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Abstract—Providing end-to-end network delay guarantees in
packet-switched networks such as the Internet is highly desirable
for mission-critical and delay-sensitive data transmission, yet it
remains a challenging open problem. Since deterministic bounds
are based on the worst-case traffic behavior, various frameworks
for stochastic network calculus have been proposed to provide less
conservative, probabilistic bounds on network delay, at least in
theory. However, little attention has been devoted to the problem
of regulating traffic according to stochastic burstiness bounds,
which is necessary in order to guarantee the delay bounds in
practice. We design and analyze a stochastic traffic regulator
that can be used in conjunction with results from stochastic
network calculus to provide probabilistic guarantees on end-
to-end network delay. Two alternative implementations of the
stochastic regulator are developed and compared. Numerical
results are provided to demonstrate the performance of the
proposed stochastic traffic regulator.

Index Terms—Stochastic network calculus, traffic shaper, end-
to-end delay, traffic burstiness bounds.

I. INTRODUCTION

Currently, the Internet does not provide end-to-end delay
guarantees for traffic flows. Even if the path taken by a given
traffic flow is fixed, e.g., via mechanisms such as software-
defined networking or multi-protocol label switching, network
congestion arising from other flows can result in highly
variable delays. The variability and random nature of traffic
flows in a packet-switched network make it very challenging to
provide performance guarantees. End-to-end delay guarantees
would improve the user experience provided by real-time
applications such as video streaming and video conferencing,
as well as enable emerging applications involving virtual
reality and augmented reality. Bounds on network delay are of
particular relevance to age of information (AoI), a performance
metric whereby the freshness of data is assessed from the
receiver’s perspective [2].

The standard approach to providing network performance
guarantees consists of two basic elements:

1) Admission control: A new flow is admitted only if per-
formance guarantees can be maintained for all admitted
flows with the available network resources.
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2) Traffic regulation: Each admitted traffic flow is regulated
to ensure that it does not consume more resources than
what was negotiated by the admission control scheme.

Admission control relies on a means of characterizing the traf-
fic to determine how to allocate network resources to the new
flow. The random and bursty nature of traffic flows in packet-
switched networks make them difficult to characterize. Even if
each traffic flow is modeled as a random arrival process, e.g.,
a Markov modulated Poisson process, the problem of resource
allocation to provide end-to-end performance guarantees is
intractable. Moreover, traffic regulation to ensure that a flow
conforms to the parameter of a traffic model is infeasible.

In his seminal work, Cruz [3], [4] proposed the (σ, ρ) char-
acterization of traffic, which imposes a deterministic bound
on the burstiness of a traffic flow. The bound ensures that the
long-term average arrival rate a (σ, ρ)-bounded traffic source
does not exceed the rate parameter ρ and its maximum burst
size does not exceed the burst size parameter σ. By bounding
traffic flows according to (σ, ρ) parameters, Cruz developed
a network calculus which determined how these parameters
propagate through network elements and derived associated
end-to-end delay bounds.

An important feature of the (σ, ρ) characterization is that
it can be enforced by a traffic regulator. In fact, the (σ, ρ)
traffic bound can be defined operationally in terms of a (σ, ρ)
traffic regulator. For bursty traffic sources, however, the (σ, ρ)
bound can lead to worst-case end-to-end delay bounds that are
very conservative, which in turn results in very low network
resource utilization. To achieve higher utilization, the approach
in [5] estimates a (σ, ρ)-based parameter for an arbitrary
traffic source by minimizing a cost function derived from
the concept of effective bandwidths [6, Chap. 9], subject to
a constraint on the shaping delay incurred on the source.
Given the traffic parameter, worst-case delay bounds for a
traffic source could be computed using deterministic network
calculus. Alternatively, resource allocation could be performed
using effective bandwidths, but in this case true performance
guarantees would not be provided.

The (σ, ρ) traffic bound of Cruz was the basis for further re-
search into stochastic bounds on traffic burstiness and stochas-
tic network calculus to provide probabilistic end-to-end delay
guarantees as opposed to worst-case delay bounds. Stochastic
network calculus remains an active topic of research [7].
To our knowledge, however, a traffic regulator to enforce a
stochastic traffic bound based on stochastic network calculus
has not been addressed previously, despite the fact that such
a regulator is necessary to provide performance guarantees
in real networks. Stochastic network calculus is based on the
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Ao ∼ (σ + δ, ρ)

δ = (1− ρ/C)Lmax
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Fig. 1. (σ, ρ) regulator with input/output links of capacity C.

(σ, ρ)
Ai A1 Ao

Fig. 2. (σ, ρ) traffic shaper with front-end buffer.

assumption that all traffic flows entering the network satisfy
stochastic traffic bounds. In this paper, we develop a traffic
regulator to enforce the so-called generalized Stochastically
Bounded Burstiness (gSBB) traffic burstiness bound in [8],
[9]. The gSBB bound is closely related to the SBB and EBB
bounds in [10] and [11], respectively. Formal definitions of
these bounds are given in Section II-B. These bounds are
also related to the moment generating function (MGF) traffic
bounds discussed in [6], [12]. We focus on the gSBB bound
primarily because it is more amenable to traffic regulation than
the other traffic bounds (see Section IV).

We refer to our proposed regulator as a stochastic (σ∗, ρ)
regulator, since the burst size parameter σ∗ varies over time
and takes on values in a finite set Σ = {σ1, . . . , σM}. We
describe the design and basic properties of the stochastic
(σ∗, ρ) regulator and develop two practical implementations.
Our analysis establishes that the output traffic always conforms
to the gSBB bound.

The remainder of the paper is organized as follows. In
Section II, we review basic concepts in deterministic and
stochastic network calculus. In Section III, we review key
properties of the deterministic (σ, ρ) regulator and develop
some new results for its analysis, which are applied in Sec-
tion IV to the design and implementation of the proposed
stochastic (σ∗, ρ) regulator. Numerical results demonstrating
the performance of the (σ∗, ρ) regulator are presented in
Section V. Concluding remarks are given in Section VI.

II. BACKGROUND ON NETWORK CALCULUS

Our proposed stochastic traffic regulator builds on the (σ, ρ)
network calculus of Cruz [3], [4] as well as stochastic network
calculus. In this section, we review relevant aspects of both
types of network calculus.

A. Deterministic (σ, ρ) Network Calculus

Let A = {A(t) : t ≥ 0} denote a traffic process or flow,
where A(t) represents the amount of traffic arriving in the
interval [0, t). We shall assume that t is a continuous-time
parameter, although our results carry over to the discrete-time
case as well.

Definition 1 ((σ, ρ) traffic bound). A traffic flow A is said to
be (σ, ρ)-bounded, denoted as A ∼ (σ, ρ), if

A(t)−A(s) ≤ ρ(t− s) + σ, ∀s ∈ [0, t], (1)

where σ, ρ ≥ 0.

In conjunction with Definition 1, Cruz [3] introduced a
traffic regulator to enforce conformance to the (σ, ρ) bound.
For an idealized fluid model of input traffic, a (σ, ρ) traffic
regulator ensures that the output traffic Ao ∼ (σ, ρ) and
traffic departs the regulator in the same order as it arrives
to the regulator, i.e., the service discipline is first-come first-
served (FCFS). When the traffic consists of discrete packets
of maximum length Lmax and the input/output links to the
regulator have finite capacity C, the output traffic satisfies
Ao ∼ (σ + δ, ρ), where (see Fig. 1)

δ = (1− ρ/C)Lmax. (2)

Traffic regulation can be accomplished by packet dropping,
packet tagging (as lower priority), or delaying of packets. In
the first two cases, the traffic regulator is sometimes referred to
as a traffic policer whereas in the third case it is referred to as
a traffic shaper. The traffic regulators discussed in this paper
will be of the traffic shaper variety. A traffic shaper includes
a front-end buffer, which stores packets that are delayed in
the process of forcing the output traffic to conform to (σ, ρ)
(see Fig. 2). A traffic policer is equivalent to a traffic shaper
with no front-end buffer; i.e., packets that do not conform to
(σ, ρ) are dropped or tagged immediately rather than placed
in a buffer.

