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ABSTRACT
Drug repurposing aims to find new uses for existing drugs. One
drug repurposing approach, called “Connectivity Mapping,” links
transcriptomic profiles of drugs to profiles characterizing disease
states. However, experimentally evaluating the transcriptomic ef-
fects of drug exposure in particular cells is a costly process. Charac-
terizing drug-cell combinations widely is further hindered because
primary tissue samples may not be abundant, leading to many gaps
in drug-cell databases. To best find drugs relevant for particular
conditions, we may therefore want to impute the transcriptomic
impact of a given drug on an unassayed cell type or types. This step
deviates from classic data completion problems, however, because
of the fundamental bottleneck that state of the art data imputation
techniques for this problem do not consider the unique characteris-
tics of the data. The missing values in the data are not randomly
distributed, and the genes are not independent entities, but rather
they interact with and affect the transcription rates of one another.
Here, we address the first and one of the most fundamental parts
of the connectivity map data imputation problem to enable drug
repurposing. We develop a novel method, named FiT (Fiber-based
Tensor Completion) to impute the transcription values for missing
drug-cell line combinations in a highly sparse drug-cell line dataset
accurately and efficiently, while exploiting the distribution of miss-
ing values as well as the interactions among genes. Our results
demonstrate that even on a sparse dataset, where approximately
75% of the data is missing, FiT outperforms existing approaches
and obtains more accurate results in a significantly shorter amount
of time.
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1 INTRODUCTION
Drug repositioning (repurposing) is the process of finding new uses
for drugs or compounds already in development. Repurposing exist-
ing drugs for novel indications reduces drug development time and
cost, and can decrease the risk of failure, as developing new drugs
and compounds for different disease-affected cells with unique
traits is costly and can take decades, making drug repurposing a
necessity [32]. One promising way to address drug repurposing
is to adopt connectivity mapping [21]. This is a technique which
maps drugs to the diseases by comparing their impact on the ex-
pression values. Briefly, connectivity mapping links a drug to a
particular disease if the drug reverses the disease’s impact on the
expression values of the genes. Thus, this strategy conjectures that
drugs identified by the connectivity mapping have a high potential
for therapeutic efficacy in diseases [21, 45, 47].

Transcriptional profiling of drug-exposed cells underlies con-
nectivity mapping methods. The profiling technologies have long
enabled surveillance of the expression levels of many genes under
different conditions [13, 38, 43]. Formulating the drug repurposing
problem as connectivity mapping however introduces unique chal-
lenges. This is because an existing drug is often tested on a small
set of cell lines, yet what kind of transcriptional response the same
drug triggers on many other cell types is not known as each such
evaluation requires expensive wet-lab tests and most importantly
requires access to limited physical resources (such as frozen tissue
samples from the same tumor) which may be impossible to obtain.
[6, 8, 35] As a result, the transcription values obtained through
these techniques are often incomplete for a potentially large set of
cell/drug combinations. It is of utmost importance to have reliable
expression values since the rest of the process, connectivity map-
ping, and the drug repositioning steps rely on the transcriptional
response of cells to drugs.

Drug repurposing requires imputingmissing transcription values
for cells when they are administered each of the given potentially
large collection of drugs. One obvious way to approach this problem
is to leverage classic data completion methods for high dimensional
data. Some of the general expression imputation methods include
k-nearest neighbors [43], local least squares optimization [18], and
Bayesian prediction [28]. There are additional methods using time
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series information present in the data [33], and collaborative filter-
ing methods are also available for data imputation [34, 44].

Drug repurposing through transcriptome analysis requires study-
ing data with unique characteristics. First, the dataset has a three-
dimensional structure, where the dimensions indicate drugs, cells,
and genes. Thus, we denote the data as a three-dimensional tensor
𝑿 ; transcription value of the 𝑘th gene for the 𝑖th cell line, upon
application of the 𝑗th drug is represented with 𝑥𝑖, 𝑗,𝑘 . Second, the
distribution of the missing transcription values over this tensor
is not uniform across the three dimensions. This is because if the
experiment for the 𝑗th drug is missing for the 𝑖th cell line, the
transcription values of all the genes for that configuration is miss-
ing. In other words, 𝑥𝑖, 𝑗,𝑘 is missing for all values of 𝑘 . Figure 1
illustrates this. Let us denote the total number of genes with 𝑔.
Given a fixed value of 𝑖 , and 𝑗 , we use the term fiber to describe
the vector of all the values [𝑥𝑖, 𝑗,1, 𝑥𝑖, 𝑗,2, . . . , 𝑥𝑖, 𝑗,𝑔]𝑇 as this term
is commonly used in the tensor studies [20]. Tensor completion
problem has been considered in the literature to exploit the latent
structure and to predict the missing values [23]. Tensor comple-
tion algorithms are specifically designed to perform well when the
data available is sparse [37]. These methods however do not take
into account the biased distribution of the missing information
encountered in the transcriptome data for drug repurposing due
to organization of missing parts of the tensor as fibers. This makes
standard tensor completion inefficient for such datasets, especially
as the dataset size grows. Moreover, biological data has various
information hidden in terms of the relationship of entities, such
as regulatory interactions among genes as well as their functional
similarities, which may not be explicitly available in other types of
data [7]. To the best of our knowledge, tensor completion has not
fully been exploited for drug repurposing.

