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Abstract—Persistent Homology (PH) is computationally expen-
sive and is thus generally employed with strict limits on the (i)
maximum connectivity distance and (ii) dimensions of homology
groups to compute (unless working with trivially small data
sets). As a result, most studies with PH only work with H0

and H1 homology groups. This paper examines the identification
and isolation of regions of data sets where high dimensional
topological features are suspected to be located. These regions are
analyzed with PH to characterize the high dimensional homology
groups contained in that region. Since only the region around
a suspected topological feature is analyzed, it is possible to
identify high dimension homologies piecewise and then assemble
the results into a scalable characterization of the original data
set.

Index Terms—High Dimensional Data; Data Reduction; Per-
sistent Homology; Involuted Homology; Data Mining

I. INTRODUCTION

Persistent Homology (PH) is one of the principal compo-

nents of Topological Data Analysis (TDA) [1]. PH provides

a scalar representation of topological structures encoded in a

point cloud — connected components, loops, voids, and so

on — as they persist over multiple spatial resolutions [2]–[6].

The output of PH is captured through persistence intervals

that characterize the persistence, or spatial lifetime, of these

topological structures. The resulting persistence intervals can

be used for various machine learning applications [7]–[18].

The computation of PH suffers from exponential memory

and time complexities that prevent its general application

to high dimensional data. For example, computing the H2

homology groups of a point cloud in R
3 is only feasible

with a few thousand points. Consequently, work with PH is

often limited to the H0 and H1 homology groups (although

in some cases H2 homology groups are studied). However,

topological features in dimensions above H2 are generally

omitted due to the associated time and space complexity. This

work explores techniques to enable the use of computational

PH to characterize higher dimensional homology groups.

The method presented in this paper computes PH on di-

mensional reductions of the data to locate candidate regions

where high dimensional homologies may be located. The

candidate regions of the original space are then isolated for
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high dimension PH analysis. The technique is motivated by

previous studies of dimensionality reduction on PH [19]–[22].

The principal idea of this paper is that, under projection, higher

dimensional topological features will be present in the lower

dimensional data. Thus, computing PH on the dimensionality

reduced data will help identify candidate regions of the origi-

nal data to examine for high dimensional homologies. In this

work, dimensionality reduction and PH are used to locate the

vertices of representative cycles of topological features in the

reduced dimension. The dimensionality reduced vertices are

then re-associated to the corresponding vertices in the original

data set. The vertex set is then used to extract a region of the

original data around the cycle’s center for further PH analysis

in the high dimensional space.

The remainder of this paper is organized as follows. Section

II presents some background and related work. Section III

reviews the technical approach used to locate and analyze

topological features in high dimensional data. Section IV

presents some early experimental results. Finally, Section V

contains some concluding remarks.

II. BACKGROUND AND RELATED WORK

This section presents background information and studies

related to this work. Additional background information on

PH can be found in [2], [4], [23], [24].

Techniques to combat the exponential memory and time

complexity of PH have led to advancements in complex con-

struction [25]–[27], complex representation [28]–[30], bound-

ary matrix reduction [30]–[33], and approximate algorithms

[20], [21], [34]–[36]. A majority of these are evaluated with

respect to low dimensional topological feature identification.

Few studies are directly aimed at analyzing high dimensional

homology groups; both the application and understanding of

higher dimensional homology groups are limited.

Several studies have examined the application of dimen-

sional reduction techniques to the computation of PH [19]–

[21]. The studies by [19], [21] have largely focused on the

theoretical issues and limits of dimensionality reduction for

the computation of PH. Ramamurthy et al [20] provide the

first empirical study of random projection on persistence

intervals and Betti numbers. Their experiments consider high

dimensional source data in 3 studies, namely: 10, 000 points

in 50-dimensions (synthetic), 15, 000 points in 25-dimensions

(image patches), and 4, 000 points in 100-dimensions (audio

clips of wheezing patients). The dimensional reduction step978-1-6654-3902-2/21/$31.00 ©2021 IEEE



Hd H2 H3 H4 H5 H6 H7 H8

nmax 5164 1125 372 170 102 77 64

Hd H9 H10 H11 H12 H13 H14 H15

nmax 61 57 50 49 53 53 32

TABLE I: The experimentally-determined maximum number

of vertices of a d-Sphere that an AMD Ryzen 7 with 128GB

RAM can analyze with the ripserer package when PH was

computed up to Hd with no distance limits.

is performed using random projection and the data is reduced

to dimension 30. They examined the impact of dimensional

reduction on the computed Betti numbers (the number of k-

dimensional features, using PH). Unfortunately, the data in

these studies contained Betti numbers only at β0, β1, and

β2 (β2 results were reported only from the synthetic data).