B. Stochastic Network Calculus

The (σ, ρ) bound in (1) tends to be very conservative for
bursty traffic. This is illustrated in Fig. 12 (see Section V) for
a sample path of bursty traffic fed to a queue with service
rate ρ. The queue size reaches the burstiness bound σ, but is
far below σ most of the time. End-to-end delay bounds based
on worst-case (σ, ρ) bounds will be overly conservative for
bursty traffic flows. Admission control based on such bounds
will lead to low network utilization. Moreover, deterministic
network calculus cannot exploit the phenomenon of statistical
multiplexing. These considerations motivated the development
of stochastic traffic burstiness bounds and stochastic network
calculus to allow the derivation of stochastic end-to-end delay
bounds [7], [13].

An early proposal for a stochastic traffic burstiness bound
was the Exponentially Bounded Burstiness (EBB) of Yaron
and Sidi [14], which involves an exponential bounding func-
tion. A related traffic bound based on moment generating
functions was proposed by Chang [12]. In this paper, we focus
on the generalized Stochastically Bounded Burstiness (gSBB)
proposed in [9].

Definition 2 (gSBB). A traffic process A is gSBB with upper
rate ρ and bounding function f ∈ BF if

P{Wρ(t;A) ≥ σ} ≤ f(σ), ∀t ≥ 0, ∀σ ≥ 0, (3)

where BF denotes the family of positive non-increasing real-
valued functions and Wρ(t;A) is the virtual workload at time t
of an infinite-buffer FCFS (First Come First Served) queue
with constant service rate ρ with input traffic A. The virtual
workload is given by

Wρ(t;A) = max
0≤s≤t

[A(t)−A(s)− ρ(t− s)]. (4)
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Intuitively, the virtual workload at an arbitrary time t is the
amount of work (e.g., in units of bits) remaining in the system
for the server to process. The gSBB concept is based on
Stochastically Bounded Burstiness (SBB) [10].
Definition 3 (SBB). A traffic process A is SBB with upper
rate ρ and bounding function f ∈ F if

P{A(t)−A(s)− ρ(t− s) ≥ σ} ≤ f(σ), ∀t ≥ 0, ∀σ ≥ 0,
(5)

where F is the family of functions f such that for every n, σ ≥
0, the n-fold integral

(∫∞
σ

du
)n

f(u) is bounded.
A traffic process is EBB if it is SBB with an exponentially

decaying bounding function, i.e., f(σ) = ae−ασ , where
a, α > 0. For a given SBB bounding function f ∈ F , a
traffic process that is gSBB with respect to f is also SBB.
Thus, the gSBB bound is more conservative than the SBB
bound. Nevertheless, the gSBB concept has two important
advantages over SBB, which we leverage in designing the
(σ∗, ρ) regulator (see Section IV): 1) BF ⊃ F ; 2) The gSBB
bound is defined in terms of Wρ(t;A) rather than A(t).

The phase-type traffic bound proposed in [15] is closely
related to gSBB.
Definition 4. A traffic process A is characterized by a phase-
type traffic descriptor [ρ; (a,π,Q, T )] if

P {Wρ(t;A) ≥ σ} ≤ aπeQσ1, (6)

for all t ≥ 0 and all σ ∈ (0, T ]. Here, 1 is a column vector of
all ones, a ≥ 0, T > 0, and (π,Q) denotes the parameter of
a phase-type distribution [16], [17].
When T =∞, the phase-type traffic bound is a particular case
of gSBB. Using Algorithm 1 in [18], any given traffic flow
can be characterized by a phase-type traffic descriptor.

Analogous to the deterministic network calculus, a stochas-
tic network calculus can be developed based on a given
stochastic traffic burstiness bound [6], [10], [14]. By applying
results from the stochastic network calculus based on gSBB
(see [9]), the admissibility of a given set of traffic flows with
respect to a certain probabilistic end-to-end delay constraint
can be determined. More general stochastic traffic bounds have
since been developed in conjunction with notions of statistical
arrival envelopes, service curves, and min-plus algebra in the
context of stochastic network calculus [7]. However, end-to-
end delay guarantees via stochastic network calculus can only
be provided if the user traffic flows that are offered as input
to the network conform to their negotiated traffic burstiness
bounds. The stochastic traffic regulator developed in this paper
can be applied at the network edge to ensure that a user’s traffic
does not violate the gSBB bound provided to the admission
control unit. Additional performance benefits can be obtained
by applying stochastic traffic regulation in internal network
elements to reshape traffic flows to their negotiated parameters,
since the traffic parameter of a flow may be altered after it
passes through a network element.

III. ANALYSIS OF DETERMINISTIC (σ, ρ) REGULATOR

The (σ∗, ρ) regulator may be viewed as an extension of the
deterministic (σ, ρ) regulator, in which the burst size parameter

σ∗ takes on values from a finite set Σ = {σ1, . . . , σM} while
adapting to the input traffic flows. In particular, the operation
of a (σ, ρ) regulator can be viewed as a special case of a
(σ∗, ρ) regulator. In Section III-A, we review some relevant
results on the virtual workload process Wρ(t) from the (σ, ρ)
calculus. In Section III-B, we develop some new results related
to Wρ(t), which we shall use in the design and analysis of the
stochastic (σ∗, ρ) regulator in Section IV.

A. Input/Output Workload Analysis

Suppose a traffic flow A is offered to an infinite-buffer
FCFS system with constant service rate ρ. Clearly, the virtual
workload Wρ(t;A) is a decreasing function of ρ. It can easily
be shown that A ∼ (σ, ρ) if and only if

Wρ(t;A) ≤ σ, ∀t ≥ 0. (7)

Equation (7) provides a useful alternative characterization of
a (σ, ρ)-bounded traffic flow.

Now suppose that the input and output traffic links to and
from a (σ, ρ) regulator have a finite capacity C > ρ. Consider
an input traffic flow Ai to the regulator. Let sj denote the
arrival time of the jth packet, tj its departure time, and Lj its
length in bits. The jth packet begins arriving at time sj and is
received completely at the regulator at time aj = sj +Lj/C.
We assume that a packet does not arrive when the previous
one is being received. i.e., aj < sj+1.

The operation of the regulator can be described in terms
of the workload Wρ(sj ;Ai). At time sj , if Wρ(sj ;Ai) > σ,
the regulator delays the packet such that at its departure time
tj , the condition Wρ(tj ;Ao) ≤ σ holds. Hence, the departure
time of the jth packet is derived as [3]

tj = [Wρ(sj ;Ai)− σ]+/ρ+ sj , (8)

where [x]+ := max{x, 0}. The packet completely departs the
regulator at time

bj = tj + Lj/C. (9)

At times other than departures, the workload may not neces-
sarily be bounded by σ, but always satisfies [3]

Wρ(t;Ao) ≤ σ + (1− ρ/C)Lmax, ∀t ≥ 0. (10)

Thus, Ao ∼ (σ + δ, ρ), where δ, given by (2), can be viewed
as the maximum error margin in regulating packetized traffic
when the input/output links have capacity C (see Fig. 1).

