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ABSTRACT

Interactions among molecules, also known as biological networks,
are often modeled as binary graphs, where nodes and edges repre-
sent the molecules and the interaction among those molecules, such
as signal transmission, genes-regulation, and protein-protein inter-
actions. Subgraph patterns which are recurring in these networks,
called motifs, describe conserved biological functions. Although
traditional binary graph provides a simple model to study biologi-
cal interactions, it lacks the expressive power to provide a holistic
view of cell behavior as the interaction topology alters and adopts
under different stress conditions as well as genetic variations. Mul-
tilayer network model captures the complexity of cell functions for
such systems. Unlike the classic binary network model, multilayer
network model provides an opportunity to identify conserved func-
tions in cell among varying conditions. In this paper, we introduce
the problem of co-existing motifs in multilayer networks. These mo-
tifs describe the dual conservation of the functions of cells within a
network layer (i.e., cell condition) as well as across different layers
of networks. We propose a new algorithm to solve the co-existing
motif identification problem efficiently and accurately. Our exper-
iments on both synthetic and real datasets demonstrate that our
method identifies all co-existing motifs at near 100 % accuracy for
all networks we tested on, while competing method’s accuracy
varies greatly between 10 to 95 %. Furthermore, our method runs
at least an order of magnitude faster than state of the art motif
identification methods for binary network models.
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1 INTRODUCTION

Biological networks describe a system of interacting molecules.
Through these interactions, these molecules carry out key functions
such as regulation of transcription [24] and transferring signals [40].
Analyzing the topologies of the biological networks that govern key
cellular functions has already provided important insights into these
functions [6, 19, 29, 39, 47]. Existing methods often model biological
networks as binary graphs, with nodes and edges representing
interacting molecules (e.g., proteins or genes) and the interactions
between them respectively [8]. They typically represent a graph by
atuple G = (V, E), where V is the set of nodes and E C V XV is the
set of edges that connect pairs of nodes [11]. Such traditional binary
graph models have been beneficial in studying cellular processes
under specific conditions. They, however, have been inadequate
in providing a holistic view of cells as the interactions between
molecules can take place in various forms. For instance, a gene can
regulate the transcription of another gene through its promoter
region, while interacting through their products in a metabolic
reaction or a signaling event, leading to multiple interactions among
the same set of molecules under different dynamics. The interaction
patterns between molecules can be further altered through various
factors, such as genetic or epigenetic mutations, variations in DNA
replication, and environmental factors (e.g., oxidative stress) [25].
We model such complex relationships between molecules with an
extended graph model, named multilayer network, where each layer
of the network describes the set interactions under one condition.


https://doi.org/10.1145/3535508.3545528
https://doi.org/10.1145/3535508.3545528

BCB ’22, August 7-10, 2022, Northbrook, IL, USA

Figure 1: A multilayer network G with four layers and nine
nodes.

Figure 1 presents a multilayer network with four layers and nine
nodes.

Studying multilayer networks has great potential to provide new
insights into systems biology as they describe alternative interac-
tion patterns collectively. Several existing studies focus on math-
ematical modeling of these networks [20, 33]. Some others adapt
existing measures for characterizing binary networks to multilayer
networks, such as centrality [1, 42], clustering coefficient [28], cor-
relations [34]. Another class of studies computes various dynamical
processes on multilayer topologies, such as percolation [4], diffu-
sion processes [12], cooperation [13], synchronization [35], and
information spreading [37]. An extensive review of the studies on
multilayer networks can be found in [5, 21].

Network motifs are patterns of local interconnections occurring
significantly more (or less) in a given network than in a random
network of the same size [31]. There are several definitions of motif
counts in the literature. The naive motif count simply counts all
instances of a given motif topology in the given network. Notice
that, in this definition different motif instances can share the same
node or edge on the given graph. More restricted definitions of
motif counts limit or prevent such overlaps to ensure that different
instances can be realized simultaneously. For both the naive and
restricted motif count definitions, network motif discovery is a
computationally hard problem as it requires solving the well-known
subgraph isomorphism problem, which is NP-complete [10].