Within the context of estimating connectivity mapping, there
are two main studies focusing specifically on the imputation of
the missing transcription data. One of the studies imputes missing
transcription values by combining the local and global information
using k-nearest neighbor (KNN) and the tensor completion [16].
The other study shows certain advantages on using cell line specific
approach along with Two-Way Algorithm (where expression values
are averaged across drugs and cell lines), KNN, and singular value
decomposition (SVD) [35]. However, there are two main problems
with these imputation methods. First, their performance is highly
dependent on the amount of missing data. Second, they are mainly
designed to handle two-dimensional data (matrices) instead of three-
dimensional data (tensors), which characterize the data used for
drug repurposing. As we explain later in this paper in detail, these
shortcomings makes existing methods ineffective for the problem
considered in this paper.
Contributions. In this paper, we introduce a novel algorithm,
called the FiT (Fiber-based Tensor Completion) Algorithm, for
predicting drug connectivity from three dimensional incomplete
transcriptome data. Our method exploits the topological properties
of the missing data and the interactions among genes to efficiently
and accurately impute missing transcription values. We make three
observations in developing FiT. 1. The missing data has a specific
structure (i.e., they are organized as fibers), representing the pres-
ence or absence of entire experiments rather than representing

random noise. 2. We have access to gene interaction data, which we
refer as external information. 3. The genes can be grouped based
on the similarities of their expression values for further improving
the imputation performance. Using these three observations, we
make three specific contributions.

Our first contribution is leverages on the structure of the miss-
ing data. We modify the tensor completion algorithm so that the
algorithm benefits from the prior knowledge that the missing data
is organized as fibers. This particular structure is not limited to
the biology domain. Different fields like; spectroscopy, multidimen-
sional nuclear magnetic resonance (NMR) analysis also experience
data missing in fibers due to different reasons like machine failures,
and sparse sampling frequencies [29, 42].

Our second contribution is to integrate the topology of interac-
tions among the genes to tensor completion. Leveraging external
information has already been considered in naive tensor comple-
tion algorithms and is shown to have higher imputation accuracy
[1, 22, 27, 48]. Existing methods often use the external binary infor-
mation (such as interactions between pairs of entities) to favor the
predicted values of the interacting entities to be equal. This strategy
however does not work for drug repurposing as interaction between
two genes does not imply that they have same transcription val-
ues. We introduce a novel regularization term that promotes to use
the external information as an indication of correlation between
transcriptions of interacting genes.

Our third contribution is to cluster similar genes and perform
tensor completion on the different clusters separately. We conjec-
ture that clustering by genes will bring associated genes into the
same sub-tensor and thus reduce noise in data imputation. The
sub-tensors help to structure the data based on underlying biology,
similarity of genes. We build the sub-tensors by clustering the genes
using k-means clustering on their transcription values over all the
drug and cell combinations and perform the tensor completion
algorithm for each of these sub-tensors, and ultimately combine
them back to one tensor that has the same order of genes as the
initial data.

We compare the FiT Algorithm with four existing methods for
their ability to predict drug connectivity. We showcase the per-
formance of our algorithm using an incomplete cell-specific drug
response data set [35]. We report three different evaluation metrics:
a) accuracy of drug connectivity, b) difference between the imputed
and actual values, and c) the correlation between the imputed and
actual values. Our results demonstrate that the accuracy of drug
connectivity generated by the values imputed by the FiT Algorithm
is higher than other algorithms, especially for the cell lines which
are not tested on many drugs. We also achieve higher correlation
between real and imputed values using the FiT Algorithm. More-
over, using the FiT Algorithm, we get smaller cumulative difference
between the imputed and actual values compared to other meth-
ods, resulting in predictions closer to the actual values. The high
correlation and smaller distance between imputed values and the
actual values allow us to successfully find the unassayed drugs
that reverse gene expression signatures found in diseases. Lastly,
we achieve these results in a significantly shorter time than other
methods. FiT Algorithm exploits the inherent fiber structure of the



FiT : Fiber-based tensor completion for drug repurposing BCB ’22, August 7–10, 2022, Northbrook, IL, USA

Figure 1: Representation of the 3D data tensor.
Rows/columns/depth represent the cell lines/drugs,
compounds/genes respectively. Shaded entries represent
thee missing values. Missing entries span the entire depth
(fibers) for subsets of row/column combinations.

missing data. This results in imputing the missing values at least
five times faster than existing algorithms.1,2

2 METHODS
In this section, we describe our FiTmethod for efficient and accurate
imputation of the missing data in the form of fiber. We describe the
foundation of our algorithm which formulates the tensor comple-
tion with fiber updates in Section 2.1. We discuss how we integrate
protein interaction networks in our method in Section 2.2. We fi-
nally explain how our algorithm takes advantage of clustering of
sets of genes with similar transcription patterns in Section 2.3.

2.1 Tensor completion with fiber update
One of the defining characteristics of transcriptional drug reposi-
tioning is that the missing data has a unique topological structure:
If the experimental results for a combination of cell line and drug
are not available, then the transcription values are missing for the
entire set of genes for that combination (see Figure 1). Our method
exploits the prior knowledge that the missing transcription values
are organized as fibers in a tensor.