This study provides evidence that homology groups H0, H1,

and H2 are preserved through random projection; however the

preservation of homology groups above H2 was not explored.

Cycles and Co-cycles: In this paper, the identification of high

dimensional homology groups is achieved by extracting repre-

sentative cycles from a PH computation. For each topological

feature, the PH computation can track the boundary, or the

vertices, that circumscribe that feature [37]. There may exist

multiple possible cycles that can generate the same feature,

so a single representative cycle is chosen. The representative

cycles provide candidate regions for analysis in the original

space. Features identified in the projected space are utilized

to gather their corresponding high dimensional neighborhood

(region) that is then used to compute high dimensional homol-

ogy groups (generally from a memory-bound approximated

sampling of the region).

Unfortunately, most existing tools to compute PH utilize co-

homology instead of homology [38]. Cohomology reports rep-

resentative co-cycles instead of cycles. A new technique called

Involuted Homology [39] can reconstruct the homology cycles

after computing the cohomology. While not widely used,

involuted homology is available in a tool called ripserer

[40]. This tool is used in the studies of this paper.

Data Size Limitations when Computing PH: The approx-

imation of high dimensional homology groups developed in

this study is motivated primarily by the limits of memory. In

general, computing the H2 homology groups of data with PH

is constrained to several thousand points on modern comput-

ing hardware. Computation of higher dimensional homology

groups is even more restricted. Table I presents the limitations

of the computation of Hd homology groups using synthetic

d-Spheres in R
d+1 with ripserer on an AMD Ryzen 7

with 128GB of RAM. These limits are similar for other tools

(e.g., ripser [30]). While the exact limits depend on each

specific data set, these are sufficient for the early assessments

computed for this paper.

III. TECHNICAL APPROACH

This section describes the approach to characterizing high

dimensional homology groups of an input point cloud. The

Algorithm 1 Locating High Dimensional Features

Input origData ⊲ Input point cloud
Input highDim ⊲ Maximum homology dimension
Input ripsLim ⊲ Max points computable in HhighDim

Input numTrials ⊲ The number of trials to perform
Output outPIs ⊲ PIs from each region

1: regionCenters ← ∅

2: for i ← 1 to numTrials do
3: reducedData ← projection(origData, dim= 3)
4: perIntervals ← ripserer(reducedData)
5: for all pii ∈ perIntervals do
6: if pii.length > cutoff then
7: hdVert ← { origData[pii.vertexIndices] }
8: regionCenters.append(geometric center(hdVert))
9: end if

10: end for
11: end for

12: centroids ← cluster(regionCenters).centroids

13: for all centeri ∈ centroids do
14: radius ← µ + σ of the distance between all hdVert of the

cluster and the centeri
15: region ← {pt ∈ origData | dist(pt, centeri) ≤ radius}
16: reducedRegion ← k-means++(region, k = ripsLim)
17: outPIs ← ripserer(reducedRegion)
18: end for

approach utilizes the output of PH on a dimensionally-reduced

approximation to identify candidate regions of the space where

high dimensional features may lie. These areas are then re-

associated to their points in the original point cloud to form

a region that is evaluated for higher dimensional homologies.

Algorithm 1 contains the pseudo-code for the approach. The

algorithm can be summarized in 3 main processing steps.

Step 1: Project Data to R
3 and Compute PH

This step locates the geometric center of regions in the data

where topological features are suspected to exist (Lines 2–

11). Since the projection methods being used in this study

are stochastic, the algorithm takes multiple trials to collect the

persistence intervals in the low dimension space (this study

used Gaussian projection to a fixed dimension of 3 with 8

trials). The algorithm only collects significant H1 and H2

persistence intervals from the projected data (Lines 5–10). In

this study, the kneed algorithm [41] with the default sensitivity

of 1.0 is used on the length (ǫdeath− ǫbirth) of the persistence

intervals to determine significance. Furthermore, the kneed

algorithm and the definition of significance was evaluated

separately on the sets of H1 and H2 persistence intervals.