Motif topologies characterize the structure of networks and ex-
plain highly conserved functions saved through interactions among
molecules. Motifs have been successfully used in many applications,
such as studying the biological processes that regulate transcrip-
tion [41], finding important genes that affect the spread of infectious
diseases [44] and revealing relationships across species [14, 16].

Although motifs are studied in the context of stand alone (i.e.,
single layer and static) networks and dynamic networks (e.g., [9,
15, 17, 22, 23, 36, 45]), little research has been devoted to studying
motifs in multilayer networks. Furthermore, there is no generalized
definition of motifs in multilayer networks. In the literature [2, 3,
27], the closest problem to multilayered network motifs arises in
the concept of multi-link networks, which is the organization of
edges between the same pair of nodes across all layers. Such multi-
link motifs specify each layer’s organization of edges among a set
of nodes. However, the number of such distinct multi-link motifs

Ren et al.

grows exponentially with the number of nodes and layers. Thus,
all these studies investigate motifs that contain a limited number
of layers and a small set of nodes. Thus, this problem remains
understudied in-depth for multilayer networks.

Contributions. In this paper, we introduce new formulations
of motifs. Unlike existing motif concepts in the literature, our for-
mulation captures the dependencies between different layers of a
multilayer network. We call these motifs co-existing motifs. Briefly,
we say that a set of placements of a given motif topology is co-
existing if the absence/presence of each placement depends on that
of the remaining ones. This definition allows us to identify con-
served as well as unique patterns of functions of biological systems
under different conditions. We propose a novel algorithm for count-
ing the maximal set of independent embeddings of a given motif M
that co-exist in a given multilayer network G. Our method works in
four steps. In the first step, we construct an aggregate graph corre-
sponding to G. The aggregate graph transforms the problem from
multilayer to single layer without any loss of information. We then
construct a filtered graph from an aggregate graph consisting of
only the edges that fulfill the minimum layer support. In the second
step, we identify all possible embeddings in G using a filtered graph
and select the potential candidate embeddings. In the third step, we
classify subsets of embeddings identified in the previous step based
on the layers in which they coappear and layer support such that
the count of layers in which the embeddings exist is greater than
the minimum layer support. Finally, we use a heuristic strategy to
identify the maximal set of independent embeddings that co-exist
across different layers. For that, we first build an overlap graph
based on the M, where each node corresponds to an embedding.
Then we calculate the loss value for each node in the overlap graph
and iteratively pick the node with the least loss. It includes the corre-
sponding embedding to the result set and removes this node along
with all nodes that conflict with this selection from the overlap
graph. We repeat this process until the overlap graph is empty. Our
experiments on both synthetic and real datasets demonstrate that
our method identifies all co-existing motifs at near 100 % accuracy
for all networks we tested on, while competing method’s accuracy
varies greatly between 10 to 95 %. Furthermore, our method runs
at least an order of magnitude faster than state of the art motif
identification methods for binary network models.

The rest of the paper is organized as follows. We define our
model for co-existing motifs in multilayer networks and our algo-
rithm to identify these motifs (Section 2). We evaluate our method
experimentally and we present results and discussion in Section 3;
finally, in Section 4 we conclude with a brief discussion. !

2 METHODS

Preliminaries and notation. A multilayer network is a set of
k networks with k > 1, such that each network consists of the
same set of nodes, but possibly a different set of edges. Formally
a multilayer network is a (k+2)-tuple G = (V,E1,Eo, ..., E, L),
where V is a set of nodes, each E; denotes the set of edges in
the ith layer of this network, and L = {1,2,...,k} denotes the
unique labels of each of the k layers. Figure 1 shows a multi-layer

IThis paper is partially funded by NSF under Award Number 2111679.
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(a) Motif (b) H; (c) Hy (d) Hs

g h i

(e) Hy (f) Hs (g) Hs

Figure 2: (a) A triangle motif; (b) An embedding H; that exists
in layers {1, 3,4} of Figure 1; (c) An embedding H; that exists
in layers {1, 2,3}; (d) An embedding H3 that exists in layers
{1,2,3}; (¢) An embedding H, that exists in layers {1, 2,3}; (f)
An embedding H; that exists in layers {1, 3,4}. (g) An embed-
ding H, that exists in layers {1, 3,4}.

