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Abstract

Planktothrix agardhii is a filamentous cyanobacterial species that dominates harmful algal

blooms in Sandusky Bay, Lake Erie and other freshwater basins across the world. P. agard-

hii isolates were obtained from early (June) blooms via single filament isolation; eight have

been characterized from 2016, and 12 additional isolates have been characterized from

2018 for a total of 20 new cultures. These novel isolates were processed for genomic

sequencing, where reads were used to generate scaffolds and contigs which were anno-

tated with DIAMOND BLAST hit, Pfam, and GO. Analyses include whole genome alignment

to generate phylogenetic trees and comparison of genetic rearrangements between iso-

lates. Nitrogen acquisition and metabolism was compared across isolates. Secondary

metabolite production was genetically explored including microcystins, two types of aerugi-

nosin clusters, anabaenopeptins, cyanopeptolins, microviridins, and prenylagaramides.

Two common and 4 unique CRISPR-cas islands were analyzed for similar sequences

across all isolates and against the known Planktothrix-specific cyanophage, PaV-LD. Over-

all, the uniqueness of each genome from Planktothrix blooms sampled from the same site

and at similar times belies the unexplored diversity of this genus.

Introduction

Planktothrix agardhii is a bloom-forming filamentous, non-diazotrophic cyanobacterium

commonly inhabiting eutrophic freshwaters worldwide [1]. In North America, harmful algal

blooms have been reported in temperate reservoirs and lakes [2–4]), and nearshore environ-

ments and estuaries in the Laurentian Great Lakes [5–7]. As an example, P. agardhii dominates

the cyanobacterial community in Sandusky Bay, a drowned river mouth emptying into the

open waters of Lake Erie [8]. Recent work has focused on the conditions favoring P. agardhii
blooms over other bloom-forming taxa, such as Microcystis spp., that more commonly form

HABs worldwide [9]. Prior work has shown that P. agardhii is well adapted to conditions of

nitrogen deficiency that occur in the Bay as a consequence of denitrification [8, 10]. Combined

with the observation that P. agardhii can scavenge regenerated ammonium more effectively
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than Microcystis spp. [11], and that this species can grow at a broad temperature range [12,

13], it has been proposed that Planktothrix blooms can form earlier in the spring than can

Microcystis and then persist following the onset of summertime denitrification [8, 10, 11].

Despite this hypothesis, genetic analysis of local isolates had not yet been performed to test the

diversity of nitrogen scavenging genes in P. agardhii.
Harmful algal blooms (HABs) typically produce a suite of secondary metabolites, also

known as cyanotoxins, which have been linked to health risks in animals and humans [14, 15].

The most notable cyanotoxins produced by P. agardhii are the hepatotoxic microcystins

(MCs). MCs are synthesized nonribosomally by an enzyme complex consisting of 9 or 10

genes, depending on the genus [16–18]. These complexes are responsible for the synthesis of

the molecular core of all microcystin congeners that a species can produce [16], while the vari-

ous domains within this complex determine the microcystin congeners being produced [19].

P. agardhii and P. rubescens harmful algal blooms tend to have more microcystin per unit of

cyanobacterial biomass than blooms dominated by other microcystin producing species [20].

In addition to the production of microcystins, Planktothrix species can produce multiple other

secondary metabolites, many of which are thought to be protease inhibitors [21]. Cyanopepto-

lins, also called oscillapeptins in Planktothrix species, are another class of nonribosomally-syn-

thesized peptides which are found in several genera of cyanobacteria, all sharing the same

basic domain structure while coding for unique tailoring genes [22]. Aeruginosins are another

class of secondary metabolites that are produced using a nonribosomal peptide synthetase

(NRPS) core. Further, Planktonic species of Planktothrix are also known to contain biosyn-

thetic clusters of microviridin (mdn), prenylagaramide (pag), anabaenopeptin (apn), oscilla-

torin (osc), and microginin (mic) [23–26], producing anabaenopeptins B and E/F,

microviridin I, prenylagarmide B, and variants of aeruginosins and cyanopeptolins [27]. Local

isolates have been identified to produce demethylated MC-RR, demethylated MC-LR, and

MC-YR [28], but have not been genetically characterized nor tested for the production of alter-

native secondary metabolites.

Planktothrix agardhii is also a host to a number of cyanophages, only one of which is readily

characterized. PaV-LD is a podoviridae (a naked phage with no tail) isolated from Lake Don-

ghu in China [29]. The phage does not cause complete lysis (rupture and death) of the host,

indicating that the host may have some mechanism of phage resistance. One such mechanism

is the presence of a CRISPR-cas system, common in cyanobacterial genera. The CRISPR-cas

systems include the CRISPR (clustered regularly interspaced short palindromic repeats) array,

a series of alternating direct repeat sequences and spacer sequences from bacteriophages and

plasmids, and CRISPR associated genes (cas) [30–32]. The CRIPSR-cas system found within

Microcystis aeruginosa has been used to describe host-parasite interactions as CRISPR loci are

considered to provide records of past infections [33–35]. Microcystis encodes for a number of

different CRISPR-cas subtypes, as determined by the sequence and classification of the cas

genes, including subtypes I-A, I-D, III-A, and III-B [34, 36]. These subtypes contain identifi-

able spacer sequences matching the known Microcystis- specific cyanophage Ma-LMM01 in

genomes from the Netherlands and Japan, indicating a wide dispersal of Ma-LMM01-like cya-

nophages [33]. Further, these spacer sequences have been used in conjunction with metagen-

ome sequencing of local samples to identify cryptic novel cyanophages [35]. This type of

analysis has yet to be done using other cyanobacteria species, including P. agardhii.
As a first step in understanding the physiological capabilities of P. agardhii with respect to

nutrient acquisition (especially N assimilation) and secondary metabolite production (toxins,

antifungals), we have sequenced all 20 P. agardhii genomes from Sandusky Bay described in

our earlier reports [28]. All 20 strains are closely related, but distinct from one another due to

high levels of genetic rearrangement. These differences are exemplified in the grouping of the

PLOS ONE Genomic comparison of Planktothrix agardhii

PLOS ONE | https://doi.org/10.1371/journal.pone.0273454 August 23, 2022 2 / 24

the manuscript and its Supporting Information

files.

Funding: This work was supported by funding

from the Ohio Department of Natural Resources

[GSB], the Natural Sciences and Engineering

Research Council of Canada [RMM] and National

Institutes of Health [1P01ES028939-01] and

National Science Foundation [OCE-1840715]

awards to the Bowling Green State University Great

Lakes Center for Fresh Waters and Human Health

[GSB, RMM]. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0273454


sequences, and further supported through the varied presence of biosynthetic gene clusters for

secondary metabolite production.

Materials and methods

Sandusky Bay isolate cultures

Sandusky Bay Planktothrix agardhii strains (Strain numbers 18XX) were isolated during the

2018 sampling season as previously described [28]. In brief, samples from each site were seri-

ally diluted until less than ten filaments remained in a well. Single filaments were pulled from

the lowest dilution using a capillary tube and placed in a clean well containing Jaworski’s

Medium (JM; ccap.ac.uk). Plates with single filaments were incubated for several weeks and

were monitored by microscopy for growth and contamination from other phytoplankton. Suc-

cessful isolates were scaled up and maintained in batch cultures. Isolates were confirmed to be

Planktothrix sp. through morphological observation (no heterocysts nor akinetes, blue-green

filaments without sheaths, long with no constrictions at cross-cell walls [37]) and PCR with P.

agardhii specific PCR primers rpoC1_Plank_F271 (50-TGTTAAATCCAGGTAACTATGAC
GGCCTA-30) and rpoC1_P_agardhii_R472 (50-GCGTTTTTGTCCCTTAGCAACGG-30) [38].