As shown Fig. 3, when a packet is being received by
the regulator, e.g., during [sj , aj ], the workload Wρ(t;Ai)
increases linearly with slope C − ρ. Conversely, during the
time between the complete arrival of a packet and the initial
arrival of the next packet to the system, e.g., during [aj , sj+1],
the workload Wρ(t;Ai) decreases linearly with slope −ρ.
Similarly, when a packet departs the regulator, e.g., during
[tj , bj ], the workload Wρ(t;Ao) increases linearly with slope
C − ρ. When packets are not departing the system, e.g.,
during [bj , tj+1], Wρ(t;Ao) decreases linearly with slope −ρ.
Assume that the buffer of the regulator is empty at t = s1.
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Let

δj = (1− ρ/C)Lj (11)

denote the error margin due to regulating the jth packet. We
present the governing equations for a (σ, ρ) regulator in terms
of the workloads Wρ(t;Ai) and Wρ(t;Ao) as follows:

Wρ(t;Ai) = [Wρ(aj−1;Ai)− ρ(t− aj−1)]
+,

t ∈ [aj−1, sj ]; (12)
Wρ(t;Ai) = Wρ(sj ;Ai) + (t− sj)(C − ρ), t ∈ [sj , aj ];

(13)

Wρ(tj ;Ao) =

{
σ, if Wρ(sj ;Ai) > σ,
Wρ(sj ;Ai), if Wρ(sj ;Ai) ≤ σ;

(14)

Wρ(t;Ao) = Wρ(tj ;Ao) + (t− tj)(C − ρ), t ∈ [tj , bj ];
(15)

Wρ(t;Ao) = [Wρ(bj−1;Ao)− ρ(t− bj−1)]
+,

t ∈ [bj−1, tj ]; (16)

for j = 1, 2, . . .. Equations (12)–(16) provide a complete
characterization of the virtual workloads of the traffic flows
Ai and Ao and can be used to construct the corresponding
workload curves shown in Fig. 3.

B. Internal Traffic Workload Analysis

To analyze the stochastic (σ∗, ρ) regulator developed in
Section IV, it will be convenient to introduce the internal traffic
flow A1 shown in Fig. 2 for the (σ, ρ) regulator and in Fig. 4
for the (σ∗, ρ) regulator. We shall develop some new results for
the (σ, ρ) regulator involving the internal flow A1, which will
be useful in the design of the (σ∗, ρ) regulator. Figure 2 can
be viewed as a more detailed depiction of the (σ, ρ) regulator
shown as a single box in Fig. 1. The diagrams in Figs. 2 and 4
represent single-server, infinite buffer queueing systems. The
box represents the server, which imposes a variable service
delay on an arriving packet. The service delay will be zero if
no shaping is needed. Only one packet can reside in the server
at any given time. A new packet j can arrive to the server at
the instant packet j − 1 leaves the server. Packets that arrive
when the server is occupied are stored in the front-end buffer
in FCFS order. The traffic flow A1 consists of the sequence
of packets arriving to the server.

Let s̃j denote the arrival time of the jth packet at the buffer
and let ãj denote the complete arrival time to the buffer,
i.e., ãj := s̃j + Lj/C. The server incurs a delay on the jth
packet such that it begins departing the buffer at time tj and
completely leaves the regulator at time bj . Since the front-end
buffer delays each packet until the complete departure time of
the previous packet from the regulator, we have

s̃j = max{sj , bj−1}. (17)

Therefore, the operation of (σ, ρ) regulator can also be de-
scribed in terms of the workload Wρ(s̃j ;A1). In other words,
we have the following result, which is proved in Appendix A.
Proposition 1. The departure time tj for the jth packet in the
(σ, ρ) regulator is given by (cf. (8)):

tj = [Wρ(s̃j ;A1)− σ]+/ρ+ s̃j . (18)

An example sample path of the workloads of traffic flows
Ai, A1, and Ao for a deterministic (σ, ρ) regulator is shown in
the top graph of Fig. 3. If the input traffic flow Ai conforms to
the (σ, ρ) traffic burstiness parameter at arrival times, then the
workloads of Ai, A1, and Ao will all coincide, which occurs
in the interval [s1, s3] in the figure. Within this interval, for
packets j = 1 and 2, we have sj = s̃j = tj and aj = ãj = bj ,
since both packets arrive when the workload Wρ(t;Ai) ≤ σ.
At time s3 = s̃3, the workloads of A1 and Ao diverge because
packet 3 arrives when Wρ(t;Ai) > σ. Thus, the packet is
delayed in the server and t3 > s̃3. However, the workloads of
A1 and Ao once again coincide at time b3, i.e., the complete
departure time of packet 3 from the regulator.

The workload curves of A1 and Ao form a parallelogram
in the interval [s̃3, b3]. The other points of this parallelogram
occur at ã3, i.e., when packet 3 completely arrives to the
server and at t3, i.e., when packet 3 starts to depart the
server. Then the two workload curves coincide in the interval
[b3, s̃4]. In general, the workloads of A1 and Ao form a
(possibly degenerate) parallelogram during the interval [s̃j , bj ]
and coincide during the interval [bj , s̃j+1], for j = 1, 2, . . ..

In Fig. 3, we see that the workload curves of Ai and A1

coincide until time s5, which is the start time of the arrival of
packet 5 to the regulator. At this time, packet 4 is at the server,
so packet 5 waits until time s̃5 > s5 to go into service. At
time ã5, when packet 5 has arrived completely to the server,
the two curves coincide once again. In the interval [s5, ã5], the
two curves form a parallelogram. This is not true in general,
but in the interval [sj , ãj ] a (possibly degenerate) parallelo-
gram can be formed in which the sides consists of Wρ(t;Ai)
for t ∈ [sj , aj ], Wρ(t;A1) for t ∈ [s̃j , ãj ], Wρ(t;Ai) for
t ∈ [aj , ãj ], and Wρ(t;A1) for t ∈ [sj , s̃j ] for j = 1, 2, . . ..
Thus, the workload curves of Ai and A1 are separated by
a sequence of possibly degenerate parallelograms. Each such
parallelogram corresponds to a packet delayed in the buffer of
the regulator. A similar type of relationship holds between the
workload curves of Ai and Ao. The workload curves of A1

and Ao are separated by at most one parallelogram because
the server can hold at most one packet.

Based on the above analysis and Proposition 1, the operation
of the (σ, ρ) regulator can be characterized in terms of the
internal traffic flow A1 and the output traffic Ao. Analogous
to equations (12)–(16) the following equations involving A1

can be derived:

Wρ(t;Ao) = Wρ(t;A1) = [Wρ(bj−1;Ao)− ρ(t− bj−1)]
+,

t ∈ [bj−1, s̃j ]; (19)
Wρ(t;A1) = Wρ(s̃j ;A1) + (t− s̃j)(C − ρ), t ∈ [s̃j , ãj ];

(20)
Wρ(t;A1) = Wρ(ãj ;A1)− ρ(t− ãj), t ∈ [ãj , bj ]; (21)

Wρ(tj ;Ao) =

{
σ, if Wρ(s̃j ;A1) > σ,
Wρ(s̃j ;A1), if Wρ(s̃j ;A1) ≤ σ;

(22)

Wρ(t;Ao) = Wρ(tj ;Ao) + (t− tj)(C − ρ), t ∈ [tj , bj ];
(23)

Wρ(t;Ao) = Wρ(s̃j ;Ao)− ρ(t− s̃j), t ∈ [s̃j , tj ]; (24)

for j = 1, 2, . . .. Equation (19) follows from the following
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Wρ(t;A)

σ

ζ = σ + δ

Wρ(t;Ai)

Wρ(t;A1)

Wρ(t;Ao)

τ1 τ2 τ3 τ4 τ5 τ6

Fig. 3. Example of the operation of a (σ, ρ) traffic regulator.

σ∗(j) = max {σ ∈ Σ}
such that:

P {Wρ(t;Ao) ≥ γ} ≤ f(γ),

∀ t ≥ 0, ∀γ ∈ [0, T ].

(σ∗, ρ)
Ai A1 Ao

Fig. 4. Idealized stochastic (σ∗, ρ) traffic regulator.

equality
Wρ(bj−1;Ao) = Wρ(bj−1;A1), (25)

which can be verified using (20)-(24) and (9). Intuitively, (25)
holds because at most one packet is in the server of the
regulator at any given time.

