operations on the complex. Bauer introduces this
implicit representation in Ripser and describes the required
preliminaries and ordering to perform the approach [63].
Apparent and emergent pairs are also utilized in Ripser and
described thoroughly in [63].

Combinations of these optimizations have led to changes
in both the structure of the simplicial complex and represen-
tation of the boundary matrix. Optimal VR approaches now
utilize implicit matrix representation to provide reduced
memory consumption and fast reduction of the coboundary
matrix. Persistent cohomology has become, in some ways,
synonymous with persistent homology in implementations
due to the speedups obtained. Continued performance in-
creases in the boundary matrix reduction and portions of
the persistent homology pipeline create a need for users to
understand the key computational components.

4.4 Approximate Methods for PH

Methods to approximate the persistent homology of a point
cloud can be separated into two primary categories: ap-
proximation of the original point and approximation of the
complex. Approximation of the point cloud utilizes methods
such as sampling and dimensionality reduction to provide a
smaller input point cloud to PH that approximates the orig-
inal data. Approximation of the complex uses sparsification
to limit the number of complex elements that need to be
analyzed. Both of these approaches have demonstrated sig-
nificant advancements in the computation of PH on larger
and higher-dimensional data sets.

Approximation of the input point cloud has been studied
by Chazal et al [29] using sampled data and computing
persistent homology on multiple independent samplings.
Work by Moitra et al [75] and Malott et al [76], [77] have
expanded on Chazal’s findings, examining directed sub-
sampling through partitioning algorithms to approximate
salient topological features of the point cloud. In [75], the
presented cluster-based data reduction is related to subsam-
pling, but the approach only needs to take one approxi-
mation from the original data, reducing the computational
complexity. Figure 8 demonstrates the cluster-based data
reduction technique using k-means++ to reduce the size of
the point cloud prior to persistent homology. The results
indicate large topological features, such as the Hs void
inside of the triangulated mesh model, are preserved with
bounded error.

Several additional studies of the cluster-based reduction
have been examined with different approximations of the
input point cloud [48], [76], [77]. The reduction of the point
cloud can preserve salient topological features in cases of
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extreme reduction leading to reduced complexity of the
approach, a significant development in approximating high-
dimensional topological features.

There have also been various attempts to reduce the
dimensionality of data passed into persistent homology
through projections [78], [79], [80]. Ramamurthy et al per-
form detailed experiments on the effect of random projec-
tion on persistence intervals and Betti numbers [80]. The re-
maining two studies present theoretical limits of dimension-
ality reduction for persistent homology [78], [79]. Another
recent study on the effects of projection on PH attempts
to identify and recreate high-dimensional features in their
original space from a lower dimensional projection of the
data [?]. While projection may play an important role in un-
derstanding and recognizing features in high dimensional
spaces, this is one area that persistent homology excels in
naturally. Due to the point cloud being reduced to a distance
matrix, any dimensionality reduction only impacts the inner
point distances. In many cases this distance can be bounded;
if the perturbation of the distance matrix is small enough the
resulting persistence intervals may be largely unaffected.

Approximation of the complex representation has been
introduced to decrease the space-time computational com-
plexity [57]. For example, reduction through simplicial col-
lapse of the complex has demonstrated capabilities for pro-
cessing PH on larger point clouds [81], [82], [83], [84]. Dey et
al [85] conducted the approximation of persistent homology
via simplicial batch collapse, providing a technique for
larger topological feature identification. The approach has
been implemented in the SimBa Library [85] which is an
efficient and fast algorithm for approximating the persistent
homology of Rips filtration. Several additional techniques,
such as morse matching [86], [87] and sparsification [88],
[89] have been proposed to further decrease the size of a
complex.

Approximation methods may introduce some error
to the resultant persistence intervals. Characterizing ap-
proaches for approximating persistent homology requires
careful analysis of both data and results. However, in cases
where data sizes are too large for exact applications of
persistent homology, it may be necessary to approximate
the point cloud or complex to compute within run-time or
memory requirements.

5 LIBRARIES FOR PERSISTENT HOMOLOGY

There are several libraries that are immediately available
for computing persistent homology (see Table 2). Some
persistent homology libraries target specific purposes, such
as computing the Vietoris—Rips filtration of the input data.
Others provide choices of complex storage and filtrations
that can be utilized for varying types of data. This section
summarizes some of the existing libraries and respective
uses for each. In addition, the optimization strategies and
steps covered in Section 4 are detailed as they pertain to
each of these libraries.

