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Abstract—Persistent Homology (PH) is computationally expen-
sive and is thus generally employed with strict limits on the (i)
maximum connectivity distance and (ii) dimensions of homology
groups to compute (unless working with trivially small data
sets). As a result, most studies with PH only work with Hj
and H; homology groups. This paper examines the identification
and isolation of regions of data sets where high dimensional
topological features are suspected to be located. These regions are
analyzed with PH to characterize the high dimensional homology
groups contained in that region. Since only the region around
a suspected topological feature is analyzed, it is possible to
identify high dimension homologies piecewise and then assemble
the results into a scalable characterization of the original data
set.

Index Terms—High Dimensional Data; Data Reduction; Per-
sistent Homology; Involuted Homology; Data Mining

I. INTRODUCTION

Persistent Homology (PH) is one of the principal compo-
nents of Topological Data Analysis (TDA) [1]. PH provides
a scalar representation of topological structures encoded in a
point cloud — connected components, loops, voids, and so
on — as they persist over multiple spatial resolutions [2]-[6].
The output of PH is captured through persistence intervals
that characterize the persistence, or spatial lifetime, of these
topological structures. The resulting persistence intervals can
be used for various machine learning applications [7]-[18].

The computation of PH suffers from exponential memory
and time complexities that prevent its general application
to high dimensional data. For example, computing the Hj
homology groups of a point cloud in R? is only feasible
with a few thousand points. Consequently, work with PH is
often limited to the Hy and H; homology groups (although
in some cases Hy homology groups are studied). However,
topological features in dimensions above Hy are generally
omitted due to the associated time and space complexity. This
work explores techniques to enable the use of computational
PH to characterize higher dimensional homology groups.

The method presented in this paper computes PH on di-
mensional reductions of the data to locate candidate regions
where high dimensional homologies may be located. The
candidate regions of the original space are then isolated for
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high dimension PH analysis. The technique is motivated by
previous studies of dimensionality reduction on PH [19]-[22].
The principal idea of this paper is that, under projection, higher
dimensional topological features will be present in the lower
dimensional data. Thus, computing PH on the dimensionality
reduced data will help identify candidate regions of the origi-
nal data to examine for high dimensional homologies. In this
work, dimensionality reduction and PH are used to locate the
vertices of representative cycles of topological features in the
reduced dimension. The dimensionality reduced vertices are
then re-associated to the corresponding vertices in the original
data set. The vertex set is then used to extract a region of the
original data around the cycle’s center for further PH analysis
in the high dimensional space.

The remainder of this paper is organized as follows. Section
Il presents some background and related work. Section III
reviews the technical approach used to locate and analyze
topological features in high dimensional data. Section IV
presents some early experimental results. Finally, Section V
contains some concluding remarks.

II. BACKGROUND AND RELATED WORK

This section presents background information and studies
related to this work. Additional background information on
PH can be found in [2], [4], [23], [24].

Techniques to combat the exponential memory and time
complexity of PH have led to advancements in complex con-
struction [25]-[27], complex representation [28]-[30], bound-
ary matrix reduction [30]-[33], and approximate algorithms
[20], [21], [34]-[36]. A majority of these are evaluated with
respect to low dimensional topological feature identification.
Few studies are directly aimed at analyzing high dimensional
homology groups; both the application and understanding of
higher dimensional homology groups are limited.

Several studies have examined the application of dimen-
sional reduction techniques to the computation of PH [19]-
[21]. The studies by [19], [21] have largely focused on the
theoretical issues and limits of dimensionality reduction for
the computation of PH. Ramamurthy et al [20] provide the
first empirical study of random projection on persistence
intervals and Betti numbers. Their experiments consider high
dimensional source data in 3 studies, namely: 10,000 points
in 50-dimensions (synthetic), 15,000 points in 25-dimensions
(image patches), and 4,000 points in 100-dimensions (audio
clips of wheezing patients). The dimensional reduction step



Hd Ho Hg Hy H5 HG H7 HS
Nmaz 5164 1125 372 170 102 77 64

Hy Hy Hyp Hyn  Hi2 Hiz Hiy  His
Nmaz 61 57 50 49 53 53 32

TABLE I: The experimentally-determined maximum number
of vertices of a d-Sphere that an AMD Ryzen 7 with 128GB
RAM can analyze with the ripserer package when PH was
computed up to H, with no distance limits.

is performed using random projection and the data is reduced
to dimension 30. They examined the impact of dimensional
reduction on the computed Betti numbers (the number of k-
dimensional features, using PH). Unfortunately, the data in
these studies contained Betti numbers only at 3y, (1, and
B2 (B2 results were reported only from the synthetic data).
This study provides evidence that homology groups Hy, H,
and Hs are preserved through random projection; however the
preservation of homology groups above Hs was not explored.