P. agardhii 1024–1034 series were isolated from Sandusky Bay during summer 2016 by iso-

lating individual filaments on agar as described previously [39]. Briefly 100 microliters of

water sample were incubated in the middle of an agar plate (BG11 medium [40], 0.6% (w/v)

Bacto Agar). Individual filaments tended to move out of the incubated sample by gliding

resulting in self-purification from all other non-motile organisms. 10–20 individual filaments

were cut out using a tiny micro spade under a dissecting microscope under sterile conditions

and transferred to a new agar plate sealed with parafilm. After 1–2 months the clonal culture

was transferred into fluid BG11 medium. Using established multi locus sequence analysis [1]

all ten strains clustered in P. agardhii / P. rubescens phylogenetic lineage number 1 which is

known from typically shallow lakes in the temperate zone of the Northern hemisphere [1].

Cyanobacterial strains were grown as unialgal, non-axenic batch cultures in JM. The cul-

tures were maintained in 125 mL glass flasks at 22˚C. Light was supplied by warm-white fluo-

rescent tubes at a light-dark cycle of 12 h:12 h at a photosynthetic photon flux density (PPFD)

of 10 μmol photons m−2 s−1.

DNA preparation and extraction

DNA extractions were performed on late exponential growth cultures by filtering 10–15 mL

culture onto 0.22 μm Sterivex cartridge filters (EMD Millipore, Billerica, MA). Sterivex filters

were stored at -80˚C until extraction with the DNeasy PowerWater Sterivex DNA Isolation Kit

(Qiagen, Germantown, MD) following the manufacturer’s instructions. DNA quantity was

checked using a Quantus Fluorometer (Promega, Madison, WI) and the associated Quanti-

Fluor ONE dsDNA System kit (Promega, Madison, WI), per manufacturer’s instructions.

Generating Planktothrix contig lists from metagenomes

DNA isolated from strains 1025, 1027, 1031, 1033, 1808–1810, and 1813 were sequenced at the

University of Michigan Advanced Genomics Core (Ann Arbor, MI). DNA isolated from

strains 1026, 1029, 1030, 1032, 1801, 1803–1807, 1811, and 1812 were sequenced at HudsonAl-

pha Institute for Biotechnology (Huntsville, AL). At both locations, staff performed sample

QC, library generation, and ran samples on a NovaSeq 6000 Sequencing System (Illumina, San

Diego, CA). The paired-end reads were 150 bp in length.
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Metagenomics analysis was performed using the CLC Genomics Workbench v. 12.0.2 (Qia-

gen, Redwood City, CA). FASTA files were imported into CLC Genomics Workbench with

the default quality settings following Steffen et al. [2]. Failed reads were discarded during

import. Paired-end reads for both samples were trimmed for quality prior to being combined

for assembly into contigs (Automatic word and bubble size were selected as well as a minimum

length contig length of 2,000 bp) using CLC Genomics Workbench de novo assembly function

that also mapped reads back to the generated contigs. Contigs were joined by mapping them

to the reference genome P. agardhii NIVA-CYA 126/8 (NZ_CM002803) and its plasmids

(NZ_CM002804 –NZ_CM002808). Joined and unjoined contigs were then analyzed via

BLAST against P. agardhii NIVA-CYA 126/8 (NZ_CM002803) and its plasmids

(NZ_CM002804 –NZ_CM002808), P. agardhii NIES-204 (AP017991) and its plasmids

(AP017992 –AP017995), P. agardhii NIVA-CYA 15 scaffolds 1–3 (NZ_KE734694 –

NZ_KE734696), and P. agardhii NIVA-CYA 56/3 scaffolds 1–16 and 20 (NZ_KE734722 –

NZ_KE734737) including contigs 145 (NZ_AVFY01000117) and 158–160

(NZ_AVFY01000129—NZ_AVFY01000131). All positive contigs with a greatest bit

score � 1000 and a greatest identity % � 90 were pulled to generate a contig list for each iso-

late. Contig hit outputs can be found in S1 Table.

Annotation of Planktothrix genomes

The sequence list for each isolate was annotated using the Find Prokaryotic Genes 2.1 function

within the Functional Analysis tool of the Microbial Genomics Module on the CLC Genomics

Workbench. The model training was set to learn one gene model for each assembly, the mini-

mum gene length was 100 bp, the maximum gene overlap was 50 bp, and the minimum score

was 5.0. The genetic code was set to 11 Bacterial, Archaeal and Plant Plasmid. The output from

this function was a sequence list with coding sequence (CDS) annotations.

The CDS annotated sequences were assigned functions based on Best DIAMOND Hit. To

generate the DIAMOND protein reference database, UniProt Reference Clusters (UniRef50)

version 2019_03 was downloaded to the CLC Genomics Workbench and indexed. UniRef50 is

built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and

80% overlap with, the longest sequence in the cluster. The indexed database was then used to

assign function to each CDS annotation using the Annotate CDS with Best DIAMOND Hit

0.4 function of the Functional Analysis tool of the Microbial Genomics Module, with an E-

value limit of 0.001 and standard search sensitivity.

In addition to Best DIAMOND functional assignment, the sequence lists were separately

assigned Protein Family domains (Pfam) and Gene Ontology (GO). Pfam-A v32 database was

downloaded from EMBL-EBI through the Download Pfam Database 2.0 function. The GO

database was downloaded through the Download GO Database 0.3 function, which generated

the database from the 2019-07-01 GO release. The contigs were annotated with both the Pfam

and GO functions using the Annotate CDS with Pfam Domains function, which used profiles

gathering cutoffs and removed overlapping matches from the same clan Pfam parameters and

the complete GO basic GO subset. Pfam hit outputs can be found in S2 Table.

To determine if there were potential contaminating genes present in each isolate genome,

the CDS files were submitted to GhostKoala [41], a KEGG orthology and links annotation pro-

gram. The database was selected for “genus_prokaryotes + family_eukaryotes.” Output

included functional and taxonomic classification of recognized protein entries. Non-cyano-

bacterial gene classifications were added up and recorded in Table 1, while the taxonomic

breakdown was listed as S3 Table.
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Whole genome analysis

Annotated P. agardhii scaffolds and contigs were then exported to Geneious Prime (Biomat-

ters Ltd.) version 2020.2.3 as individual sample sequence lists. To reorder the contigs, each

sequence list was whole genome aligned to the reference genome P. agardhii NIVA-CYA 126/

8 and its plasmids. The alignment options used the MCM algorithm with automatically calcu-

lated seed weight and minimum Locally Collinear Blocks (LCBs) score and the gap alignment

was performed using MUSCLE 3.6 [42]. Reordering of the sequences is required to prevent

Mauve from assuming extra rearrangements are part of the sequence.

