Persistent Homology on Streaming Data

Anindya Moitra, Nicholas O. Malott, and Philip A. Wilsey
Dept. of EECS, University of Cincinnati, Cincinnati, OH 45221, USA
Email: moitraaa@mail.uc.edu, malottno@mail.uc.edu, philip.wilsey @uc.edu

Abstract—This paper introduces a framework to compute
persistent homology, a principal tool in Topological Data Anal-
ysis, on potentially unbounded and evolving data streams. The
framework is organized into online and offline components. The
online element maintains a summary of the data that preserves
the topological structure of the stream. The offline component
computes the persistence intervals from the data captured by the
summary. The framework is applied to the detection of horizontal
or reticulate genomic exchanges during the evolution of species
that cannot be identified by phylogenetic inference or traditional
data mining. The method effectively detects reticulate evolution
that occurs through reassortment and recombination in large
streams of genomic sequences of Influenza and HIV viruses.

Index Terms—Persistent homology, Topological Data Analysis,
data stream mining, viral evolution, computational genetics.

I. INTRODUCTION

Persistent homology is a powerful tool for data analysis
that extracts information about topological features such as
connected components, loops, and voids in a point cloud at
different spatial connectivities [1]-[5]. Given a set of data
points, persistent homology creates a sequence of increas-
ingly connected and nested subspaces. The persistence of
each topological feature is then recorded as its lifespan as
the feature appears and subsequently disappears through the
sequence of nested subspaces. As a result, persistent homology
segregates significant topological features from noise based
on their lifespans, and often discovers insight not discernible
by conventional methods of data mining [6]-[11]. The capa-
bilities of persistent homology come at the cost of its high
computational complexity. In particular, the memory required
for the computation grows exponentially with the number and
dimension of data objects in the input point cloud [5].

A data stream is a potentially unbounded sequence of
continuously arriving data objects that cannot be stored in
the memory available to a computer. Since random access to
the data is unavailable, algorithms dealing with data streams
must make only one, or very few, passes through the data
[12]. Moreover, the data generation process can be non-
stationary, resulting in a data stream that evolves over time.
Such unique challenges of data stream mining coupled with
the high computational cost of persistent homology are the
primary reasons why persistent homology has not yet been
applied to data stream mining.

Contributions: This paper is a first step to bridge the
gap between data stream mining and persistent homology.

Support for this work was provided in part by the National Science
Foundation under grants ACI-1440420 and IIS-1909096.

We develop a general-purpose framework for computing per-
sistent homology on potentially unbounded streaming data.
Consistent with the standard computational paradigm [13] for
processing data streams, our approach consists of two principal
components: (i) online, and (ii) offline.

The online component involves continuously partitioning
the data stream into small clusters (microclusters) and updating
a summary of the stream with the help of a data structure,
known as the feature vector [13]-[17]. This data structure
is designed to maintain a bounded space summary of the
stream for preserving the “meaning” of the original data points
without the need of actually storing them. Moreover, if the data
stream evolves over time, the older microclusters are faded out
to assign more importance to the recent data points [13].

The offline component comprises the computation of per-
sistent homology at fixed intervals on the centers of the
microclusters maintained during the online step. Persistent
homology captures the topological structures of the data by
computing a set of intervals (or lifespans) during which those
structures exist. The lifespans of topological features are the
final outcomes of our framework that are displayed in one of
the standard output formats such as barcodes or persistence
diagrams. Thus, by continuously monitoring the output of the
framework, one can visualize the current state of the stream
and detect any changes in the topological properties with the
progression of the stream.

The proposed framework is applied to streams of genomic
sequences in order to detect reticulate genomic exchanges
during the evolution of viruses. While the phylogenetic tree
structure [18] is the accepted paradigm to represent the vertical
or clonal evolution of species, it cannot effectively capture
horizontal or reticulate events that typically occur through
species hybridization, lateral gene transfer, or recombination
and reassortment. Persistent homology has been shown to
provide a comprehensive representation of both vertical and
horizontal evolution at the same time [9]. While our framework
can be applied to any data stream, the effectiveness of the
approach is demonstrated by extending the study of viral
evolution in [9] to streams of genomic sequences of Influenza
and HIV viruses. By monitoring the output of this framework,
one can identify the occurrence of reticulate events during the
evolution of organisms. Our approach is not limited by the
length or the number of genomic sequences, and the insight it
derives is not available to traditional methods of data mining
or the classical approaches to the study of evolution [9].

II. BACKGROUND AND RELATED WORK

Background: The first part of this section briefly explains the
introductory ideas of persistent homology. An intuitive visual
presentation of the basic concepts can be viewed at [19]. A
formal exposition of the subject is available at [20], [21].

Homology is a way of counting the topological features
of a space. In topological data analysis, a given set of data
points is assumed to be sampled from an underlying space S
that has an unknown probability distribution. Computing the
homology of such arbitrary topological spaces is difficult. To
overcome this obstacle, the topology of S is approximated
by a combinatorial structure, called a complex, for which
homology can be computed algorithmically [5]. Simplicial,
cubical, and CW complexes [22] are some of the commonly
used complexes. Since the simplicial complex is the most
widely used with a richer theoretical foundation than others
[5], persistent homology computed from simplicial complexes
is examined in this paper.