The objective of three-dimensional tensor completion is to find
three factor matrices such that their inner product gives the ac-
tual tensor. Let us represent the transcription data with a three-
dimensional tensor with 𝐼 rows, 𝐽 columns and 𝐾 depth, 𝑿 ∈
R𝐼×𝐽 ×𝐾 , and denote the transcription of the 𝑘th gene for the 𝑖th cell
line, upon application of the 𝑗 th drug with 𝑥𝑖, 𝑗,𝑘 . We define the rank
as 𝑅, and the three factor matrices as 𝑨 ∈ R𝐼×𝑅, 𝑩 ∈ R𝐽 ×𝑅, 𝑪 ∈
R𝐾×𝑅 . We denote the 𝑖th row of the factor matrix 𝑨 with 𝒂𝑖 , the
𝑗 th row of the factor matrix 𝑩 with 𝒃 𝑗 and the 𝑘th row of the factor
matrix 𝑪 with 𝒄𝑘 . Similarly, we represent the value at index (𝑖, 𝑟 ) of
the factor matrix 𝑨 with 𝒂𝑖𝑟 , the value at index ( 𝑗, 𝑟 ) of the factor
1This paper is partially funded by NSF under Award Number 2111679.
2We thank the T-Tripods institute (NSF grant 1934553) for inviting Tamer Kahveci
and Anna Ritz to the workshop where we learned about the problem and commenced
collaboration.

matrix 𝑩 with 𝒃 𝑗𝑟 and the value at index (𝑘, 𝑟 ) of the factor matrix
𝑪 with 𝒄𝑘𝑟 . We denote the domain of the entries (𝑖, 𝑗, 𝑘) for which
the values of 𝑥𝑖, 𝑗,𝑘 are available with Ω. Using the notation above,
we write the traditional formulation of tensor completion [4, 15] as

minimize
𝒂𝑖 ,𝒃 𝑗 ,𝒄𝑘

∑︁
(𝑖, 𝑗,𝑘) ∈Ω

∥𝑥𝑖 𝑗𝑘 −
∑︁
𝑟

𝒂𝑖𝑟𝒃 𝑗𝑟 𝒄𝑘𝑟 ∥2 . (1)

Let us denote the number of genes in the given dataset with 𝑔.
We denote the (𝑖, 𝑗)th fiber of the tensor 𝑿 with 𝒙𝑖 𝑗 ∈ R𝑔 , and the
Hadamard (element-wise) product with ⊛ symbol. Recall that for
a given triplet (𝑖, 𝑗, 𝑘), if (𝑖, 𝑗, 𝑘) ∈ Ω, then ∀𝑟 , 1 ≤ 𝑟 ≤ 𝑔, we have
(𝑖, 𝑗, 𝑟 ) ∈ Ω. Hence, we define another set Ψ that denotes the set
of the indices (𝑖, 𝑗) of the known fibers as the projection of the
set Ω on the first two values. Using this notation, we formulate a
minimization equation equivalent to Equation 1 as

minimize
𝒂𝑖 ,𝒃 𝑗 ,𝑪

∑︁
(𝑖, 𝑗) ∈Ψ

∥𝒙𝑖 𝑗 − 𝑪 (𝒂𝑖 ⊛ 𝒃 𝑗 )∥2 . (2)

We design a stochastic gradient descent (SGD) algorithm assum-
ing the samples come in the form of 𝒙𝑖 𝑗 fibers, which involves the
variables 𝒂𝑖 , 𝒃 𝑗 , and the entire matrix 𝑪 . We represent the objective
function for the (𝑖, 𝑗)th fiber with 𝑓𝑖 𝑗 (i.e. 𝑓𝑖 𝑗 = ∥𝒙𝑖 𝑗 −𝑪 (𝒂𝑖 ⊛𝒃 𝑗 )∥2),
and represent the gradient of the objective function 𝑓𝑖 𝑗 with respect
to 𝒂𝑖 , 𝒃 𝑗 , and 𝑪 with ∇𝒂𝑖 𝑓𝑖 𝑗 , ∇𝒃 𝑗

𝑓𝑖 𝑗 and ∇𝑪 𝑓𝑖 𝑗 respectively. The
stochastic gradients are

∇𝒂𝑖 𝑓𝑖 𝑗 = −𝑪⊤(𝒙𝑖 𝑗 − 𝑪 (𝒂𝑖 ⊛ 𝒃 𝑗 )) ⊛ 𝒃 𝑗 ,
∇𝒃 𝑗

𝑓𝑖 𝑗 = −𝑪⊤(𝒙𝑖 𝑗 − 𝑪 (𝒂𝑖 ⊛ 𝒃 𝑗 )) ⊛ 𝒂𝑖 ,

∇𝑪 𝑓𝑖 𝑗 = −(𝒙𝑖 𝑗 − 𝑪 (𝒂𝑖 ⊛ 𝒃 𝑗 )) (𝒂𝑖 ⊛ 𝒃 𝑗 )⊤.
Let us denote the step size in SGD with 𝛾 . The SGD algorithm takes
the form 

𝒂𝑖 ← 𝒂𝑖 + 𝛾𝑪⊤(𝒙𝑖 𝑗 − 𝑪 (𝒂𝑖 ⊛ 𝒃 𝑗 )) ⊛ 𝒃 𝑗 ,
𝒃 𝑗 ← 𝒃 𝑗 + 𝛾𝑪⊤(𝒙𝑖 𝑗 − 𝑪 (𝒂𝑖 ⊛ 𝒃 𝑗 )) ⊛ 𝒂𝑖 ,

𝑪 ← 𝑪 + 𝛾 (𝒙𝑖 𝑗 − 𝑪 (𝒂𝑖 ⊛ 𝒃 𝑗 )) (𝒂𝑖 ⊛ 𝒃 𝑗 )⊤.
Notice that it is possible to adapt Equation 2 to other stochastic
gradient descent algorithms, such as Adam [19], Adagrad [25], and
SPPA [2] through similar algebraic manipulations.