Once all sequences are sorted, they are whole genome aligned to each other using the pro-

gressive Mauve algorithm with automatically calculated seed weight and minimum Locally

Collinear Blocks (LCBs) score and the gap alignment was preformed using MUSCLE 3.6 [42].

Each sequence list was treated as a single multiple-chromosome genome for comparison pur-

poses which included plasmid sequences.

Whole genome alignments were exported from Geneious Prime to the CLC Genomics

Workbench to generate images and comparison statistics. Average Nucleotide Identity Com-

parison (beta) 1.0 workflow was run with the minimum similarity fraction and the minimum

length fraction set to 0.8. The output included a heatmap where the upper comparison was

Average Nucleotide Identity (ANI) with a color concentration gradient set from 93–100% and

the bottom comparison was Alignment Percentage (AP) with a color concentration gradient

set from 20–100%. Additionally, the Average Nucleotide Identity Comparison was used to

generate a set of whole genome phylogenetic trees from both AP and ANI calculations using

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and Neighbor Joining

(NJ).

Table 1. Genome characteristics for Sandusky Bay Planktothrix agardhii isolates and reference sequence Planktothrix agardhii NIVA_CYA 126/8.

Planktothrix agardhii
designation

Total length

(kbp)

No. contigs and

scaffolds

G+C content

(%)

N50

(kbp)

No. protein-coding

sequences

No. of coding sequences attributed to non-

cyanobacteria

NIVA_CYA 126/8 5045.9 6 39.6 4785.6 4532 23

Plk1025 4974.0 18 39.6 4291.3 4533 35

Plk1026 5422.1 74 39.5 4662.3 5387 47

Plk1027 5152.6 23 39.7 4046.3 5176 34

Plk1029 5147.2 8 39.6 4508.1 5133 41

Plk1030 5114.1 37 39.6 4710.1 5099 41

Plk1031 5046.1 31 39.6 4696.5 4571 32

Plk1032 4991.8 13 39.6 4684.6 4985 29

Plk1033 5349.1 191 39.4 4058.0 5537 66

Plk1801 4856.2 18 39.7 4235.1 4912 43

Plk1803 4991.9 22 39.7 3052.9 4981 33

Plk1804 4869.8 8 39.6 4539.4 4868 33

Plk1805 5039.6 12 39.6 4104.9 5055 36

Plk1806 4970.4 9 39.6 4590.0 4972 33

Plk1807 5429.1 72 39.5 4511.2 5360 42

Plk1808 4965.4 9 39.6 4701.5 4475 30

Plk1809 5656.3 20 39.6 4804.8 5114 28

Plk1810 4890.6 11 39.6 4267.2 4451 18

Plk1811 5092.8 16 39.9 3879.8 5347 105

Plk1812 5908.4 160 39.4 4397.2 5948 65

Plk1813 4957.6 15 39.6 4586.0 4502 34

https://doi.org/10.1371/journal.pone.0273454.t001
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These trees were used to organize the genomes into 4 groups, which were used in the CLC

Genomics Workbench to identify unique genes in each grouping through the Differential

Abundance Analysis function. Metadata was filled out for each functional abundance table

associated with each of the individual genomes, including which phylogenetic branch they

were in. This assignment allowed for comparison across groups (ANOVA-like) to identify spe-

cific genes functions that was dominant in each group. Output of the analysis included fold

change, p-value, false discovery rate (FDR) p-value, and Bonferroni corrected p-value. Gene

functions with undefined fold changes (not observed or underreported) were removed from

the analysis.

The P. agardhii whole genome groupings were also used in Geneious Prime for re-align-

ment to generate genome rearrangement figures (S1 Fig). Sequences from each group were

whole genome aligned as described above. Individual groupings allowed for a closer examina-

tion of genome block rearrangement between closely related isolates.

Comparative alignment of housekeeping genes

To confirm relationships between P. agardhii isolates as described in the whole genome analy-

sis, as well as to genetically confirm the relationship between these isolates and previously

sequenced Planktothrix spp., a concatenated housekeeping gene phylogenetic tree was gener-

ated using ftsZ, gyrB, ntcA, rpoB, and rpoC1 [1, 8, 43, 44]. Individual gene alignments were per-

formed on each housekeeping gene using Muscle 3.8.425 and included references from P.

agardhii NIES-204, Planktothrix rubescens strain PCC 7821, P. agardhii NIVA-CYA 126/8,

and Planktothrix rubescens NIVA-CYA 18 when available. The individual alignments were

then combined using the Concatenate Sequences or Alignments tool in Geneious Prime.

Finally, the phylogenetic tree was generated in Geneious Prime Tree Builder using the Jukes-

Cantor genetic distance model and UPGMA Tree Build method.

Identification and alignment of secondary metabolite biosynthetic clusters

The following secondary metabolite clusters were analyzed in Geneious Prime: aeruginosin,

anabaenapeptin, cyanopeptolin, microcystin, microviridin, and prenylagaramide. Genes were

queried using a BLAST search of previously published reference sequences using both full

names and gene abbreviations, which were extracted as individual biosynthetic clusters. When

available, these same genes were also extracted from reference sequences: P. agardhii NIES-

204, P. rubescens strain PCC 7821, P. agardhii NIVA-CYA 126/8, and P. rubescens NIVA-CYA

18. Extracted sequences were aligned using Geneious Alignment, which automatically deter-

mined direction of sequences, preformed a global alignment with free end gaps and had a cost

matrix of 70% similarity (IUB) (5.0/-4.5). Alignments were used to generate UPGMA trees

using Jukes-Cantor genetic distance models. Branches were collapsed at a distance of 0.002 to

denote similarity between isolate sequences. For which isolates were collapsed into each head

sequence, see S4 Table.

To identify isolates that represent secondary metabolite production diversity, the secondary

metabolite alignments were concatenated and used to generate a phylogenetic tree, again

using the Geneious Prime UPGMA and Jukes-Cantor genetic distance models. To supplement

the tree, a presence/absence table was also generated.

CRSIPR-cas diversity and repeat sequences

CRISPR-Cas clusters were queried and extracted using both full names and gene abbreviations

in Geneious Prime. Extracted regions were aligned to identify common and unique clusters

across the isolates and reference sequences when available. Extracted regions were then

PLOS ONE Genomic comparison of Planktothrix agardhii

PLOS ONE | https://doi.org/10.1371/journal.pone.0273454 August 23, 2022 6 / 24

https://doi.org/10.1371/journal.pone.0273454


grouped and analyzed using the web based CRISPRCasFinder [45] using preset parameters.

File outputs included FASTA files of the CRISPR spacer sequences, FASTA files of the CRISPR

direct repeats, and identification of Cas genes and Cas subtypes. The FASTA file of CRIPSR

spacer sequences was then used in a BLASTn seach (NCBI) under preset parameters to identify

sequence similarities to PaV-LD and other Planktothrix spp. reference sequences.

Cluster figures were generated by importing an example sequence of each group into Snap-

Gene Viewer software (from Insightful Science; available at snapgene.com).