When selecting an appropriate library for high-
performance persistent homology there are several deter-
mining factors: the characteristics of the input data, the im-
plementation architecture (serial, parallel, distributed), and
integration with additional tools for data mining or machine

1 1

Fig. 8. Approximation of a triangulated mesh point cloud. Original Lion
model (top) and 90% Reduction of Lion model with k-means++ centroid
replacement (bottom). Large structures such as the hollow void in the
center of the lion are preserved and identified with persistent homology
after significant reduction to the point cloud size.

learning. This section provides information for integrating
persistent homology into a larger application using existing
libraries. There are persistent homology libraries available in
most modern languages with more being developed; imple-
mentation decisions need to be based on the aforementioned
characteristics of analysis.

The type of input data can immediately limit the ap-
plication of existing libraries depending on the use case.
Otter ef al introduce several guidelines for best-suited im-
plementations based on the characteristic data set [5]. For
example points in Euclidean space or a distance matrix can
be best computed with the Vietoris—Rips, Cech, or Witness
complexes, leading to the selection of Ripser or GUDHI for
high performance. Image data, which is cubical in nature,
benefits from the use of a cubical complex to represent the
relationships which is directly available from GUDHI or
DIPHA. Other types of data, such as networks or gradient
maps may require an alternate selection of persistent ho-
mology library or preprocessing to form a suitable metric
space. Understanding the data and underlying structure is
key to computing and interpreting the resultant persistence
intervals.

The implementation architecture can also have implica-
tions on the most-suitable library to use. For example, if ad-
ditional computing hardware is available, such as multiple
processors, a distributed heterogeneous or homogeneous
system, or GPUs, different approaches may show signif-
icant performance gains over a library with non-parallel
implementations. In a distributed environment the DIPHA
library provides chunking and distribution of the boundary
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TABLE 2

A brief overview of current persistent homology libraries with respective optimizations.

Complex Related
Library Language Filtrations Optimizations Representations Libraries
Ripser [63] C++, VR, Cubical Morse, Implicit, Implicit Ripser.py
Python Twist, Clear, Dual
Ripserer [90] Julia VR, Cubical, Alpha Morse, Implicit, Implicit
Twist, Clear, Dual,
Involuted, Critical Simplex
Ripser++ [93] CH++ VR, Cubical GPU, Clearing, Compression Ripser
GUDHI [70] C++ R VR, Witness, Cubical, Dual, Sparsification SimplexTree, Toplex Map,
Python Alpha, Cech, Subsampling, Implicit Skeleton Blocker
Cover, Tangential Edge Collapse CAM
JavaPlex [?] Java VR, Landmark, Witness Zigzag, Dual
Eirene [74] Julia VR Morse, Sheaf Dual Boundary Matrix
Dionysus [?] C++, R VR, Alpha, Cech Dual, Zigzag Boundary Matrix
Python
Perseus [13] C++ VR, Cubical Morse Boundary Matrix
PHAT [91] C++ R VR, Cubical Twist, Chunk, Spectral Sequence Boundary Matrix
Dual
DIPHA [92] C++ VR, Cubical Twist, Clearing, Boundary Matrix PHAT
Dual, Distributed
LHF [76] C++ VR, Alpha Partitioned PH, Morse, SimplexTree, Boundary
Implicit, Twist, Clear, Matrix, Implicit
Dual, Upscaling, Involuted
giotto [94] Python VR, Flag, Cech Edge Collapse, Image Filtrations, Ripser, GUDHI
Cubical, Alpha Ripser/ GUDHI Integration

matrix to perform a distributed reduction step, leading
to less restriction on the size of the input data based on
memory of a single node. For distributed or parallel en-
vironments the LHF library provides partitioning methods
to attack the exponential memory growth of the complex
[76]. Alternatively, GPU approaches such as Ripser++ can
accelerate the boundary matrix reduction step on a single
node by employing an accelerated GPU algorithm [95]. The
sequential approach these optimizations may be necessary
in cases where the architecture of the system can employ
these techniques and the size of input data is cumbersome.