Cycles and Co-cycles: In this paper, the identification of high
dimensional homology groups is achieved by extracting repre-
sentative cycles from a PH computation. For each topological
feature, the PH computation can track the boundary, or the
vertices, that circumscribe that feature [37]. There may exist
multiple possible cycles that can generate the same feature,
so a single representative cycle is chosen. The representative
cycles provide candidate regions for analysis in the original
space. Features identified in the projected space are utilized
to gather their corresponding high dimensional neighborhood
(region) that is then used to compute high dimensional homol-
ogy groups (generally from a memory-bound approximated
sampling of the region).

Unfortunately, most existing tools to compute PH utilize co-
homology instead of homology [38]. Cohomology reports rep-
resentative co-cycles instead of cycles. A new technique called
Involuted Homology [39] can reconstruct the homology cycles
after computing the cohomology. While not widely used,
involuted homology is available in a tool called ripserer
[40]. This tool is used in the studies of this paper.

Data Size Limitations when Computing PH: The approx-
imation of high dimensional homology groups developed in
this study is motivated primarily by the limits of memory. In
general, computing the Hs homology groups of data with PH
is constrained to several thousand points on modern comput-
ing hardware. Computation of higher dimensional homology
groups is even more restricted. Table I presents the limitations
of the computation of H; homology groups using synthetic
d-Spheres in R?*! with ripserer on an AMD Ryzen 7
with 128GB of RAM. These limits are similar for other tools
(e.g., ripser [30]). While the exact limits depend on each
specific data set, these are sufficient for the early assessments
computed for this paper.

III. TECHNICAL APPROACH

This section describes the approach to characterizing high
dimensional homology groups of an input point cloud. The

Algorithm 1 Locating High Dimensional Features

Input origData
Input highDim
Input ripsLim
Input numTrials
QOutput outPIs

1: regionCenters < ()

> Input point cloud

> Maximum homology dimension

> Max points computable in Hpighpim
> The number of trials to perform

> PIs from each region

2: for i < 1 to numTrials do

3 reducedData <— projection(origData, dim= 3)

4 perlntervals < ripserer(reducedData)

5: for all pi; € perlntervals do

6: if pi;.length > cutoff then

7 hdVert < { origData[pi;.vertexIndices] }
8: regionCenters.append(geometric_center(hdVert))
9: end if

10: end for

11: end for

12: centroids <— cluster(regionCenters).centroids
13: for all center; € centroids do

14: radius <~ p + o of the distance between all hdVert of the
cluster and the center;

15: region < {pt € origData | dist(pt, center;) < radius}

16: reducedRegion <— k-means++(region, k = ripsLim)

17: outPIs < ripserer(reducedRegion)

18: end for

approach utilizes the output of PH on a dimensionally-reduced
approximation to identify candidate regions of the space where
high dimensional features may lie. These areas are then re-
associated to their points in the original point cloud to form
a region that is evaluated for higher dimensional homologies.
Algorithm 1 contains the pseudo-code for the approach. The
algorithm can be summarized in 3 main processing steps.

Step 1: Project Data to R®* and Compute PH

This step locates the geometric center of regions in the data
where topological features are suspected to exist (Lines 2—
11). Since the projection methods being used in this study
are stochastic, the algorithm takes multiple trials to collect the
persistence intervals in the low dimension space (this study
used Gaussian projection to a fixed dimension of 3 with 8
trials). The algorithm only collects significant H; and Hj
persistence intervals from the projected data (Lines 5-10). In
this study, the kneed algorithm [41] with the default sensitivity
of 1.0 is used on the length (€geqtr, — €pirtrn) Of the persistence
intervals to determine significance. Furthermore, the kneed
algorithm and the definition of significance was evaluated
separately on the sets of H; and H, persistence intervals.

For each significant persistent interval found, the indices
of the representative cycle vertices are used to collect the
corresponding vertices in the high dimensional data (Line 7).
The index is sufficient to re-associate vertices back to the high
dimensional space because Gaussian projection performs a 1-
to-1 mapping of high to low vectors. The final component
of this step is to compute the geometric center of the high
dimension vertices associated to the persistence interval (Line
8). Note that all geometric centers are collected regardless of
the dimension of the persistence interval that generated them.