Nutrient acquisition and metabolic pathways

Specific genes of interest were identified based on ongoing work in our lab examining carbon

metabolism, nutrient acquisition, and stress responses, which included nblA (BBD52965.1,

WP_042151427.1; [46, 47]), cyanophycinase cphB [48] and both cyanophycin synthetases

cphA1 (WP_042153347.1; [49]) and cphA2 (WP_042156315.1; [11])), carbonic anhydrases

(BBD56413.1, CAC5345616.1, WP_042155137.1) and bicarbonate transporters

(WP_026796371.1, WP_026785781.1; [50]). These genes were aligned in Geneious Prime with

related genes from reference genomes as described above in other sections.

Results

General genome characteristics of Planktothrix agardhii isolates

P. agardhii isolates taken from Sandusky Bay, Lake Erie in 2016 and 2018 were comparable to

the reference sequence of P. agardhii NIVA_CYA 126/8 and its plasmids. Indeed, the average

total length of the genomes and plasmids were only slightly higher than the reference sequence

at 5,182.6 ± 325.7 kbp and contained slightly more protein-coding sequences at 4540.8 ± 207.2

cds (Table 1).

When compared to each other, the Sandusky Bay isolate genomes have a high average

nucleotide identity, which ranges from 98.54–99.95% (Fig 1). Alternatively, the genomes have

a wide range of rearrangements, as determined by alignment percentages, which range from

45.02–97.23% (Fig 1). Since we were required to order the sequences according to a reference

Fig 1. Relatedness of whole genome alignment of 20 P. agardhii isolates from Sandusky Bay, Lake Erie. The top of the matrix is the average nucleotide

identity (ANI) common between two isolates. The bottom of the matrix is the alignment percentage (AP) common between two isolates. The lowest AP value

suggests a common genome core of 45%.

https://doi.org/10.1371/journal.pone.0273454.g001
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sequence during the generation of scaffolds and during the whole genome alignment process,

the alignment percentage is a best approximation of genomic arrangement based on tools cur-

rently at our disposal. It is possible that through this manipulation, the Locally Collinear

Blocks (LCBs) are spatially closer together, skewing the alignment percentage slightly higher.

Note that the average nucleotide identity should not be significantly affected by this methodol-

ogy. These measurements can be used to determine whole genome phylogenetic relationships

to one another, clustering the isolates into 4 distinct groups (Fig 2).

These groups were then used to generate a Group Differential Gene Function table

(Table 2) to determine if there were gene functional groups unique to specific linages of P.

agardhii. These results are displayed as -fold changes compared to the other groupings com-

bined and indicates an increased annotation of a specific gene functional group. Group 1

(denoted by the olive color in Fig 2) consists of P. agardhii 1811, 1812 and 1801. These isolates

are characterized by increased glucose metabolism (GO:0005536 glucose binding at 3.08-fold

more genes (p < 0.005) and GO:0051156 glucose 6-phosphate metabolism at 2.21-fold more

genes associated with that group (p < 0.005)) and DNA maintenance (GO:0034061 DNA poly-

merase activity at 1.97-fold more genes (p < 0.001), GO:0004527 exonuclease activity at

1.56-fold more genes (p < 0.001), GO:0006260 DNA replication at 1.32-fold more genes

(p < 0.001)) (Table 2). Group 2 (denoted by the orange color in Fig 2) consists of P. agardhii
1025, 1026, 1027, 1033, 1810 and 1813. These isolates are characterized by increased environ-

mental response, including GO:0043571 maintenance of CRISPR repeat elements at 2.16-fold

more genes associated with that group (p <0.001), GO:0009605 response to external stimulus

at 1.88-fold more genes associated with that group (p < 0.005), and GO:0051704 multi-

Fig 2. Whole genome phylogenetic tree based on (AP/ANI) reveals distinct grouping of P. agardhii isolates. Since the grouping is the same using either AP

and ANI, only the tree generated using ANI and the UPGMA method is shown here. The bar represents the horizontal distance matrix used to scale the branch

length as a function of substitutions per site.

https://doi.org/10.1371/journal.pone.0273454.g002
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Table 2. Group differential gene function table.

GO function ID and Name Log2 fold

change

Fold

change

P-value Bonferroni

Group

1:

1811

1812

1801

0005536 // glucose binding 1.63 3.08 1.9E-06 3.0E-03

0051156 // glucose 6-phosphate metabolic process 1.15 2.21 2.3E-06 3.7E-03

0034061 // DNA polymerase activity 0.98 1.97 0.0E

+00

0.0E+00

1990234 // transferase complex 0.82 1.77 0.0E

+00

0.0E+00

0016042 // lipid catabolic process 0.81 1.75 2.7E-05 4.0E-02

0004527 // exonuclease activity 0.64 1.56 2.7E-11 4.2E-08

0015666 // restriction endodeoxyribonuclease activity 0.56 1.47 1.9E-05 3.0E-02

0006260 // DNA replication 0.4 1.32 2.2E-12 3.4E-09

1902494 // catalytic complex 0.37 1.29 2.0E-10 3.2E-07

0030234 // enzyme regulator activity 0.32 1.25 4.0E-08 6.3E-05

0046983 // protein dimerization activity 0.29 1.23 2.8E-05 4.0E-02

0016779 // nucleotidyltransferase activity 0.19 1.14 7.2E-07 1.1E-03

Group

2:

1025

1026

1027

1033

1810

1813

0016705 // oxidoreductase activity, acting on paired donors, with incorporation or reduction of

molecular oxygen

1.66 3.16 0.0E

+00

0.0E+00

0008171 // O-methyltransferase activity 1.54 2.92 5.7E-10 9.0E-07

0043571 // maintenance of CRISPR repeat elements 1.11 2.16 2.8E-10 4.5E-07

0005506 // iron ion binding 1.03 2.04 0.0E

+00

0.0E+00

0009605 // response to external stimulus 0.91 1.88 7.4E-07 1.2E-03

0051704 // multi-organism process 0.73 1.65 8.4E-06 1.0E-02

0020037 // heme binding 0.66 1.58 1.7E-12 2.6E-09

0046906 // tetrapyrrole binding 0.47 1.39 8.7E-12 1.4E-08

0004519 // endonuclease activity 0.4 1.32 1.5E-06 2.4E-03

0006304 // DNA modification 0.38 1.3 1.6E-10 2.6E-07

0008170 // N-methyltransferase activity 0.34 1.27 3.0E-06 4.8E-03

0046914 // transition metal ion binding 0.33 1.26 0.0E

+00

0.0E+00

0043414 // macromolecule methylation 0.33 1.25 6.3E-06 1.0E-02

0006259 // DNA metabolic process 0.3 1.24 1.1E-14 1.8E-11

0016758 // transferase activity, transferring hexosyl groups 0.28 1.22 2.3E-06 3.6E-03

0016757 // transferase activity, transferring glycosyl groups 0.28 1.21 1.3E-12 2.0E-09

0071840 // cellular component organization or biogenesis 0.19 1.14 2.7E-06 4.2E-03

0008168 // methyltransferase activity 0.17 1.13 1.6E-05 3.0E-02

Group

3:

1803

1804

1805

1806

0016832 // aldehyde-lyase activity 1.93 3.8 2.0E-08 3.2E-05

0016884 // carbon-nitrogen ligase activity, with glutamine as amido-N-donor 1.17 2.25 1.9E-05 3.0E-02

0016830 // carbon-carbon lyase activity 0.78 1.72 4.8E-06 7.6E-03

0009067 // aspartate family amino acid biosynthetic process 0.61 1.53 1.7E-06 2.6E-03