(b) Filtered graph ¥

(a) Aggregate graph A

Figure 3: (a) The aggregate graph A of the multi-layer net-
work G in Figure 1. The labels associated with each edge
represents the layers containing it. (b) The filtered graph
¥ containing edges occurring in at least a given number of
layers (here, the cutoff for the number of layers is 2). The
edges (c, f) and (h, i) are removed in F.

network consisting of nine nodes (V = {a, b, ..., i}) and four layers
(L =A1,2,3,4}).

We define a motif pattern as a connected graph M = (V' E’),
where V’ and E’ denote the set of motif nodes and edges respec-
tively. Figure 2(a) represents an example of motif pattern.

Consider a multilayer network G = (V, Eq, Eg, ..., Ei, L). For
eachi € {1,2,...,k}, we denote the network at the ith layer of G
with G; = (V, E;). Given a motif topology M, we say that a subset
of edges of G;, denoted by E] is an embedding of M if the subgraph
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Figure 4: The potential group of embeddings of triangle pat-
tern that co-exist in the multi-layer network G in Figure 1.
There are six embeddings that persists across four layer(s).
Each embedding is marked with an inner triangle (shaded/un-
shaded). The shaded group of three embeddings co-exist in
layers {1, 3,4} and the un-shaded group of three embeddings
co-exist in layers {1, 2, 3}.

of G; induced by the edges E] is isomorphic to M. For instance,
Consider layer 1 of the multilayer network in Figure 1, and the
motif pattern in Figure 2(a). Let us denote the network at this layer
with Gi. There are six possible embeddings of this motif in Gy,
shown by Hy, Hp, ..., Hg in Figures 2(b) to 2(g). We will denote the
existence of each embedding H; using the set containment symbol
"e" (such as H; € G; means that H; is an embedding of the given
motif in G1). We say that two embeddings of M overlap if they
share at least one edge. For instance, in Figure 2, among the six
embeddings Hi, Hy, ..., He, the two embedding H; and Hy do not
overlap. On the other hand, H, and H3 overlap since they have the
common edge (e, d).
Problem definition. Given G, a motif topology M, and minimum
appearance frequency f € [1:k], the goal is to find the largest set of
non-overlapping embeddings of M, H = {Hy,Hy, ..., Hp}, such
that the following two conditions hold:

(i) For all G;, either VH € H,H € Gj or VH € H, H ¢ G;.

(ii) For all H € H, H is in at least f layers of G.

Let us define an indicator function ¢/(-, -) which takes a network
layer G; and a motif embedding H as input as,

1, ifHeG;

0, otherwise

Y(Gi,H) = {

We can write (i) above as follows:

[T vGem+ [T a-vG.m)=1 "

G; HeH HeH

Similarly, we express condition (ii) above as:

[T vGum=r @)

i HeH
Proposed solution. Our algorithm takes a multilayer network
G =(V, E1, Ea, ..., E, L), a motif pattern M and an integer f
denoting minimum number of layers containing an embedding.
Our algorithm has four major steps:
Step 1. Construct auxiliary networks. We construct a summary of
a given multilayer network G, and call it the aggregate network.
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This network aggregates all the layers of G into a single layer. We
denote the aggregate network with Ag = (V, &, Q). Here, V is the
same set of nodes as that of G. & is the set of all the edges that
appears in at least one layer of G, that is & = UlleEi. The function
Q : & — {LU{0}}¥ returns the set of layers which contain a given
edge in G. That is, for each (u,0) € &, Q(u,v) = {¢|(u,v) € E}.
Figure 3(a) shows the aggregate network of the multilayer network
in Figure 1. In this figure, edge (a,b) is labeled as 1, 2, 3, 4 since
(a, b) appears in all four layers. Edge (b, ¢) is labeled with 1, 3, 4, as
this edge appears in layers 1, 3, and 4. Hence Q(a, b) = {1, 2,3, 4},
and Q(b,c) ={1,3,4}.

Notice that as the number of layers k in the given multilayer net-
works grow, and as the topologies of interactions at different layers
deviate, the aggregate network gets dense. We construct a sparser
network, called filtered network g r = (V, &) by removing those
edges from A which are present in less than f number of layers
in G. Formally, &7 = {e € &|f < |Q(e)|}. For example, for f = 2,
the aggregate network in Figure 3(a) yields the filtered network
in Figure 3(b), as we remove the two edges (c, f) and (h, i) which
have layer support less than 2.