A quick evaluation to analyze each dimension separately was
performed early in this study, but no significant advantage or
discriminating conclusion could be drawn from their separa-
tion.

Step 2: Cluster the Centers and Extract Centroids

In this step, the geometric centers, gathered from the repre-
sentative cycles in Step 1, are now examined and clustered
to isolate the key regions where topological features are
suspected to exist. In particular, the geometric centers are
clustered and the centroids of the clusters captured (Line: 12).
This approach requires a clustering algorithm that operates
without expecting a known target number of clusters. In this
study, the MeanShift algorithm was used. While not scalable,
the number of representative cycles to cluster is relatively
small and the MeanShift algorithm performs extremely well
experimentally at locating the correct number of centers for the
test data examined in Section IV. The clustering step removes
redundant centers collected from the persistence intervals of
the multiple trials.

Step 3: Define High Dimension Region & Compute PH

Each centroid from Step 2 is used to define the center of
a candidate region for more detailed analysis in the higher
dimensional space. For each centroid, points from the original
point cloud that are within a specified distance of the centroid
are collected into a region of points of interest (Line: 15).
In this study, this distance is defined independently for each
cluster. In particular, the mean (u) plus standard deviation (o)
of the distances from the vertices of the representative cycles
in the cluster to the cluster centroid is used (Line: 14). This
region of points is a subset of the original point cloud that can
be studied with PH. However, the size of this region can easily
exceed the capacity of existing PH tools, so prior to analysis,
the region is sampled (Line: 16). The k-means++ algorithm
is used to sample the data as it has been shown to provide an
accurate approximation for computing PH for large data sets
[35], [42]. The sampled region is then analyzed using standard
PH tools (Line: 17).

IV. PRELIMINARY RESULTS

Synthetic data sets are used to evaluate the technique
described in this paper in order to generate known high dimen-
sional features. The synthetic data is composed of multiple unit
d-Spheres of different dimensions embedded in R® through
R”. Each unit d-Sphere is composed of 5,000 points and was
generated using Muller’s method [43] to produce a uniform
random set of points on the surface of the sphere. These
spheres were all constructed about the origin of the coordinate
axis in R%*1. One test was performed on data embedded in
R8. However the computation of PH was unable to clearly
distinguish features in this dimension (with this algorithm or
using a standard PH computation on one unit 8-Sphere). As a
result, testing was halted at R7.

Multiple d-Spheres were embedded in a common space;
when the space was of a dimension higher than the original

) T x2 T3 T4 zs5

4d5d5d4din5d: two 4-Spheres and two 5-Spheres in R

co: 0.0806 0.0038  0.0295 -0.0105 0.0078

c1: 20050 00142 -0.0062  0.0106  0.0008

ca: 39756  0.0110 -0.0366 -0.0225 0.0052

c3:  5.9567 0.0083  -0.0535 0.0205 0.0006

4d5din6d: one 4-Sphere and one 5-Sphere in RS

co: 0.1329 -0.0253 -0.0758  0.0746 -0.0162 0.0000
c1: 18719  0.0076 -0.0051 -0.0123 0.0013 0.0000
4d6din6d: one 4-Sphere and one 6-Sphere in R®

co: 02056 00131 -0.0042  0.0226  0.0123 -0.0064
c1: 19366 -0.0440 -0.0339 -0.0223  -0.0139 0.0037
4d5d5d6din6d: one 4-Sphere, two 5-Spheres, and one 6-Sphere in RS
co: 0.0183 0.0013 0.0039  0.0124  -0.0073 0.0000
c1: 20049 00037 0.0189  0.0007 -0.0162 0.0000
ca: 4.0000  0.0031 0.0334  0.0173 0.0033 -0.0025
c3: 5.8807 -0.0123 0.0097  -0.0250  0.0160 0.0412

TABLE II: Centroids computed by Algorithm 1 at Line: 12.

sphere, the additional coordinates were set to 0.0. The d-
Spheres were placed adjacent to each other on the first
coordinate axis at multiples of 2 so that they were pairwise
non-intersecting. Thus, the ¢ spheres were positioned so that
their respective centers were at (24,0,---,0) for 0 <4 < ¢.
In this test suite, there were 9 sets of synthetic test data, three
with 2 d-Spheres, two with 3 d-Spheres and four with 4 d-
Spheres. Due to space considerations, not all results are shown;
however, the results are consistent across all tests.

