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Abstract—Motivation: In bioinformatics, complex cellular modeling and behavior simulation to identify significant molecular

interactions is considered a relevant problem. Traditional methods model such complex systems using single and binary network.

However, this model is inadequate to represent biological networks as different sets of interactions can simultaneously take place for

different interaction constraints (such as transcription regulation and protein interaction). Furthermore, biological systems may exhibit

varying interaction topologies even for the same interaction type under different developmental stages or stress conditions. Therefore,

models which consider biological systems as solitary interactions are inaccurate as they fail to capture the complex behavior of cellular

interactions within organisms. Identification and counting of recurrent motifs within a network is one of the fundamental problems in

biological network analysis. Existing methods for motif counting on single network topologies are inadequate to capture patterns of

molecular interactions that have significant changes in biological expression when identified across different organisms that are similar,

or even time-varying networks within the same organism. That is, they fail to identify recurrent interactions as they consider a single

snapshot of a network among a set of multiple networks. Therefore, we need methods geared towards studying multiple network

topologies and the pattern conservation among them. Contributions: In this paper, we consider the problem of counting the number of

instances of a user supplied motif topology in a given multilayer network. We model interactions among a set of entities (e.g., genes)

describing various conditions or temporal variation as multilayer networks. Thus a separate network as each layer shows the

connectivity of the nodes under a unique network state. Existing motif counting and identification methods are limited to single network

topologies, and thus cannot be directly applied on multilayer networks. We apply our model and algorithm to study frequent patterns in

cellular networks that are common in varying cellular states under different stress conditions, where the cellular network topology under

each stress condition describes a unique network layer. Results:We develop a methodology and corresponding algorithm based on the

proposed model for motif counting in multilayer networks. We performed experiments on both real and synthetic datasets. We modeled

the synthetic datasets under a wide spectrum of parameters, such as network size, density, motif frequency. Results on synthetic

datasets demonstrate that our algorithm finds motif embeddings with very high accuracy compared to existing state-of-the-art methods

such as G-tries, ESU (FANMODE) and mfinder. Furthermore, we observe that our method runs from several times to several orders of

magnitude faster than existing methods. For experiments on real dataset, we consider Escherichia coli (E. coli) transcription regulatory

network under different experimental conditions. We observe that the genes selected by our method conserves functional

characteristics under various stress conditions with very low false discovery rates. Moreover, the method is scalable to real networks in

terms of both network size and number of layers.

Index Terms—Multilayer networks, motif finding, biological networks

Ç

1 INTRODUCTION

GRAPH based models, or in general networks are used to
represent and study interactions among various ele-

ments. Nodes and edges are used respectively to represent
elements and interactions among those elements. For
instance nodes can bemolecules and edges represent interac-
tions among them, or nodes can be proteins and edgesmodel
potential protein-protein interactions [17] well-known in lit-
erature. Depending on the underlying interaction type,

biological networks can be represented using directed or
undirected edges. Modeling, studying and simulating inter-
actions is often used to represent, analyze and predict biolog-
ical behaviour in the molecule-to-molecule interactions [14],
[55]. Biological networks can thus be used to study and pre-
dict molecular interactions [1], [20], such as signaling path-
ways [51], protein functions [57] as well as drug molecular
behavior in curing diseases [56], [61].

Real biological systems are often complex and thus sim-
plifications have to be introduced in modeling. Simple
instances of biological networks consist of binary networks
where single edge connections among nodes encapsulate all
interactions between them. However, these models are inad-
equate in capturing the complex cellular interactions as, a set
of entities often interact with each other in patterns that may
exhibit multiple types of relations. Indeed, different edges
between the same couple of nodes may be necessary to cap-
ture different relations among nodes. For instance, modeling
behaviors in human brain requires that neurons can be con-
nected through different connectomes, such as synaptic, gap
junction and monoamine, where each type of connection has
a completely different dynamics [4]. Finally, biological net-
works may represent different configuration of node-to-
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node interactions in situation where different topological
configuration among nodes may influence the temporal-
varying configuration. Fig. 1 reports such an example. In this
figure, let us consider a network which contains a node a
that interacts with a node b. Again, b is at a distance 2 from
another node c (i.e., the shortest path from b to c contains two
edges). In the presence of a stimulation received by external
(environmental) conditions, the topology of this network
may alter by rewiring a subset of interactions within the net-
work. This may change the distance between b and c (for
instance, distance equal to 4) while that between a and b
remains unchanged. In order to study such networks with
altering topologies under varying external factors, we need
to enrich the biological modeling bymeans of using different
instances of biological networks. Therefore, we focus on
using multiple layers where each layer represent a network
instance. We call such a system as multilayer network, where
each node appears in a set of layers and each edge (interac-
tion) may ormay not be observed in a subset of these layers.

Fig. 2 depicts a hypothetical multilayer network having
10 nodes and 3 layers. Each layer represents a network
defined on a set of nodes and edges representing relation-
ships between those nodes. Moreover, these layers can
interact among themselves for instance, by conserving part
of the networks in a well defined topology. The interactions
in such case for the corresponding in vivo biological model

may be represented by a subnetwork conservation (or
invariant) among layers. This may represent for instance an
invariant of the network in a time varying biological system
evolution [12], [28], [46]. In our modelling, multilayer net-
works contain different layers, each node appears in all the
layers. The nodes are homogeneous in type and the interac-
tions happen only within a layer [11], [28], yet the same
interaction can be observed in multiple layers (see Fig. 2).

The importance of using multilayer networks to model
biological systems has been testified by several studies
focused on mathematical modeling of these networks [26],
[38], as well as efficient implementation of algorithms to
extract information from them. Other studies report on
defining network metrics by extending classical measures
to multilayer networks. Such metrics are used to character-
ize network structures, including centrality [3], [53], cluster-
ing coefficient [10], [34], correlations [39], as well as
defining operators to measure network topologies. Cluster-
ing of nodes based on similar network neighborhood within
as well as hierarchically nearby layers is an important appli-
cation area [62]. Another active research direction investi-
gates various kinds of dynamical processes on multilayer
topologies, such as percolation [6], diffusion processes [18],
cooperation [19], synchronization [40], and information
spreading [47]. An extensive review of the studies on multi-
layer networks can be found in [8], [28].