As we demonstrate later in Section 3.6, updating factor matrices
by one fiber at a time instead of one tensor entry provides a sig-
nificant time advantage since instead of iterating over every index
of the fiber one by one, the fiber update does the same operation
using the properties of matrix multiplication. There are two main
benefits. First of all, the time it takes to perform the update for the
entire fiber is significantly lower, because with fiber update we do
not need to iterate over all the entries in a fiber one by one. Second,
when there are many values within the fiber (for our envisioned
application, fibers could easily be as long as the number of genes in
the entire human genome, ≈ 20𝐾), it may not be computationally
feasible to perform a non-fiber update, whereas the fiber update
offers an efficient and feasible alternative.

2.2 Incorporating interactions into FiT
Genes affect the transcription levels of other genes through reg-
ulatory and other interactions [17]. Given this observation, we
conjecture that using prior knowledge of interactions between
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genesmight improve the accuracy of transcriptomic imputation.We
formulate this relationship with the hypothesis that the transcrip-
tion values of interacting genes are correlated. Positive/negative
correlation respectively indicates activation/suppression of their
transcription.

We use protein-protein interaction data to represent the connec-
tivity of the genes. More specifically, we use the STRING database
[40], which provides interactions with confidence values and sup-
porting evidence. The STRING database collects evidence from
different resources (text mining of the literature, experimental data,
computational interaction predictions using co-expression) and
integrates this information, presenting a protein to protein interac-
tion database that covers physical as well as functional associations
[41]. We therefore filtered the protein-protein interactions to in-
clude those based on experimental evidence only, and we selected
the score threshold to be greater than 900 out of 1,000, thus se-
lecting only the highest confidence interactions. At this level of
stringency, only 56 genes of the measured genes are connected, via
70 connections.

We incorporate the protein interactions into the optimization
problem formulation provided in Equation 2 by adding each inter-
action as a within-mode regularization term, as discussed in [27].
Let us denote the Graph Laplacian matrix with 𝑳, and the (𝑚,𝑛)th
entry in 𝑳 with 𝑳 (𝑚,𝑛) . If there is an interaction between gene𝑚
and gene 𝑛 and𝑚 ≠ 𝑛 then 𝑳 (𝑚,𝑛) = −1, and when𝑚 = 𝑛 then
𝑳 (𝑚,𝑛) is equal to the degree of𝑚 (i.e., number of edges connected
to node 𝑛). We denote the regularization constants for the regu-
larization terms of the parameters 𝒂𝑖 , 𝒃 𝑗 and 𝑪 with 𝜆𝑎 , 𝜆𝑏 and 𝜆𝐶
respectively. We represent the trace function in linear algebra with
𝑇𝑟 (¤). The optimization problem becomes

minimize
𝒂𝑖 ,𝒃 𝑗 ,𝑪

∑︁
(𝑖, 𝑗) ∈Ψ

∥𝒙𝑖 𝑗 − 𝑪 (𝒂𝑖 ⊛ 𝒃 𝑗 )∥2 + 𝜆𝑎 ∥𝒂𝑖 ∥2

+ 𝜆𝑏 ∥𝒃 𝑗 ∥2 + 𝜆𝐶 Tr(𝑪𝑇 𝑳𝑪),

The within-mode regularization term motivates the two connected
genes to have the same gene expression value. However, if the two
genes are connected, they do not necessarily have the exact same
expression value. Therefore, we can only say that if two genes are
found to be connected via external sources, then their expression
values are expected to be related.

The convention to include binary external information (such
as absence/presence of interactions between two variable) to the
objective function is by using regularization terms [27]. In the litera-
ture, often the regularization termminimizes the Euclidean distance
between the values of two vectors for the connected entities. This
formulation provides an equation for which we can obtain partial
derivatives easily. This formulation however does not work for
drug repurposing as the interaction between two genes does not
indicate equality of their transcription values. It rather indicates
their correlation. To express this, we replace the Euclidean distance
with the cosine distance between the transcription values of these
two genes. [14]. As we explain below, this formulation needs to be
treated carefully as the partial derivatives no longer yields linear
equations.

Recall that we represent the rank with 𝑅. We represent the size
𝑔 vector with all entries equal to one with 1 and its transpose with

1𝑇 (i.e., 1 = [1, 1, . . . , 1]𝑇 ). We define matrix 𝑫 ∈ R𝑔×𝑔 as a helper
matrix where 𝑫 = (𝑰 − 1

𝑅
11𝑇 ). Note that, multiplying the matrix 𝑫

with any vector 𝒄 ∈ R𝑔×𝑅 , we get the mean subtracted version of
the vector 𝒄 . We represent the external network with the matrix 𝑨̃.
Recall that we represent the𝑚th row of the factor matrix 𝑪 as 𝒄𝑚 . In
the problem definition, if there is an interaction between gene𝑚 and
gene 𝑛 and𝑚 ≠ 𝑛 then the (𝑚,𝑛)th entry of the external network
matrix 𝑨̃ represents this interaction as 𝑨̃(𝑚,𝑛) = 1

∥𝑫𝒄𝑚 ∥ ∥𝑫𝒄𝑛 ∥ , and
otherwise 𝑨̃(𝑚,𝑛) = 0.