Finally, the integration of additional tools that wrap the
persistent homology library are important in selecting a tool
to use. Several of the applications have python bindings
into the libraries, which enable fast startup and testing for
implementation. These approaches are valuable for system
prototyping and research, but may not be a standard choice
for machine learning pipelines that require high perfor-
mance and throughput. In these cases the library should
work well with the machine learning pipeline; a decision on
how well the library integrates may deem suitability.

Table 2 presents several libraries that can be used to
compute persistent homology. While there are many more
libraries that exist and continue to be developed, this
collection focuses on state-of-the-art libraries that can be
easily integrated into a larger machine learning pipeline
for high-performance data science. Several features of each
library are noted including the complex filtrations available
through the library, various optimizations employed, and
the internal representation of the complex and boundary
matrix for reduction. The latter is key to computing per-
sistent homology for larger point clouds and higher di-
mensions as the size of the boundary matrix is a primary
bottleneck for modern computers.

There is no single approach that fits every application;
the libraries discussed provide coverage of several com-
mon applications for machine learning and data analysis
pipelines. Understanding of the different components of
persistent homology as described in this survey attempt
to guide readers in their selection of design criteria and
corresponding libraries for various applications.

5.1 Sequential Libraries

This section highlights some of the sequential libraries for
computing persistent homology. The libraries offer different
complex representations and tuning parameters for experi-
mentation. These parameters are described in detail in each
respective library’s documentation pages.

One of the more recent libraries for Vietoris—Rips fil-
trations is Ripser [63]. Ripser uses an implicit boundary
matrix representation to reduce the required memory for
the reduction step, subsequently reducing the run-time of
the approach. Ripser has been integrated into python bind-
ings through the Ripser.py PyPi package. There have been
various extensions to the Ripser approach (e.g., Ripser++
and Ripserer) each wrapping the optimizations set forth in
Ripser in new and innovative ways. Ripser++ implements
parallel boundary matrix reduction for GPU acceleration
[95].

GUDHI [70] is a more generalized approach to com-
puting persistent homology. GUDHI provides interfaces for
several different complexes including Alpha, Cech, Vietoris—
Rips, Witness, Cubical, and more. The library exhibits sim-
ilar performance to Ripser when computing Vietoris—Rips
filtrations of a point cloud. However, GUDHI has additional
filtrations and complex representations that may be benefi-
cial in practice, such as sparsification of the complex.
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Eirene [74] is an implementation of the Vietoris-Rips
filtration in Julia that uses sheaf cohomology to identify
persistence intervals quickly. Eirene is not as performant
as Ripser and GUDHI, but computes the representative
generators of the persistence intervals which identify con-
stituent points of a feature. Ripserer, another julia PH library,
includes a method of identifying representative cycles with
involuted homology [90], [96]. The use of the representative
cycles can enable tracking of topological features in the
original point cloud. These and other notable features are
identified in Table 2.

5.2 Parallel/Distributed Libraries

Parallel and distributed libraries combat the memory and
run-time limitations of persistent homology. This section
introduces several parallel and distributed persistent ho-
mology libraries. As mentioned previously, a variant of
Ripser called Ripser++ enables GPU acceleration of the algo-
rithm through parallel reduction of the boundary matrix in
steps [95]. Giotto, which wraps a newer version of Ripser
using a lock-free algorithm [?], combines several of the
aforementioned sequential tools into a single python library
for interoperability [94].

DIPHA [92] is a distributed library that utilizes OpenMP
to enable reduction of the boundary matrix on a distributed
compute cluster. DIPHA employs several similar optimiza-
tions to PHAT [91] and can process much larger complexes
than a sequential approach. In cases where the size of the
point cloud or dimension of homology to compute to is
too large for a single computer, distribution of the work
to several worker nodes may provide suitable evaluation
of the persistence intervals. HYPHA [93] extends DIPHA
further by implementing GPU accelerated scanning and
compression of the boundary matrix that can further in-
crease performance.

