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ABSTRACT

In this work, we investigate the problem of level curve track-
ing in unknown scalar fields using a limited number of mobile
robots. We design and implement a long short term memory
(LSTM) enabled control strategy for a mobile sensor network
to detect and track desired level curves. Based on the existing
work of cooperative Kalman filter, we design an LSTM-enhanced
Kalman filter that utilizes the sensor measurements and a se-
quence of past fields and gradients to estimate the current field
value and gradient. We also design an LSTM model to estimate
the Hessian of the field. The LSTM enabled strategy has some
benefits such as it can be trained offline on a collection of level
curves in known fields prior to deployment, where the trained
model will enable the mobile sensor network to track level curves
in unknown fields for various applications. Another benefit is
that we can train using larger resources to get more accurate
models, while utilizing a limited number of resources when the
mobile sensor network is deployed in production. Simulation re-
sults show that this LSTM enabled control strategy successfully
tracks the level curve using a mobile multi-robot sensor network.

INTRODUCTION
Individual sensors or a mobile sensor network (MSN) can
be deployed in an area to monitor the environment for a long pe-
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riod of time. In a mobile sensor network, the group of robots
equipped with sensors is asked to simultaneously sense an un-
known environment, and autonomously decide their trajectory.
Some examples of autonomous MSNs include a swarm of un-
manned aerial vehicles (UAVs) or unmanned underwater vehi-
cles (UUVs), which are ideal candidates for exploring large-scale
environments such as those encountered in the fields of ocean sci-
ence and meteorology. The autonomous MSNs are involved in
tasks including source seeking, level-curve tracking, mapping an
unknown field, and many more. An example of level-curve track-
ing is tracking environmental boundaries [1, 2] as in monitoring
the perimeter of a wildfire spreading over the land, tracking the
perimeter of oil spills, understanding algae blooms, etc. Such
a swarm can also sample a large-scale environment in order to
chart an unknown field. There is considerable existing literature
that solves some of the challenges involved in the level-curve
tracking problem [3-7]. The robots carrying sensors have the
capability to only take measurements at discrete locations and
they have limited communication resources to share this infor-
mation with each other. The authors in [4] designed a coopera-
tive Kalman filter, which uses the instantaneous measurements of
all the robots to cooperatively estimate the field gradient and the
field hessian. They also design control strategies for the swarm
trajectory and its shape which uses these estimated field parame-
ters.

In addition to the instantaneous measurements (i.e. data
about the current step), we can possibly use a sequence of histor-
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ical data to infer the next step. Thus we apply machine learning
technology to this problem in this work. Specifically, we apply
Long Short Term Memory (LSTM) to study the collected state
dynamics to produce state predictions. These state predictions
are used with the sensor measurements to generate the state esti-
mates, which are then used to control the trajectory and shape of
the swarm (formation).

Using LSTM provides us with certain benefits compared to
existing solutions that use the Kalman filter to estimate the field
state. First, we don’t need to explicitly derive the model or the
state equations, which are possibly non-linear. If we follow the
machine learning data-driven approach to collect, train, and sim-
ulate the system, without knowing a specific model, we can ac-
complish the same task. Second, using non-linear machine learn-
ing models, we can relax some assumptions made in existing ap-
proaches and thereby address more complex fields. Finally, using
historical data and well-trained models can allow us to reduce the
number of required robots to perform level-curve tracking when
deploying the system in practice, while still enjoying the benefits
of using a larger amount of robots in training. There is exist-
ing literature in which researchers have used LSTM-enhanced
Kalman filter to tackle various challenges such as handling col-
ored noise while taking measurements [8], tracking level-curve
without using localization data [9], etc.

The contributions of this work are three-fold. First, we
design and implement an LSTM enabled control strategy for a
MSN to detect and track the desired level-curve. Here we use the
estimates produced by an LSTM Kalman filter in the controllers
to track the level-curve. Second, we develop a LSTM model to
estimate the Hessian for the unknown curve, which is used as
an input in the motion controller. Third, we conduct simulations
to justify the approach and compare the results with existing ap-
proaches.