The information that we want to capture is cosine distance (i.e.,
-cosine similarity) rather than Euclidean distance, hence we make
some further changes in the problem formulation and present it as

minimize
𝒂𝑖 ,𝒃 𝑗 ,𝑪

∑︁
(𝑖, 𝑗) ∈Ψ

∥𝒙𝑖 𝑗 − 𝑪 (𝒂𝑖 ⊛ 𝒃 𝑗 )∥2 + 𝜆𝑎 ∥𝒂𝑖 ∥2

+ 𝜆𝑏 ∥𝒃 𝑗 ∥2 − 𝜆𝐶 Tr(𝑫𝑪𝑇 𝑨̃𝑪𝑫) . (3)

By minimizing the negative of the cosine similarity, we aim to
maximize the correlation between two genes if they are known to
be connected in the external network. The external network can be
built using any external information representing prior knowledge
about the genes. It can also be applied to any domain where there
is access to certain external information on the connectivity of the
entities that represents their correlation. We present the related
empirical results in the Experimental Results section.

2.3 Integration of gene clustering to FiT
Our final contribution follows from the conjecture that the tran-
scription value of a gene introduces noise in imputing the transcrip-
tion of another gene if the two genes exhibit significantly different
behaviors. Inversely, genes with similar characteristics can yield
more accurate imputations of each other. We mathematically for-
mulate this conjecture by clustering genes with similar behaviors
(i.e., similar transcription values in the training dataset). It is worth
noting that other criteria can also be adopted to define clusters,
such as the similarity of the gene sequences, or similarity of their
known functions.

Let us assume that the data for 𝑝 drug-cell line pairs are avail-
able in the training data. We represent each gene (say𝑚th gene)
with a vector 𝒈𝑚 of size 𝑝 , 𝒈𝑚 ∈ R𝑝 , and cluster the vectors us-
ing the k-means algorithm. We construct sub-tensors using the
k-means clusters, where each gene belongs to only one sub-tensor.
We perform tensor completion for each of these sub-tensors, and
we ultimately combine them back to one tensor with the same gene
order as the initial data.

It is essential to consider external information in the clustering
process, because if two interacting genes end up in different clusters,
the algorithm also cannot fully benefit from the interaction of those
genes. Hence, we modify the clustering algorithm as follows. If the
induced subnetwork of a subset of genes constitute a connected
component in the interaction network, we replace the vectors for
all the genes in that subset with a single aggregate vector as their
element-wise average. We perform the clustering using the result-
ing vector. Once we build clusters, we assign all the genes in that
subset to the cluster their aggregate vector belongs to. This way,
we ensure that all the interacting genes end up in the same cluster.
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3 EXPERIMENTAL EVALUATION
In this section, we describe the dataset and summarize the com-
peting methods. We further give details about the experimental
setup.
Dataset. We use the sparse dataset from D.Sapashnik et al. [35],
containing cell-specific drug responses in a subset of the LINCS con-
nectivity data [39] and included in records GSE70138 and GSE92742
in the Gene Expression Omnibus (GEO) [9]. The data subset consists
of a combination of 80 cell lines (60 cancer cell lines, 6 immortalized
normal cell lines, 4 stem cell lines and 10 primary cell lines), 1330
drugs, and the expression data from the 978 genes directly measured
by the L1000 assay [39], whenever expression data is available for
a given drug/cell line combination. However, the expression data
for about 75% of the drug/cell line combinations in this dataset are
missing, meaning the drug was not assayed in that cell. The data is
available online (https://bcb.cs.tufts.edu/cmap/)

.
Competingmethods.We compare FiT with four methods, namely
the state of the art matrix completion method of Candes and Plan
(CP) [3], and the Tissue Agnostic, TwoWay, and k-nearest neighbor
methods used by D.Sapashnik et al.[35]. CP computes each missing
entry by computing two factor matrices. The Two Way Algorithm
imputes the missing entry by calculating the median of the entries
which are in the same column as the missing entry and the median
of the entries which are in the same row as the missing entry and
then computes the mean of these two median values. The Tissue
Agnostic Algorithm takes the median of the gene expressions that
belong to the same drug (column) as the missing data, and imputes
the missing data with the median of the expression values. The
𝑘-Nearest Neighbor Algorithm finds the 𝑘-nearest drugs based on
their cosine similarity (using all cells for which both drugs in a
pair have data) and predicts the median of the expression values in
those drugs.
Experimental setup.Wefirst randomly choose 20% of the drug/cell
pairs to be our test dataset for which the transcription values are
available, and the remaining 80% for training. We withhold that
information from our method as well as the competing methods
and impute those values using each method. We do this using 4-fold
cross-validation.

We use the actual transcription values as well as the imputed
values to infer the connectivity using the connectivity mapping
method [21]. This method returns a list of drugs that have positive
connectivity scores as well as a list of drugs with negative con-
nectivity scores. Finally, we compute the accuracy of each method
as the Weighted Spearman Rank Correlation between the positive
(negative) connectivity scores obtained by the imputed transcrip-
tion values of each method with those of the true transcription
values.
Other Details. We implement all the algorithms in Python. We
perform the experiments on a Linux machine equipped with 2 AMD
EPYC 75F3 32-core processors running at 2.95GHz and 512GBs
RAM.

3.1 Accuracy of drug connectivity
We first evaluate how well our method estimates the drug con-
nectivity. Figures 2(a) and 2(b) present the results for positive and

negative connectivity respectively. We compare our method to the
Two Way algorithm as it uses the most number of available drugs
and cell lines for imputing transcription values among all the com-
peting methods. Each circle represents one cell line. We color each
circle in gray scale proportional to the number of drugs for which
the transcription values are available for the cell line corresponding
to that circle. The cell lines with larger number of drugs available
have darker color. Diagonal line represents the 𝑥 = 𝑦 line. The
dashed horizontal and vertical lines represent a threshold for signif-
icantly highWeighted Spearman Correlation. Quadrant I represents
the cell lines for which FiT Algorithm gives significantly high con-
nectivity correlation values, while the Two Way Algorithm fails.
Quadrant II represents the cell lines for which both FiT Algorithm
and Two Way Algorithm yield high connectivity correlation values.
The quadrant III represents the cell lines for which the Two Way
Algorithm produces high connectivity correlation values, and FiT
Algorithm fails. Quadrant IV represents the cell lines for which
both of the algorithms yield low correlation values.