A simplicial complex K is a set of points, edges, triangles,
tetrahedrons and so on. K comprises all possible subsets
that can be constructed from the distinct points in K. Each
topological feature of a simplicial complex is assigned a
dimension p. The set of p-dimensional features forms a group,
called the p-th homology group H,.

A subset K; C K is called a subcomplex if K; itself is a
simplicial complex. A filtration of a complex K is a sequence
of nested subcomplexes & = Ko C K1 C K, C ... C K, =
K. A complex with a filtration is called a filtered complex.

For the computation of persistent homology, a filtered
simplicial complex is constructed on a given set of data points.
Each subcomplex in the filtration is associated to a distinct
value of a scale parameter . Since the topological structure
of each subcomplex is usually different from those of other
complexes in the filtration, we say that the topology of a
simplicial complex changes with the scale parameter . At
€ = 0, the simplicial complex is a set of disconnected points.
As ¢ increases, the points start becoming connected to one
another by edges, and subsequently form triangular faces,
tetrahedrons, and so on. With increasing ¢, the connected
components become longer, existing connected components
are merged into one another, holes and voids appear (or, are
born) and eventually get filled (or, die). Persistent homology
tracks the birth and death times of these topological features
as ¢ increases from 0 to a user-specified threshold €,,4,. A
topological feature is born at €p;,¢5, and dies at €geqth-

The output of persistent homology is a set of pairs of real
numbers (£pirth, Edeath)- The difference between the £gearn
and €p;4p times is called the lifespan or persistence of a
topological feature. The lifespans of significant topological
features are much longer than those of noise. The pairs
(Ebirth, €deatr) can be displayed as a set of lines, called
a barcode, or as a 2-dimensional scatter plot, known as a
persistence diagram.

Related Work: To the best of our knowledge, there is
no existing framework or technique for computing persistent

homology on data streams. Here, we briefly outline the liter-
ature our framework is based on. The method for continuous
summarization of the stream is based on the online compo-
nent of data stream clustering algorithms such as DenStream
[16], CluStream [15], ClusTree [17], and streaming k-means
[12]. Tt has been shown that when a set of data objects
is partitioned into another set of small clusters, replacing
the original data objects by the cluster centers results in a
bounded-error approximation of the initial data [23], [24].
In the same spirit, the centers of the microclusters produced
during the summarization of the stream accurately represent
an abstract of the data stream and preserve its topological
properties. This is demonstrated in Section IV of this paper.
The offline component of our framework, that comprises
the construction of simplicial complexes and computation of
persistence intervals, is based on the works of [21], [25], [26].
It is worth noting that Kerber er al. [27] developed a
streaming algorithm for the matrix reduction procedure that
generates the persistence intervals. The procedures described
in [27] construct a pipeline for computing persistence of
large simplicial fowers using streaming algorithms of bounded
space and time. The input to their algorithm is a large tower,
a generalized representation of a filtered complex, that is
typically stored on the disk. However, their solution can not
be directly applied to the real time streaming applications
because they do not include any strategy to bound the size
of the complex itself as data points continuously arrive from a
potentially infinite stream. The solution of [27] can be regarded
as a bounded memory algorithmic pipeline for computing
persistence from a large data set stored on the disk.

III. PERSISTENT HOMOLOGY ON DATA STREAM

This section presents the approach for computing persistent
homology on streaming data that is outlined in Section I.
The presentation is divided into two parts, namely: (i) the
data summarization or the online component, and (ii) the
computation of persistence intervals or the offline component.

A. Data Summarization

The objective of the online component is to maintain a
bounded summary or abstract of a potentially unbounded
stream. It is important to bound the number of data objects
in the summary up to the limit that will result in a simplicial
complex (in the subsequent offline step) that can be accom-
modated within the available memory.

The summary of the data stream is maintained by utilizing
the concept of microclusters commonly employed in stream
clustering algorithms. In this section, we outline a generic data
summarization model that is similar to the online component
of several algorithms such as DenStream [16], CluStream [15],
ClusTree [17], and streaming k-means [12]. Each algorithm,
however, adds to or modifies the generic model to include
additional features and capabilities. In practice, the choice of
the data summarization model may vary depending on the
nature of the stream and the application.

In order to process evolving streams, each data point is
assumed to have a weight 3~*2? that decreases exponentially
with the time (At) elapsed since its arrival. 8 > 0 is often set
to 2. A > 0 is a user defined input parameter, called the decay
parameter. Higher values of A denote lower importance of the
historical data points compared to the recent ones.

Microclusters are small groups of similar data points. A
microcluster at time ¢ for a group of points Xj,Xo,...,X,
with arrival time stam&s T1,T5,...,T, is defined as
{w,LS,SS}, where w = > B~2¢=Ti) is the weight, LS =

n =1

> B"\(t_T'i) x; is the weighted linear sum, and SS =
= 1

Z B~Mt=T) x2 is the weighted squared sum of the points

1n the microcluster. The tuple {w, LS, SS} is called the feature
vector of a microcluster. From the components of the feature
vector, the center p and radius r of a microcluster are

LS SS LS\2 .
computed as 4 = —, and r = \/ — — (—) . Microclusters

. w w
have a user defined maximum radius 7,,4.