The rest of the paper is organized as follows. We first for-
mulate the problem of level curve tracking in scalar fields. Then
we introduce some necessary theoretical background for solv-
ing this problem. Next, we present the proposed LSTM-enabled
level curve tracking method and the results and analysis. Finally,
we make concluding remarks to discuss future work.

PROBLEM FORMULATION
In this section, we formulate the problem of boundary track-
ing using a MSN.

Scalar Field and Level Curve

We can model temperature in the ocean or in a wildfire using
a scalar function of three dimensions. In order to simplify the
problem, we assume this function is a static field as opposed to a
time-varying dynamic field. Then, the temperature at each point
in the ocean can be represented as a function over R, i.e. z(r),

where r = (x,y,z)" is a three-dimensional vector. In this work,
we focus on 2-dimensional fields so we consider functions of the
form z(r), where r = (x,y)” € R%. This function is not known
apriori, but our problem is also not to fully estimate this field
V(x,y) € R?. We assume the field is smooth and that the field can
be approximated using second-order variations. Thus, the field
characteristics at any location (x,y) can be defined using the field
value z(r), the field gradient Vz(r), and the Hessian of the field
H(r) at that location. We assume that the field is smooth, its
gradient is well-defined and bounded by a min and max value at
all locations, i.e. Vzuin < Vz(r) < Vzpax, ¥r € R2.

A level set L.(z) of a function z with n variables is defined
as a set of inputs for which the function takes a constant value c,
ie. Le(2) = {(x1,..,xn)|2(x1, .., xn) = c}. For a two-dimensional
field (i.e. n = 2) this level set is called a contour or a level-
curve. Our problem is to find and track a level-curve given a
desired constant value of the field. To again note, the field is not
known to us, the only capability we have is to measure the field
value at a given location. That is, we can measure z; at (xj,y;)
using sensors. In addition, we deal with large-scale fields such
as oceans, large wildfires, etc. so we can’t sample all possible
locations to measure the field.

Mobile Sensor Networks

With these constraints, we consider a scenario in which we
deploy N robots in this field, and each robot has a sensor to mea-
sure the field at its own location, thus, form a MSN. We also
call this collection of robots a swarm or a formation. We assume
that the measurements are taken at discrete intervals, and we de-
note these local measurements by individual robots as z; where
i €{l,..,N}. We further assume the robots can communicate
with each other, so they can share their local field measurements
with each other. In this work, we also assume that the robots
know the relative locations of each other, which they can also
communicate with others. We denote individual robot locations
as r; where i € {1,..,N} and r; € R?, and we denote the center of
the formation using r,., where r. = Y'(r;)/N. Any or each of the
robots can then use the collection of measured local field values
and corresponding relative locations to estimate the characteris-
tics of the overall field using methods that we will describe in
subsequent sections.

Three Subproblems

For a MSN tasked with a level-curve tracking mission in
an unknown scalar field, we are facing three subproblems. The
first problem is to accurately estimate z(r), Vz(r), and H(r) using
the collection of measurements z; and corresponding locations r;
close to r. We take the center 7. as the point close to all the
individual r; to represent the formation. The second problem
is to design a motion controller, which uses these estimates at
the center z., Vz. and H,, so that the formation center can detect
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and track a level-curve with the desired field value, i.e. design a
controller for the formation center so that z. = Zgesireq. The third
problem is how to control the motion of individual robots. In
this paper, we will focus on the first subproblem by proposing an
LSTM-enhanced Kalman Filter. We will use the existing motion
controller and formation controller designed in [4] to achieve the
motion and formation control.

THEORETICAL BACKGROUND

In this section, we introduce some theoretical background
topics including sensor dynamics, motion controller design, and
LSTM.