Figure 2(a) demonstrates that quadrant I contains many more
cell lines as compared to quadrant III. This implies that FiT Algo-
rithm is significantly better for identifying positively correlated
contact between drugs and cell lines that the Two Way Algorithm.
Furthermore, most of the points are above the diagonal, thus FiT
outperforms the Two Way Algorithm across all cell lines even for
the cell lines for which prediction is harder. We observe that most
of the points in quadrant I (and above diagonal) have lighter colors.
This implies that FiT Algorithm is more robust to increase in the
amount missing. Finally, most of the points with darker color have
low correlation values, implying that having fewer data (in this
case drugs) often leads to lower performance. In Figure 2(b), we
observe that in both quadrant I and quadrant III there are a few
points. This implies that estimation of negatively correlated drug
connectivity is harder and possibly needs more training data. The
clustering of darker points at quadrant II supports this conjecture.

3.2 Cross validation of the predictions
We conjecture that the reason behind our method’s success in
Figures 2(a) and 2(b), is that it yields more accurate predictions of
the transcription values. To verify this, we take a closer look at
our method and all the four competing methods and report the
root mean square error (RMSE) value of the estimated transcription
values. We call this the loss value. We calculate the loss value of all
the four competing methods as well as that of our algorithm under
four settings; 1, 2, 4, and 8 clusters. The 1 cluster setting stands for
the tensor completion algorithm that treats the entire set of genes
as one big cluster. In the 2 clusters setting, we cluster the entire set
of genes into two clusters using the k-means algorithm coded in the
scikit-learn implementation [30]. In four and eight cluster settings,
we hierarchically split each cluster to get four and eight clusters.
We repeat this 10 times with different random seeds and report
the average. Table 1 shows the results. We observe the best loss
value using FiT under the 2 clusters setting. The change in the loss
value of FiT is however negligible for different number of clusters.
This suggests that there may be opportunities for better clustering
algorithms to bring genes together which have more predictive
power of each other’s transcription values. Surprisingly, the CP

https://bcb.cs.tufts.edu/cmap/
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(a) Positive Connectivity Correlation (b) Negative Connectivity Correlation

Figure 2: Connectivity Correlation between Two Way Algorithm and FiT Algorithm across all genes and drugs for each of
the 80 cell lines. Figure 2(a), and Figure 2(b) represent the positive and the negative connectivity correlation respectively. The
diagonal line represents 𝑥 = 𝑦 line. The horizontal dashed line denotes the threshold for FiT Algorithm, the cell lines of interest
are the ones above the horizontal line. The vertical dashed line denotes a threshold for Two Way Algorithm. The dashed lines
(both horizontal and vertical) are at 0.65 for the Figure 2(a) and are at 0.7 for the Figure 2(b). The color tones represent the data
available, the color code represent the number of drugs lightest node being 11 drugs and the darkest node color being 1330
drugs.

Loss values
Two Way 0.944

Tissue Agnostic 0.940
CP 0.859

K-Nearest Neighbor 0.821
FiT- No Cluster 0.767
FiT- 2 Clusters 0.766 ± 0.002
FiT- 4 Clusters 0.767 ± 0.002
FiT- 8 Clusters 0.779 ± 0.001

Table 1: Loss values of different algorithms over the same
test dataset.

method yields very high loss value. Recall that CP is the traditional
matrix completion which treats tensor as a collection independent
matrices (i.e., independently acting genes). This supports the value
of FiT as it captures the dependence among all the three dimensions
(i.e., cell lines, drugs, genes). Finally, we observe that the three
local methods (Two Way, Tissue Agnostic, and 𝐾-Nearest Neighbor
algorithms) all yield very high loss values as compared to FiT,
supporting our earlier results that a holistic view of the data used
by our algorithm is more promising than local algorithms.

3.3 Correlation evaluation
Next, we zoom in on each cell line and evaluate the correlation
between the imputed expression value and the actual expression
value for the test data. We run each algorithm and predict tran-
scription values for each drug/cell line combination in test data. We
then calculate a correlation value per cell line using two different
correlation formulas; weighted Spearman correlation and Pearson
correlation. In Figures 3(a) and 3(b) each dot represents one of 80

cell lines when we use Pearson and Spearman correlation values re-
spectively. In each figure, the x-axis denotes the correlation values
for the Two Way Algorithm, and the y-axis denotes the correlation
values for the FiT Algorithm. We organize the points in the figures
into four quadrants the same way as we did in Section 3.1. Quad-
rant I represents the cell lines with higher correlation values for
the FiT Algorithm and lower correlation values for the Two Way
Algorithm. Quadrant II has high correlation values for both of the
algorithms. Quadrant III has high correlation values for the Two
Way Algorithm and low correlation values for the FiT Algorithm.
Quadrant IV has low correlation values for both of the algorithms.