0072330 // monocarboxylic acid biosynthetic process 0.51 1.42 2.7E-05 4.0E-02

0030976 // thiamine pyrophosphate binding 0.49 1.4 1.5E-05 2.0E-02

0034655 // nucleobase-containing compound catabolic process 0.48 1.39 4.2E-09 6.7E-06

1901361 // organic cyclic compound catabolic process 0.41 1.33 1.4E-05 2.0E-02

0046700 // heterocycle catabolic process 0.39 1.31 1.0E-05 2.0E-02

0030259 // lipid glycosylation 0.38 1.3 7.3E-08 1.2E-04

0016879 // ligase activity, forming carbon-nitrogen bonds 0.23 1.17 5.8E-07 9.2E-04

(Continued)
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organism process at 1.65-fold more genes (p < 0.05). Group 3 (denoted by the green color in

Fig 2) consists of P. agardhii 1803, 1804, 1805 and 1806. These isolates are characterized by

increased metabolism, particularly GO:0016884 carbon-nitrogen ligase activity at 2.25-fold

more genes (p < 0.05), GO:0016830 carbon-carbon lyase activity at 1.72-fold more genes

(p < 0.01), GO:0009067 aspartate family amino acid biosynthetic process at 1.53-fold more

genes (p < 0.005), and GO:1901361 organic cyclic compound catabolic process at 1.33-fold

more genes associated with that functional group (p < 0.05). Group 4 (denoted by the blue

color in Fig 2) consists of P. agardhii 1029, 1030, 1031, 1032, 1807, 1808 and 1809. These iso-

lates are characterized by increased cellular respiration genes, most notable being GO:0070069

cytochrome complex at 4.51-fold more genes associated with that functional group

(p < 0.001) and GO:004533 cellular respiration at 1.44-fold more genes associated with that

functional group (p < 0.001).

In addition to alignments, the genomes were analyzed based on a concatenation alignment

of several housekeeping genes alongside reference sequences. All the Sandusky Bay isolates

cluster together with P. agardhii NIVA-CYA 126/8 and P. agardhii NIES-204 and cluster sepa-

rately from Planktothrix rubescens NIVA-CYA 18 and Planktothrix rubescens PCC7821 (Fig

3). Additionally, like the whole genome tree (Fig 2), Group 3 is still clustered together (1803,

1804, 1805, 1806) and Group 4 is clustered together (1029, 1030, 1031, 1032, 1807, 1808, 1809)

(Fig 3). Groups 1 and 2 are not individually clustered in this initial analysis, likely representing

relationships that can be described better using whole genome alignments as opposed to select

housekeeping genes. In the same branch as Group 3, we have one reference sequence, P. agard-
hii NIVA-CYA 126/8, and the addition of P. agardhii 1810. As an outgroup for the P. agardhii
isolates, we have P. agardhii 1033 and the second P. agardhii reference sequence, P. agardhii
NEIS-204.

Secondary metabolite biosynthetic clusters

Known secondary metabolite biosynthetic clusters which were found in the P. agardhii isolates

include Microcystin (mcy), Aeruginosin (aer), Anabaenapeptin (apn), Cyanopeptolin (oci),
Microviridin (mvd), and Prenylagaramide (pag). At this time, no microginin gene cluster was

identified. A full mcy cluster was found in isolates 1029, 1030, 1031, 1032, 1033, 1807, 1808,

1809, 1812, and a partial cluster was found in isolate 1026. The mcy clusters found in 1029,

1030, 1031, 1032, 1807, 1808, and 1809 were not genetically different, and were able to be col-

lapsed into a single branch headed by 1030 (Fig 4A). Distinct from the rest of the full mcy

Table 2. (Continued)

GO function ID and Name Log2 fold

change

Fold

change

P-value Bonferroni

Group

4:

1029

1030

1031

1032

1807

1808

1809

0070069 // cytochrome complex 2.17 4.51 0.0E

+00

0.0E+00

0043565 // sequence-specific DNA binding 1.14 2.21 8.9E-16 1.4E-12

0043531 // ADP binding 0.83 1.78 1.5E-08 2.4E-05

0016763 // transferase activity, transferring pentosyl groups 0.59 1.5 9.0E-07 1.4E-03

0045333 // cellular respiration 0.52 1.44 0.0E

+00

0.0E+00

0006400 // tRNA modification 0.51 1.42 2.3E-06 3.6E-03

0004518 // nuclease activity 0.34 1.27 8.7E-06 1.0E-02

0016788 // hydrolase activity, acting on ester bonds 0.32 1.25 3.6E-10 5.7E-07

0006733 // oxidoreduction coenzyme metabolic process 0.3 1.23 6.4E-09 1.0E-05

https://doi.org/10.1371/journal.pone.0273454.t002
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cluster isolates is 1033, which contains mutations in mcyC and mcyB compared to the other

isolates and the reference sequence (NIVA-CYA 126/8). Interestingly, isolate 1026 contains

most of the genes of the mcy cluster, except for a deletion of mcyA. Two aer clusters were

found in the different isolates, one set related to the biosynthetic cluster found in the reference

NIVA-CYA 126/8 and one set related to the biosynthetic cluster found in the reference NIES-

204 (Fig 4B). Eleven isolates contained the NIVA-CYA 126/8 biosynthetic cluster, including

1029, 1030, 1031, 1032, 1033, 1801, 1807, 1808, 1809, 1811, and 1812. Nine isolates contained

the NIES-204 biosynthetic cluster, including 1025, 1026, 1027, 1803, 1804, 1805, 1806, 1810,

and 1813. Seventeen isolates contained a heavily modified anabaenapeptin cluster, which col-

lapsed into six distinct branches (Fig 4C). All 20 isolates contained a version of the cyanopep-

tin biosynthetic cluster (Fig 4D). Some clusters (branches headed by 1027, 1801, 1810, 1812,

and 1813) were characterized by large insertion sequences in ociA, the nonribosomal peptide

synthetase (NRPS) containing gene for this biosynthetic cluster. 19 of the isolates contained

the microviridin biosynthetic cluster, which was relatively conserved across the sequences for

Fig 3. Concatenated conserved gene phylogenetic tree of P. agardhii isolates. Tree generated by concatenating the alignments of all Sandusky Bay isolates

alongside two P. agardhii and two P. rubescens reference sequences. Genes included in concatenation include ftsz, gyrB, ntcA, rpoB, and rpoC1. The bar

represents the horizontal distance matrix used to scale the branch length as a function of substitutions per site.

https://doi.org/10.1371/journal.pone.0273454.g003
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genes mvdA and mvdB, and less so for mvdC and mvdD (Fig 4E). The least conserved biosyn-

thetic cluster found in all 20 P. agardhii isolates was the biosynthetic cluster for Prenylagara-

mide (Fig 4F). This biosynthetic cluster is riddled internally with insertions and deletions,

leaving the more conserved regions for the early and late portion of the cluster (pagC, pagB,

pagA, and pagG).

To identify particular isolates that represent secondary metabolite production diversity, the

secondary metabolite alignments (Fig 4) were concatenated and used to generate a phyloge-

netic tree (Fig 5). Considerable similarity exists between some clusters, such as the non-mcy

only cluster consisting of isolates 1803–1806, or the full suite cluster consisting of isolate 1029–

1032 and 1807–1809. This analysis also identified several completely unique biosynthetic clus-

ter sets in isolates 1033 and 1813, which were not driven by presence/absence alone.