Step 2. Identify candidate embeddings. Given a motif M, we iden-
tify the set of all possible embeddings H° using the aggregate
and filtered networks A and . Consider a subnetwork H of
such that H is isomorphic to the given motif M. We say that H
belongs to H? if H is a subnetwork of at least f layers of the mul-
tilayer network G. Mathematically, we express this constraint as,
| N(woyer Q(u,0)| > f. For example, for the triangle motif pattern
in Figure 2(a), Figures 2(b) to 2(g) show all six possible candidate
embeddings of this motif in the filtered network in Figure 3(b)
which also have a minimum support from f = 2 network layers.
Notice that, in # although there are patterns isomorphic to the M
(such as the set of edges (b, ¢), (c,d), (b, d)), they are not included
in the candidate set H?, since the size of the intersection of the
three layer sets corresponding to those edges is less than f.

Step 3. Classify embeddings based on supporting layers. We partition
all motif embeddings found in the previous step into classes, where
each class is identified as the set of layers £ C L containing the
embeddings in that class. In this manner, we get a set of classes
C, where each member ¢; € C represents a tuple of sets (L;, H,),
where £; € L and H,, C HO. For example, the embeddings Hj,
Hs and Hg in Figure 2 exists in layers {1, 3,4} of the multilayer
network in Figure 1. Similarly, the embeddings Hy, H3, Hy exists in
layers {1, 2,3}. Therefore, C = {c; = ({1,3,4}, {H;1,Hs,Hg}), c2 =
({1, 2,3}, {Ha, H3, Hy })} consists of two such classifications. Figure 4
shows the two classes of this motif topology as shaded and white
triangles.

Step 4. Identify nonoverlapping embeddings. This step consists of the
following two sub-steps:

(a) Construct overlap graph. Once we identify all candidate em-
beddings using H°, we build a graph which models the
overlap pattern among these candidate embeddings. We call
this the overlap graph and denote it with O. Each node of
O corresponds to an embedding H; € O. We insert an edge
between two nodes if their corresponding embeddings share
at least an edge. Figure 5 shows the overlap graph of the
filtered graph ¥ in Figure 3(b) of the multilayer network in
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Hyg

Figure 5: Overlap graph for the embeddings
Hi, Hy, H3, Hy, Hs, Hs. The embeddings Hj, Hs,Hs co-exist
in layers {1, 3,4}. The embeddings Hy, H3, H4 co-exist in layers
{1,2,3}.

Figure 1. For example, the embeddings Hy and H3 overlap
for they share edge (d, e). Thus, we connect the nodes corre-
sponding to Hy and H3 by an edge in Figure 5. Similarly, H3
shares its edge (d, e) with Ha, (d, g) with Hy, and (e, g) with
Hg. Thus, we connect the node for Hj to those for Hy, Hy,
and Hg. On the other hand, H; does not share an edge with
any other embedding. Therefore, the node corresponding to
H; is isolated.

Select nonoverlapping embeddings per classification. For each
class ¢; € C, we build an overlap graph O, which is the
induced subgraph of O. For each O, we iteratively select
nodes as follows. At each iteration, we first select the node
(corresponding embedding H;) with the smallest degree in
Oc;. We then remove that node and all the nodes connected
to it, as the nodes connected to it correspond to embeddings
which overlap with H;. We repeat these iterations until the
overlap graph O, has no nodes left. This yields a set of
nonoverlapping and co-existing embeddings which appear
in at least f layers denoted by class c;. After doing this for all
classes, we report the maximal set obtained across all classes.
In Figure 5 the nodes labeled with Hy, Hs, Hg correspond to
class c1, and the nodes labeled with Hy, H3, H4 correspond to
class c3. The induced subgraph O, of the overlap graph con-
tains three disconnected nodes. Thus the three embeddings
Hj, Hs, Hg are non-overlapping, co-existing, and exist in at
least f layers. The induced subgraph O, has three nodes as
well. However, upon choosing the node with lowest degree
(such as the node labeled with Hy), node Hz gets removed
as it is connected to Hy. As a result only two embeddings
Hy and Hy are from this class. In summary class c; yields
the largest number of non-overlapping, co-existing motif

embeddings.