Level Curve Tracking Controller Design

Each robot is considered as a unit mass Newtonian parti-
cle that follows first-order dynamics. Thus, the formation cen-
ter is modeled as 7. = u,, where u, is the control applied to the
formation center. We use the controller described in [4], which
uses estimated z., Vz., H. of the center r. and the desired level
curve value Zg.greq to control the trajectory of the formation. As
illustrated in [4], representing the formation using Jacobi trans-
formation allows the decoupling of the formation motion control
and the formation shape control, thus, the controller design in
this section only focuses on the control applied to the formation
center with the assumption that the formation shape control is
achieved.

As illustrated in Fig. 1, at any point along a level-curve, we
can define an angle ¢ formed between the direction tangent to the
field x; and the current heading of the formation center x, denoted
by the green dot. Here y; is the same as the direction of the field
gradient Vz, estimated earlier, and y is the direction orthogonal to
the current heading x. (x1,y;) represents the Frenet-Serret frame
of the level curve.

FIGURE 1: The coordinate frame of the formation center (x,y)
and the Frenet-Serret frame of the level curve (x1,y;). ¢ is the
angle between x and x;.

Using the angle ¢ and assuming unit speed of the formation
center, the steering control law can be described by

Ue = Ki cos @ + Krsin ¢ —Zf(zc)||VzC||cos2(§) —&—K;;sin(%),

T2 T2 (1)
x1 Vozex x; V7z . . . .
where kj = f‘HT:Hl, Ky = lHVz:Hy L in which ||Vz.| is obtained

using estimated field gradient Vz.. V2z. is obtained using Hes-
sian estimation. f(z.) = 0 if the formation center r, is on the
level-curve, otherwise it models the external force which drives
the formation towards the desired field value z;.g7eq- K4 is a con-
stant gain parameter we can tune. The control law in (1) was
derived using Lyapunov analysis with ¢ = 0 as the equilibrium
point.

Measurement Equation

To enable the motion controller, the field characteristics z,
Vz. and H, need to be estimated, given robot measurements z;
and r;. In this paper, we use the measurement model used in [4],
which is briefly summarized below.

First, the measurement p taken by each robot i at time k is
modeled as:

Dik = Zik + Wik + ik, 2

where z; 4 is the value of the field at location 7; , n; ;. is assumed
to be i.i.d Gaussian noise, w; is spatially correlated noise. As-
suming the field is smooth with respect to location r, we can ap-
proximate z; ; around formation center r.; by its second-degree
Taylor expansion.

Zik R Zek + (Fik —Ter) Vaex + %(h’,k — 1)) VP2 g (Zige — Tei),

(3
where z. is the field value at the formation center 7.k, Vz.x is
the gradient of the field at r, , and Vch,k is the second derivative
of the field at r, x.

The state of the system can be defined as s =
[Zak’ Vizek, Vyzak}. The measurements p; ;. of all the robots can
be combined as a vector py. Similarly, combining noise elements
for each robot’s measurement, we get vectors wy and ng. The sec-
ond derivative of the field Vz.; can be estimated using hessian
H_ ;. The error in estimating the hessian is represented by ey, .

Using these notations and combining (1) and (2), we get,

Pr = Cisi + DiHe i + Dyey +wy +ny., 4)

U (rig—rep)”
where [C;, = , and Dy is a N x 4 matrix whose
1 (VN,k - rc.,k)T
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" row is defined by 3 ((rix —rex) ® (rixg — rex))’. As intro-

duced in [4], with a state equation, a cooperative Kalman filter
was designed to estimate the state sy = [z¢k, ViZe, Vyzex] and
a geometric approach was introduced to estimate the Hessian H,
based on the instantaneous measurements and the positions of the
robots. The approach works well in unknown fields with a min-
imum of two robots (with rotating orientation) in 2D fields [4]
and six robots in 3D fields [10]. We omit the derivation of the
state equation due to the page limit.