Fig 4. Alignments of unique secondary metabolite clusters as references for the relatedness of sequences between

isolates. Reference sequence is highlighted in yellow and includes gene annotations for the clusters. Black segments in

the non-highlighted sequences indicate points of difference, grey segments indicate similar regions, and the lines

indicate regions of no coverage. A. Microcystin (mcy) cluster. B.Aeruginosin (aer) cluster. C. Anabaenapeptin (apn)

cluster. D. Cyanopeptin (oci) cluster. E. Microviridin (mvd) cluster. F. Prenylagaramide cluster (pag). For which

isolates were collapsed into each head sequence, see S4 Table.

https://doi.org/10.1371/journal.pone.0273454.g004
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CRISPR-cas diversity and repeat sequences

In an interest to identify pathogens that these isolates have encountered, the CRISPR-cas sys-

tems were analyzed, uncovering two common CRISPR-cas gene clusters across most isolate

genomes, and four unique CRISPR-cas gene sets (Fig 6). The Cas subtype I-D (Fig 6A) is

found in all the P. agardhii isolates, as well as in P. agardhii PCC 7805 and P. agardhii NIES-

204. This cluster tended to be made up of 8 Cas genes and 18 spacer sequences with same

direct repeat sequence (GTTTCAGTCCCGCAAGCAGGATTATTTTAATTGAAAG). The other

common CRISPR-Cas system found in all the P. agardhii isolates was Cas subtype III-B (Fig

6C). This system was found in part within the reference sequences of P. agardhii PCC 7805

and P. agardhii NIES-204 but is missing the section from ~ 4000 to 9000 bp, including the

genes Cmr4, Cmr6, and two genes of unknown function. The Cas subtype III-B cluster tended

to be made up of 6–7 Cas genes and 23 spacer sequences with the same direct repeat sequence

(GTTTCCAATCAATTAATTTCCCTAGCGAGTAGGGAG). Additionally, there were four Cas

systems that were found only in a single P. agardhii isolate (Fig 6). In a BLAST search, none of

these clusters showed greater than 35% similarity to any reference sequence. The first new

CRISPR-Cas cluster, Cas subtype III-A (Fig 6B), was found in P. agardhii 1813. This cluster is

made up of 7 Cas genes and 17 spacer sequences with the same direct repeat as the Cas subtype

III-B cluster listed above. Next, we have three different Cas subtype III-D clusters, found in

1801 (Fig 6D), 1811 (Fig 6E), and 1812 (Fig 6F). The P. agardhii 1801 cluster is made up of 8

Cas genes, but contains no CRISPR arrays. The P. agardhii 1811 cluster consists of 6 Cas genes

and a CRISPR array of 6 spacer sequences utilizing that same direct repeat (CTTTCAACTAA
TAGAATCCCGTTCGCGGGACTGAAAC). Finally, the P. agardhii 1812 CRISPR-Cas system is

Fig 5. Oligotype phylogenetic tree, generated by the concatenation of the alignments for mcy, oci, aer, apn, mvd, and pag. The table relates presence and

absence of specific secondary metabolite gene clusters to understand the relatedness of each isolate. The bar represents the horizontal distance matrix used to

scale the branch length as a function of substitutions per site.

https://doi.org/10.1371/journal.pone.0273454.g005
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almost identical to the P. agardhii 1811 system, including the same number of Cas genes and

same direct repeat sequence. The difference between the Cas subtype III-D in P. agardhii 1811

and 1812 is that there is a second CRISPR array in P. agardhii 1812 with a different repeat

sequence (TGCAAAATGGGACACTTTGTAAA).

Given the general lack of cyanophage isolates and previous research stating that viral infec-

tions are common in cyanobacterial harmful algal blooms, the CRISPR arrays for each isolate

was searched for viral sequences from the single Planktothrix-specific virus, PaV-LD (Table 3).

Some open reading frames (ORFs) of PaV-LD appeared in several isolate CRISPR arrays, such

as ORF007, which encodes a replicated DNA helicase, and ORF088, which encodes the tail

tape measure protein. Of those that contained hits for ORF088, two sequences showed vari-

ability (1801_III-B_41 and 1811_I-D_27) which might suggest the presence of related, but not

the same, Siphoviridae. Additionally, these viral sequences were found more frequently in P.

Fig 6. Common and unique CRISPR-Cas systems found in P. agardhii isolates of Sandusky Bay.

https://doi.org/10.1371/journal.pone.0273454.g006
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agardhii isolate 1813 than in any other isolate (Table 3). FASTA sequences of each CRISPR

array spacer can be found in the S5 Table.

While some of the CRISPR array spacer sequences can be linked to PaV-LD, most of the

sequences code for unknown organisms. Indeed, only 28.4% of the CRISPR array spacer

sequences can be aligned with reference sequences; 13.4% can be found in P. agardhii NIES-

204, P. agardhii PCC 7805, or P. rubescens PCC 7821, and 14.9% can be found in PaV-LD.

There were four CRIPSR array spacer sequences which were found in half or more of the P.

agardhii Sandusky Bay isolates (Table 4). The first spacer sequence can be found in 16 isolates,

as well as P. agardhii NIES-204 and P. agardhii PCC 7805, suggesting common infectious

agent across geographical distances (Table 4). The last two spacer sequences can be found in

10 and 9 isolates, respectively, and do not have any known reference sequence, likely denoting

local infectious agents.

Nutrient acquisition and metabolic pathways

Given the hypothesis that Planktothrix agardhii dominates in some regions because it is a bet-

ter scavenger for nitrogen, we analyzed the isolate genomes for several nitrogen metabolism

genes and related them to reference sequences containing the same genes. First, we looked at

the nrtABCD cluster, which encodes for a nitrate transport system, and its flanking genes,

narB, which converts nitrate to nitrite, and nirA, which converts nitrite to ammonia (Fig 7A).

This cluster was found in reference P. agardhii NIES-204, which showed sequence similarity to

Table 3. Table of CRISPR spacer sequences with matching PaV-LD ORF and function.

PaV-LD

ORF

PaV-LD function Lowest E-

value

Greatest %

Identity

Greatest Bit

Score

CRISPR spacer

PaVLD_

ORF007R

replicative DNA helicase 5.95E-08 93.182 67.1 1025_III-B_24, 1026_III-B_17, 1027_III-B_24, 1029_III-B_32, 1031_III-B_30,

1032_III-B_32, 1807_III-B_32, 1808_III-B_30, 1809_III-B_30, 1813_III-A_48

PaVLD_

ORF088R

tail tape measure protein 8.26E-14 100 86 1029_III-B_31,1030_III-B_26, 1031_III-B_29, 1032_III-B_31, 1801_III-B_41�,

1807_III-B_31, 1808_III-B_29, 1809_III-B_29, 1811_I-D_27�, 1813_III-A_47

PaVLD_

ORF114L

hypothetical protein 2.81E-10 100 73.4 1029_III-B_22, 1030_III-B_19, 1031_III-B_20, 1032_III-B_22, 1807_III-B_22,