®

=

3 RESULTS AND DISCUSSION

In this section, we evaluate the performance of our method. We
perform our experiments using both synthetic and real datasets.
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M@A@

(a) Bifan b) Biparallel (c) Cascade ) Feed forward

Figure 6: Four conserved motifs studied frequently in the
literature.

We consider four motif topologies, namely bifan, biparallel, cas-
cade and feed forward loop (see Figure 6). These four motifs have
been extensively studied in the literature and have been shown to
be over-represented in many biological networks [31]. We com-
pare our method with a baseline algorithm (explain in detail later).
In the following, we describe the datasets, quality measure and
implementation details.

Synthetic dataset. To observe the performance of our method
under controlled dataset characteristics, We perform experiments
on synthetically generated directed multilayer networks. To guar-
antee that each network contains a set of independent embeddings
with coexistence, we plant a set of co-existing embeddings of a
given motif topology while we generate these networks. To better
describe our synthetic datasets, we first define the necessary termi-
nology. We refer to the number of nodes and the number of edges
per node in each layer of the multi-layer network as the size (|V)
and the average degree (d) of the network. We use the term edge
ratio, denoted with ¢ € (0, 1], to represent the ratio of the number
of edges involved in planted motif embeddings to the total number
of edges in the network. Given the network size, average degree,
edge ratio and motif pattern having k edges, the number of motif
embeddings in each layer of a multi-layer network is thus [V]d .
In our experiments, we fix the edge ratio to 0.2. We construct our
synthetic networks by varying four parameters: network size, av-
erage degree, minimum appearance frequency f and motif type.
For these parameters, we use the following values |V| € {200, 400,
800, 1600}, d € {2, 4, 6, 8, 10}, f € {4, 6, 8, 10}, and the four motif
types shown in Figure 6. For each parameter setting, we construct a
multilayer networks each having 10 layers as follows. We first con-
struct one network layer having |V|d o independent embeddings
and randomly generate the remaining edges. We then generate the
remaining nine layers by applying topological perturbations on it.
We do this using the degree preserving edge shuffling method [30]
with a given mutation rate of § € [0, 1]. Given the edge set of a
network denoted with E’, a mutation rate of § means that f§ x lEl
edge pairs in the network are shuffled. In our experiment, we ﬁx
B = 0.5. Given the parameter f, in addition to the first layer con-
taining embedding set, for each of the remaining f — 1 layers, we
perform perturbation on the edges which do not contain planted
embeddings and keep the edges of planted embeddings. Thus, we
obtain f layers with each containing the same set of independent
motif embeddings but also having some topological difference. As
for the remaining 10 — f layers, we construct them by performing
perturbation on the entire edge set of the first layer. Notice that
here we also make sure none of the planted embeddings appear in
any of these 10— f layers. As a result, we guarantee that there exists
a set of embeddings co-existing in the multilayer network with the
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size greater or equal to the number of planted embeddings. After
generating all layers, we randomly placed them to form a multi-
layer network. We repeat the procedure above to create 10 synthetic
multilayer networks. Thus in total we have 4 X5 X4 X 4X 10 = 1600
synthetic multilayer networks.

Real Datasets. We perform our algorithm on three datasets based
on three different organisms: Homo sapiens (human), Saccharomyces
cerevisiae (yeast) and Escherichia coli (E. coli). For each organism,
we obtain datasets collected from two sources. The first one is the
underlying transcription factor regulatory network corresponding
to each organism. The second one is the dataset containing gene
expression values under multiple conditions. The reason behind
choosing such a dataset having multiple conditions is that we treat
each condition as a layer within a multi-layer network. Next we
describe each dataset in detail.