Long Short Term Memory

A recurrent neural network (RNN) is a class of neural net-
work where neurons form a directed graph along a temporal se-
quence. LSTM is a type of RNN that focuses on retaining long-
term past information, learning by maintaining state and using
the saved state with current input at any step. LSTMs do this
by introducing various gates in the LSTM unit cell. Fig. 2 [11]
shows the structure of one LSTM cell and how it is connected
in a chain. The LSTM unit cell maintains the cell state C; in ad-
dition to what the RNN unit cell does. The unit cell takes the
inputs X;, the previous cell state C;_; and the previous output
h;_1. After performing some operations, it generates the current
output /, and the updated cell state C;. In the figure, we can see
the LSTM is composed of 4 gates in orange. Olah [12] provides
a good overview of the LSTM unit cell structure.

FIGURE 2: The LSTM unit cell structure.

The LSTM structure is represented mathematically by the
following Equations (5). The first three equations represent the
output of the forget gate f, the input gate 7, and the cell update
gate C' respectively. The fourth equation describes how the in-
puts of the first three gates are combined to update the cell state.
This is represented by the + operator in Fig. 2. The fifth equa-
tion is the output o; of the output gate o,. And the last equation
combines o, and cell state C; to compute the output of the cell
h;. The matrices W are the weights of each gate, and b is the
bias term of each gate. The bias and the weights will be adjusted

during LSTM training.

fr =0(Wr.[h—1,X] +by),

iy = 6(Wi.[h—1,X] +bi),

C, —tanh(W,..[h,_1,X,] +bc),
Ct:ﬁ*ct—l+it*éta )
oy =0 W,.[l—1,X;] + Do),

hy = o; xtanh(C;).

LSTM and its variants like gated recurrent units (GRU, in-
troduced by Cho et al. [13]) have seen huge success in the fields
of speech recognition [14], text generation [15] , handwriting
generation [16], and machine translation [17]. In the next sec-
tion, we propose a solution that combines LSTM with the coop-
erative Kalman filter introduced in [4] to solve the overall prob-
lem of tracking a level-curve using a group of robots.

PROPOSED SOLUTION

As introduced previously, z., Vz., and H, at the center r.
need to be estimated at every time step in order to enable the mo-
tion control law (1). We propose that if we can first use historical
data to train LSTM models offline, then in real deployment, we
can extract the field information from the trained LSTM mod-
els directly. Thus, we can train using more resources, i.e., more
robots, but deploy using fewer resources i.e., fewer robots, to
measure the field at each step and consequently fewer robots to
track the overall level-curve in resource-limited scenarios. For
this purpose, we combine LSTM models with the cooperative
Kalman filter. In this approach, LSTM models are used to predict
the state, which helps with modeling complex fields and handling
a different number of robot sensors, but we still rely on (or take
benefit of) the Kalman filter to correct/tune the LSTM prediction.

We use the modified LSTM Kalman filter (LSTM-KF) [18],
[19] described by the following Equations (6) - (10). The update
steps, i.e., the first two equations, of the cooperative Kalman filter
are replaced by two LSTMs. The LSTMs are given current and
previous states and measurement errors as the input. In addition
to the current data-point, we provide a number of previous data-
points to the model controlled by the hyper-parameter called lag-
window. The LSTMs estimate the state and measurement error
through the first two Equations (6) and (7) giving us s;(_) and
Pry- The next three Equations (8) - (10) are left the same as
in the cooperative Kalman filter, and they use the measurements
taken by the robot sensors p; and update the estimates to give us
final state and measurement error sy and Fy(4).