Motifs are connected patterns of nodes, which occur fre-
quently in network instances [36]. They are often considered
as the building blocks of the underlying biological system as
they indicate robust functions executed through their spe-
cialized topologies. In classical single layer network, motif
counting occurs on a network instance that may capture a
single snapshot of a complex biological network. Fig. 3
shows an example of a single layer network (left) and a tri-
angular motif (right). The network contains three instances
of the triangle motif that are highlighted in bold. However,
motif identification and counting on such a simplistic single
layer network may fail to identify robust functional units
ubiquitous across different layers, as a motif observed in
one layer may not be observed in other layers. We focus on
studying motifs in multilayer networks, searching for pat-
terns repeated and present in biological networks with dif-
ferent layers. Motifs in biological network have been
associated in different real applications, such as studying
the biological transcription [52], finding genes associated
with infections [58] or cancer [24], finding protein com-
plexes [42] and host-pathogen interactions [7], or revealing
relationship across species [20], [22]. Most of the existing

Fig. 1. An example of topology variation within biological networks. The
above network shows an initial set of nodes and interactions between
those nodes before external influence. In lower network (after external
stimuli) the node b is now at a distance of 4 from node c, while distance
among node a and b remains unchanged.

Fig. 2. A multilayer network with 3 layers and 10 nodes.

Fig. 3. Left: A hypothetical single layer network with nine nodes and 11
edge. Right: A motif in the form of triangle topology. Three instances of
the triangle motif in the network are highlighted in bold.
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literature on motif identification and motif counting is lim-
ited to single layer deterministic [2], [13], [21], [25], [27],
[29], [30], [31], [32], [41], [45], [59], [60], probabilistic [48],
[49], [54], and dynamic [37] networks (See [44] for a survey
on motifs).

Few works have been presented in a generalized defini-
tion of motifs for multilayer networks. In [4], [5], [33], the
organization of edges between the same pair of nodes
across all layers, is presented and defined as network
motifs. Such multilayer motifs specify each layer’s organi-
zation of edges among a set of nodes. However, the number
of such distinct motifs grows exponentially with the num-
ber of nodes and layers. Thus, all these studies investigate
motifs which contain limited number of layers and small
set size of nodes. Whereas, real life biological networks
often contains a large node set and considerable number of
layers.

Our Contributions. Given a motif topology and a net-
work, we say that two embeddings of this motif in the given
network overlap if they have at least one common edge. In
this paper, we solve the problem of identifying the largest
set of nonoverlapping embeddings of a given motif topol-
ogy in a given multilayer network, such that each embed-
ding appears in more layers of the network than a user
supplied threshold. We consider the generalized version of
the motif counting problem, as we do not assume whether
the network at each layer of the given multilayer network,
and the motif topology is directed or undirected. The solu-
tion we propose applies to both directed and undirected
networks. To simplify this concept, in the rest of the paper,
we assume that the given network is directed and an undi-
rected edge can be denoted with two edges in opposite
directions. The motifs identified under our definition
presents robust, independent and conserved structures
within each layer as well as across different layers. We pres-
ent a mathematically precise definition of motifs in multi-
layer networks in Section 2.2 after defining necessary terms
and variables in Section 2.1. We develop a novel algorithm
that counts embeddings of a given motif topology in multi-
layer networks. Our method first generates an aggregate
network which summarizes all interactions in all layers in a
single layer. Next, it locates all possible embeddings in the
aggregate network. We calculate the loss value of each
embedding, which quantifies the number of motif embed-
dings that cannot be selected along with the current embed-
ding. Our method iteratively selects embeddings with the
least loss until no more independent embedding can be
chosen. We evaluate our methods on synthetic and real
datasets. On synthetic data, our algorithm finds motif
embeddings with near 100% accuracy for a wide set of net-
work models with varying network size, density, motif
frequency. Existing methods, such as G-tries, ESU (FAN-
MODE), and mfinder fail to do that. Moreover, our method
performs much more faster than existing methods. Experi-
ments on Escherichia coli (E.coli) transcription regulatory
network under different experimental conditions show that
our method scales to real networks and more importantly
can uncover conserved functional characteristics of genes
participating in the network under various conditions with
very low false discovery rates. In summary, the technical
contributions of this paper are:

� We introduce the concept of independent motifs in
multilayer networks.

� We propose the use of aggregate networks to adopt
the motif counting for single layer networks to multi
layer networks.

� We formulate a new loss function which works for
multilayer networks.

� We develop a randomization strategy to compute the
statistical significance of the results.

We organize the paper as follows. We formulate the
problem definition and present our method in Section 2.
Experimental results both on synthetic and real datasets are
illustrated in Section 3. Section 4 concludes the paper.

2 DEFINITIONS AND METHODS

In this section, we present the formal definitions of motif
and multilayer network (Section 2.1). Next, we define the
independent motif counting problem (Section 2.2). We
finally describe our proposed method used in experimental
tests (Section 2.3).

2.1 Motif Definition and Notation

We model a network as a graph G ¼ ðV;EÞ where V is the
set of nodes and E � V � V is the set of edges connecting
nodes. We define a multilayer network as a set of k layers,
each containing one network containing same set of nodes,
but possibly a different set of edges. Formally a multilayer
network is a (k+1)-tuple G ¼ ðV;E1; E2; . . . ; EkÞ, where V is a
set of nodes, and Ei denotes the set of edges in the ith-net-
work contained at the ith layer of G. We also use as notation
a set of k unique labels to identify each layer. We denote
such labels as L ¼ fp1;p2; . . .pkg. Fig. 2 depicts a multilayer
network having k ¼ 3 layers, 10 nodes V ¼ fa; b; c; d; e;
f; g; h; i; jg and three layers indicated with labels A;B;C
(i.e., L ¼ fp1;p2;p3g, where p1 ¼ A;p2 ¼ B;p3 ¼ C). With-
out loss of generality we may use such a definition with
nodes representing molecules and edges Ei representing
interactions among molecules.