For each significant persistent interval found, the indices

of the representative cycle vertices are used to collect the

corresponding vertices in the high dimensional data (Line 7).

The index is sufficient to re-associate vertices back to the high

dimensional space because Gaussian projection performs a 1-

to-1 mapping of high to low vectors. The final component

of this step is to compute the geometric center of the high

dimension vertices associated to the persistence interval (Line

8). Note that all geometric centers are collected regardless of

the dimension of the persistence interval that generated them.



A quick evaluation to analyze each dimension separately was

performed early in this study, but no significant advantage or

discriminating conclusion could be drawn from their separa-

tion.

Step 2: Cluster the Centers and Extract Centroids

In this step, the geometric centers, gathered from the repre-

sentative cycles in Step 1, are now examined and clustered

to isolate the key regions where topological features are

suspected to exist. In particular, the geometric centers are

clustered and the centroids of the clusters captured (Line: 12).

This approach requires a clustering algorithm that operates

without expecting a known target number of clusters. In this

study, the MeanShift algorithm was used. While not scalable,

the number of representative cycles to cluster is relatively

small and the MeanShift algorithm performs extremely well

experimentally at locating the correct number of centers for the

test data examined in Section IV. The clustering step removes

redundant centers collected from the persistence intervals of

the multiple trials.

Step 3: Define High Dimension Region & Compute PH

Each centroid from Step 2 is used to define the center of

a candidate region for more detailed analysis in the higher

dimensional space. For each centroid, points from the original

point cloud that are within a specified distance of the centroid

are collected into a region of points of interest (Line: 15).

In this study, this distance is defined independently for each

cluster. In particular, the mean (µ) plus standard deviation (σ)

of the distances from the vertices of the representative cycles

in the cluster to the cluster centroid is used (Line: 14). This

region of points is a subset of the original point cloud that can

be studied with PH. However, the size of this region can easily

exceed the capacity of existing PH tools, so prior to analysis,

the region is sampled (Line: 16). The k-means++ algorithm

is used to sample the data as it has been shown to provide an

accurate approximation for computing PH for large data sets

[35], [42]. The sampled region is then analyzed using standard

PH tools (Line: 17).

IV. PRELIMINARY RESULTS

Synthetic data sets are used to evaluate the technique

described in this paper in order to generate known high dimen-

sional features. The synthetic data is composed of multiple unit

d-Spheres of different dimensions embedded in R
5 through

R
7. Each unit d-Sphere is composed of 5, 000 points and was

generated using Muller’s method [43] to produce a uniform

random set of points on the surface of the sphere. These

spheres were all constructed about the origin of the coordinate

axis in R
d+1. One test was performed on data embedded in

R
8. However the computation of PH was unable to clearly

distinguish features in this dimension (with this algorithm or

using a standard PH computation on one unit 8-Sphere). As a

result, testing was halted at R7.

Multiple d-Spheres were embedded in a common space;

when the space was of a dimension higher than the original

x0 x1 x2 x3 x4 x5

4d5d5d4din5d: two 4-Spheres and two 5-Spheres in R
5

c0 : 0.0806 0.0038 0.0295 -0.0105 0.0078
c1 : 2.0050 0.0142 -0.0062 0.0106 0.0008
c2 : 3.9756 0.0110 -0.0366 -0.0225 0.0052
c3 : 5.9567 0.0083 -0.0535 0.0205 0.0006

4d5din6d: one 4-Sphere and one 5-Sphere in R
6

c0 : 0.1329 -0.0253 -0.0758 0.0746 -0.0162 0.0000
c1 : 1.8719 0.0076 -0.0051 -0.0123 0.0013 0.0000

4d6din6d: one 4-Sphere and one 6-Sphere in R
6

c0 : 0.2056 0.0131 -0.0042 0.0226 0.0123 -0.0064
c1 : 1.9366 -0.0440 -0.0339 -0.0223 -0.0139 0.0037

4d5d5d6din6d: one 4-Sphere, two 5-Spheres, and one 6-Sphere in R
6

c0 : 0.0183 0.0013 0.0039 0.0124 -0.0073 0.0000
c1 : 2.0049 0.0037 0.0189 0.0007 -0.0162 0.0000
c2 : 4.0000 0.0031 0.0334 0.0173 0.0033 -0.0025
c3 : 5.8807 -0.0123 0.0097 -0.0250 0.0160 0.0412

TABLE II: Centroids computed by Algorithm 1 at Line: 12.

sphere, the additional coordinates were set to 0.0. The d-

Spheres were placed adjacent to each other on the first

coordinate axis at multiples of 2 so that they were pairwise

non-intersecting. Thus, the t spheres were positioned so that

their respective centers were at 〈2i, 0, · · · , 0〉 for 0 ≤ i < t.