e Homo sapiens. We extract core human regulatory network
consisting of connections among 475 sequence-specific tran-
scription factors across 41 diverse cell and tissue types from
[32]. We combine all the interactions present across 41 cell
lines. It consists of a total of 38,393 unique, directed reg-
ulatory interactions (edges) for all cell lines. The network
provides a detailed collection of the circuitry, dynamics, and
organizing principles and forms the underlying human tran-
scription factor regulatory network. Next, we extract the
dataset GSE62932 [7] consisting of gene expression values
from 68 samples at different stages of colorectal cancer. The
stages are healthy/control group, stage I, stage II, stage III
and stage IV. The samples include four healthy control pa-
tient tissues, 12 stage I, 17 stage II, 20 stage IIl and 15 stage
IV colorectal cancer patient tissues. The gene expression
values across all stages in the dataset ranges approximately
between 2.0 and 12.0. We choose a cutoff value o = 9.0 on
the gene expression values to construct a multi-layer net-
work. Given a o, we filter out all the genes that have gene
expression values greater or equal to o for majority of the
samples within each stage. In this manner, we get a list of
genes for each stage. Next, to construct the network for each
layer out of this gene list for a particular stage, we consider
all the interactions within the underlying human transcrip-
tion factor regulatory network where both the source and
destination genes are present in the gene list. In this manner,
we form all the layers of a multi-layer network.

e Saccharomyces cerevisiae. We extract yeast transcription reg-
ulatory network from YEASTRACT database [43] which con-
sists of TF-gene regulatory pairs under nine experimental
conditions having strong evidence support in the literature
that the TF binds to the promoter region of the target gene
and the perturbation of the TF affects the target gene’s ex-
pression significantly [46]. The nine different experimental
conditions classified by YEASTRACT database are (1) cycle
and morphology, (2) stress, (3) oxygen availability, (4) un-
stressed log-phase growth (control), (5) nitrogen source qual-
ity and availability, (6) carbon source quality and availability,
(7) ion, metal, phosphate, sulfur, vitamin availability, (8) lipid
supplementation and (9) complex industrial media. Among
these nine experimental conditions, we choose unstressed
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log-phase growth (control) TF-gene regulatory pairs as the
underlying yeast transcription factor regulatory network for
our experiments. It consists of a total of 12,219 directed reg-
ulatory interactions. Next, we extract the dataset GSE8536
[26] consisting of gene expression values from 21 samples
that measures yeast’s response throughout a 15 day wine
fermentation. It is based on expression measurements of 0.5,
2, 3.5, 7, and 10% ethanol at roughly after 1, 12, 24, 48, 60,
120, and 340 hours. Thus, the dataset has measurements for
seven time points, each time point consists of 3 samples. The
gene expression values across all time points in the dataset
ranges approximately between 4.0 and 8.0. Here, we model
each time point (hour) as a layer in a multi-layer network.
We choose a cutoff value o = 6.0 on the gene expression val-
ues to construct a multi-layer network. Given a o, we filter
out all the genes that have gene expression values greater or
equal to o for at least two samples (out of 3) within each time
point. In this manner, we get a list of genes for each time
point. Next, to construct the network for each layer out of
this gene list for a particular time point, we consider all the
interactions within the underlying yeast transcription factor
regulatory network where both the source and destination
genes are present in the gene list. In this manner, we form
all the layers of a multi-layer network.

Escherichia coli. We use E.coli transcription regulatory net-
work downloaded from RegulonDB Database [38]. This net-
work contains 4400 nodes and 4407 edges. We use the E.coli
gene expression dataset, GSE20305, obtained from the GEO
database to determine the existence of each interaction under
different time points and different conditions [18]. It contains
five different stress conditions including cold, heat, oxida-
tive, lactose diauxie and stationary phase (control). For each
network layer, we include an edge in the network at that
layer if the gene expression of the reactant gene is greater
than the cutoff 8.0.