A new data point x; can be added to a microcluster by
incrementally updating its feature vector: w < w+ 1, LS +
LS+x;,and SS + SS—&—X?. When a new data point x arrives,
we check if x can be added to its nearest microcluster ¢ by
computing the updated radius r of c. If » < r,,44, then X is
added to c. If » > r,,42, @ new microcluster is created with
only one data point X in it.

A microcluster loses its weight during the time no new
data point is added to it. If no data point is added to a
microcluster {w, LS, SS} during a time interval At, it is
updated to {3~ tw, BTAAMLS, B=AAESSY I the weight of a
microcluster falls below a threshold w,,,;,, it is considered to
be outdated. We limit the growth of the number of microclus-
ters in memory by eliminating those that did not receive new
data points long enough to have become outdated. Assuming
£ = 2, the minimum time At, required for a microcluster to
decay into an outdated one can be computed from the equation
1+ 272 e, 1 log (ﬁ
The weights of all microclusters are checked every At. time
period to prune out those that have become outdated. The
microclusters are organized in a tree structure to speed up the
search for the nearest microcluster of a new data point x.

The proposed framework for computing persistent homol-
ogy (up to dimension p and scale parameter €) on streaming
data based on the data summarization model described above
is outlined in Algorithm 1. The maximum time required to
process each new data point from the stream during the
online component is linear in the number of microclusters. The
offline component that involves the computation of persistence
intervals is described in the following subsection.

= Wpmin as At, =

B. Computation of Persistence Intervals

Every time the output of persistent homology is requested,
a maximal simplicial complex K is constructed at € = €,,42
on the set of centers C of the microclusters maintained during

Algorithm 1 Streaming Persistent Homology

Given: stream, T'maz, Wmin, \, P, €

i Ate = [% log (711;::,:11)—‘

2. while new data points arrive from stream do

3 Read the next point x from stream at current time ¢.
4 Find the microcluster ¢ nearest to X.

5: Compute the updated radius, 7 of ¢, as if X is in c.

6 if r < r;q. then

7 Addxtoc

8: else

o Create a new microcluster using x

10: end if

1 if (¢t modulo At.) = 0 then

12: for each microcluster ¢ do

13: if w < Wmin then

14: Delete ¢

15: end if

16: end for

17: end if

18: if user requests the output of persistent homology then
19: Compute persistence intervals

20: end if

21: end while

the online step. Every simplex o of K is defined to have a
weight w that is the maximum of the lengths of all the edges
in 0. A O-simplex {x} has w =0, and a 1-simplex {x,y} has
w = dist(x,y), the distance between the points x and y. A
total ordering is imposed on the simplices of K such that:

o the simplices are sorted according to their weights, and
o a face of a simplex precedes the simplex.

By assigning the weights and imposing the total ordering on
the simplices, the filtration of K is extracted. The simplicial
complex K is then called a weight-filtered complex [25].

Let the simplices with the total ordering imposed on them
are denoted by 01,09, ...,0,,, Where ng is the total number
of simplices in K. A square matrix 0, called the boundary
matrix, of order ng is constructed as:

0ling] = {;

The columns and rows of O represent the simplices of the
filtration arranged according to the total order. The boundary
(or, co-dimension one face) of a simplex is recorded in its
column (by a 1 in the corresponding row).

The boundary matrix 0 is reduced to another 0—1 matrix Or
by Algorithm 2, called the standard algorithm [21], [26]. Let
low(j) be the row index of the lowest 1 (i.e., the highest row
index of a 1) in column j. If the entire column is zero, then
low(j) is undefined. We scan the columns of J from left to
right, and when we reach a column j such that there is another
column jy < j with low(jo) = low(j), the column jo is added
to j. The boundary matrix is reduced when low(jo) # low(j)
for any two non-zero columns jy # j. The worst case run time
of the standard algorithm is cubic in the number of simplices
ng. In practice, the algorithm has displayed a quasi-linear

if o; is a co-dimension one face of o;
otherwise.

behavior on real-world data [27]. A number of solutions have
been designed to improve the worst case run time [5], [27].

Algorithm 2 The standard algorithm

i: for j =1tonkg do

2 while there exists jo < j with low(jo) = low(j) do
3 add column jo to column j

4 end while

s. end for

Once the boundary matrix 9 is reduced to O, the birth and
death times of topological features are recorded from Jg, and
are plotted as barcodes or persistence diagrams. The sequence
of barcodes or persistence diagrams, displayed at fixed time
intervals during the progression of the stream, is the final
outcome of our framework.

IV. EXPERIMENTS

In this section, the proposed framework is applied to identify
reticulate genomic exchanges during the evolution of two
different types of viruses: Influenza A and HIV. In addition,
we demonstrate the effect of the decay parameter A on the
summary of the topological features maintained in memory
with the help of an artificially generated data set.