Given a multilayer network G ¼ ðV;EÞ, we define a
unique representation as a single network, and we indicate
it as A ¼ ðV ;E;VÞ. We call A an aggregate network. In other
context, this concept is represented as superposition net-
work [18]. The aggregate network is defined on the same set
of nodes as the corresponding multilayer network, thus V ¼
V . The set of edges is the union of all the edges belonging to
layers in the multilayer. In other words, an edge ðu; vÞ 2 E if
and only if 9pi 2 L such that ðu; vÞ 2 Ei. i.e., if there is a
layer where the edge ðu; vÞ connect two nodes.

The function V : E ! PðLÞ, where PðLÞ represents the
power set of a L, shows the set of layers which contain a
given edge of the aggregate network. That is Vðu; vÞ ¼ fpi j
ðu; vÞ 2 Eig. Fig. 4 presents the aggregate network A of the
multilayer network in Fig. 2, where the edges are the union
of edges contained in each layers, and values associated
with each edge represent the layers containing it.

Given a multilayer network instance, we focus on finding
(and counting) pattern of (sub)network (or graph) that can
be found and repeated in different layers. We define a motif
pattern as a connected graph M ¼ ðV 0; E0Þ, where V 0 and E0
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denote the set of motif nodes and edges respectively. Fig. 5a
represents an example of motif pattern.

Let G be a multilayer network and let M be a motif pat-
tern. Let Hi be a set of edges, i.e., Hi � Ej. We say that Hi is
an instance (or embedding) of M in G, if at least one layer of
the given multilayer network contains Hi, i.e., formally, (i)
9pj 2 L, such that Hi � Ej, and (ii) the subnetwork defined
by Hi is topologically isomorphic to M. Notice that Hi can
appear in multiple layers. For example, consider the triangle
pattern (see Fig. 5a) and the multilayer network in Fig. 2.
The subgraph Hi ¼ {(a, f), (a, g), (f,g)} is an embedding of M
(see Fig. 5b) and appears in the two layers denoted with A
and C. We denote the set of all possible embeddings ofM in
GwithHðMjGÞ. Given an embeddingHi 2 HðMjGÞ, we indi-
cate with fðHijGÞ ¼ fpjjHi � Ejg the set of layers contain-
ingHi.

Given a subset H0 of HðMjGÞ, it is possible to calculate
the set of layers containing all embeddings in H0 as
F ðH0jGÞ ¼ T

Hi2H0 fðHijGÞ. E.g., let us consider the multi-
layer network in Fig. 2 and the triangle pattern (see Fig. 5a;
as shown Fig. 5, there are five embeddings of triangle pat-
tern. With reference to the Fig. 5, let us now consider the
subset of embeddings, H0 ¼ fH1; H2g. fðH1jGÞ ¼ fA;Cg
and fðH2jGÞ ¼ fA;Bg. Thus, F ðH0jGÞ ¼ fA;Bg \ fA;Cg ¼
fAg, which implies that embeddings H1 and H2 appear
simultaneously only in layer A.

In the literature, there are three frequency measures to
count motifs: (i) F 1; (ii) F 2 and (iii) F 3. F 1 counts all possi-
ble embeddings of motifs regardless of whether they over-
lap with each other or not. F 2 counts the edge disjoint
embedding of motifs. F 3 is similar but more restrictive since
it counts node disjoint embeddings [13], [50]. For example,
let us calculate the measures with respect to embeddings of
the Fig. 5. For simplicity, assume that all the five embed-
dings shown in this figure appear at the same network
layer. F 1 count is 5 as there are five embeddings. F 2 count
is 3 which are H1, H3 and H5. H2 shares edge with H1; H4

overlap with H3 and H5. F 3 count is 2 as H1 shares nodes
with H2 and the remaining three embeddings also share
nodes.

Without loss of generality, we focus on counting motifs
using the F 2 measure in the rest of this paper. Our algo-
rithm can easily be adapted to the other two measures.

2.2 Independent Motif

Here, we focus on counting independent motifs in a multi-
layer network. Given a subset H0 of HðMjGÞ, we define a

function fðÞ on H0 as follows: fðH0Þ ¼ 1 if no two embed-
dings in H0 share an edge, and 0 otherwise. Using these
notations, we formally define the independent motif count-
ing problem in multilayer networks.

Definition 1 (INDEPENDENT MOTIF COUNTING IN MULTILAYER

NETWORKS). Consider a multilayer network G ¼ ðV;E1; E2;
. . . ; EkÞ and a motif pattern M. Let a 2 ð0; 1� be a parameter,
the independent motif counting in multilayer networks problem
aims to find the maximum independent set of embeddings H0
which appear in at least a � k layers simultaneously, which is
argmax
H0

jH0j subject to jF ðH0jGÞj � a � k and fðH0Þ ¼ 1.

As an example, let us consider the multilayer network G
in Fig. 2. It has five embeddings of triangle pattern (see
Fig. 5). Let us consider a ¼ 0:6. We want to find a set of non-
overlapping motif embeddings which exist in at least two
(i.e., d0:6 � 3e) layers in G. Consider two subsets of motif
embeddings H01 ¼ fH2; H3g (F ðH01jGÞ ¼ fA;Bg), H02 ¼
fH1; H3; H5g (F ðH02jGÞ ¼ fA;Cg) which satisfy the require-
ment of being non-overlapping and appearing in at least
two layers. Thus, H02 is the better solution among the two as
it contains more embeddings thanH01.