In Figure 3(b), we observe that there is no point in quadrant III.
It means that no particular cell line has a higher than 0.8 weighted
rank Spearman correlation value for the Two Way Algorithm while
having a smaller than 0.8 weighted rank Spearman correlation
value for the FiT Algorithm. On the other hand, there are some
points in quadrant I, where the values predicted by FiT are more
correlated with the actual values when evaluated by the weighted
Spearman correlation metric. In Figure 3(b), quadrant II is also
essential because all the points (cell lines) are either on the line
or above the line; meaning that the values predicted by the FiT
Algorithm are either more correlated than or equally correlated as
the Two Way Algorithm. Quadrant III is again not of interest since
both algorithms have smaller correlation values (less than 0.8).

In Figure 3(a), we observe that there is only one point in quadrant
III for which the Two Way algorithm gives slightly more correlated
prediction than the FiT Algorithm. However, in quadrants I and II,
many points have either the same or better correlation value using
the FiT Algorithm. Different from the other Figures we have seen so
far, there are two particular points (cell lines) which smaller Pearson
correlation values ranging between 0.2 and 0.4when the predictions
are made by the Two Way Algorithm whereas approximately 0.8
Pearson correlation value with the FiT Algorithm.
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(a) Pearson Correlation (b) Weighted Rank Spearman Correlation

Figure 3: The correlation value between the actual value and the predicted value across all genes and drugs in test set. We
calculate the correlation using two different methods. Figure 3(a), and Figure 3(b) represent the Pearson correlation and
Weighted Rank Spearman correlation respectively. The diagonal line represents 𝑥 = 𝑦 line. The horizontal dashed line denotes
the threshold for FiT Algorithm, the cell lines of interest are the ones above the horizontal line. The dashed lines (both
horizontal and vertical) are at 0.6 for the Figure 3(a) and are at 0.8 for the Figure 3(b). The vertical dashed line denotes a threshold
for Two Way Algorithm.

3.4 Robustness of the Clusters
The predicted value of a certain gene might be more accurate when
the gene is clustered with a certain group of genes. Clustering the
gene with a different group of genes might change the accuracy of
the prediction. Hence it is important to perform a robustness test on
the clusters. We use 10 different seeds (0-9) to perform the k-means
clustering. Each seed gives a different clustering and clustering a
particular gene with different set of genes may result in different
results. We calculate the average random index between the clusters
generated using 10 different seeds. Table 2 shows the results.

For the FiT Algorithm with two clusters, we observe that even
though the seeds are different, the clusters generated are very sim-
ilar. The minimum average random index of among 10 seeds is
0.995. As expected, the FiT Algorithm with four clusters and eight
clusters, there small differences between the clusters as we increase
the number of clusters the genes are clustered in slightly different
ways. However, still for most of the seed pairs the cluster similarity
measured by average random index is high. Table 1 shows that
the standard deviation among all 10 seeds is very low for each
clustering setting, which implies that the clusters identified by our
clustering algorithm are robust, and thus selecting different seeds
would not effect the clusters substantially. It is however worth not-
ing that different clustering algorithms may yield different levels
of robustness, which is beyond the scope of this paper.

Min Max Mean Std Dev
FiT- 2 Clusters 0.995 1.000 0.998 0.001
FiT- 4 Clusters 0.964 1.000 0.990 0.010
FiT- 8 Clusters 0.686 1.000 0.890 0.093

Table 2: Class similarity in terms of average random index
for different number of clusters.

3.5 Gene enrichment analysis
We present a qualitative analysis of the performance of our algo-
rithm. The genes that we are interested are the genes for which the
FiT Algorithm has smaller RMSE value than the Two Way Algo-
rithm. Hence we sort those genes based on the RMSE values of FiT
Algorithm in ascending order and take the top 𝑘 best performing
genes.

We perform gene enrichment analysis on the top 𝑘 genes [12],
where we select 𝑘 as 10, 20, 50, and 100. We observe that the path-
ways found for the top 𝑘 genes are too generic when the value of 𝑘
is 10 or 20. Hence, we only report the combined results from the top
50 and 100 genes. We threshold the results that have less than 1500
pathway genes; we aim to focus on the functionalities that are not
very common. Table 3 presents the thresholded enrichment results.
In this table, the Pathway column represents the functionalities that
are enriched for the top 𝑘 genes for which the FiT Algorithm has
better prediction than the Two Way Algorithm. Our results demon-
strate that the genes for which FiT Algorithm has better prediction
than the Two Way Algorithm serve in important functions like the
response to oxidative stress, immune effector process, or response
to abiotic stimulus.We observe that the pathways are mostly related
to response to stress. This coincides with the biological studies in
drug response. For instance, reactive oxygen species are found at
high levels in tumor cells, and reactive oxygen species-sensitive
polymeric nanocarriers improve drug efficacy. [11] They are also
known to play a critical role in response to inflammation. [10] Also,
recent results demonstrate that HSP70-2 gene exhibit substantial
differential expression under oxidative stress for multiple sclerosis
patients. [31]. These results suggest that our method is successful
in imputing the transcriptional behaviors of the genes that tend to
get highly affected by the drug applied on that particular cell line,
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Figure 4: The protein interaction network of the genes for which the FiT Algorithm has smaller loss value than the Two Way
algorithm.

and thus there is great potential that FiT can help in solving drug
repurposing problem, which is the central goal in this paper.