1808_III-B_20, 1809_III-B_20, 1811_III-B_41�, 1812_III-B_14�, 1813_III-A_39

PaVLD_

ORF027L

hypothetical protein 9.19E-11 100 75.2 1029_III-B_26, 1030_III-B_23, 1031_III-B_25, 1032_III-B_26, 1807_III-B_26,

1808_III-B_24, 1809_III-B_25, 1813_I-D_6�, 1813_III-A_43

PaVLD_

ORF119L

crossover junction endo-

deoxyribonuclease

8.31E-08 100 64.4 1029_III-B_24, 1030_III-B_21, 1031_III-B_23, 1032_III-B_24, 1807_III-B_24,

1808_III-B_22, 1809_III-B_23, 1813_III-A_41

PaVLD_

ORF018R

integrase 2.38E-08 100 66.2 1029_I-D_9, 1030_I-D_9, 1031_I-D_9,1032_I-D_9, 1807_I-D_9, 1808_I-D_9,

1809_I-D_11

PaVLD_

ORF071R

capsid protein 0.002 93.75 50 1801_III-B_37�, 1803_I-D_4 1804_I-D_4, 1805_I-D_4, 1806_I-D_4

PaVLD_

ORF005R

replication-related protein 4.35E-07 94.872 62.6 1813_I-D_16

PaVLD_

ORF006R

hypothetical protein 2.98E-08 100 66.2 1813_I-D_1

PaVLD_

ORF010R

site-specific DNA methylase 2.38E-08 100 66.2 1813_I-D_22

PaVLD_

ORF056L

hypothetical protein 6.23E-08 100 64.4 1813_I-D_17

PaVLD_

ORF100R

anti-repressor protein 5.25E-04 91.667 52.7 1813_I-D_15

PaVLD_

ORF109R

hypothetical protein 2.90E-07 97.297 63.5 1813_I-D_13

�Denotes sequences with minor deviations from the other sequences for that PaV-LD ORF.

https://doi.org/10.1371/journal.pone.0273454.t003
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the cluster found in the isolates ranging from 97.2–99.9% identical. The most conserved genes

compared to the reference were nirA and nrtD, while the least conserved genes were nrtA,

nrtB, and narB. Indeed, the most common cluster among the isolates was the sequence found

in 1809 (Fig 7), which was highly divergent in nrtAB and to a lesser degree in nrtC.

Fig 7. Nitrogen acquisition and storage genes found in P. agardhii. A. Sequence alignment of the nrtABCD cluster in reference NIES-204 and the P. agardhii
isolates from Sandusky Bay. B. Sequence alignment of cyanophycin synthetase cphA1. C. Partial sequence alignment of cyanophycinase (cphB) and

cyanophycin synthetase chpA2 operon.

https://doi.org/10.1371/journal.pone.0273454.g007

Table 4. Table of common CRISPR spacer elements across a majority of isolates (� 10).

CRISPR Spacer sequence: Found in isolates: Reference sequences (E-

value)

TATTGCAAAACATTTACGATAGATAAAAAAACATTTTCT 1025, 1026, 1027, 1029, 1031, 1032, 1033, 1803, 1804, 1805, 1806,

1807, 1808, 1809, 1810, 1813

P. agardhii NIES-204

(8E-10)

P. agardhii str. 7805

(8E-10)

AGGGAACTGCTATGTTTTTACCTCCTATGCGGTCATTACTTTTAA 1025, 1026, 1027, 1029, 1031, 1032, 1807, 1808, 1809, 1813 P. agardhii str. 7805

(9E-13)

TCGTTTTCAGCTTTTAATTTTTGGGCTTTTTTCTTGATTTCGTT 1025, 1026, 1027, 1029, 1031, 1032, 1807, 1808, 1809, 1813 None

CATAACTATTAACTATAGCAGTTTTTTCCTGTTCTT 1025, 1027, 1029, 1030, 1031�, 1032, 1807, 1808, 1810 None

�Denotes the presence of more than one copy of this spacer in different CRISPR segments.

https://doi.org/10.1371/journal.pone.0273454.t004
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Several other genes included in the KEGG pathway for nitrogen metabolism were analyzed.

In addition to the nrtABCD cluster as described above, there was the presence of an ABC-type

nitrate/sulfonate/bicarbonate transporter (a NitT/TauT family) that was unique to three iso-

lates and one reference sequence: NIES-204, 1025, 1026, 1027 (Table 5). Further, there are two

ammonium transporters, amt1 and amt3, which can be found in all isolates and both NIES-

204 and NIVA-CYA 126/8 (Table 5). Sequence similarity was generally > 99% compared to

reference sequences, apart from 1033 (96.1%) and 1813 (93.6%). Finally, there were several dis-

tinct beta carbonic anhydrases (CA) / carbonate dehydratase, which are involved in the con-

version of HCO3- to CO2. CA1 showed high conservation across the isolates and > 99.5%

sequence similarity to the reference sequence. CA2 was also highly conserved, showing slightly

lower sequence similarity to the reference at > 98.3%, but was missing from isolate 1812. CA3

was missing from three isolates: 1025, 1026, and 1027. These three isolates instead contained

the carbonate dehydratase found in reference NIES-204 (Table 5).

Nitrogen storage and usage within the cell was examined by looking at the cyanophycin

storage genes (cphB, cphA1 and cphA2) and the phycobilisome degradation gene (nblA). NblA
was 100% identical to the long nblA gene found within reference NIES-204 (protein ID:

BBD52965.1) and NIVA-CYA 126/8 (protein ID: WP_027255584.1). Alternatively, there were

differences in the cphBA2 and cphA1 genes between the Sandusky Bay isolates and the refer-

ences (Fig 7B, 7C).

Table 5. Sequence similarity of important nutrient acquisition genes for Planktothrix agardhii. Ammonium transporter genes are linked in the genome and were ana-

lyzed as a gene set.

ABC-type nitrate/

sulfonate/bicarbonate

transporter

Ammonium transporters

(amt1, amt3)

Carbonic anhydrase

1 (beta)

Carbonic anhydrase

2 (beta)

Carbonic anhydrase 3

(beta)

Carbonate

dehydratase (beta)

NIES-204 Ref. (BBD53028.1) - Ref. (BBD56413.1) Ref. (BBD55070.1) - Ref. (BBD56294.1)

NIVA-CYA

126/8

- Ref. (WP_042151837.1,

WP_072005174.1)

- - Ref. (WP_042155137.1) -

1025 100 99.44 100 99.72 N/A 100

1026 100 99.42 100 99.72 N/A 100

1027 100 99.44 100 99.72 N/A 100

1029 N/A 99.93 99.66 99.86 100 N/A

1030 N/A 99.93 99.66 99.86 100 N/A

1031 N/A 99.93 99.83 99.72 100 N/A

1032 N/A 99.93 99.83 99.72 100 N/A

1033 N/A 96.11 99.83 99.72 99.85 N/A

1801 N/A 99.46 99.49 98.44 99.56 N/A

1803 N/A 99.46 99.83 98.3 100 N/A

1804 N/A 99.44 99.83 98.3 100 N/A

1805 N/A 99.46 99.83 98.3 100 N/A

1806 N/A 99.44 99.83 98.3 100 N/A

1807 N/A 99.1 99.83 99.86 100 N/A

1808 N/A 99.11 99.83 99.86 100 N/A

1809 N/A 99.11 99.83 99.86 100 N/A

1810 N/A 99.51 99.83 98.44 99.41 N/A

1811 N/A 99.13 99.49 98.3 99.56 N/A

1812 N/A 93.58 99.49 N/A 99.56 N/A

1813 N/A 99.42 99.83 99.57 100 N/A

https://doi.org/10.1371/journal.pone.0273454.t005
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Discussion