For maintaining a summary of the stream, the online compo-
nent of ClusTree [17], a well-established data stream clustering
algorithm, is used. It is worth mentioning that this work is
not tied to ClusTree, and could have used any other stream
clustering algorithm. The choice of ClusTree is motivated by
some of its additional advantages, such as:

« the ability to process very fast as well as slower streams,

e a dynamic size of the data summarization model that
adapts to the stream speed, and

« the ability to handle concept drift and outliers.

The centers of the microclusters maintained by ClusTree
constitute a summary of the stream. Persistent homology is
computed on the set of microcluster centers during the offline
step at regular intervals. Below is a list of the implementations
used for the experiments described in this paper.

e ClusTree: the R interface [28] to the algorithm imple-

mented in Java for Massive Online Analysis [29].
o Persistent Homology: the R interface [30] to the GUDHI
library [31], [32], written in C++.
For processing the streams of viral genomic sequences, we
use maxHeight = 10 (for the maximum height of the tree)
and horizon = 450 (for the range of the time window) in the
implementation of ClusTree. The centers of the microclusters
are transformed into a Vietoris—Rips (VR) complex [25] each
time the persistence intervals are computed. The VR complex,
a type of simplicial complex, is the most widely used and the
only practical complex for higher dimensional data. The exe-
cution times reported in the following subsections are captured
on a computer with an Intel(R) Core(TM) i7-3630QM CPU
@ 2.40 GHz and 8 GB of memory, and are averaged over 5
runs. The data sets used for the experiments were stored in
the hard disk of the computer, and were read as file streams

m {:.,) |
7 R)

4
I
e
Ry

Summarization of Stream with A = 0.024 Persistence Diagram

&

|
€death

| gt

* Data points
A
Microcluster centers ek

| | | | | r T T T 1
0 2 4 6 8 0.0 05 1.0 15 20

pirth

Summarization of Stream with A =0.012 Persistence Diagram

On
Lo ¥
g %

3

|
Py

]
€death

* Data points
Microcluster centers

| | | | | ' T T T 1
0 2 4 6 8

€death

* Data points
Microcluster centers

4 6 8 0.0 0.5 10 15 20
Epirth

Fig. 1: Effect of the decay parameter \ on the retention of
topological features in the data summary

(i.e., one data point at a time). The performance and accuracy
of our framework are demonstrated by the execution times,
memory usage and its overall effectiveness in the detection of
reticulate events during the evolution of viruses.

A. Effect of the Decay Parameter on Data Summary

ClusTree uses an exponential time-dependent decay func-
tion f(At) = 272t to fade out existing microclusters with
the time elapsed (At) since their creation. The decay parameter
A > 0 controls the rate at which the microclusters are outdated.
The higher A is, the faster the algorithm “forgets” older data. A
user can, therefore, control the size of the data summarization
model by varying the decay parameter A. In terms of the
topological structures of the stream, it means that the user can
control the storage of the number of topological features in
memory with the help of A. A larger X shortens the “history” of
topological features maintained in memory, whereas a smaller
A expands the “history”. This is illustrated in Figure 1 with
the help of a synthetic data stream having a total of three
significant topological features (i.e., 1-dimensional loops). The
left column of Figure 1 shows the original data points and
the microcluster centers at the end of the stream. The right
column shows the output of persistent homology, displayed as

°

-0.05 0.00 0.05

-0.10

-0.05 0.00 0.05 0

-0.10

-0.05 0.00 0.05 0

-0.10

-0.05 0.00 0.05 10

-0.10

10

s

-005 0.00 0.05

-0.10

-0.05 0.00 0.05 10

-0.10

|
"3
g)

~ e Data points

|
2
<
€death

Stream: 1 - 1000

~ e Data points 1
Microcluster centers o)
R,
X e
., £
7. 3
Sagk
Sy
Wi
I I I I I
-0.10 -0.05 0.00 0.05 0.10 0.00 0.05 0.10 0.15
Ebirth
Stream: 1001 - 2000 Persistence Diagram at 2000 Points
w0
~ e Data points 37"

Microcluster centers

q

&

s
L)
€death

%
- Sren
I I I I I |
-0.10 -0.05 0.00 0.05 0.10 0.00 0.05 0.10 0.15
Epirth
Stream: 2001 - 3000 Persistence Diagram at 3000 Points
w
~ e Data points 3T
Microcluster centers
.y
A e
- ‘;‘\, ;1 e £
3 3
w
I I I I I T T T 1
-0.10 -0.05 0.00 0.05 0.10 0.00 0.05 0.10 0.15
Epirth
Stream: 3001 - 4000 Persistence Diagram at 4000 Points
= [
~ e Data points v,:.: e s s
i et 3
Microcluster centers ..:'.."11'.’
e o WY <
<9 ¢ 5
2 &
-,
ot L eml
i Y
I I I I I T T T 1
-0.10 -0.05 0.00 0.05 0.10 0.00 0.05 0.10 0.15
Epirth
Stream: 4001 - 5000 Persistence Diagram at 5000 Points
w
* Data points s7°

Microcluster centers

Y
€death

fa
k.
F -
‘.

o
%

r T T 1
-0.10 -0.05 0.00 0.05 0.10 0.00 0.05 0.10 0.15

Epirth
Stream: 5001 - 6000 Persistence Diagram at 6000 Points

Microcluster centers

-0.10 -0.05 0.00 0.05 0.10

Epirth

Fig. 2: Reticulate evolution in Avian Influenza virus

persistence diagrams, computed on the microcluster centers.
The black dots and red triangles represent O-dimensional
connected components (Hgy) and 1-dimensional loops (H;) on
the persistence diagrams. Since significant topological features
have longer lifespans, their death times are much greater than
their birth times. Thus, the red triangles lying far away from
the diagonal (the 45° line that passes through the origin at
(0,0)) of the persistence diagram represent the loops formed
by the microcluster centers. On the other hand, the points close
to or on the 45° line represent noise.