IV. STOCHASTIC (σ∗, ρ) REGULATOR

To our knowledge, the problem of regulating a traffic flow
to force conformance to a stochastic traffic bound has not been
addressed in the literature. This motivates the development of
a stochastic traffic regulator, which enforces a probabilistic
bound on a traffic source as follows:

P {Wρ(t;Ao) ≥ γ} ≤ f(γ), ∀t ≥ 0, ∀γ ∈ [0, T ], (26)

where f is a non-increasing positive bounding function and T
is a limit on the tail distribution of the workload (see [15]). As
T →∞, (26) becomes equivalent to the gSBB bound in (3).

A. Operational Principles

We shall show that enforcement of (26) can be achieved
under steady-state conditions using a regulator with a constant
rate parameter ρ and a variable burstiness parameter σ∗ which
is chosen from a finite set Σ for each arriving packet. We
refer to such a regulator as a stochastic (σ∗, ρ) regulator. A
schematic of an idealized (σ∗, ρ) regulator is shown in Fig. 4.
The input and output links of the regulator are assumed to have
capacity C. A buffer at the front-end of the regulator delays
incoming packets until all previous packets have departed, thus
ensuring a FCFS service discipline. Let Ai and Ao denote,
respectively, the input traffic to and output traffic from the
regulator. We denote the internal traffic departing from the
front-end buffer by A1. Let sj and s̃j denote, respectively, the
arrival and departure times of the jth packet at the buffer.

For each packet j, the (σ∗, ρ) regulator chooses a burstiness
parameter σ∗(j) such that a delay dj is incurred, where (cf.
(8))

dj = tj − sj = [Wρ(sj ;Ai)− σ∗(j)]+/ρ, (27)

and tj denotes the time at which the packet starts departing the
traffic regulator. The packet completely leaves the regulator
at time bj . The front-end buffer acts as in the deterministic
(σ, ρ) regulator (see Section III); therefore s̃j can be derived
from (17). As in a deterministic (σ, ρ) traffic regulator, the
rate parameter ρ should be greater than the long-term average
input traffic rate, i.e.,

ρ > lim
t→∞

A(t)−A(s)

t− s
, ∀s ≥ 0, (28)

to avoid incurring unbounded packet delay.
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B. Overshoot Probability and Overshoot Ratio
To design a practical (σ∗, ρ) regulator, the overshoot prob-

ability P {Wρ(t;Ao) ≥ γ} in (26) can be approximated by a
time-averaged overshoot ratio.
Definition 5. Given a threshold value ζ > 0 and a traffic flow
A, an overshoot interval with respect to A and ζ is a maximal
interval of time η such that Wρ(τ ;A) ≥ ζ for all τ ∈ η. Let
|η| denote the length of interval η. Let O(t) denote the set
of overshoot intervals contained in [0, t]. Then the overshoot
duration up to time t is defined as

Oζ(t;A) =
∑

η∈O(t)

|η|. (29)

In Fig. 3, the overshoot set with respect to threshold value
ζ until the end of time domain depicted in the figure consists
of three intervals [τ1, τ2], [τ3, τ4] and [τ5, τ6]. Given a time
interval [a, b], let w1 = Wρ(a;Ao) and w2 = Wρ(b;Ao). We
define the increment in overshoot duration when the workload
of the output process is increasing due to a packet departure
from the regulator as follows:

α(a, b, ζ) =

 b− a, ζ ≤ w1,
(w2 − ζ)/(C − ρ), w1 ≤ ζ ≤ w2,
0, w2 < ζ.

(30)

We define the increment in overshoot duration when the
workload is decreasing due to the packet inter-departure time
as follows:

β(a, b, ζ) =

 b− a, ζ ≤ w2,
(W1 − ζ)/ρ, w2 ≤ ζ ≤ w1,
0, w1 < ζ.

(31)

Figure 5 illustrates α(a, b, ζ) and β(a, b, ζ). The following
proposition follows immediately from the definitions and
shows how to compute Oζ(t;Ao) at time t = bj for packet j.
Proposition 2.

Oζ(b1;Ao) = α(t1, b1, ζ),

Oζ(bj ;Ao) = Oζ(bj−1;Ao)+β(bj−1, tj , ζ)+α(tj , bj , ζ),

for j = 2, 3, . . ..
We define the overshoot ratio of the regulator at time t with

respect to a threshold ζ by

oζ(t) = Oζ(t;Ao)/t. (32)

For sufficiently large t, the virtual workload Wρ(t) can be
modeled as a stationary and ergodic process [19]. This is
a reasonable assumption when ρ satisfies (28), since the
queueing system is stable in this case. Under this assumption,
the overshoot ratio asymptotically approaches the overshoot
probability, i.e.,

oζ(t) ∼ P {Wρ(t;Ao) ≥ ζ} as t→∞. (33)

Using the overshoot ratio as a proxy for the overshoot prob-
ability in (26), we design a (σ∗, ρ) regulator that selects the
burstiness parameters σ∗(j), j = 1, 2, . . ., from a finite set Σ
such that

oγ(t) ≤ f(γ), ∀ t ∈ [bj−1, bj ], ∀γ ∈ [0, T ], (34)

while minimizing the incurred packet delay. Note that the
bound (34) is satisfied at any time t, whereas the approxima-
tion for the overshoot probability in (33) holds asymptotically.

C. Piecewise-Linear Bounding Function

Next, we address the issues of selecting the set Σ of bursti-
ness parameter values and verification of the condition (34).
We replace the bounding function f by a piecewise-linear
function f̄ defined in terms of a set of values T1 < T2 <
. . . < TM and the value δ given by (2) satisfying the following
constraints:

T − TM−1 ≥ δ; TM ≫ T, T1 ≥ δ, Ti+1 − Ti ≥ δ, (35)

for i = 1, 2, . . . ,M − 1. For given T and δ, the maximum
possible value of M is given by

Mmax = ⌊T/δ⌋ − 1. (36)

The values {T1, . . . , TM} determine the set of burstiness
parameter values

Σ = {σi := Ti − δ : i = 1, . . . ,M}. (37)

Note that σ1 < σ2 < . . . < σM .
Without loss of generality, we assume f(0) = 1. The

function f̄ is designed1 such that f ≤ f̄ in [0, T1), f̄ ≤ f
in [T1, T ] and ||f − f̄ || is small in [T1, T ], where || · ||
denotes a norm on the space of bounding functions BF , e.g.,
the L2-norm || · ||2. Since f̄ is chosen from the class of
piecewise-linear functions with a finite number M of linear
pieces, it cannot be chosen arbitrarily close to f , although
||f − f̄ || decreases as M is increased. In particular, we set
f̄(γ) = f(0) = 1 for γ ∈ [0, T1). Since f̄ ≥ f in this
interval, traffic regulation with respect to f̄ may result in
violation of (26). However, the violation probability is upper
bounded by T1/T , which can be made arbitrarily small by
suitable choices of T1 and/or T . We also set f̄(γ) = f̄(T ) for
TM > γ ≥ TM−1, and we choose a large value for TM such
that the burst size of the output traffic is not limited by the
stochastic (σ∗, ρ) regulator.

In the interval [Ti, Ti+1) let

gi(γ) = f(Ti+1) + ωi(γ − Ti+1) (38)

represent the line connecting the points (Ti, f(Ti)) and
(Ti+1, f(Ti+1)) with slope

ωi =
f(Ti+1)− f(Ti)

Ti+1 − Ti
(39)

for i = 1, . . . ,M − 2. If f(γ) ≥ gi(γ) for all γ ∈ [Ti, Ti+1)
we set f̄ = gi in this interval. Otherwise, we set f̄ = hi on
[Ti, Ti+1), where

hi(γ) = f(Ti+1) + f ′(Ti+1)(γ − Ti+1). (40)

This ensures that f̄ ≤ f on [T1, TM−1). We then set f̄(γ) =
f(T ) for γ ∈ [TM−1, TM ] and f̄(γ) = 0 for γ > TM . To

1For technical reasons, a slightly different definition of f̄ for values of
M < Mmax is used in the proofs of Theorems 1–3 given in [20].