DIPHA provides an exact evaluation of the persistence
intervals; the size of the boundary matrix grows exponen-
tially with the number of points. The construction and
storage of the boundary matrix is often the bottleneck
for persistent homology [63]. For this reason, approximate
approaches, such as the clustering approach described in
Section 4.4 and depicted in Figure 8 can have significant
impact on the underlying performance of the approach.
An extension to this clustering technique in a distributed
environment is to partition the point cloud and distribute
the partitions to approximate the topological features of
the space [76]. This approach, called Partitioned Persistent
Homology, is implemented into the LHF library for parallel
and distributed approaches [48]. LHF provides several dif-
ferent optimizations in a pipelined architecture for study of
the affects of partitioning and upscaling for reconstruction
of feature boundaries. LHF also implements the sequential
Ripser algorithm, alongside several different complex types
and experimental tools for PH evaluation.

6 EXPERIMENTAL PH PERFORMANCE

In this section the capabilities of persistent homology are
evaluated with respect to complex sizes, implementation
of optimizations, and hardware performance. Persistent ho-
mology is generally limited by memory; the size of the
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complex and boundary matrix reduction steps quickly grow
beyond memory capacity, even on high-end systems and
servers. The experimental results provide insight into how,
and when, the persistent homology algorithm is applicable
in high-performance systems.

First, the complex performance is analyzed with respect
to the memory capacity of the system in Section 6.1. Addi-
tional SWAP space is utilized to measure the effectiveness
of disk space for the algorithm and run-time implications.
Synthetic data is generated to measure the memory and run-
time performance. These methods are presented to demon-
strate how the complex quickly exceeds memory limitations,
especially in higher dimensions of persistent homology.

Once the complex is constructed the boundary matrix
is reduced to extract persistence intervals. Section 6.2 ex-
amines several notable techniques to improve the algorithm
alongside measurements of their respective impact. These
techniques are evaluated against selected TDA data sets
of varying dimensions. The use of multiple optimizations
to the boundary matrix reduction step can significantly
accelerate the overall performance.

Section 6.3 demonstrates the impact of hardware deci-
sions for computing persistent homology. Specifically, the
memory size, bandwidth, channels, and controllers are ex-
amined in the context of computational PH and provide
dedicated system suggestions for high-performance compu-
tation. The analysis yields a road-map for selecting high-
performance architectures for computational persistent ho-
mology.

6.1 Complex Performance

The complex constructed for persistent homology grows
exponentially in size by the number of points and the
maximum dimension of homology. Persistent homology
is restricted in practice to relatively small data sets and
lower dimensions of homology, often bounded by available
memory of the system. Overflow into disk memory, such as
expanding the system’s SWAP space, can provide additional
space for the storage of the complex at the cost of run-time
performance of the algorithm. However, even with large
amounts of memory availability the exponential growth of
the complex can easily outpace expansions of memory.

Synthetic data was generated for capturing the memory
and run-time limitations of Ripser at different homology
dimensions. Each data set utilizes points sampled from the
surface of a d-sphere, where d is equal to the maximum
homology dimension. This creates a topological feature at
H,0z to be identified by the algorithm. The number of
points sampled from the d-sphere were varied to analyze
the impact of point cloud size and homology dimension on
the memory and run-time performance.

Figure 9 depicts the dimensional limitations of Ripser
with 32GB of RAM alongside 32GB of swap, doubling the
effective memory space to 64GB. The memory limitation
of the system still significantly inhibits the algorithm for
identifying higher dimensional features. Figure 10 plots the
corresponding execution time for each test. Once SWAP
space begins to be utilized the run-time performance suffers
due to slower disk access.
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Memory Limits for PH based on Homology Dimension
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Fig. 9. Memory limits for Ripser based on number of points in point
cloud and the maximum dimension of homology to compute. Higher
dimensions of homology (Hmaz > 2) require significant resources
for small point clouds.
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Fig. 11. This graph shows the percentage impact of different opti-
mizations against the baseline of the standard homology computation
(Possible CR). The dual algorithm (CR (CO)), which computes the
cohomology, results in a significant decrease in column reductions.
The clearing algorithm paired with the dual algorithm (CR (CO + CL)
provides a slight additional decrease in the remaining columns for these
data sets.

Approaches to reduce the size of the complex, such as
sparsification, collapses, and point cloud approximations at-
tempt to preserve the topological features of the point cloud
while reducing the total number of simplices to analyze.
As indicated in Section 3.1, different filtrations of the point
cloud will change the size of the complex as well. In the
discussion of the reduction of the complex, the remainder
of this section utilizes the Vietoris—Rips (VR) complex as the
baseline for reduction. This represents the complete graph;
the set of all possible simplices that can be formed from the
point cloud.