Although not explicitly shown in Figure 1, the loops appear
sequentially, one at a time, during the progression of the
synthetic stream. By adjusting the value of A, a user is able to
retain as many or as few loops as desired in the summary of
the stream. For example, setting A = 0.024 retains only one
loop, whereas A = 0.0075 preserves all three loops at the end
of the stream. This characteristic of the data summarization
model will be useful in applications where the user intends to
examine the “history” of topological features of an evolving
stream beginning from different times in the past.

B. Evolution of Influenza Virus

As outlined in Section I, vertical or clonal evolution is
usually described with the help of a phylogenetic tree structure.
However, horizontal or reticulate evolution creates loops or
cycles that cannot be represented by a tree. Persistent ho-
mology has been shown to provide a comprehensive math-
ematical structure that captures both vertical and horizontal
evolutionary events at the same time [9]. The study in [9]
shows that in the absence of reticulate evolution, one does
not observe significant 1-dimensional (or higher) topological
features in the genomic sequences of viruses. However, as hor-
izontal evolution begins to occur through viral recombination
and reassortment, the resulting loops manifest themselves as
significant 1-dimensional topological features.

Individual protein segments unaffected by reassortment
represent the absence of reticulate events in the genomic
sequences of viruses. On the other hand, concatenated protein
segments demonstrate the evidence of reassortment that causes
horizontal evolution. Chan et al. [9] studied separate data sets
of individual and concatenated segments to show, respectively,
the absence and presence of reticulate evolution. Due to the
high cost of computing persistent homology, they used a
sampling strategy to select a smaller subset (called landmark
points) of the original data.

Instead of using two separate data sets for individual and
concatenated protein segments, our framework is applied to
a stream of 9,350 nucleotide sequences of Avian Influenza
A that consists of both individual and concatenated segments.
As a stream processing framework, our ability to compute
persistent homology is not limited by the size of the stream.
Avian Influenza sequences of PB2 protein were downloaded
from the Influenza Virus Database [33] of the National Center
for Biotechnology Information. Individual PB2 segments were
concatenated using the ape package [34] in R. Among the
9,350 sequences, the first 6,000 sequences were individ-

°

Stream: 6001 - 7000

015

Persistence Diagram at 7000 Points
. a

. Data Persistent No. of
Progression Total q
Summary | Homology 5 Micro-
of Stream X . Run-time
Run-time Run-time clusters
1 - 1000 0.098 1.909 2.007 303
1001 — 2000 0.102 1.044 1.146 308
2001 — 3000 0.097 2.925 3.022 303
3001 — 4000 0.105 1.178 1.283 301
4001 - 5000 0.098 1.008 1.106 309
5001 — 6000 0.099 3.137 3.236 311
6001 — 7000 0.110 0.797 0.907 318
7001 — 8000 0.100 1.031 1.131 336
8001 — 9000 0.103 1.184 1.287 359
9001 — 9350 0.034 1.295 1.329 361

S 7 e Data points
Microcluster centers
g _ s, *° -
: & o .
_ . . s
8 _ v N £
S - 8
o ° . w
. oop®
g RS el g
@,
2l
o & o '.‘4\)3;
§ Ay .
8
I I I I I < 1
-0.10 -0.05 0.00 005 0.10 0.00 005 010 015
Epirth
Stream: 7001 - 8000 Persistence Diagram at 8000 Points
2. : 2. a
S e Data points S
Microcluster centers
g 28 *» i~
s et 'v’\‘
g b £
= ?&3: B 19 g
e o 5
0 '3 "..
T &
3
o X
S - .
| | | | | 1
-0.10 -0.05 0.00 005 0.10 0.00 005 010 015
Ebirth
Stream: 8001 - 9000 Persistence Diagram at 9000 Points
° 0
S~ e Data points 3T =
Microcluster centers
8 v'J .~
S - g ey R
i
§ N _}}*‘.‘ o kS

-0.05

-0.10

| | | r T T 1
-0.10 -0.05 0.00 0.05 0.10 0.00 0.05 0.10 0.15

Stream: 9001 - 9350

S~ e Data points
Microcluster centers

Epirth
Persistence Diagram at 9350 Points
. a

10

0.00
!
€death

-0.05

-0.10

Epirth

Fig. 2: Reticulate evolution in Avian Influenza virus (cont.)

ual segments, whereas the remaining sequences represented
concatenated protein segments. Since the data summarization
models typically work on numeric data, nucleotide sequences
were mapped to numeric vectors in a 45-dimensional Eu-
clidean space (see Section IV-D for details).