Competing method. To the best of our knowledge, this is the
first study to count co-existing independent embeddings in multi-
layer networks. To better evaluate the performance of our method,
we develop a baseline method which only depends on identifying
embeddings in classic single layer networks as follows. Given a
multilayer network with k layers and the parameter f, we first
choose a subset of @ (f < a < k) layers from all layers on which
we aim to find embeddings appearing on these layers while not

appearing on the remaining k —« layers. In total, there are ZI; -f (S)

such subsets of layers (i.e., configurations). Let us denote a permu-
tation of the numbers 1, 2, ..., k with y, 7, ..., 7, such that 7y,
72, ..., g are the levels of the multilayer network which contain
the co-existing embeddings of the given motifs. Let us denote the
set of all possible embeddings and the set of all nonoverlapping
embeddings on the ith layer of the given multilayer network with

S l(pi) and S }i). Thus, for each configuration, the final embedding
1 2

set S = (SI(;ZT]) N---N Sg") \ S;{[““) U---u Sg") . The first

term computes the nonoverlapping embeddings that exist in the
selected o layers and the second term removes those embeddings
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which appear in any of the remaining layers. After computing all
configurations, we select the embedding set with the maximum
size. We call this baseline method, the Naive method in the rest of
this paper.

Implementation and System Details. We implement the algo-
rithm in C++. We perform all the computational experiments on a
Linux machine equipped with Intel core i7 processor 3.6 GHz CPU
and 12GBs RAM.

3.1 Evaluation on synthetic datasets

We evaluate our method under a wide spectrum of parameters. We
vary the network size, average degree and minimum frequency f.
At each experiment, we vary one of these parameters and fix other
two parameters. We conduct each experiment on 10 multi-layer
networks. We measure the accuracy and running time for each
method. We calculate the accuracy as the ratio of the number of
embeddings discovered to the number of embeddings planted.

Effect of network size. First, we investigate the impact of network
size. We use network sizes of 200, 400, 800 and 1600. We fix the
average degree and minimum frequency f to 4 and 6 respectively.
Figure 7(a) reports the results.

We first explore the effect on accuracy. We observe that our
method achieves 100% accuracy for all network sizes and motif pat-
terns. The accuracy of the Naive method gradually increases with
growing networks sizes. One possible reason is that the networks
become sparser with increasing network size when the degree of
the network remains fixed. As the network gets sparser, the proba-
bility of generating other embeddings by randomly creating edges,
which interferes with the co-existence of other embeddings, re-
duces. Moreover, the gap between our method and Naive method
differs across four motif patterns. We conjecture that this is due to
differences of motif topologies.

We observe that our method runs an order of magnitude faster
than Naive method for all network sizes and motif patterns. The
running time gradually increases when increasing network sizes.
This is expected as the first step for both methods, finding all possi-
ble embeddings largely depends on the network sizes. In addition,
both methods have practical running time, which implies that our
method has great potential to scale to large networks.

Effect of network average degree. Next, we explore the impact
of network density. We set the network size |V| and minimum
frequency f to 400 and 6 respectively. We vary the average degree
from 2 to 10 at increments of 2. Figure 7(b) presents the results.
Consistent with the previous experiment, our method achieves
100% accuracy and runs at least an order of magnitude faster for
all motif patterns and network average degrees as compared to the
baseline algorithm. The accuracy of the Naive method, on the other
hand, gradually goes down with growing network density. This
is also consistent with the conjecture in the first experiment that
sparser network tends to have smaller chance to miss the planted
embeddings as more edges increases the chances of randomly gen-
erating new motif instances. Also, as the network density increases,
the gap between the running time of our method and the baseline
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algorithm grows.

Effect of minimum frequency f. Finally, we evaluate the impact
of parameter f. Recall that small values of f indicate rare motif
placements and large values of f indicate motif placements which
are common across many network layers. We vary the frequency
values from 4 to 10 at increments of 2. We set the network size to
400 and network average degree to 4. Figure 7(c) shows the results.

Similar to the previous experiments, our methods outperforms
the Naive method in terms of both accuracy and running time across
all frequency values and motif patterns. The accuracy of the Naive
method gradually decreases with the increasing frequency values.
This is because larger f values forces the existence of motifs in more
network layers, making them harder to find. The running time of
our method has no obvious change when increasing the frequency.
As f grows, the running time of the Naive method first increases
slightly, then decreases. This is because the number of subsets of f
network layers out of k network layers has a binomial distribution.
In the extreme case, when f = k (i.e., f = 10 in our experiment),
there is only one configuration as we require all network layers
to contain the motif embeddings for f = k. Even when f = k, the
running time of our method is the same as or better than the Naive
method.