Counting independent motifs in multilayer networks is a
challenging task. Indeed, counting independent motifs in a
single layer is a well known NP-complete problem that
requires solving two NP complete problems: subgraph iso-
morphism problem [9] and the maximum independent set
problem [16]. Counting independent motifs in multilayer
networks can be done in two steps: (i) Enumerate all possi-
ble embedding sets for each layer independently, and (ii)
count the number of layers containing each one. This strat-
egy however does not scale to large networks as well as net-
works with many layers. The proposed algorithm is based
on an heuristic to tackle this problem.

2.3 The Proposed Algorithm

To count independent motifs in multilayer networks, we
propose an algorithm, (Algorithm 1 in pseudo-code), which
works as follows. It takes as input:

� a multilayer network G ¼ ðV;E1; E2; . . . ; EkÞ,
� a motif patternM, and
� a value a representing theminimummotif frequency.

Fig. 4. The aggregate network A of the multilayer network in Fig. 2. The
value associated with each edge represents the layers containing it.

Fig. 5. (a) A motif pattern M. (b) - (f) five embeddings of M in the multi-
layer network (Fig. 2).
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It consists of the following four steps:

1) It builds an aggregate network A ¼ ðV;E;VÞ corre-
sponding to G (Line 1);

2) Then, it finds the set of all possible embeddings
HðMjGÞ in G using A and selects candidate embed-
dings denoted withHo � HðMÞ (see Lines 2-3);

3) It builds an overlap graph �A forHo, where each node
corresponds to an embedding (Line 4);

4) Finally, it uses a heuristic strategy to count indepen-
dent motifs (Lines 5-18).

Algorithm 1. Independent Motif Counting in Multilayer
Networks

Input: Multilayer network G ¼ ðV;E1; E2; . . . ; EkÞ, motif pat-
ternM and parameter a 2 ð0; 1�
Output: A set S of independent motif embeddings each
appearing in at least da � ke layers of G
1: A  Construct the aggregated network of G
2: HðMjGÞ  Find all embeddings ofM in G usingA
3: Ho  Select the set of embeddings from HðMjGÞ that
8Hi 2 Ho; jfðHijGÞj � a � k

4: Build the overlap graph �A for the embedding setHo

5: S  ;; L  L;
6: while �A is not empty do
7: for each node corresponding embeddingHi in �A do
8: ri  calculate the loss value ofHi

9: end for
10: Hr  select the embedding with least loss value rr
11: S  S [ fHrg
12: L  L \ fðHrjGÞ
13: for each node corresponding embeddingHi in �A do
14: fðHijGÞ  fðHijGÞ \ L
15: end for
16: Remove nodes corresponding to Hr, its neighbors and

other embeddings with fðHijGÞ < da � ke from A
17: end while
18: return S

We now explain the steps of the algorithm in detail. Start-
ing from the multilayer graph G, it constructs the aggregate
graph A ¼ ðV;E;VÞ (see Fig. 4). Thus, the motif counting
problem mapped reduces to the motif counting for a single
layer. Aggregate network maintains information regarding
patterns and motif as in multilayer one. Nevertheless, it can
generate false positive embeddings (i.e., the aggregate net-
work may contain an embedding of the given motif which
does not appear on any layer of the multilayer network). As
we explain below, we eliminate such false positives in the
subsequent steps of our algorithm. It costs less to eliminate
false positive instead of motif counting on multilayer
network.

We locate all possible embeddings HðMjGÞ using A. An
embedding Hi belongs to HðMjGÞ if Hi � E is topologically
isomorphic to M and jfðHijGÞj � a � k. We calculate
jfðHijGÞj using the aggregate graph A as the cardinality of
the set

T
ðu;vÞ2Hi

Vðu; vÞ’. For example, consider the aggre-
gated network in Fig. 4. The subnetwork {(f, g), (f, j), (g, j)} is
topologically isomorphic to the triangle motif pattern
(Fig. 5a). It however is a false positive since all the three
edges of this subnetwork does not appear in any layer at the

same time (see Fig. 2). We compute this as V(f, g) = {A, C},
V(f, j) = {B}, and V(j, g) = {C}. Thus the intersection of these
three sets yields fðÞ ¼ ;. As mentioned in Definition 1, we
seek to find the largest independent subset of embeddings
that appear in at least a � k layers. Thus, we include an
embedding Hi to the candidate embedding set Ho only if
jfðHijGÞj � a � k. For example, for the multilayer network in
Fig. 2, when a ¼ 0:6, we have k ¼ 3 and thus da � ke ¼ 2. The
candidate embeddings in this example are Ho ¼ fH1; H2;
H3; H5g. We exclude embedding H4 from the candidate set
since it appears in only one layer.

Once we identify the set of all potential embeddings Ho

usingA, we build a new graph, called overlap graph, denoted
with �A. In the overlap graph, each node represents an
embeddingHi 2 Ho. An edge is inserted between two nodes
if their corresponding embeddings share at least one edge in
the given multilayer network. Fig. 6 illustrates the overlap
graph for Ho ¼ fH1; H2; H3; H5g. For instance, in this figure,
the node for H1 connects with that for H2 because H1 and
H2 both contain the edge (a, g). Note that the concept of
overlap graphs was defined earlier in the context of classic
single layer [13] and probabilistic networks [48]. Here, we
extend it to multilayer networks.

We use a heuristic strategy to select the subset of inde-
pendent embeddings. We keep the set of layers denoted
with L on which the resulting embeddings can appear
simultaneously (see Line 5 of the Algorithm 1). This set is
initialized to L ¼ L, which means that all layers can be the
target layers on which the resulting embeddings can
appear. Each embedding added to the solution set imposes
a restriction on the set L. For instance, if we include Hr in
the solution, then L ¼ L \ fðHrjGÞ. Thus, the set L mono-
tonically gets smaller, with the increasing number of
embeddings inserted in the solution set.