Figure 2 shows the plots of the first two dimensions of
the Euclidean vectors representing the viral sequences and
the persistence intervals displayed as persistence diagrams at
intervals of 1,000 data points through the end of the stream.
During the first 6,000 sequences, the viral protein segments
do not form loops and do not display significant 1-dimensional
topological features (H;) in the persistence diagrams. The
noisy topological features are represented by groups of red
triangles on or near the diagonals of the persistence diagrams.
This phase in the viral evolution represents the occurrence
of only vertical genetic exchanges. After the first 6,000 se-

TABLE I: Run-times (in seconds) for processing each interval
of 1,000 points of the Avian Influenza stream

quences, horizontal genetic exchanges begin to occur through
reassortment and recombination that result in the reticulate
evolution. The viral sequences affected by reassortment are
represented by concatenated protein segments. Figure 2 shows
that such concatenated sequences form loops that are identified
by distinct red triangular points lying outside of the gray
regions of noise near the diagonals of the persistence diagrams.

The run-times (in seconds) for summarizing the data (online
component) and computing persistent homology (offline com-
ponent) in the 1,000 point intervals of the stream are shown in
Table I. The total run-time for each 1, 000 points interval is the
sum of the run-times for the online and offline components.
In addition, Table I includes the number of microclusters ac-
cumulated after processing each 1,000 points. The number of
microclusters indicates the memory usage that remains fairly
constant during the progression of the stream. The memory
usage depends on the decay parameter A. For this study, we
allowed the ClusTree implementation itself to infer the value
of X\ from the stream. The choice of the interval of 1,000 data
points is reasonable for this data stream. Computing persistent
homology too often can result in a waste of resources, while
computing too infrequently may lead to missing important
topological changes in an evolving stream. We recommend
choosing the parameters of ClusTree (horizon, maxH eight
and) as well as the intervals for the offline component
in a way that enables the effective identification of evolving
topological structures in a data stream.

C. Evolution of HIV Virus

In this Section, the applicability of our framework is
demonstrated by identifying reticulate exchanges during the
evolution of the HIV virus. HIV is infamous for frequent
homologous recombination and high mutation rates that lead
to antiretroviral resistance [35] and immunodeficiency [36].
These factors confound the study of evolution of HIV virus
by traditional methods that rely on phylogenetics [9].

As with the study of Avian Influenza, independent and con-
catenated gene segments of HIV virus represent, respectively,
the absence and presence of reticulate genetic exchanges.
This data stream consists of 3,000 independent sequences
of HIV-1 gag, and 2,522 concatenated sequences of HIV-
1 gag, pol, and env, the three largest genes of the genome.

Barcode at 1200 Points

r T
00 0.05

€
Barcode at 2400 Points

2 _ == -
=== ll
— [
— Hy
0.00 0.05 0.10 00 0.05
€

Barcode at 600 Points

— Ho
— H
r T T
0.00 0.05 0.10

€
Barcode at 1800 Points

— Ho
— H

1 T 1
015 o 0.10 0.15

— Ho
— Hy

015 o 0.10 0.15

Barcode at 3000 Points

— Ho
— H
0.00 005 010 .

€
Barcode at 4200 Points

— Ho
— Hy
0.00 0.05 0.10).

€
Barcode at 5400 Points

€
Barcode at 3600 Points

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15

Fig. 3: Identification of reticulate evolution in HIV virus

The data, accessed from [37], was originally downloaded
from the Los Alamos HIV Databases [38]. As before, the
viral sequences were mapped to numeric vectors in a 45-
dimensional Euclidean space. Figure 3 shows the output as
barcodes computed at intervals of 600 data points through the
end of the stream. The absence of reticulate genetic exchanges
in the first 3,000 independent sequences is demonstrated by
the short H; bars that represent noise. After that, however,
we begin observing longer H; bars in the barcodes that
indicate horizontal evolutionary events. Thus, by monitoring
the output of persistent homology, we are able to identify
the occurrence of reassortment and recombination that lead
to reticulate evolution of viruses.

The run-times (in seconds) for the online and offline com-
ponents, as well as the total run-time at each step, are shown
in Table II. The number of microclusters after each 600 points
interval remains approximately constant during the progression
of the stream. The decay parameter A was set to 0.008 that
led to stable memory usage and effective identification of the
reticulate genetic exchanges in the HIV virus.

D. Data Preparation and Future Work

The data summarization models are based on the incremen-
tal updates to the feature vectors that require the data points
of the stream to be numeric vectors embedded in a metric
space. Since nucleotide sequences are sets of characters, they
do not form a metric space and cannot be directly processed

. Data Persistent No. of
Progression Total q
Summary | Homology 5 Micro-
of Stream X . Run-time
Run-time Run-time clusters
1 - 600 0.061 1.443 1.504 255
601 — 1200 0.064 3.902 3.966 333
1201 — 1800 0.070 3.931 4.001 333
1801 — 2400 0.064 4.555 4.619 349
2401 — 3000 0.058 3.025 3.083 327
3001 — 3600 0.065 2.145 2.210 332
3601 — 4200 0.056 2.089 2.145 330
4201 - 4800 0.062 0.821 0.883 344
4801 - 5400 0.067 1.871 1.938 349
5401 — 5522 0.013 0.988 1.001 343

TABLE II: Run-times (in seconds) for processing each interval
of 600 points of the HIV stream

by the data summarization models. Our approach to transform
the genetic sequences to Euclidean vectors is outlined below.