7

Wρ(t;Ao)

Wρ(b;Ao)

Wρ(a;Ao)

t
a b

ζ

α(a, b, ζ)

slope (C − ρ)
slope −ρ

(a) α(a, b, ζ)

Wρ(t;Ao)

Wρ(a;Ao)

Wρ(b;Ao)

t
a b

ζ

β(a, b, ζ)

slope (C − ρ)

slope −ρ

(b) β(a, b, ζ)
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Fig. 6. Piecewise-linear approximating function f̄ , M = 6.

summarize, we define

f̄(γ) =


1, γ ∈ [0, T1),
f(Ti+1)+mi(γ−Ti+1), γ ∈ [Ti, Ti+1),
f(T ), γ ∈ [TM−1, TM ],
0, γ > TM ,

(41)

for i = 1, . . . ,M − 2 and the slopes mi are given by

mi =

{
ωi, if f ≥ gi on [Ti, Ti+1),
f ′(Ti+1), otherwise, (42)

for i = 1, . . . ,M − 2.

D. Canonical (σ∗, ρ) Regulator

Based on the definition of f̄ in (41), we modify the
constraint in (34) to hold only for γ ∈ [T1, T ], i.e.,

oγ(t) ≤ f(γ), ∀ t ∈ [bj−1, bj ], ∀γ ∈ [T1, T ]. (43)

Towards a practical implementation, we further replace the
bounding function f by f̄ to obtain the following burstiness
constraint:

oγ(t) ≤ f̄(γ), ∀ t ∈ [bj−1, bj ], ∀γ ∈ [T1, T ]. (44)

To incur minimal packet delay, σ∗(j) should be chosen as the
largest value in Σ such that the constraint (44) is maintained.
We then define a canonical (σ∗, ρ) regulator as follows:

Aj = {σ ∈ Σ : oγ(t) ≤ f̄(γ), ∀t ∈ [bj−1, bj(σ)],

∀γ ∈ [T1, T ]}

σ∗(j) =

{
σmaxAj

, if Aj ̸= ∅,
σ1, otherwise. (45)

Equations (18)-(24) are the governing equations for a stochas-
tic (σ∗, ρ) in which σ is replaced by σ∗(j) according to (45).
The canonical regulator cannot be implemented directly, since
the condition for Aj in (45) is impractical to verify for all
values of t ∈ [bj−1, bj ] and γ ∈ [T1, T ]. Next, we develop
practical implementations of the canonical (σ∗, ρ) regulator.

E. Basic Implementation

We assume that TM is chosen sufficiently large such that
for every packet j the set

Bj = {1 ≤ ℓ ≤M : σℓ ≥Wρ(s̃j ;A1)} , (46)

is non-empty. Let

Ij =
{
2 ≤ ℓ ≤ minBj : oTℓ−1

(bj(σℓ)) ≤ f̄(Tℓ)
}

(47)

where tj(σℓ) and bj(σℓ) are given by (18) and (9), respectively.
Let

σ∗(j) =

{
σmax Ij , if Ij ̸= ∅,
σ1, otherwise. (48)

Equations (46)–(48) are used to develop approximate imple-
mentations of the canonical (σ∗, ρ) regulator given by (45).
For a given value of σℓ ∈ Σ, the condition in (47) is checked
only at t = bj(σℓ) and γ = Tℓ−1. Therefore, as shown
in Section V, the constraint (43) may be violated for some
values of t. However, these violations will not occur when t
is sufficiently large.

Theorem 1. The (σ∗, ρ) regulator defined by (46)–(48) pro-
duces output traffic that satisfies (43) for sufficiently large t.

Thus, the proposed regulator ensures that the overshoot ratio
oγ(t) of the output traffic is bounded by the function f(γ) for
sufficiently large t. Since, by (33), oγ(t) → P{Wρ(t) ≥ γ},
we have that P{Wρ(t) ≥ γ} ≤ f(γ) for sufficiently large t
i.e., the gSBB bound (3) is satisfied by the output traffic.
The proof of Theorem 1 is somewhat involved and can be
found in [20]. A pseudo-code implementation of the stochastic
(σ∗, ρ) regulator is given in Algorithm 1. The input traffic Ai

is represented as a sequence {(s1, L1), . . . , (sN , LN )}, where
the si’s are the arrival times of the packets and the Li’s
are the packet lengths. The (σ∗, ρ) regulator consists of the
rate ρ, the bounding function f , the range T over which the
bound is applied, the set Σ, and the values {T1, . . . , TM},
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Algorithm 1 (σ∗, ρ) stochastic regulator
Input: Ai ← {(s1, L1), . . . , (sN , LN )}; ▷ Input traffic
Input: ρ; f(·); T ; M ; Lmax; C ▷ Regulator parameters
Output: Ao ← {t1, t2, . . . , tN} ▷ Output traffic

1: δ ← (1− ρ/C)Lmax

2: Compute Ti, σi for i = 1, 2, . . . ,M ▷ (35), (37)
3: Compute f̄(·) ▷ (41)
4: t1 ← s̃1 ← s1; b1 ← t1 + L1/C
5: Wρ(s̃1;A1)←Wρ(t1;Ao)← 0
6: Compute Wρ(b1;Ao) ▷ (23)
7: Compute oTi(b1); i = 1, 2, . . . ,M − 1 ▷ Prop. 2
8: for j = 1, . . . , N do ▷ Packet j arrives at time sj
9: Compute s̃j , Wρ(s̃j ;A1), Bj ▷ (17), (19), (46)

10: found← false; k ← minBj
11: for ℓ = k, . . . , 2 do ▷ k ≥ 2
12: σ ← σℓ; Compute tj(σ), bj(σ) ▷ (18), (9)
13: Compute Wρ(tj ;Ao), Wρ(bj ;Ao) ▷ (22), (23)
14: Compute oTℓ−1

(bj) ▷ Prop. 2
15: if oTℓ−1

(bj) ≤ f̄(Tℓ) then ▷ (47)
16: found← true; break
17: end if
18: end for
19: if not found then
20: σ ← σ1; Compute tj(σ), bj(σ) ▷ (18), (9)
21: end if
22: Compute oTi

(bj); i=1, 2, . . . ,M−1 ▷ Prop. 2
23: end for

which determine the piecewise-linear bounding function f̄ .
The input and output links for the regulator are assumed to
be of capacity C > ρ. The output traffic Ao is represented
by the sequence {(t1, L1), . . . , (tN , LN )}, where the ti’s are
packet departure times. The for loop starting in line 11 finds
the largest ℓ ∈ {2, . . . , k = minBj} such that the inequality
in (47) is satisfied with σ = σℓ. If such σℓ exists, then
σ∗(j) = σℓ; otherwise, σ∗(j) = σ1, in accordance with (48).

Computation of the departure time, tj , of the jth packet
requires updates to oTi(bj) for i = 1, . . . ,M − 1. Once tj is
determined, the values of oTi

(bj), for i = 1, . . . ,M − 1, need
to be updated. Thus, the overall computational complexity is
O(M) per packet. Since the updates to oTi

(bj) are independent
of each other, they could be executed in parallel using a
hardware accelerator such as a graphics processing unit (GPU).
In particular, a parallel implementation of the for loop at
line 11, can effectively reduce the computational complexity
per packet to constant time, i.e., O(1).