The relationship between the solution size (i.e., the num-
ber of frequent independent motif embeddings) and the
number of layers containing that solution set is defined by a
value we call loss value. For each embedding Hi 2 Ho, the
loss value, denoted with ri, is the sum of two parameters:
(i) the number of neighbors of Hi in the overlap graph. This
is because, each neighbor of Hi shares an edge with Hi.
Therefore, including Hi in the solution set prevents us from
selecting its neighbors. (ii) the potential loss for the remain-
ing embeddings, i.e., the embeddings which do not share an
edge with Hi. We calculate potential loss value as follows. Let
us consider one embedding, which is not a neighbor of Hi

Fig. 6. The overlap graph for the embeddings {H1; H2; H3; H5} (Fig. 5) in
the multilayer network (Fig. 2). Each node in the overlap graph corre-
sponds to an embedding of the target motif. The edge between nodes
H1 and H2 indicates that the two embeddings share at least one edge
(edge ða; gÞ).
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in the overlap graph, denoted with Hr. If Hi is selected in
the result set and L is updated as explained above, only the
layers in L which are common with fðHijGÞ have the poten-
tial to contain Hr. Recall that the set of layers which contain
Hr without this constraint is fðHrjGÞ. We denote the set of
layers which contain Hr under the constraint that Hi is
already selected with f 0ðHrjGÞ ¼ fðHrjGÞ \ L. If f 0ðHrjGÞ <
da � ke, we remove Hr and calculate its potential loss to be
equal to 1. Otherwise, we calculate it as the fraction of layers
which cannot add contribution to Hr (due to selection of Hi)
and compute it as

ðjfðHrjGÞj � jf 0ðHrjGÞjÞ
jfðHrjGÞj

Finally, we iteratively pick the embedding with least loss
value (see Line 10 of the Algorithm 1), we update L and the
layer set associated with each embedding (fðHrjGÞ) (see
Lines 12-15 of the Algorithm 1), and remove the correspond-
ing node in the overlap graph along with other nodes that
conflict with this selection, which consists of its neighbors
and other nodes for which are contained in less than da � ke
layers in L (see Line 16 of the Algorithm 1).

2.4 Final Discussions on the Method

Example. Let us consider the overlap graph in Fig. 6 corre-
sponding to the multilayer network in Fig. 2, the triangle
motif in Fig. 5a, and a ¼ 0:6. The initial target layer set is
L ¼ fA;B;Cg: We first calculate the loss value of H1. If we
include H1, the target layer set is L0 ¼ fA;Cg since H1 does
not occur in layer B. Including H1 requires to remove its
neighbour H2, which increases the loss value by 1. For the
other two embeddings H3 and H5, because of the shrink of
the target layer set, H3 still can exist but loses the one in
layer B, which increases the loss value by 1/3; H5 however
has no effect. Thus, the loss value of H1 is 1 + 1/3 + 0 = 4/3.
Similar to H1, including H2 leads to removingH1 and losing
one H3 in layer B. Moreover, picking H2 also leads to
removing H5 since it does not exist in at least two layers of
the target layer set {A;B}. Thus the loss value of H2 is 1 + 1/
3 + 1 = 7/3. Using the same strategy, we can calculate the
loss values of H3 and H5 as 0 + 0 + 0 = 0 and 0 + 1 + 1/3 =
4/3 respectively. Thus, in the first iteration, we pick H3 as it
has the least loss value among the four options.

Special Case of Motif Counting. We observe a special case
when a ¼ 1 (i.e., the motifs counted is required to appear in
all the layers). In this case, the multilayer motif counting
problem becomes identical to single layer motif counting.
This is because the aggregate graph now contains only the
edges which appear in all the layers of the network. As a
result fðHijGÞ becomes identical for all the Hi (that is all
embeddings Hi appear in all network layers), and thus the
loss function does not have the second term (i.e., potential
loss).

Complexity. The construction of aggregated graph costs
uðPi jEijÞ in terms of time. Finding all embeddings depends
on the motif topologies. As explained in [13], the number of
embeddings of a motif does not have downward closure
property. In other words, the motif count does not change
monotonically with increasing motif size; it depends on the
network topology more than the network size. For example,

for the triangle pattern, in the worst case it takes OðjV j2Þ as
the graph topology approaches to almost complete graph.
The cost of finding overlap graph depends on the number
of embeddings contained in the aggregate graph. It builds
the overlap graph for Ho in OðjHoj2Þ. For the last step, we
denote the final embedding set with S. Let us denote the
number of edges in the given motif shape with m. The
upper bound for the size of this set is OðjSjÞ ¼ OðPi jEijÞ=
ðm � a � kÞ. This happens when all the embeddings found
exist in � a � k layers. As each iteration only picks one
embedding, it executes jSj times. The most time consuming
process for each iteration is calculating the loss value. Since it
considers all other embeddings to calculate the loss value of
one embedding, this step considers jHoj2 pairs of nodes in
the worst case in each iteration. Thus, heuristic strategy
costs OðjSj _jHoj2Þ in terms of time.

3 EXPERIMENTAL RESULTS

We evaluate performance of our method on both synthetic
and real datasets. We consider four motif topologies,
namely bifan, biparallel, cascade and feed forward loop
(FFL) (see Fig. 7). These four motifs are commonly studied
in the literature and have been shown to be over-repre-
sented in many biologic networks [36], [52]. In the follow-
ing, we describe in detail the datasets used in our
experiments and implementation details.