Next, we focus on the connectivity of the genes that gave the
enrichment results in Table 3. First, we create a list consisting
of these genes, there are 44 distinct genes in this list. Then, we
feed this particular list to the STRING database [41] to further see
the connectivity of the genes, and we get the Figure 4. The nodes
represent the genes, and they are labeled with the name of the
genes. The edges in this network represent the confidence of the
connectivity of the genes and the connectivity is decided based on
experimental evidence. If the edge is shown with a thick line, the
connection has a higher confidence value. The confidence score that
we used to plot the Figure 4 is 0.400, and the colors of the nodes are
unique to the gene. There are 44 nodes, 98 edges in the network and
the average node degree is 4.45. The genes NFKBIA, APP and HIF1A
have highest connectivity. Our observation aligns with the existing
literature. NFKBIA is one of the genes that potentially provide
high confidence drug target candidates for drug repositioning for
acute radiation syndrome (ARS) [26]. The amyloid precursor protein
(APP) is studied in depth in the context of slowing the rate of disease
progression since it produces the Amyloid beta (A𝛽) peptide which
plays an essential role in Alzheimer’s disease (AD) [24, 46]. The
HIF1A stimulates the transcription of multiple genes related to
a wide range of diseases, including cancer [36]. Knockdown of
H1F1A is shown to reduce the response of ouabain contributing
to the potential antitumor effect of ouabain in NSCLC cells [5]. In
summary, the genes for which FiT shows great success interact
with each other and they are disease associated. This validates our

results in Table 3 that our method has great potential to assist drug
repurposing problem.

3.6 Efficiency of the proposed algorithm
So far, in our experiments we have demonstrated the accuracy of our
algorithm. Next, we focus on the running time performance. More
specifically, we explore the impact of using fiber update strategy
used in FiT. To do that, we run two variants of FiT Algorithm with
no clustering; with and without fiber update. To distinguish these
two variants, we call them FiT-Fiber and FiT-No Fiber respectively.
We use the Adagrad [25] algorithm to perform the optimization. We
perform two sets of experiments. The first set of experiments aims
to test how much the algorithms’ running time gets affected by the
number of items within a fiber. The second set of experiments aims
to test how fast the algorithm reaches a small RMSE value.

For the first set of experiments, we ran both variants of FiT for 100
iterations as both of the algorithms take 100 iterations to converge.
Our focus is mainly on the difference between the per iteration
performance of the two algorithms. Figure 5 shows the average time
each iteration takes with fiber and non-fiber update. One iteration
of non-fiber update takes around 5000 seconds when there are 7000
genes. Considering that the algorithm converges in 100 iterations
it is expected to take 5000 × 100 seconds to converge which is
approximately 6 days. The human genome has approximately 20K
genes, and the non-fiber update is expected to take 18 days to give
the same result that the fiber update is giving in less than 3 days. We
also observe that the fiber update is not affected as much as the non-
fiber update when we increase the number of genes. Furthermore,
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Enrichment FDR nGenes Pathway Genes Fold Enrichment Pathway
9.98E-07 11 217 11.91 Response to reactive oxygen species
9.98E-07 15 490 7.19 Response to oxidative stress
9.98E-07 24 1329 4.24 Response to abiotic stimulus
3.82E-06 17 1489 5.42 Secretion by cell
6.23E-06 13 847 7.28 Cell activation involved in immune response
3.78E-05 12 843 6.76 Leukocyte activation involved in immune response
4.51E-05 14 1245 5.34 Immune effector process

Table 3: Enrichment analysis for the genes that have smaller RMSE value using the FiT Algorithm

as we increase the number of genes, the time gap between fiber
and non-fiber updates increases. We thus conclude that our fiber
update strategy dramatically improves the performance of drug
repurposing.

Figure 5: The average time (in seconds) it takes to run one
iteration of fiber update (the solid line) and non-fiber update
(the dashed line) for different number of genes.

We run both algorithms for the second set of experiments for
100 iterations using the actual dataset, which has 978 genes in each
fiber. It takes the non-fiber algorithm 76, 773 seconds to complete
100 iterations, whereas the fiber algorithm takes 12, 758 seconds
to complete the same number of iterations. We present the Figure
6 to show the decrease of the RMSE values over time. The fiber
update makes the algorithm converge to its minimum value in less
time. In Figure 6, we see that after 𝑥 many seconds, the RMSE value
starts increasing. We calculate the RMSE value on the test data, and
after a certain number of iterations, the increase of the RMSE value
indicates that the algorithm overfits after that many iterations.

Indeed, the fiber update can be further implemented such that
the update is performed in parallel for the entire vector of genes,
which will introduce further improvement in the time complexity in
theory. Considering the computational complexity, the fiber update
performs the same update in 𝒪(1) time, whereas the non-fiber
update has 𝒪(𝑛) complexity where n is the number of genes (the
depth of the tensor). The optimization requires this update to be
performed at every iteration, assuming that we have 𝑖 iterations, the
time complexities will be multiplied with 𝑖 , resulting in a significant
difference between algorithms.

Figure 6: The convergence of fiber update and non-fiber up-
date. The loss values over time (seconds) for fiber update (the
solid line) and non-fiber update (the dashed line) with 978
genes. The dotted horizontal lines represents the minimum
loss value obtained after 17500 seconds for both fiber and
non-fiber update.

4 CONCLUSION
We considered the problem of imputing the impact of a given drug
on a cell type, such that although we have prior knowledge about
the outcome of another set of drug-cell interactions, we do not
know that particular targeted drug-cell interaction. We addressed
the first and one of the most fundamental parts of the problem
of drug repurposing problem through connectivity mapping. We
presented a novel method, named FiT (Fiber-based Tensor Comple-
tion) to impute the transcription values for missing drug-cell line
combinations in a highly sparse drug-cell dataset accurately and
efficiently, while exploiting the distribution of missing values as
well as the interactions among genes. Based on our results, FiT out-
performed existing approaches and obtained more accurate results
in a significantly shorter amount of time, even on sparse datasets
where approximately 75% of the data is missing.
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