F. Alternative Implementation

The requirement of sufficiently large t in Theorem 1 can be
avoided by modifying the definition of Ij in (47) to include
additional checks. Let Bj be as defined in (46). We re-define
Ij as follows:

Ij =
{
2 ≤ ℓ ≤ minBj : oTi

(bj(σℓ)) ≤ f̄(Ti)− ϵi,j(σℓ),

∀i = 1, . . . , ℓ− 1
}
, (49)

bj(σℓ) tj+1(i) sj+1

oTi
(bj(σℓ))

oTi
(bj(σℓ)) +

ϵi,j(σℓ)

oTi(t)

t

Fig. 7. Overshoot ratio oTi
(t) for t > bj , when Wρ(sj+1;Ao) = 0.

where

ϵi,j(σℓ) :=

{
Wρ(bj(σℓ);Ao)−Ti

ρbj(σℓ)
(1− f̄(Ti)), i= 1, . . . , ℓ−2,

f̄(Tℓ−1)− f̄(Tℓ), i= ℓ− 1.

(50)

The modified definition of Ij in (49) involves additional
checks for the jth packet, which may result in a smaller
value of σ∗(j) and hence higher delay incurred on the packet.
Interestingly, our numerical simulations show that this results
in slightly smaller average delay incurred on the input traffic.
This can be explained as follows. By incurring more delay on
some input packets at an earlier stage, the output traffic may
be better shaped to the desired bound; therefore, on average,
less delay will need to be incurred on future packets.

The overshoot ratio oTi
(t) at t = bj(σℓ) is checked against

f̄(Ti) − ϵi,j(σℓ) rather than f̄(Ti), for i = 1, . . . , ℓ − 2. The
reasoning behind this stricter condition is illustrated in Fig. 7.
In choosing σ∗(j) = σℓ, the overshoot ratios oTi(t), for i =
1, . . . , ℓ − 2, will be increasing functions of t, as shown in
Fig. 7, up to time t = tj+1(i), which is defined as the time at
which

Wρ(t;Ao) = Ti for i = 1, 2, . . . , Tℓ−2, (51)

and the (j + 1)th packet arrives sufficiently late that
Wρ(sj+1;Ao) = 0. Enforcing the condition in (49) with the
lower values f̄(Ti)− ϵi,j(σℓ) ensures that the overshoot ratio
stays less than f̄(Ti) for all t ≥ bj . In this implementation,
for a given value of σℓ ∈ Σ, the condition (43) is checked
only at t = bj(σℓ) and for γ ∈ {T1, . . . , Tℓ−1}. These extra
checks compared to Algorithm 1, as stated in the following
theorem and shown in Section V, guarantee that there will be
no violation of the constraint (43).
Theorem 2. The (σ∗, ρ) regulator defined by (46), (49),
and (48) produces output traffic that satisfies (43) for all t ≥ 0.

Algorithm 2 Replacement for lines 14–17 of Algorithm 1
14: Compute oTi(bj(σℓ)); i = 1, . . . , ℓ− 1 ▷ Prop. 2
15: Compute ϵi,j(σℓ) ; i = 1, . . . , ℓ− 1 ▷ (50)
16: if oTi

(bj) ≤ f̄(Ti)− ϵi,j(σℓ) ∀i ∈ {1, . . . , ℓ−1} then
17: found← true; break
18: end if

A proof of Theorem 2 is given in Appendix B. By modifying
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Algorithm 1 in accordance with Theorem 2, we obtain an
alternative implementation that satisfies (43) for all t ≥ 0
at the expense of some additional computation. The modified
implementation is obtained by replacing lines 15–18 in Algo-
rithm 1 with the pseudo-code shown in Algorithm 2. In lines
15 and 16, ℓ−1 values of oTi

(bj(σℓ)) and ϵi,j(σℓ) need to be
computed. Therefore, the complexity of the for loop at line
12 in Algorithm 1 is O(M2) and the overall complexity of
the modified algorithm is O(M2) per packet.

With further algorithmic modifications, the complexity of
Algorithm 2 can be reduced to O(M), i.e., the same time
complexity as Algorithm 1. Let Bj be as in (46). Let k =
minBj and

Jj=
{
1 ≤ ℓ ≤ k − 1:oTℓ

(bj(σk))≤ f̄(Tℓ)− ϵℓ,j(σk)
}
, (52)

where ϵi,j(σk) is defined in (50). If 1 ∈ Jj let

m = max {ℓ ∈ Jj : i ∈ Jj , ∀1 ≤ i ≤ ℓ} , (53)

and let

Kj =
{
2 ≤ ℓ ≤ m+ 1 : oTℓ−1

(bj(σℓ)) ≤ f̄(Tℓ)
}
, (54)

where bj(σℓ) and oTℓ−1
(bj(σℓ)) are given as follows:

bj(σℓ) = s̃j + (Wρ(s̃j ;A1)− σℓ)/ρ+ Lj/C, (55)
bj(σℓ)oTℓ−1

(bj(σℓ)) = bj(σk)oTℓ−1
(bj(σk))

+(Wρ(s̃j ;A1)−σℓ)/ρ. (56)

We now present a third implementation of the canonical
(σ∗, ρ) regulator given by

σ∗(j) =

{
σmaxKj , if 1 ∈ Jj and Kj ̸= ∅,
σ1, otherwise. (57)

Theorem 3. The (σ∗, ρ) regulator defined by (46) and (52)–
(57) produces the same output traffic as the (σ∗, ρ) regulator
of Theorem 2 for a given input flow and hence the output flow
satisfies (43) for all t ≥ 0.

Algorithm 3 Replacement for lines 11–18 of Algorithm 1
11: m← 0; found← false
12: for ℓ = 1, . . . , k − 1 do ▷ k ≥ 2
13: σ ← σk; Compute tj(σ), bj(σ), ▷ (18), (9)
14: Compute ϵℓ,j(σ), oTℓ

(bj) ▷ (50), Prop. 2
15: if oTℓ

(bj) > f̄(Tℓ)− ϵℓ,j(σ) then ▷ (52)
16: break
17: end if
18: m← m+ 1
19: end for
20: for ℓ = m+ 1, . . . , 2 do
21: σ ← σℓ; Compute bj(σ), oTℓ−1

(bj) ▷ (55), (56)
22: if oTℓ−1

(bj) ≤ f̄(Tℓ) then ▷ (49)
23: found← true; break
24: end if
25: end for

A proof of Theorem 3 is given in Appendix C. The (σ∗, ρ)
regulator corresponding to Theorem 3 can be implemented by
replacing lines 11-18 in Algorithm 1 with the lines shown in
Algorithm 3. The for loops at lines 11 and 19 in Algorithm 3

both have complexity O(M). Therefore, the overall complex-
ity of Algorithm 3 is O(M) per packet. As with Algorithm 1,
using a suitable parallel implementation, the complexity per
packet can be further reduced to O(1).

To summarize, Algorithm 3 provides a theoretical guarantee
that the sample path bound (43) holds for all t ≥ 0. Algo-
rithm 1 provides the weaker guarantee that the sample path
bound is satisfied asymptotically. However, our empirical stud-
ies have shown that Algorithm 1 achieves the bound (43) very
quickly in practice. Both implementations have computational
complexity O(M). Our simulation results (see Tables I and II
in Section V), show that Algorithm 1 incurs higher average
delay and greater variance in shaping the traffic to the desired
gSBB bound.

V. NUMERICAL RESULTS

We evaluate the performance of the (σ∗, ρ) regulator first
in a basic scenario with Poisson-like traffic and then a more
realistic example with bursty traffic.

A. Basic Scenario

First, we consider a system similar to one studied in [3].
The packets sizes Lj are drawn randomly according to

Lj ∼ U{Lmin, Lmin+1, . . . , Lmax}, (58)

where U(A) denotes a uniform distribution over the set A. The
inter-arrival times of the packets, sj+1−sj , are determined as
follows:

sj+1 − sj ∼ Uj + Lj/C, (59)

where Uj ∼ Exp(λ), i.e., {Uj} is an i.i.d. sequence of
exponentially distributed random variables with rate parameter
λ. By adopting (59) to model the inter-arrival times, we ensure
that packets are received after the previous ones have been
fully received, i.e., the packets will not overlap with each other.
In a system described by (58)–(59), ρ−1Wρ(sj ;Ai) is equal to
the waiting time experienced by the jth customer in a G/G/1
queueing system in which the service time of the jth customer
is given by Sj = (ρ−1 − C−1)Lj and the inter-arrival time
between the jth and (j + 1)th customer is Uj [3], [16], [21].