Sp(—) = LSTMSIule(Sk—1(+))v ©)
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Pk(f) = LSTMError(Pkfl(Jr))a (7N

Ki = Py )C{ [CePy(— C{ + DiUkDf +Ri] ", ©)
Sk(+) = Sk(—) T Ki(Pk — CiSg(—y — DicHe s )
Pty = Pty + G DUDE + R G (10)

The field Hessian H, is also needed in the controller for
the formation center to track the level-curve. The approach de-
scribed in [4] is an iterative numerical algorithm, which we need
to repeat to obtain improved hessian estimates and it is derived
for smooth fields. If we train another LSTM (which is inherently
non-linear), we can get more accurate estimates of Hessian, and
also expand Hessian estimation to more complex curves. So, we
use a third LSTM to predict the Hessian at the current step. Sim-
ilar to the other two LSTM models, we use the hyper-parameter
lag-window to control how much of the history is presented to
the LSTM to predict the current Hessian. Specifically, our 3rd
LSTM’s inputs are comprised of formation center r., field z,
gradient Vz., and previous hessian value at the center H”, robot
locations r;, and measurements z;. This is denoted by:

H.j = LSTM(rc,z¢, Ve, riszisHe j—1)- (11

This predicted Hessian H, x is used in the Kalman filter Equation
(9) and formation center control law (1) described earlier. The
flowchart of the complete proposed model is captured in Fig. 3.

a )

[ Hessian |
s ] J J
State
4’( LSTM
.z
: Kg:,g?" Formation Formation
Update Center Shape
P— Equations Control Control
e Measurement
Error

N /

FIGURE 3: The proposed motion control flow using estimates
generated through LSTM-KF.

Overview of the Proposed Algorithm

Data is needed for training the three LSTM models. For
this reason, we first start with the existing cooperative Kalman
filter and generate training data for smooth 2D fields. We deploy
four robots in a symmetric formation to collect data in a number
of training fields. One such training field is shown in Fig. 4.
The figure shows an irregular field obtained using a 4 order
2D polynomial. To collect data for training the LSTMs, given
a starting point for the 4 robots, we set the desired field value
to 144. At each point, the sensors measure field values. The
previous state and measurements are passed to the cooperative
Kalman filter to estimate the current state. The estimated state is
passed to the formation center and formation shape controllers to
update the trajectory to track desired the level-curve.

irregularl_1

10.0
7.54
5.0

2.54

iL
0.01
17250
-5.0] £ 33 (’! -

—7.54

-10

.—010.0 —7‘.5 —5‘.0 —2‘.5 0.‘0 2‘.5 5.‘0 7‘.5 10.0
FIGURE 4: A irregular field tracked by 4 robots. The green dots
represent robots r; and r,, and yellow dots represent robots r3
and r4. The yellow and green lines are used to depict the forma-
tion of the robots r;.

Once we have the training data set, we feed the current and
a number of historical states s;_;;) and errors P_;,) to the
LSTM models as described in the first two Equations (6), (7) of
the LSTM-KF model. The LSTM models predict the next state
sk(—) and error Py . The actual next state and error collected as
data earlier (si(),Py(1)) are given as feedback to the LSTM to
back-propagate the weights and learn the cooperative filter. The
LSTMs are trained to minimize the root mean square error while
predicting the state matrix and the error matrix.

Finally, we are ready to test the system with the trained
LSTM models, i.e., use the LSTM-KF Equations (6), (7), (8),
(9), and (10) to perform level curve tracking in unknown fields
based on the flow shown in Fig. 3. Specifically, given the current
and historical data, the LSTM models (Equations (6), (7)) pre-
dict the estimated current state s;(_) and the error matrix Fy_).
The third LSTM model in Equation (11) provides the estimates
of the Hessian. Then the robot measurements p; update the state
Sk(+) and error matrix Py, ), i.e., correcting them with actual field
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values using Equations (9), (10). These final values are provided
to subsequent controllers to correct the formation-center’s trajec-
tory (Equation (1)) and to correct the shape of the formation for
optimal data collection. Algorithm 1 describes the overall algo-
rithm.

Algorithm 1 Motion Control using LSTM-KF

/I Run cooperative Kalman Filter in training fields to estimate state
and perform level curve tracking.
1: procedure COLLECT TRAINING DATA(Sk_1,Pi_1,2i, Hi)

// Use historical states, error covariances, current robot measure-
ments, and estimated hessian to estimate the state.