Synthetic Dataset Description. To observe the performance
of our method under controlled dataset characteristics, we
perform extensive experiments on synthetically generated
directed multilayer networks. To guarantee that there exists
a set of independent motifs across a � k layers, we plant a set
of independent embeddings in each synthetic multilayer
networks. To better understand our synthetic dataset, we
first define some notations. We use the size and average
degree of the multilayer network to represent the number of
nodes and the number of edges per node in each layer of
the multilayer network respectively, which are denoted
with jV j and d respectively. We also use the edge ratio to rep-
resent the ratio of the number of edges constituting planted
motif embeddings to the total number of edges denoted
with c 2 ð0; 1�. Thus, given the network size, average degree,
the edge ratio, and a motif pattern with m edges, the num-
ber of motif embeddings in the multilayer network is ðjV j �
d � cÞ=ð2mÞ. We run experiments on synthetic directed net-
works under four varying parameters: (i) network size, (ii)
average degree, (iii) edge ratio and (iv) parameter a. For
each parameter setting and each motif pattern, we construct
ten multilayer networks each with ten layers as follows. We
first construct a layer with ðjV j � d � cÞ=ð2mÞ independent
embeddings and randomly generate remaining edges. We
then generate another nine layers by performing topological
perturbations on it. We do this using the degree preserving
edge shuffling method [35] with a given mutation rate of

Fig. 7. Four conserved motifs studied frequently in the literature.
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b 2 ½0; 1�. Given the edge set of a network denoted with E0, a
mutation rate of bmeans that b � jEj0=2 edge pairs in the net-
work are shuffled. In our experiment, we fix b to 0.3. Given
the parameter a, in addition to the first layer containing
embedding set, for each of the remaining da � ke � 1 layers,
we perform perturbation on the edges which do not contain
planted embeddings and keep the edges of planted embed-
dings. Thus, we obtain da � ke layers with each containing
the same set of independent motif embeddings but also hav-
ing some topological difference. As for the remaining layers,
we construct them by performing perturbation on the entire
edge set of the first layer.

Real Dataset Description. For real dataset, we use Escheri-
chia coli (E.coli) transcription regulatory network down-
loaded from RegulonDB Database [15], [36]. This network
contains 4400 nodes and 4407 edges. We use the E.coli gene
expression dataset, GSE20305, obtained from the GEO data-
base to determine the existence of each interaction under
different time points and different conditions [23]. The data-
set contains five different stress conditions including cold,
heat, oxidative, lactose diauxie and stationary phase (con-
trol). For each interaction under different time points (from
3 to 7) under specific condition, we include the interaction
from RegulonDB between two genes if the expression level
of the reactant gene is greater than a user supplied thresh-
old. Thus, we construct five multilayer networks (one per
condition) with five layers (each layer representing a time
point). We also construct a network with each layer repre-
senting a specific condition; an interaction under the specific
condition happens if the average gene expression of the
reactant gene across all time points is larger than the thresh-
old. In this experiment, we set the threshold for gene
expression value to 8. We remove the nodes that are isolated
at all layers from the multilayer network as they are guaran-
teed to not contribute to motif count. Table 1 describes the
details of the six multilayer networks.

Methods Compared Against. To the best of our knowledge,
this is the first extended study to count independent motifs
in multilayer networks (see [43] for the preliminary version
of this study). Most motif finding algorithm focus on the
single layer network. To better evaluate the performance of
our method, we use three state of the art algorithms, mfin-
der [25], ESU (FANMOD) [60] and G-Tries [45], to count
motifs in multilayer networks. Same with most motif find-
ing methods, these algorithms are limited to single layer
network. To address this limitation, we propose a solution
and briefly summarize it as follows. It works in three steps:

(i) It first feeds these algorithms to each layer of the multi-
layer network one by one, which locate all embeddings in
each layer. Thus, it produces an embedding set with each
embedding associated with a set of layers. Different from
our method first locating embeddings from aggregate net-
work, this step requires the algorithm running k times for a
multi-layer network with k layers. (ii) It then randomly
picks one embedding which appear on the largest number
of target layers while removing embeddings sharing the
same edges. Same with our method, the set of target layers
is initialized to all layers of network and then changes to the
common layers of all selected embeddings. (iii) It repeats
step (ii) until there are no embeddings or the remaining
embeddings do not appear on more than specified number
of target layers.

Implementation and System Details. We implement the
algorithm in C++. We perform all the computational experi-
ments on a Linux machine equipped with Intel core i7 pro-
cessor 3.6 GHz CPU and 12GBs RAM.

3.1 Evaluation on Synthetic Networks

We compared our method with respect to three state of the
art methods under a wide spectrum of parameter values
using synthetic datasets. We vary the network size, average
degree, edge ratio and parameter a. In each experiment, we
vary one of these parameters and fix other ones. We repeat
each experiment on 10 networks. We measure the accuracy
and running time for each inference method and report the
average result. We calculate accuracy as the ratio of the
number of embeddings discovered to the number of embed-
dings planted.

Effect of Network Size. We run experiments using net-
works of sizes of 200, 400, 800 and 1600. We set the average
degree to 4, the edge ratio to 0.2 and a to 0.6. Fig. 8a plots
the results. We first focus on the accuracy. Our results dem-
onstrate that our method achieves almost 100% accuracy
rate for all network sizes across all motif types. Besides, we
observe that the gap between our method and other meth-
ods gradually decreases with growing network sizes. The
possible reason is that the network becomes sparser with
increasing number of nodes while fixing the network
degree. Sparse networks reduce the risk of missing potential
embeddings when using other methods to find embeddings
in each layer as the motif embeddings are less likely to over-
lap with each other. Moreover, we observe that the accuracy
rate of other three methods in finding motifs of cascade and
feed forward loop is much higher than that of bifan and
biparallel patterns. This is mainly because the topologies of
the former are much simpler than the latter (i.e., the cascade
pattern consists of three nodes and three edges; while the
bifan contains four nodes and four edges). As a result, other
three methods have a smaller chance to miss simple motif
patterns when locating all possible embeddings in each
layer.