In this test suite, there were 9 sets of synthetic test data, three

with 2 d-Spheres, two with 3 d-Spheres and four with 4 d-

Spheres. Due to space considerations, not all results are shown;

however, the results are consistent across all tests.

A. Identifying Centers of Candidate regions

The first step of the proposed approach (Algorithm 1,

Lines: 2–11) analyzes the projected data to locate centers of

regions of the data that the approach determines are potential

candidates where a significant topological feature may exist.

This step operates without any knowledge of the number or

dimension of any homological features present in the data.

Given the synthetic test data described above, it is known (to

us, but not to the algorithm) that there are significant topolog-

ical features along the first coordinate axis at 〈2i, 0, · · · , 0〉
for 0 ≤ i < t. Thus, the ability of the algorithm to correctly

identify these feature centers provides a preliminary indicator

of the suitability of the approach.

Table II shows the computed region centers for 4 of the

test data sets. The bold strings are the names of each data set,

which describes the dimensions of the d-Spheres and their

embeddings. For example, the first row of Table II examines

4d5d5d4din5d. This name indicates an embedding in R
5 of:

(i) a unit 4-Sphere at 〈0, 0, 0, 0, 0〉, (ii) a unit 5-Sphere at

〈2, 0, 0, 0, 0〉, (iii) a unit 5-Sphere at 〈4, 0, 0, 0, 0〉, and (iv) a

unit 4-Sphere at 〈6, 0, 0, 0, 0〉. Each row following the test data

set name provides the Cartesian coordinates of the geometric

centroid of all cluster centroids reported by Algorithm 1 (Line:

12). For each d-Sphere, the method reports the correct number

of clusters and a good approximation of their geometric center.

While not the exact centers of the test data, the computed

centroids are extremely close to the correct values.
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networks,” Journal of Statistical Mechanics: Theory and Experiment,
Mar. 2009.

[16] L. Li, W.-Y. Cheng, B. S. Glicksberg, O. Gottesman, R. Tamler, R. Chen,
E. P. Bottinger, and J. T. Dudley, “Identification of type 2 diabetes
subgroups through topological analysis of patient similarity,” Science

translational medicine, vol. 7, no. 311, Oct. 2015.
[17] A. Moitra, N. O. Malott, and P. A. Wilsey, “Persistent homology on

streaming data,” in 2020 International Conference on Data Mining

Workshops (ICDMW), ser. ICDMW ’20, Nov. 2020, pp. 636–643.
[18] M. Nicolau, A. J. Levine, and G. Carlsson, “Topology based data

analysis identifies a subgroup of breast cancers with a unique mutational
profile and excellent survival,” Proceedings of the National Academy of

Sciences, vol. 08, no. 17, pp. 7265–7270, 2011.
[19] S. Arya, J.-D. Boissonnat, K. Dutta, and M. Lotz, “Dimensionality

reduction for k-distance applied to persistent homology,” in 36th In-

ternational Symposium on Computational Geometry, ser. SoCG 2020,
Jun. 2020, pp. 10:1–10:15.

[20] K. N. Ramamurthy, K. R. Varshney, and J. J. Thiagarajan, “Computing
persistent homology under random projection,” in IEEE Workshop on

Statistical Signal Processing, Jun. 2014, pp. 105–108.
[21] D. R. Sheehy, “The persistent homology of distance functions under

random projection,” in Proceedings of the Thirtieth Annual Symposium

on Computational Geometry, ser. SOCG’14. New York, NY, USA:
ACM, 2014, pp. 328–334.

[22] B. Rieck and H. Leitte, “Persistent homology for the evaluation of
dimensionality reduction schemes,” Computer Graphics Forum, 2015.

[23] H. Edelsbrunner and J. Harer, “Persistent homology — a survey,”
Surveys on Discrete and Computational Geometry, vol. 453, pp. 257–
282, 2008.