2: procedure LSTM-KF(s;_ ;, B j,zi, Hy) > Estimate the state

3: sg(—) < Predict using s ; in Equation (6)

4: P~y <= Predict using F_; in Equation (7)

5: K;, <= Calculate optimal gain using Equation (8)

6: Sk(+) < Sk(—), Pk- Update the prediction using Equation (9)

7: Py(4) <= Py(~)- Update the prediction using Equation (10)

8: return Sk(+)

9: procedure MOTIONCONTROL > Track Level Curve

/I Use lag-window as 50, i.e. 50 historical datapoints.

10: Initialize lag-window [w

11: Set time step T

12: fork=1,..,T do

13: ki < 1,; Measure field at current sensor locations
/I Rearrange and present data for last Iw time-steps to LSTMs

14: Sk—j < [Sk—tws Sk—(tw—1)» --Sk—1]

15: Pej < [Pe—tws Pe—(tw—1)» --Pe—1]
// Estimate hessian.

16: H; < Estimate hessian using Equation (11)

17: sy < LSTM-KF (s j, Pr—j,zi, Hy) > Estimate State
/I Level curve tracking formation center controller

18: ke <= F(k—1,)>%c) Vzc,He.. > Motion control Equation (1)
/l Level curve tracking formation center controller

19: Thi = Tk T(k—1,i)5 3¢5 Vze > Formation shape control

EXPERIMENTAL RESULTS
In this section, we first discuss the implementation details of
the algorithm, then illustrate the simulation results and analysis.

Data Collection

We first simulate tracking the level-curve with a MSN con-
sisting of four robots using the cooperative Kalman filter to es-
timate the state and motion controllers to decide the trajectory.
Throughout this simulation at each of the 7 = 10000 time-step &,
we save the field values z. t, gradients Vz x, error matrix Py, Hes-
sian H, sensor measurements z; x, robot locations r; ; and forma-
tion center r.x. We store this in a Python dataframe on disk.

Next, we repeat this experiment for other field shapes. Thus, we
end up with multiple dataframes - one for each shape. This series
of dataframes gives us a sequence of data to train the proposed
LSTM models. We consider a variety of shapes like circles of
different polynomial degrees, ellipses with different coefficients,
a few 4" order 2D irregular polynomial shapes with varying co-
efficients. For example, one of the 4" order polynomial shapes
is:

(2 4+2y—12)2 + (K x+y> — 17)? = 400,

where 400 is the desired field value z;,;04. K 1s the coefficient
we vary to generate more shapes.

We perform three main steps in data preparation for LSTMs.
First, we flatten all the various vectors and matrices like state s,
Hessian H., formation center r., robot locations r;, sensor mea-
surements z,, error covariance matrix P into a single vector of
21 features for each time-step. Therefore, we get a 10000 x 21
matrix corresponding to the 10000 timesteps for a single level-
curve shape. Second, we scale each feature using MinMaxScaler
down to [—1,+1] range. Finally, we reframe the data for super-
vised learning in the form of data X and labels Y. This reframing
procedure is described next. For LSTMs, we need to decide on a
hyper-parameter called lag-window. Lag-window is the amount
of historical data we show to the LSTM to predict the current
state. In the analysis section, we provide some insight into how
we can get a range for this parameter in order to tune it. For
example, if we choose lag-window to be 50, for the label at time-
step k (yx) we need to provide data from 50 previous time-steps
([*k—50,%k—49, --,Xk—1]). We re-organize the data in this fashion
using a sliding window method. We end up with data X and
labels Y matrices of the following format for training the state
estimation LSTM:

[Zc,()a szc,07 V)’ZL‘,O] [Zc,49; Vch,497 Vyzc,49]
[Zc,l s V)ch,l y Vyzc,l] [ZC,SOa szc,507 V}’ZC,SO]
X = . . . ,

9950rows..