In this example, we set Lmin = 5, Lmax = 10, and λ =
0.25, and ρ = 0.65. We use the following bounding function:

f(σ) :=

{
−2.5× 10−3σ + 1, 0 ≤ σ ≤ 40,
−5× 10−3σ + 1.1, 40 < σ ≤ T = 200.

(60)

In Fig. 8, f̄ is defined by approximating f by a piecewise-
linear function according to (41) with M = 20, TM = 400
and Ti+1 − Ti = 20 for i = 1, . . . ,M − 2. Note that, as f(γ)
is also piecewise-linear, f̄(γ) = f(γ) for γ ∈ [T1, T ]. Observe
that the output traffic is shaped to satisfy the desired bound.

Using the same model for inter-arrival and packet lengths,
we have investigated the impact of the parameter M on traffic
shaping of the input traffic. From Fig. 9, we see that as M
is increased, a closer fit of the output traffic to the desired
bound can be achieved. In our example, the maximum possible
value of M , given by (36), is Mmax = 56, for which a
very close fit to the bound is achieved. Figures 8 and 9 were
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Fig. 8. Performance of the stochastic (σ∗, ρ) traffic regulator.
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Fig. 9. Traffic regulator performance with different M values.

obtained using Algorithm 3. In Fig. 8, the gSBB bound given
by (60) is represented by the black curve. The pink curve,
representing the input traffic, violates this bound. The green
curve, which corresponds to the output traffic, shows that the
(σ∗, ρ) regulator succeeds in enforcing the gSBB bound.

Table I presents the average delay and standard deviation of
the delay for the packets using Algorithms 1 and 3. Note that
as M increases the average delay decreases and the standard
deviation of the packet delay also decreases. An increase in
M implies that the delay incurred on a packet can increase
in smaller increments, resulting in smaller overall variance.
A larger value of M results in a smaller average delay since
in this case the piecewise-linear function f̄ given by Fig. 9
also shows the impact of increasing the value of M . With
larger values of M , the workload tail probability of the output
is closer to the gSBB bound, i.e., the bound becomes less
conservative, since f is better approximated by f̄ .

Algorithm 3 slightly outperforms Algorithm 1 for larger
values of M with respect to mean and standard deviation of
shaping delay, in particular, M = 56, as shown in Table I.
In Fig. 10, a sample path of the overshoot ratio oT17

(t) is

TABLE I
TRAFFIC SHAPING DELAY WITH DIFFERENT M VALUES FOR

ALGORITHM 1 AND ALGORITHM 3.

Average Delay Std. Dev. of Delay
M Alg. 1 Alg. 3 Alg. 1 Alg. 3
10 89 89 115 115
20 78 78 109 109
56 72 71 100 99
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Fig. 10. Overshoot ratio oT17
(t) for M = 56.

shown for Algorithms 1 and 3. Observe that some violations
of (34) occur with Algorithm 1 but there are no violations
with Algorithm 3, which confirms Theorem 2.

B. Bursty Traffic Scenario

Next, we consider a more realistic scenario with bursty
traffic. The purpose of this example is to show how the (σ∗, ρ)
regulator can be applied to guarantee a delay bound for a
traffic flow at a multiplexer and contrast this with an equivalent
delay bound that can be provided using a (σ, ρ) regulator. This
scenario can be generalized to a multi-hop network providing
end-to-end stochastic delay guarantees by applying results
from stochastic network calculus [7], [9], [13].

The packet inter-arrival times are given by (59), where
the sequence {Uj} is generated according to the inter-arrival
times of a three-state Markov modulated Poisson Process
(MMPP) with arrival matrix Λ and rate matrix R [16], [22].
In our example, the parameters of MMPP process are chosen
according to [23, p. 79], with arrival matrix

Λ = diag{116, 274, 931} (61)

in units of packets/s and rate matrix

R =



−0.12594 0.12594 0

0.25 −2.22 1.97
0 2 −2


 (62)

in units of s−1. These values were derived from matching
arrival process of the I, P and B frames of an MPEG-4 encoded
video to the three states of the MMPP. For the given MMPP,
the average arrival rate is 358 packets/s.
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The packet sizes Lj are generated according to the phase-
type distribution referred to as G3 in [23, Table 1] as follows:

Lj ∼ 0.54 Er(5, 26) + 0.46 Er(5, 956), (63)

in units of bytes, where Er(r, 1/µ) denotes an r−stage Erlang
distribution with mean 1/µ [16], [17]. This particular phase-
type distribution is a mixture of Erlang distributions, which
closely approximates the empirical distribution of measured
Internet packet sizes obtained in [24]. We truncate the phase-
type distribution at 1500 bytes, which is the MTU (Maximum
Transmission Unit) for Ethernet. In addition, since the packet
lengths are integer values, the random values generated ac-
cording to the truncated phase-type distribution are quantized.
The average packet size according to (63) is 454 bytes. In our
case, however, due to truncation and quantization, the average
packet size is 438 bytes. We have set the input link capacity
to 10 Mbps. Because the packet inter-arrival times are given
by (59), with this choice of C, the average packet arrival rate is
319 packets/s. The average bit rate of the traffic is 1.06 Mbps.

We consider a scenario in which the available bandwidth at
a multiplexer is Co = 2 Mbps. Since Co exceeds the average
packet rate of the traffic source, the flow can be supported.
We consider two traffic descriptors:

1) phase-type descriptor [ρ; (a,π,Q, T )] (Definition 4);
2) (σ, ρ) descriptor (Definition 1).

For both traffic descriptors we set ρ = Co = 2 Mbps. The
black curve in Fig. 11 shows the phase-type bound obtained
using [18, Algorithm 1] with a 10-component hyperexponen-
tial distribution. The parameter T is set as the maximum
value of Wρ(t;Ai), i.e., T = 75 KBytes. This ensures that
the bounding function f corresponding to the phase-type
descriptor bounds P{Wρ(t;Ai) ≥ σ} for all values of σ > 0.
For the (σ, ρ) descriptor, we set σ = T = 75 KBytes to ensure
that no shaping delay will be incurred by the traffic regulator.

Along with the traffic descriptor, the user specifies a
maximum delay bound requirement at the multiplexer. An
admission controller determines whether or not the delay
requirement can be satisfied with the available bandwidth
Co. If the traffic flow is admitted, a traffic regulator is
applied to ensure conformance of the traffic flow to the traffic
descriptor provided by the user. In case 1), a (σ∗, ρ) regulator
is determined by finding a piecewise-linear approximation f̄
to the bounding function f associated with the phase-type
traffic descriptor (see Section IV). Fig. 11 shows the bounding
function f and its approximation f̄ (dashed blue curve). Then
Algorithm 1 or 3 can be applied to enforce f̄ . Because the
bounding function f̄ is a close upper bound to Wρ(t, Ai), the
workload curves at the input and output of the regulator are
very close to each other. Hence, in Fig. 11, just Wρ(t, Ao) is
shown. Consequently, the (σ∗, ρ) regulator incurs negligible
shaping delay.

We next consider the delay bound that can be guaranteed at
the multiplexer for the two cases. Let Q(t) denote the queue
size at the multiplexer with constant service rate Co and let
D(t) denote the delay at the multiplexer experienced by a bit
arriving at time t. Note that if Co ≥ ρ,

Q(t) = WCo
(t;Ai) ≤ Wρ(t;Ai). (64)
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Fig. 11. P{Wρ(t;Ao) ≥ σ}, f(σ) and f̄(σ) vs. σ for bursty traffic source.
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Fig. 12. Workload profile of bursty traffic fed to server with service rate ρ
and comparison of fixed bound σ vs. dynamic bound σ∗.