A. Identifying Centers of Candidate regions

The first step of the proposed approach (Algorithm 1,
Lines: 2—11) analyzes the projected data to locate centers of
regions of the data that the approach determines are potential
candidates where a significant topological feature may exist.
This step operates without any knowledge of the number or
dimension of any homological features present in the data.
Given the synthetic test data described above, it is known (to
us, but not to the algorithm) that there are significant topolog-
ical features along the first coordinate axis at (24,0,---,0)
for 0 < ¢ < t. Thus, the ability of the algorithm to correctly
identify these feature centers provides a preliminary indicator
of the suitability of the approach.

Table II shows the computed region centers for 4 of the
test data sets. The bold strings are the names of each data set,
which describes the dimensions of the d-Spheres and their
embeddings. For example, the first row of Table II examines
4d5d5d4din5d. This name indicates an embedding in R® of:
(i) a unit 4-Sphere at (0,0,0,0,0), (ii) a unit 5-Sphere at
(2,0,0,0,0), (iii) a unit 5-Sphere at (4,0,0,0,0), and (iv) a
unit 4-Sphere at (6,0, 0, 0, 0). Each row following the test data
set name provides the Cartesian coordinates of the geometric
centroid of all cluster centroids reported by Algorithm 1 (Line:
12). For each d-Sphere, the method reports the correct number
of clusters and a good approximation of their geometric center.
While not the exact centers of the test data, the computed
centroids are extremely close to the correct values.
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Fig. 1: Persistence Diagrams for Data Set: 4d5d5d4din5d
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Fig. 2: Persistence Diagrams showing homologies > Hy for
two test data sets.

B. Computing PH on the Candidate Regions

Step 3 of Algorithm 1 (Lines: 13—18) assembles a set of
points (into a region) around the cluster centroids to analyze
with PH. The approach reduces this region with KMeans++
so that it can be analyzed in the high dimensional space,
then computes the PH of the sampled data. The first step
determines which points from the original data set to include
in the region by selecting all that are within a certain radius of
the center. This radius is dynamically computed as a function
of the mean radius plus standard deviation of the vertices of
the representative cycles that contributed to the identification
of that cluster (Line: 14). The radius used here is only
one possibility and as test data with more irregular data is
considered, it might be useful to use other bounding limits.

The set of persistence diagrams from test data
4d5d5d4din5d is shown in Figure 1 (the number in
parentheses in each legend entry is the number of persistence
intervals at that dimension). While these results all show
multiple topological features at H3 and Hy, most of them
are near the 45° line, which indicates noise or insignificant
features. However, in each case there is one significant
feature present (away from the 45° line). In each persistence
diagram there should be one significant feature corresponding
to the d-Sphere centered in that region. The results show one
significant feature in the correct homology group for each

d-Sphere present in the original data set.

Figure 2 contains the results from two other test data sets,
namely: 4d5d5d6din6éd and 5d7d6din7d. These persistence
diagrams contain data for all of the persistence intervals found
in dimensions > 2. As can be seen in the data, the left graph
(a) correctly shows one significant feature at Hs and Hs and
two significant features at H,. The second graph (b) in Figure
2 is from an embedding in R7. While the significant features
in H, and Hpy are visible, the feature at Hg is beginning to
be blurred into the noise portion of the data (closer to the 45°
line). Part of this may be caused by the delay of the feature
birth (ep;ren) caused by sampling or the high dimension of
the features themselves (c¢f the shifted ep;,+p for the higher
dimensional features in both graphs of Figure 2).

V. CONCLUSIONS

The computation of Persistent Homology (PH) for homol-
ogy groups > H> is seriously compromised due to the compu-
tational complexities of the PH algorithms. This work proposes
to isolate regions in a point cloud where suspected homologies
may be present and works to assemble a subset of points from
the original data to form a localized region for analysis. Using
this subset, the PH computation can be performed to search for
higher dimension homologies. This work shows that, for a few
test cases, the higher dimensional homologies can be correctly
located, isolated, and approximately characterized. However,
it is important to recognize that the test data (d-Spheres) is
a near ideal test case for the proposed algorithm (especially
w.r.t. the selection of points to form each region (Line: 14
of Algorithm 1). That said, this is still very early work and
there are a number of parameters and possible modifications
for Algorithm 1 that can improve and expand its performance
for other topological shapes. In addition to additional testing
with a more diverse set of data, other projection and clustering
algorithms might prove informative.

While this result indicates an ability to approximately
characterize homologies in Hj through Hy, and, to some
extent, Hg, the an important question remains: Is the ability
to characterize these homology groups of any use in machine
learning? On that we do not yet have any evidence.
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