Next, we evaluate the running time. Our method either
achieves the best or the second best running time across all
network sizes for all motif types. Even for the largest net-
work (i.e., 1600 nodes), our method runs very fast (in only a
few seconds). Thus, our method has the potential to scale to
large networks. We observe that mfinder has by far the

TABLE 1
Real E.Coli Multilayer Networks Used in Our Experiments; Num-
ber of Nodes, Average Number of Edges Per Layer and Average

Degree Per Layer

Conditions Nodes Edges Degree

Cold 1373 2699 3.93
Heat 1375 2467 3.59
Oxidative 1527 3085 4.04
Lactose 1542 3204 4.15
Control 1340 2643 3.95
All conditions 1428 2820 3.95

All networks have five layers.
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largest running time, resulting from running some other
tasks such as calculating statistical significance. The running
times of all methods increases with the increasing network
sizes, yet they remain feasible particularly for the three
methods: i.e., ours, FANMOD, and G-Tries. The running
times of cascade and feed forward loop are slighter lower
than those of bifan and biparallel. One possible reason is
that the topologies of the former are relatively simpler,

leading to smaller amount time of discovering all possible
embeddings regardless of the number of embeddings
planted.

Effect of Network Degree. We fix the network size to 400,
the edge ratio to 0.2 and a equal to 0.6, and we vary the net-
work degrees as 2, 4, 6 and 8. Fig. 8b reports the results.
Consistent with the previous experiment, our method
achieves the best performance with almost 100% accuracy
rate and the lowest running time consistently for all degrees
and motif topologies. More importantly, we observe that
the gap between the accuracy of our method and those of
other methods increases with the growing network degrees
across all motifs. This is consistent with the results in Fig. 8a
since increasing degree complicates the network topologies
(i.e., the network becomes denser) and the chance that the
embeddings overlap with each other.

Effect of Edge Ratio. We use the network with varying
edge ratio (i.e., ratio of embedded motif edges to all edges)
from 0.1 to 0.4 at increments of 0.1. We set the network
size, network degree and a to 400, 4 and 0.6 respectively.
Fig. 8c presents the result. Similar to the previous experi-
ments, our method achieves the best performance in terms
of both accuracy and running time. Increasing edge ratios
leads to increasing number of embeddings planted. How-
ever, increasing the number of embeddings planted has
limited effect on the running time. This implies that locat-
ing all possible embeddings contributes more to the run-
ning times than iteratively picking up independent
embeddings (see Section 2.3 for the time complexity analy-
sis). One possible reason is that such randomly generated
multilayer networks do not have many overlapping
embeddings. We investigate this further on real multilayer
networks in the next section.

Effect of a Value. Here, we vary a from 0.4 to 1.0 at incre-
ments of 0.2. We fix the network size, network degree and
edge ratio to 400, 4 and 0.2 respectively. Fig. 8d shows the
result. Our results are consistent with those in our previous
experiment that our method is both more accurate and
faster than competing methods. We also observe that
increasing the a value does not substantially affect the accu-
racy of other methods. Especially for the value 1.0, the
impact of heuristic strategy of picking embeddings is
reduced to zero since all layers have been planted same set
of embeddings and the target layer set will not shrink when
picking embeddings. Obviously, the accuracies for other
methods have not increased. We observe that searching
embeddings by analyzing layer by layer fails to report all
planted embeddings, proving the advantage of our method
which finds embeddings on a single layer network describ-
ing all the layers collectively (i.e., aggregate network).

3.2 Evaluation on Real Networks

Topological characteristics of the real networks can exhibit
substantial differences with respect to those of synthetic net-
works. We performed tests of the proposed counting motifs
algorithm on six E.coli multilayer networks.

Motif Count and Running Time. We run the here proposed
algorithm by looking for unknown motifs counts and com-
pare performance with available methods in terms results
and running time. Experimental results are reported in

Fig. 8. Accuracy and running time of methods on multilayer networks
with various parameters for four motif patterns. The x-axis shows (a) net-
work sizes; (b) network degrees; (c) edge ratios (i.e., the fraction of
edges that are part of a motif embedding); (d) a values. The y-axis on
the left of the first figure in (a) - (d) represents the accuracy of methods;
the y-axis on the right represents the number of planted embeddings,
which is shown with the red line in the bar charts. The running times are
reported in million seconds and represented in log-scale.
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Fig. 9. Results show that the proposed method performs bet-
ter than other methods (left part of Fig. 9). ESU method
identifies slightly larger number of embeddings for the feed
forward loop (FFL, in orange the ESU Motif count results in
left part of Fig. 9), even if the difference is very small. This
result in terms of motif count is consistent with what
obtained with synthetic networks. In terms of efficiency
(i.e., running time in the right part of Fig. 9), the here pro-
posed methos is faster than all the other methods but Bifan
case, probably due to the cost of constructing and maintain-
ing the overlap graph for E.Coli. Nevertheless, the running
is comparable even for bifan. Given such results on real net-
works, we conclude that by using the proposed method,
finding embeddings in multilayer networks is fast and
highly accurate.

We also run methods varying a value from 0.6 to 1.0.
Table 2 reports the motif counts of three patterns on the E.
coli multilayer networks at different experimental condi-
tions. E.coli network contains a large number of bifan pat-
terns compared to other two ones across all conditions.
Standard deviation of motif counts is very small on net-
works in cold, heat and control conditions, meaning that
the largest set of embeddings are conserved at all layers
varying conditions through time. Changes in motif counts
arise under oxidative and lactose stress during the same
interval, suggesting that such conditions are more disrup-
tive to the organization and abundance of motifs in E.coli
network than other experimental conditions. Finally,
results reported in Table 2 show that motif counts change
when checking all conditions together (see bifan patterns
for instance), which indicates that conditions influences
network topologies.

Statistical Observations. Results Statistical significance
have been calculated using p-value and z-score. To design
a suitable null-model, we consider the dependencies
between layers. We construct a random bijective function
cðÞ : jV j � jV j ! jV j � jV j. A random network layer is
generated for each existing network layer i, by replacing
all ðu; vÞ 2 Ei with cðu; vÞ. This allows preserving depen-
dency between layers. Given two layers sharing an edge
ðu; vÞ in the original network, they also share edge cðu; vÞ
in the randomized network. By repeating several time the
randomizing process, we evaluate mean and the standard
deviation of the motif counts in the randomly generated
multilayer networks.