In summary, our method is efficient and has very high accuracy
for all the parameter combinations we tested. While the network
size and density influences the running time of our method, the
distribution of motif embeddings across different network layers
has no practical impact.

3.2 Evaluation on real datasets

In this section, we measure the performance of our method on three
multi-layer transcriptional regulatory networks, namely human,
yeast and E.coli.

Evaluation of motif count and running time. Similar to the
synthetic experiments, we use the four popular functional motif pat-
terns in Figure 6 and compare our method with the Naive method.
As the true motif counts of these real networks are unknown, unlike
synthetic dataset, we measure their performance in terms of motif
count and running time. As the yeast and E.coli networks rarely
contain cascade patterns, we do not report their result. We vary the
value of f from 1 to total number of layers for each network and
motif pattern. Figure 8 reports the result.

Figures 8(a) to 8(c) demonstrate that our method finds substan-
tially more motifs than the Naive method. The gap between the
two methods grow in favor of our method with increasing value of
f. In addition, we observe that the motifs found by our method do
not have obviously change with increasing frequency value. This
implies that these motif patterns are conserved well across differ-
ent conditions. One exception is for the biparallel motif in E.coli
network. Notice that different motif count means totally different
embedding set. Thus, we obtain four distinct embedding set when
increasing f from 1 to 5. We investigate these embedding set later
to see which conditions greatly affect these embeddings.

Figures 8(d) to 8(f) present the running times of the two methods.
Consistent with our results on the synthetic dataset, our method
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runs at least an order of magnitude faster than the Naive method.
The running times of both methods gradually go down with grow-
ing value of f, which implies that the large frequency value has the
potential to filter more impossible embeddings comparing to the
synthetic network. Moreover, we observe that our method still has
the potential to scale to larger and denser networks as the largest
running time is less than one hour.

Statistical significance of the result. We calculate the statisti-
cal significance of the results using Z score. In order to consider a
suitable null-model, it is necessary to take into account the depen-
dencies between layers. For such a reason, we randomize the edges
as follows. Consider the aggregate graph A = (V, &, Q). We con-
struct a new aggregate graph A’ = (V, &', Q') guided by A. The
new aggregate graph has the same set of nodes as A, but it initially
has no edges. We then iterate over all edges of A. For each edge
(u,v) in A, we randomly generate an edge (u,0”). Thus, we obtain
the mappings of all original edges. We do not allow two different
edges in A map to the same newly generated edge in A’, and vice
verse. For each edge (u,0) € &, we set Q’(v/,0") = Q(u,v). Thus,
each layer in the newly generated multilayer network has the same
number of interactions as well as the dependencies with the other
layers. Assume that for each motif, the number of appearances in
the real network is N,,,;; and in the randomized networks, the
mean and standard deviation of the number of motifs are y and o

respectively. We calculate the z-score as Z = W We think a
motif is over-represented/under-represented if its Z score is Z > 2
/ Z < —=2. Figure 9 presents the results.

We observe that both bifan and feed forward loop are over-
represented across three networks for almost all different minimum
frequency values. Thus these two motif patterns are robust in vari-
ous experimental conditions. Cascade pattern follows similar rules.
Biparallel however has significant different behaviour across three
networks. In human network, it is only over-represented when ap-
pearing all the layers. It is however over-represented across all
layers in yeast network. As for the E.coli networks, it is over-
represented only when appearing on smaller number of layers.
Its significance however decreases with the increasing value of
minimum frequency, which implies the stress conditions play a sig-
nificant role on the generation of biparallel motifs. An interesting
phenomenon is that in the human network, when the minimum
frequency is equal to 1, all patterns are highly under-represented
which suggests that all conditions have significant difference from
each other.

4 CONCLUSION

In this paper, we introduced the problem of co-existing motifs in
multilayer networks. These motifs describe the dual conservation
of the functions of cells within a network layer (i.e., cell condition)
as well as across different layers of networks. We proposed a new
algorithm to solve the co-existing motif identification problem
efficiently and accurately. Our experiments on both synthetic and
real datasets demonstrated that our method identifies all co-existing
motifs at near 100 % accuracy for all networks we tested on, while
competing method’s accuracy varies greatly between 10 to 95 %.
Furthermore, our method runs at least an order of magnitude faster
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