Here we present 20 isolates of Planktothrix agardhii isolated from the same geographical

region (Sandusky Bay, Lake Erie) in two different bloom seasons: 2016 and 2018. These isolates

have been sequenced and characterized in terms of relatedness to each other, production of

secondary metabolites, CRISPR-cas defense system, and nutrient acquisition. These isolates

are related but unique and aligned with the two reference sequences previously published. All

the isolates from Sandusky Bay clustered with P. agardhii NIES-204, a strain from Lake Kasu-

migaura, Japan [51], and P. agardhii NIVA 126/8, a strain from Lake Langsjön, Sweden [39],

separated from two P. rubescens strains (Fig 3), similar to the relationship seen in other studies

[52]. Despite the difference in temporal isolation, these isolates share a minimum genomic

core of 45% (Fig 1), and clustered in groups independent of year of isolation (Fig 2). This

seems to reflect what is found in other cyanobacteria species in the Laurentian Great Lakes

region, as work on Lake Erie Microcystis spp. identified a core genome of similar size at 45%

[36].

The clusters reflect minor differences in metabolic processes (Table 2), suggesting that

within the same population, these minor differences could be utilized for ecophyisological

adaptations. Group 1 was characterized by increased gene presence related to glucose binding,

which may allow for increase rates of uptake of organic carbon, which was shown to be low in

Planktothrix under normal conditions [53]. Group 2 was characterized by an increased gene

presence related to oxidoreductase activity, possibly indicating strains that are more efficient

at cellular respiration, or better under stressful environments, as seen in Microcystis [54].

Group 3 was characterized by containing more genes associated with aldehyde-lyase activity,

which may indicate elevated levels of amino acid biosynthesis and nutrient metabolism, partic-

ularly under self-shading or darker water conditions [53]. The last group was characterized by

more cytochrome complex genes, possibly indicating isolates with increased photosynthetic

capabilities [55].

Our P. agardhii isolate genomes contain multiple secondary metabolite biosynthetic clus-

ters which are found in other isolates of the same species, including microcystins, two types of

aeruginosin clusters, anabaenopeptins, cyanopeptolins, microviridins, and prenylagaramides.

Previous characterization of some of these isolates have identified three microcystin congeners

that are produced by them; demethylated MC-RR, demethylated MC-LR, and MC-YR [28].

Our genetic analysis of the MC biosynthetic cluster revealed the presence of a common cluster

across 7 of the 10 MC-producing isolates (Fig 4A), which consisted of several dissimilar

regions compared to the MC cluster found in reference P. agardhii NIVA-CYA 126/8, a strain

capable of producing MC-RR and MC-LR [17]. This reference strain is also known to produce

aeruginosins, anabaenopeptins and microviridins, all biosynthetic clusters that can be identi-

fied in the Sandusky Bay isolates (Fig 4B, 4C, 4E). Indeed, we required two reference sequences

for the aeruginosin biosynthetic cluster (Fig 4B), as there are two distinct clusters which have

been identified [56]. One or the other of these different but related clusters can be found in all

the Sandusky Bay isolates. The cluster found in P. agardhii NIVA-CYA 126/8 is known to pro-

duce aeruginoside 126A and aeruginoside 126B (Ishida et al. 2007), while the cluster found in

P. agardhii NIES-204 was thought to produce aeruginoside 102 based on its similarity to the

clusters found in Microcystis NIES-843 [57] but may not produce aeruginosins at all due to the

divided structure of aerK [56]. Unfortunately, full secondary metabolite screening has not yet

been performed on these isolates, therefore we can only describe the genetic potential and not

the actual production of any one secondary metabolite and its benefit to the producer.

This work presents the first analysis of the types of CRISPR-cas subtypes found in P. agard-
hii (Fig 6). The subtypes described here are not unique to P. agardhii as a majority of studied
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cyanobacterial genomes contain a subtype I-D system, which seems to be unique to the phy-

lum Cyanobacteria, and subtypes III-A and III-B are rarer [58]. Indeed, much work has been

done on the diversity of CRISPR-cas systems found in Microcystis aeruginosa, both locally [36]

and abroad [34, 59]. These studies focus on the diversity of CRISPR spacer sequences, suggest-

ing that these organisms are challenged by a diverse group of cyanophages and foreign DNA

that are largely uncharacterized [33, 35]. The CRISPR spacer sequences described here

(Table 3) for P. agardhii can be attributed to the single sequenced Planktothrix-specific cya-

nophage PaV-LD [29]. Nonetheless, these viral spacer sequences are only 14.9% of the

CRISPR-cas system, meaning most of these sequences encode for unknown cyanophages and

foreign plasmids. Interestingly, some CRISPR spacer sequences can be found in reference

sequences of P. agardhii (Table 4), further suggesting that some foreign genetic elements may

be common across geographical distances.

Finally, because P. agardhii is known to be an efficient scavenger of nitrogen [11], we ana-

lyzed parts of the nitrogen uptake pathway for specific genes of interest and differences. Three

isolates (1025, 1026, and 1027) contained an extra ABC-transporter for nitrate, sulfonate, and

bicarbonate as well as a unique carbonate dehydrogenase (Table 5), possibly making them a

better competitor for nutrients. The nrtABCD cluster, which encodes for a nitrate transport

system, and its flanking genes, narB, which converts nitrate to nitrite, and nirA, which converts

nitrite to ammonia, all contained mutations when compared to the reference sequence found

in P. agardhii NIES-204. These genes are in a single operon in P. agardhii but are scattered

through the genome of Microcystis aeruginosa [60]. While there was no difference in the nblA
genes found across all isolates and reference sequences, there were several deletions found in

the cphA2 gene, part of the cphBA2 operon, of 1033 and 1812 (Fig 7C). The cphA2 gene is tran-

scribed when nitrogen levels are low [11], and deletions in this gene may indicate ineffective

or lowered affinity protein products. Further, isolate 1812 also had a different deletion in

cphA1, the cyanophycin synthetase that is active under nitrogen replete conditions [11], mak-

ing it the most divergent isolate compared to both the reference sequences and other isolates

in terms of nutrient related genes.

To summarize, we present here the genomes of 20 isolates of Planktothrix agardhii from San-

dusky Bay, a Lake Erie embayment. These genomes are closely related to each other and other iso-

lates of the same species but display genetic variations that indicate high levels of ecological

partitioning within the niche. These isolates have the genetic capabilities of producing several bio-

active secondary metabolites, including microcystin congeners and two distinct classes of aerugi-

nosides. Further, the isolates contain at least two CRISPR-cas systems, encoding for PaV-LD as

well as many unknown foreign genetic elements. Additionally, genetic differences in nitrogen

uptake pathways may indicate that while P. agardhii is considered a good scavenger of nitrogen,

some isolates may be better scavengers than others. This work is just the first step in better under-

standing how P. agardhii is equipped to dominate harmful algal blooms across the globe.
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