Ze50  VaZeso  VyZeso
Ze51 VaZest  VyZesi
Y= . . o

9950rows..

where X is of the shape (9950 x 50 x 3) and Y is of the shape
(9950 x 3). Similarly, for training the error co-variance LSTM,
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in which each error co-variance is a (3 x 3) matrix, we obtain X
and Y matrices for error co-variance of the shape (9950 x 50 x 9)
and (9950 x 9), respectively.

Training

After evaluating several LSTM structures, we use a simple
model that consists of a single LSTM layer containing 40 neu-
rons followed by a dense layer. We use the same configuration
for all three LSTMs. The entire set of level-curves, each having
X and Y matrices as described above, is split into the training,
validation, and testing sets with the ratio 75:5:20. For the train-
ing stage, we use standard methods like early stopping, model
checkpoints to save only the best model. We use model valida-
tion to improve the generalization of the trained models. We train
for 200 epochs with early-stopping patience of 40 epochs, so if
the validation-loss doesn’t improve for 40 consecutive epochs we
stop training further on that shape. Here, an epoch means going
once over all the 9950 data points for a shape. This will be re-
peated 200 (epoch) times to improve the learned weights.

There are a few unique points we need to consider while
training LSTMs. First, we can’t shuffle the data because the pat-
tern of the data matters. So, we train through each shape and
use the learned model weights (instead of random weights) when
starting with the next shape. Second, for each step during the
training, we need to provide the data X in the (batch-size, lag-
window, num-features) format and labels Y in (batch-size, num-
features) format. Batch-size is selected to be 60 after manual
grid-search to speed up the training but still derive a well-trained
model. To account for the batch-size, the matrix X and Y de-
scribed above need to be reorganized to be given 60 rows at a
time.

Results and Analysis

While testing we try two important experiments. First, we
test on unseen shapes using the same amount of robots during
training and testing to evaluate the performance of the LSTM-
KF algorithm. Second, we reduce the number of robots N in the
testing stage. In this paper, we train the LSTM models using four
robots, but we test using two robots. Note that the algorithm can
be applied to N >= 2 robots in arbitrary formation as long as the
correct Jacobi transform is defined. We use N =4 and 2 for il-
lustration purpose. Succeeding in the first experiment shows that
we can handle unknown shapes, i.e. the trained LSTM model
generalizes well. The second experiment shows that we can get
away with using a less number of robots during testing, even
though we used a larger number of robots during training to col-
lect more accurate data. Thus, we can apply the algorithm in
resource-limited situations.

The trajectories traced by a MSN with four robots using es-
timates produced by the traditional cooperative Kalman filter are
shown in Fig. 5. In this figure, the violet line shows the desired

level-curve, and the blue line shows the trajectory taken by the
robots. The trajectories traced by a MSN with four robots us-
ing the field estimates predicted by the trained LSTM models
are shown in Fig. 6. We observe that the robots don’t trace
the curve well for some of the concave curves and for these
shapes the traditional cooperative Kalman filter performance is
better than LSTM-KF in terms of providing better field and gra-
dient estimates. However, the plots show a proof of concept that
LSTM-KF can be used for estimating the field characteristics for
level-curve tracking problems. The benefit of LSTM-KF is that it
doesn’t require explicitly deriving or modeling the state system,
so for more complex scenarios such as dynamic time-varying
fields the LSTM-KF method is more practical.

We plot in Fig. 7 (for the irregularl_8 shape in Fig. 6) the
field and field gradients to show the error between actual shape
and modeled trajectory. Here red plot shows the values we get if
we follow the actual level-curve, which is obtained using the co-
operative Kalman filter, green are the values we get using LSTM.
The error (vertically) at each point (X-axis) determines the root
mean square error. We try to reduce this root mean square error
when we train the LSTM models.