1) Align the sequences by Multiple Sequence Alignment.

2) Compute pairwise distances between the sequences us-
ing Jukes-Cantor method [39] that has been shown to
preserve the topological properties of the evolution of
genetic sequences [9].

3) Translate the pairwise distances to vectors in a d-
dimensional Euclidean space using Classical Multidi-
mensional Scaling (MDS) [40]. For the experiments in
the previous sections, we empirically chose d = 45 that
provided a good trade-off between the run time and the
value of the loss function that MDS aims to minimize.

As a future direction, we are working towards a solution
that would enable the mapping of genetic sequences to vectors
in a metric space in an online fashion with the help of the
recent progress in alignment-free sequencing methods [41].
In any event, our current framework provides the ability to
identify horizontal evolution in large enough sets of sequences
that cannot be dealt with existing mechanisms. For example,
in the absence of a stream processing framework, the main
bottleneck in the detection of reticulate events in the Avian
Influenza data set of 9, 350 sequences would be the computa-
tion of persistence intervals. The memory requirement for the
data pre-processing steps would be insignificant compared to
that required by persistent homology for 9,350 data points.
Furthermore, we did not include the execution times for the
data preparation steps in the previous subsections because they
are not integral parts of the proposed framework. The data pre-
processing was required only for the particular application of
our framework to the study of viral evolution.

A Note on the Connected Components: One may ask, “What
is the purpose of the 0-dimensional connected components
(Ho) in the study of evolution?” Connected components are
merely an alternative representation of dendrograms or trees
that characterize vertical or clonal evolution. Although not
studied in this paper, 0-dimensional components have been
shown to demonstrate the same evolutionary relationship as
that done by phylogenetic trees. For example, Chan et al.
[9] reconstructed phylogeny from the connected components
of different subtypes of the Hemagglutinin (HA) protein in
Avian Influenza viruses. It is the horizontal or reticulate

evolution that, however, cannot be effectively characterized
by the classical methods for the study of evolution. This
is the reason why persistent homology is said to provide a
comprehensive representation of both vertical and horizontal
evolution at the same time.

V. CONCLUSION

We introduced the first computational model for apply-
ing persistent homology to potentially unbounded real data
streams. The framework described in this paper is evaluated
in terms of execution times, memory usage and the ability
to effectively identify topological changes in evolving data
streams. The applicability of the framework is demonstrated
by the important task of the detection of reticulate evolution of
viruses in streams of genomic sequences. Reticulate genomic
exchanges that occur through recombination, reassortment and
lateral gene transfer in viruses and bacteria are pervasive in
nature and confound the discovery of treatments for diseases
caused by such organisms. The proposed framework, being
a stream processing model, can aid in the discovery of
knowledge from arbitrarily large genomic databases, enabling
the study of evolution of organisms that evolve quickly through
mutation and recombination.

REFERENCES

[11 G. Carlsson, “Topology and data,” Bulletin of the American Mathemat-
ical Society, vol. 46, no. 3, pp. 255-308, Apr. 2009.

[2] F. Chazal and B. Michel, “An introduction to topological data analysis:
fundamental and practical aspects for data scientists,” ArXiv e-prints,
Oct. 2017.

[3] H. Edelsbrunner and J. Harer, “Persistent homology — a survey,” Surveys
on Discrete and Computational Geometry, vol. 453, pp. 257-282, 2008.

[4] C. S. Pun, K. Xia, and S. X. Lee, “Persistent-homology-based machine
learning and its applications — a survey,” Nov. 2018.

[5] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington,
“A roadmap for the computation of persistent homology,” EPJ Data
Science, vol. 6, no. 1, Aug. 2017.

[6] V. de Silva and G. Carlsson, “Topological estimation using witness
complexes,” in Eurographics Symposium on Point-Based Graphics, ser.
SPBG 04, M. Gross, H. Pfister, M. Alexa, and S. Rusinkiewicz, Eds.
The Eurographics Association, 2004.

[71 G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, “On the
local behavior of spaces of natural images,” International Journal of
Computer Vision, vol. 76, no. 1, pp. 1-12, Jan. 2008.

[8] R. Ghrist, “Barcodes: The persistent topology of data,” Bulletin of the
American Mathematical Society, vol. 45, no. 1, pp. 61-75, 2008.

[9] J. M. Chan, G. Carlsson, and R. Rabadan, “Topology of viral evolution,”

Proceedings of the National Academy of Sciences, vol. 110, no. 46, pp.

18566-18 571, 2013.

G. Petri, M. Scolamiero, I. Donato, and F. Vaccarino, ‘“Topological strata

of weighted complex networks,” PLOS ONE, vol. 8, no. 6, pp. 1-8, Jun.

2013. [Online]. Available: https://doi.org/10.1371/journal.pone.0066506

M. Hajij, B. Wang, C. E. Scheidegger, and P. Rosen, “Visual detection

of structural changes in time-varying graphs using persistent homology,”

2018 IEEE Pacific Visualization Symposium, pp. 125-134, 2018.

M. Shindler, A. Wong, and A. W. Meyerson, “Fast and accurate k-

means for large datasets,” in Advances in Neural Information Processing

Systems, 2011, pp. 2375-2383.