6.2 Boundary Matrix Reduction Performance

Optimizations to the boundary matrix reduction target the
processing time and frequency of columns analyzed. There
are four primary techniques for Vietoris—Rips complexes:
cohomology, clearing, morse matching, and emergent and
apparent pairs. Several of these techniques are analyzed
independently and in conjunction to provide relative im-
pact of the optimizations in this section. This approach
characterizes the impact on the boundary matrix reduction
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Runtime for PH based on Homology Dimension
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Fig. 10. Ripser run-time as the percentage of the maximum in-
memory points is exceeded, leading to SWAP usage. Once swap
begins to be used (> 1.0), the run-times increase and can vary
significantly from thrashing.

algorithm by counting the number of reduced columns from
independent and combinations of the standard approaches.

As Figure 11 shows, the dual algorithm [59], which
computes the cohomology of the point cloud, achieves
massive performance speedup due to a large reduction in
the number of column operations on the boundary matrix.
In addition, the twist and clear algorithm [61] reduces the
number of columns in subsequent dimensions of the bound-
ary matrix reduction by noting columns that are zeroed in
the next dimension. This effect can remove a significant
number of columns from needing to be reduced, leading
to better algorithm performance in both space and run-time
efficiency. Paired with clearing the dual algorithm can add
an additional performance boost in the reduction of the
boundary matrix due to less column reductions.

The magnitude of simplices generated during complex
construction is large, and grows larger with higher dimen-
sions of homology. This directly impacts the number of
column reductions in the boundary matrix, although the op-
timizations described can help reduce the required columns.
Table 3 presents an experimental analysis of column re-
ductions to the boundary matrix performed over several
different data sets. Figure 11 compares the total number of
boundary column rows in the homology computation, the
cohomology number of rows, and the rows after clearing.

The data sets compared are samplings in different di-
mensions to demonstrate how the clearing algorithm signif-
icantly improves in higher dimensions at removing a large
percentage of candidate columns in the boundary matrix.
Paired with the cohomology algorithm the clearing opti-
mization can limit the number of column reductions, signif-
icantly impacting the speed of the approach. The magnitude
of column reductions, even after cohomology and clearing,
can have a large effect on performance of applications if not
managed with compact data structures.

In the most extreme case, the Iris data set, when com-
puted up to H,,. = 5 on 100 points, can generate over
a billion total columns in the boundary matrix for reduc-
tion. Cohomology requires only a fraction of the columns,
while cohomology with the clearing optimization can re-
duce the number of columns further. In addition to the
clearing and cohomology algorithms, additional techniques
such as morse matching and emergent and apparent pairs
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TABLE 3
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Sample data sets used to demonstrate the column reductions for persistent homology, depicted in Figure 11. The CR (CO) column represents the

remaining columns with cohomology, and the CR (CO + CL) column represents the remaining columns with cohomology and clearing.

Data Set # Points Data Dimension H,qx Possible CR CR (CO) CR(CO +CL)
Gesture 100 32 4 79,375,495 67,098,259 63,644,877
TwoMoons 2000 2 1 2,001,000 1,528,942 1,526,943
Circles 1200 10 2 288,001,000 142,147,056 141,616,051
Camel 1200 3 2 288,001,000 117,556,212 117,059,110
Klein 375 3 2 8,789,375 3,271,474 3,223,812
Iris 100 4 5 1,271,427,895 152,659,308 138,731,360

can provide reduction in the computational complexity as
detailed in [63]. These optimizations are not column level;
measurement of their impact requires detailed analysis of
the individual techniques.

One recent optimization utilized in the Ripser algo-
rithm is implicit representation of the boundary matrix.
The approach takes advantage of the combinatoric structure
of the Vietoris—Rips complex to inductively construct and
compute persistent homology. Ripser works alongside the
dual algorithm and clearing optimization to provide the
fastest sequential approach to persistent homology of VR
complexes. This is the primary reason Ripser is evaluated as
a baseline throughout this experimental section.