[24] ——, Computational Topology, An Introduction. American Mathemat-
ical Society, 2010.

[25] A. Zomorodian, “Fast construction of the vietoris–rips complex,” Com-

puter and Graphics, pp. 263–271, 2010.
[26] J. A. Barmak and E. G. Minian, “Strong homotopy types, nerves and

collapses,” Discrete & Computational Geometry, vol. 47, no. 2, pp. 301–
328, Mar. 2012.

[27] T. K. Dey, D. Shi, and Y. Wang, “Simba: An efficient tool for approx-
imating rips-filtration persistence via simplicial batch-collapse,” 24th

Annual European Symposium on Algorithms (ESA 2016), 2016.
[28] J.-D. Boissonnat and C. Maria, “The simplex tree: An efficient data

structure for general simplicial complexes,” Algorithmica, vol. 70, no. 3,
pp. 406–427, Nov. 2014.

[29] J.-D. Boissonnat, T. K. Dey, and C. Maria, “The compressed
annotation matrix: an efficient data structure for computing persistent
cohomology,” CoRR, vol. abs/1304.6813, 2013. [Online]. Available:
http://arxiv.org/abs/1304.6813

[30] U. Bauer, “Ripser: efficient computation of vietoris-rips persistence
barcodes,” 2019.

[31] M. Mrozek and B. Batko, “Coreduction homology algorithm,” Discrete

& Computational Geometry, vol. 41, no. 1, pp. 96–118, Jan. 2009.
[32] C. Chen and M. Kerber, “Persistent homology computation with a twist,”

in Proceedings 27th European Workshop on Computational Geometry

(EuroCG’11), 2011, pp. 197–200.
[33] U. Bauer, M. Kerber, and J. Reininghaus, “Clear and compress: Com-

puting persistent homology in chunks,” in Topological Methods in Data

Analysis and Visualization III, P. T. Bremer, I. Hotz, V. Pascucci, and
R. Peikert, Eds. Springer International Publishing, Mar. 2014, pp. 103–
117.

[34] F. Chazal, B. T. Fasy, F. Lecci, B. Michel, A. Rinaldo, and L. Wasser-
man, “Subsampling methods for persistent homology,” in International

Conference on Machine Learning, ser. ICML 2015, Lille, France, Jul.
2015.

[35] A. Moitra, N. Malott, and P. A. Wilsey, “Cluster-based data reduction
for persistent homology,” in 2018 IEEE International Conference on Big

Data, ser. Big Data 2018, Dec. 2018, pp. 327–334.
[36] V. de Silva and G. Carlsson, “Topological estimation using witness

complexes,” in Eurographics Symposium on Point-Based Graphics, ser.
SPBG ’04, M. Gross, H. Pfister, M. Alexa, and S. Rusinkiewicz, Eds.
The Eurographics Association, 2004.

[37] O. Busaryev, T. K. Dey, and Y. Wang, “Tracking a generator by
persistence,” in Computing and Combinatorics (COCOON), ser. Lecture
Notes in Computer Science, vol. 6196. Berlin, Heidelberg: Springer
Verlag, 2010, pp. 278–287.

[38] V. de Silva, D. Morozov, and M. Vejdemo-Johansson, “Dualities in
persistent (co)homology,” Inverse Problems, vol. 27, no. 12, 2011.

[39] M. ufar and iga Virk, “Fast computation of persistent homology repre-
sentatives with involuted persistent homology,” 2021.

[40] M. ufar, “Ripserer.jl: flexible and efficient persistent homology compu-
tation in julia,” Journal of Open Source Software, vol. 5, no. 54, 2020.

[41] V. Satopa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a ‘kneedle’
in a haystack: Detecting knee points in system behavior,” in 31st

International Conference on Distributed Computing Systems Workshops,
ser. ICDCSW. IEEE Computer Society, 2011, pp. 166–171.

[42] N. O. Malott, A. Sens, and P. A. Wilsey, “Topology preserving data re-
duction for computing persistent homology,” in International Workshop

on Big Data Reduction, 2020.
[43] M. E. Muller, “A note on a method for generating points uniformly on

n-dimensional spheres,” Communications of the ACM, vol. 2, no. 4, pp.
19–20, Apr. 1959.