LetN	 be the number of time a given motif in the original
network appears; let m and s be respectively mean and stan-
dard deviation of the motif in the random networks. We cal-
culate the z-score as

Z ¼ N	 � m

s
:

We claim that a motif is over- or under-represented if its
z-score is � 2 or 
 �2 respectively. Fig. 11 presents the
results for three motif patterns on the E.coli multilayer net-
works under various stress conditions using different mini-
mum numbers of target layers. Large z-score values are
obtained in all conditions, for both bifan and feed forward
loop tests that are thus the building blocks of E.coli network,
in line with [36]. Biparallel is significant only on oxidative,
lactose and all conditions, which show substantial change
of motif counts while changing the minimum numbers of
target layers in the previous experiment. Finally, a p-value <
0:01 is obtained for all significant patterns. We also investi-
gate the running time of statistical significance analysis
experiment and report the result on the multilayer network
under cold stress with a = 0.6. By generating 1000 random-
ized multilayer networks, we obtain the significance values
of three motif patterns (bifan, biparallel and FFL) in approx-
imate 446, 10, and 7 seconds respectively. Compared to the
running time of counting motif of those three motif patterns
(550, 0.3, and 0.2 seconds, Fig. 9a), the performance of our
algorithm of calculating statistical significance largely
depends on the network size and topology but remains
practical.

Experiments on Genes Motif. We performed tests on genes
forming motif patterns. We start focusing on five condition
multilayer networks, where each layer represents one time
point after the application of the stress condition. For each
condition specific multilayer network, we consider all the
genes in the embeddings obtained by using our method.
For each motif related gene, we count the number of con-
dition specific multilayer networks where it appears on
the embeddings. Fig. 10 reports the distribution of motif
related genes. We observe that, as we increase the number
of conditions (i.e., as we move from left to right in Fig. 10),
the number of genes observed first decreases, then
increases again. As a result, either one condition (left most
bar) or all conditions (rightmost bar) yields the largest
number of genes. This suggests that most genes tend to
characterize either behavior unique to one condition spe-
cific network (discriminative function), or consistent
behavior across all conditions (robust function). To

Fig. 9. Motif count (on the left) and running time (on the right) of different
methods running on the multilayer network under cold stress. Running
times are in milliseconds and reported in log-scale. Experiments run with
a ¼ 0:6.

TABLE 2
Motif Count of Three Motif Patterns on the E.Coli Multilayer

Networks Under Various Experimental Conditions

Conditions Bifan Biparallel FFL

Control 430:33� 1:25 10:00� 0:00 36:33� 0:47
Cold 434:00� 0:00 35:00� 0:00 11:00� 0:00
Heat 365:00� 4:24 9:00� 0:00 41:33� 0:47
Oxidative 452:00� 12:33 12:33� 2:05 44:33� 2:87
Lactose 497:67� 20:24 21:00� 3:56 72:33� 9:74
All 394:67� 40:88 8:67� 4:11 30:67� 4:19

Each result is reported as mean � standard deviation.
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understand the impact of this behavior, we have also per-
formed gene ontology analysis on genes that are related to
all conditions. In Table 3, we report the top five Gene
Ontology (GO) terms, that show stress condition related
biological processes for the genes linked to dicriminative
or robust functions found in Fig. 10 and their False Discov-
ery Rates (FDRs). We also report the FDRs of the same
functions for the genes found using single layer networks.
We observe that bifan genes appearing in one or all net-
works play a significant role on stress related biological

process, such as the oxidation-reduction process. We also
observe that multilayer network analysis yields much bet-
ter FDR values for all the functions. Single layer network
analysis not only yields genes with higher FDR values but
it also completely misses two statistically highly signifi-
cant functions.

In summary, results on both synthetic and real datasets
show that our method is robust to the growing network
sizes, network degrees, edge ratios and a value. Also, the
method is more efficient in terms of execution time than
existing methods. The parameters which influence network,
such as the network size, average degree, and the number
of candidate embeddings, and motif topology have great
impact on the running time.

Fig. 11. The z-score values of three patterns on E.coli multilayer networks under various experimental conditions using different minimum numbers of
target layers. If the z-score is greater than 20, we report it as 20 to reduce the y-axis scale of the plots. The shaded area represents z-score values
that are not significant.

Fig. 10. The distribution of motif related genes that are belong to different
number of condition specific multilayer networks.

TABLE 3
Gene Ontology Analysis of the Genes Appearing in Condition

Specific Networks Under One or All Conditions

GO Term Biological process FDR (m) FDR (s)

0008150 biological process 3.93E-31 NA
0044699 single-organism process 1.27E-27 NA
0055114 oxidation-reduction process 3.06E-25 1.53E-15
0045333 cellular respiration 2.16E-20 1.15E-12
0015980 energy derivation by oxidation

of organic compounds 8.33E-20 7.78E-13

FDR (m) and FDR (s) show the false discovery rates for the genes found in
multi and single layer networks respectively. NA indicates that the corre-
sponding biological process is not found.
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4 CONCLUSION

Traditional methods in the existing literature often repre-
sent complex systems as a single, static, and binary network.
These models are inadequate in capturing complex cellular
interactions which vary under different conditions as well
as over time. Furthermore, the same set of molecules can
interact in varying patterns across different interactomes. In
this paper, we considered one of the most fundamental
problems in network analysis. We extended the classical
network motif identification problem to multilayer net-
works. We developed an efficient and accurate method to
solve this problem. Our experimental results on both syn-
thetic and real datasets demonstrated that our method iden-
tifies motifs in multilayer networks with high accuracy and
scales to large networks in practical time. Our results on E.
coli transcription regulatory networks demonstrate that our
method helps in uncovering key functional characteristics
of biological networks.
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