In order to decide the lag-window hyper parameter, we plot
the correlation across lagged values to judge for which values to
train the LSTM on, i.e. how far into the history we need to go.
For Fig. 8, the more diagonal the plot the higher the correlation.
We see that till t-40 there’s very high correlation, as we go back
in history at t-160 the plot is pretty diffused, i.e. low correlation.

Similar information can be obtained from the auto-
correlation plot for different lag values (Fig. 9). If the auto-
correlation falls into the blue shaded cone it means the correla-
tion can be a statistical fluke. If auto-correlation is outside the
cone, there’s a high chance that the correlation is not a statisti-
cal fluke. We see that until about 400 lags there is detectable
auto-correlation for field gradients. The field value doesn’t mat-
ter much because we are tracing a constant field value, but we
see that up to about 200 lags field value has statistical auto-
correlation. Note that in our dataset we also have the portion
of the trajectory for which the robots have not reached the de-
sired field value, so not all the field values are constant. We can
see that in Fig. 7, we start with a high field value and approach
the desired field in a limited number of steps.

Using the data from lag-correlation (Fig. 8) and auto-
correlation (Fig. 9) plots, we decided to try 50 lag-steps as a
good starting point to train LSTM on. That is we provide 50
historical state values to predict the single next state.

Finally, we show the results using two robot formation to
track a level curve based on the LSTM models trained using four
robots. Fig. 10 shows the trajectory taken by a two-robot forma-
tion around the circle. As we can observe there is some loss in
accuracy especially towards the end of the circle, i.e. as we come
closer to the starting point. The reason is that in the update/cor-
rect step of the LSTM-KF algorithm, measurements from only

Copyright © 2021 by ASME



elipse_1.0

10.0

5.0

2.5 -
ot }
‘

-
' :::::333"
' g

=754

-10.0 T T T T T T T
-10.0 =75 -5.0 =25 0.0 2.5 5.0 7.5 10.0

irregularl_8

7.54

254 ’,‘_3.=~:
i >

0.0 o e @
oy To W

~2.51 > { S, B
| .Zf,'r-‘"»t\l 5

—7.54

-10.0 T T T T T T T
-100 =75 -5.0 =25 0.0 2.5 5.0 7.5 10.0

10.0 irregular2_8
7.5 1
5.0
2.5 1
0.04
-2.54 "
o R
-7.54 o
o

-10.0 T T T T T T
-10.0 =75 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

FIGURE 5: Fields traced by a group of four robots using cooper-
ative Kalman Filter. The figures show 4 robots formation, green
representing robots 7| and r, yellow representing robots r3 and
r4. The desired level-curve is shown in violet. The formation
starts with the center r. at (-2, -6). The blue level-curve is the
actual trajectory followed by the simulated sensor network.

2 robots will reduce the accuracy compared to using measure-
ments from 4 robots in the training stage. Nevertheless, the result
shows that we are able to deploy fewer robots in practice using
the trained LSTM models.

CONCLUSIONS AND FUTURE WORK
In this work, we develop a LSTM-enabled cooperative level-
curve tracking strategy, which allows a MSN to detect and track
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FIGURE 6: Fields traced by robots using the predictions by
LSTM-KF.

a level-curve in a scalar field with a desired level value. We show
that using LSTM-enhanced Kalman filter allows us to use a se-
quence of states from history along with sensor measurements
to estimate the current state, which allows users to train using
more resources but deploy using fewer resources in resource-
limited situations. In the future, we will improve the accuracy
of the LSTM models so that the two robot formation tracks the
level-curve more closely. In addition, we have considered static
fields for this work, we will expand it to dynamic or time-varying
fields.
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FIGURE 8: Correlation with different lags. Each of the 8 plots
shows the correlation between the field gradient V,z. at the cur-
rent time step vs V,z. at t — ¢’ time-step. A diagonal plot repre-
sents high correlation, while a diffused plot shows no correlation.
As we increase the time-lag t' we observe vanishing correlation.
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