Since ρ = Co, (64) holds with equality. For a FCFS server,
D(t) = Q(t)/Co. For the (σ∗, ρ) regulator,

P{D(t) ≥ d} = P{Q(t) ≥ d Co}
≤ P{Wρ(t;Ai) ≥ d Co} = f̄(d Co) = ε. (65)

Setting ε = 0.02 and using the bounding curve f̄ from Fig. 11,
we find that the smallest value of d that can satisfy (65)
is 22 ms. For the (σ, ρ) regulator, the smallest delay bound
that can be guaranteed is d = σ/Co = 294 ms. Thus, with
the (σ∗, ρ) regulator, a much smaller delay guarantee can be
provided compared to that for the (σ, ρ) regulator.

In Fig. 12, the performance of the (σ, ρ) regulator is
compared with that of a (σ∗, ρ) regulator with M = 63 for
a sample path of the bursty traffic source. The output queue
length attains the bound σ on the burst size, but is far smaller
than σ most of the time. By contrast, the value of σ∗ closely
tracks the output queue length. Clearly, the (σ, ρ) parameter
provides an overly conservative bound on the traffic.

In Table II, Algorithms 1 and 3 are compared in terms of
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TABLE II
TRAFFIC SHAPING DELAY INCURRED BY ALGORITHMS 1 AND 3 FOR

BURSTY TRAFFIC (M = 63).

Alg. 1 Alg. 3
Average Delay [ms] 27 1.2
Std. Dev. of Delay [ms] 50 15
P{shaping delay > 0} 0.35 0.008

the shaping delay incurred on the bursty traffic. Algorithm 3
shapes the input traffic to the desired gSBB bound while
inducing significantly less traffic shaping delay. In particular,
the value of P{shaping delay > 0} shows that the stochastic
guarantee in (65) is achieved by Algorithm 3.

VI. CONCLUSION

The stochastic traffic regulator developed in this paper
addresses an open problem in the application of stochastic
network calculus to real networks: enforcement of stochastic
traffic bounds. Given an input traffic source, our proposed
stochastic (σ∗, ρ) regulator inserts delays, as necessary, to
ensure that the output traffic conforms to the gSBB traffic
bound [9]. Operationally, the (σ∗, ρ) regulator works similarly
to a deterministic (σ, ρ) regulator, except that the burstiness
parameter σ∗ is chosen, for each arriving packet, from among
a finite set of burst size parameters, Σ = {σ1, . . . , σM}. We
showed, through both analysis and simulation, that the (σ∗, ρ)
regulator ensures conformance of a traffic source to a given
gSBB bound. Such a bound would be negotiated between the
user and the network during the admission control phase and
potentially renegotiated during the lifetime of the flow (cf. [5]).
A closer fit to the gSBB bound can be achieved by increasing
the value of M .

APPENDIX A
PROOF OF PROPOSITION 1

Lemma A.1.

Wρ(s̃j ;A1) = Wρ(sj ;Ai)− (s̃j − sj)ρ (A.1)

A proof of Lemma A.1 is given in [20].

Proof. First, suppose Wρ(s̃j ;A1) ≤ σ. Since Wρ(s̃j ;A1) =
Wρ(s̃j ;Ao) (see (22)), we have Wρ(s̃j ;Ao) ≤ σ, i.e., the
(σ, ρ) constraint is satisfied by the output process at time s̃j .
This implies that the jth packet departs the regulator starting
at time tj = s̃j , which confirms (18) in this case. Next,
suppose Wρ(s̃j ;A1) > σ. Then Wρ(sj ;Ai) ≥ Wρ(sj ;A1) ≥
Wρ(s̃j ;A1) > σ. Thus, we can remove the [·]+ operator in
both (8) and (18). Applying Lemma A.1 to the right-hand
side of (18), we have

[Wρ(s̃j ;A1)− σ]/ρ+ s̃j

= [Wρ(sj ;Ai)− (s̃j − sj)ρ− σ]/ρ+ s̃j

= [Wρ(sj ;Ai)− σ]/ρ+ sj = tj .

This completes the proof of Proposition 1.

APPENDIX B
PROOF OF THEOREM 2

Here, we assume that M is set to its maximum value given
by (36) and σ∗(j) is computed using Algorithm 2. The general
case, including smaller values of M , is addressed in [20].

Lemma B.1.

oTi
(t) ≤ f̄(Ti), ∀ t ∈ [bj−1, bj(σ

∗(j))], (B.1)

for ∀1 ≤ i ≤M

Lemma B.2. Suppose

oTm
(t) ≤ f̄(Tm) and oTm+1

(t) ≤ f̄(Tm+1), (B.2)

for some m ∈ {1, 2, . . . ,M − 2} and some t ∈ [bj−1, bj(σℓ)].
Then

oγ(t) ≤ f̄(Tm)− (γ − Tm)(f̄(Tm)− f̄(Tm+1))

Tm+1 − Tm
, (B.3)

for all γ ∈ [Tm, Tm+1].

Proofs of Lemmas B.1 and B.2 are given in [20].

Proof. Lemmas B.1 and B.2 imply that

oγ(t) < f(γ), ∀ t ∈ [bj−1, bj(σ
∗(j))], ∀γ ∈ [0, T ], (B.4)

if for all i ∈ {1, 2, . . . ,M − 1} and all γ ∈ [Ti, Ti+1],

f(γ) ≥ f̄(Ti)−
(γ − Ti)(f̄(Ti)− f̄(Ti+1))

Ti+1 − Ti
. (B.5)

But (B.5) is true from the definition of f̄ in (41).

APPENDIX C
PROOF OF THEOREM 3

Lemma C.1. If m ∈ Jj and m < k − 1 then

oTm
(bj(σℓ)) +

Wρ(bj(σℓ);Ao)− Tm

ρbj(σℓ)
(1− f̄(Tm)) ≤ f̄(Tm),

(C.1)

for all ℓ ∈ m+ 1, . . . , k.

A proof of Lemma C.1 is given in [20].

Proof. Based on m, defined in (53), we have two cases:

Case 1: m = k − 1.

Since m ∈ Jj , (52) implies

oTℓ
(bj(σk)) ≤ f̄(Tℓ)− ϵℓ,j(σk), (C.2)

for ℓ = 1, 2, . . . , k − 1. Applying (50), we have

oTm(bj(σk)) ≤ f̄(Tm)− ϵm,j(σk) = f̄(Tk) (C.3)

From (54), we have m + 1 ∈ Kj . Then the value of σ∗(j)
obtained from (48) and (49) (see Theorem 2) is σ∗(j) = σk.
On the other hand, from (49) and (C.2), the value of σ∗(j)
according to (57) is also σk.

Case 2: m < k − 1.

Let us assume σ∗(j) obtained from (57) is σn. We will
show σ∗(j) obtained from (49) and (48) will also be σn. In
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this case, according to (54) and (57), if ℓ ∈ {1, 2, . . . , n− 1}
then ℓ ∈ Jj and ℓ < k − 1. Applying Lemma C.1,

oTℓ
(bj(σn)) ≤ f̄(Tℓ)−

Wρ(bj(σn);Ao)− Tℓ

ρbj(σn)
(1− f̄(Tℓ)),

(C.4)

for l = 1, 2, . . . , n−1. On the other hand, using n ∈ Kj , (54),
and (50) we have

oTn−1
(bj(σn)) ≤ f̄(Tn−1) = f̄(Tn)− ϵn−1,j(σn) (C.5)

According to (C.4) and (C.5), σ∗(j) obtained from (49) and
(48) will also be σn.

In both cases, we have shown that σ∗(j) defined by (57) is
the same as σ∗(j) given in (48). Thus, the (σ∗, ρ) regulators
specified in Theorems 2 and 3 (respectively, Algorithms 2 and
3) produce the same output flow for a given input traffic flow.
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