6.3 Hardware Performance

Persistent homology is a memory-intensive algorithm. Fast
access memory, such as RAM, provides necessary resources
for computing persistent homology over higher dimensions
and larger point clouds in reasonable time. As discussed
in Section 6.1, the use of SWAP to expand the memory
of the system can alleviate the memory strain. Additional
hardware specifications, such as memory capacity, band-
width, channels, and controllers, are equally important to
the overall performance of the algorithm.

Memory capacity of the system is examined closely in
Section 6.1, demonstrating the exponential growth of the
complex and need for significant memory resources for per-
sistent homology. While memory capacity limits the size of
complexes that can be evaluated, other characteristics of the
system architecture can hinder the run-time performance.
Two machines with the same memory capacity can evaluate
the same sizes for persistent homology but may have wildly
varying run-times.

Memory bandwidth, channels, and controllers can con-
tribute to performance differences between machines. Mem-
ory bandwidth is intuitive — newer, faster RAM provides
accelerated read and write times during the algorithm.
These read and writes happen frequently; thus the number
of channels and controllers available can bottleneck the
speed of the algorithm in larger memory spaces. This obser-
vation was originally identified while evaluating expanding
memory space in the run-time performance of the algo-
rithm. The remainder of this section characterizes how, and
when, these memory attributes will affect the performance
of persistent homology applications.

Figure 12 plots experimental data from several different
computer architectures when computing persistent homol-
ogy. The four classes of machines are plotted as separate
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Fig. 12. Experimental performance over computer architectures listed in
Table 4. Characteristics of the memory architecture play an important
role in the run-time performance of persistent homology.

series in the chart. Each machine configuration is detailed
in Table 4 for reference. All limits were taken when com-
puting up to H> homology groups, generating d-spheres as
described in Section 6.1.

One interesting difference between the evaluated sys-
tems is in the number of RAM channels and controllers.
Due to the memory intensive construction of the complex
and boundary matrix reduction the RAM channels and
controllers quickly bound the run-time of the approach.
The memory architecture organization is more detrimental
in higher dimensions of PH; computing over thousands
of points may take several hours when possible. Newer
processors such as the AMD EPYC 7452 build provide
better run-time performance due to an alleviated memory
bottleneck over systems with the same memory capacity but
with lower memory throughput.

While the persistent homology algorithm requires mas-
sive system resources to run, the hardware architecture can
have significant implications on the performance. Utiliz-
ing systems with more memory channels and controllers,
especially a 1-to-1 ratio, will yield considerable speedup
when computing persistent homology. Processors such as
the new AMD EPYC 7452 continue to provide alleviation
of the memory bottleneck on the technique. Architecture
of the system can play an important role in implementing
persistent homology for experimental studies.

7 CONCLUSION

The study of persistent homology continues to uncover
fascinating relationships within data unseen by traditional
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TABLE 4
System architectures for evaluated Persistent Homology limitations. Variations in memory architectures contribute to performance differences
between these systems as depicted in Figure 12.
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CPU Frequency CPU Frequency RAM Capacity RAM Frequency # RAM # RAM
CPU Model Base (GHz) Max (GHz) (GB) (MHz) Channels Controllers
AMD Ryzen7 3800X 3.9 4.5 64GB 2400 2 2
AMD RyzenTR 1950X 34 4.0 128GB 2666 4 4
Intel XeonGold 6148 2.4 3.7 192GB 2666 6 2
AMD EPYC 7452 2.35 3.35 256GB 3200 8 8

machine learning algorithms. While the memory and run-
time complexities of the algorithm currently inhibit use for
big data, optimizations and strategies to approximate the
persistent homology are being explored.

This survey has detailed several applications of persis-
tent homology alongside the technical considerations for
designing high-performance applications of the approach.
Utilization of persistent homology for data mining and
machine learning can provide alternative representation of
point clouds and identify relationships often missed by tra-
ditional methods of data analysis. Experimentation within
the data science and engineering communities will continue
to reveal opportunities for the technique in various fields.

Unfortunately there remains no single solution for com-
puting persistent homology on any point cloud. Selection of
complexes, storage types, and analysis of the data depends
heavily on the domain being analyzed. These decisions need
to be made when designing and implementing machine
learning applications using persistent homology and should
be appropriately studied prior to integration. Existing tools
may provide suitable approaches for prototyping, experi-
mental analysis, and further data studies.
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