J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. FE.

de Carvalho, and J. ao Gama, “Data stream clustering: A survey,” ACM

Computing Surveys, vol. 46, no. 1, pp. 3.1-13.31, Oct. 2013.

T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient data

clustering method for very large databases,” in Proceedings of the 1996

ACM SIGMOD International Conference on Management of Data, ser.

SIGMOD ’96. New York, NY, USA: ACM, 1996, pp. 103-114.

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[36]

[37]
(38]
[39]
[40]

[41]

C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for clus-
tering evolving data streams,” in Proceedings of the 29th International
Conference on Very Large Data Bases, vol. 29, 2003, pp. 81-92.

F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering
over an evolving data stream with noise,” in SIAM Conference on Data
Mining, 2006, pp. 328-339.

P. Kranen, I. Assent, C. Baldauf, and T. Seidl, “The clustree: indexing
micro-clusters for anytime stream mining,” Knowledge and Information
Systems, vol. 29, no. 2, pp. 249-272, 2011.

D. Baum, “Reading a phylogenetic tree: The meaning of monophyletic
groups,” Nature Education, vol. 1(1):190, 2008.

M. Wright. (2016) Introduction to persistent homology. [Online].
Available: https://www.youtube.com/watch?v=2PSqWBIrn90

H. Edelsbrunner and J. Harer, Computational Topology, An Introduction.
American Mathematical Society, 2010.

A. Zomorodian and G. Carlsson, “Computing persistent homology,”
Discrete Comput. Geom., vol. 33, no. 2, pp. 249-274, Feb. 2005.

R. Forman, “Morse theory for cell complexes,” Advances in Mathemat-
ics, vol. 134, no. 1, pp. 90-145, 1998.

A. Moitra, N. Malott, and P. A. Wilsey, “Cluster-based data reduction for
persistent homology,” in IEEE International Conference on Big Data,
Dec. 2018, pp. 327-334.

N. O. Malott and P. A. Wilsey, “Fast computation of persistent homology
with data reduction and data partitioning,” in 2019 IEEE International
Conference on Big Data, ser. Big Data 2019, Dec. 2019, pp. 880-889.
A. Zomorodian, “Fast construction of the vietoris—rips complex,” Com-
puter and Graphics, pp. 263-271, 2010.

H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological persis-
tence and simplification,” in Proceedings of the 41st Annual Symposium
on Foundations of Computer Science, ser. FOCS *00. Washington, DC,
USA: IEEE Computer Society, 2000.

M. Kerber and H. Schreiber, “Barcodes of towers and a streaming al-
gorithm for persistent homology,” Discrete & Computational Geometry,
Oct. 2018.

M. Hahsler and J. Forrest, streamMOA: Interface for MOA Stream
Clustering Algorithms, 2019, R package version 1.2-2. [Online].
Available: https://CRAN.R-project.org/package=streamMOA

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive
online analysis,” Journal of Machine Learning Research, vol. 11, pp.
1601-1604, 2010.

B. T. Fasy, J. Kim, F Lecci, C. Maria, D. L. Millman, and
V. Rouvreau, TDA: Statistical Tools for Topological Data Analysis,
2019, R package version 1.6.9. [Online]. Available: https://CRAN.
R-project.org/package=TDA

C. Maria, J.-D. Boissonnat, M. Glisse, and M. Yvinec, “The
GUDHI library: Simplicial complexes and persistent homology,”
INRIA, Tech. Rep. RR-8548, 2014. [Online]. Available: https:
//hal.inria.fr/hal-01005601v2

T. G. Project, GUDHI User and Reference Manual, 3rd ed. GUDHI
Editorial Board, 2020. [Online]. Available: gudhi.inria.fr/doc/3.2.0/
Influenza virus database. [Online]. Available: https://www.ncbi.nlm.nih.
gov/genomes/FLU/Database/nph-select.cgi?go=database

E. Paradis and K. Schliep, “ape 5.0: an environment for modern
phylogenetics and evolutionary analyses in R,” Bioinformatics, vol. 35,
no. 3, pp. 526-528, Jul. 2018.

T. Nora, C. Charpentier, O. Tenaillon, C. Hoede, F. Clavel, and A. J.
Hance, “Contribution of recombination to the evolution of human im-
munodeficiency viruses expressing resistance to antiretroviral treatment,”
Journal of Virology, vol. 81, no. 14, pp. 7620—7628, Jul. 2007.

D. N. Levy, G. M. Aldrovandi, O. Kutsch, and G. M. Shaw, “Dynamics
of HIV-1 recombination in its natural target cells,” in Proceedings of
the National Academy of Sciences of the United States of America, vol.
101, no. 12, 2004, pp. 4204-4209.

ph_datasets. [Online]. Available: github.com/RabadanLab/ph_datasets
HIV databases. [Online]. Available: http://www.hiv.lanl.gov/

T. H. Jukes and C. R. Cantor, “Evolution of protein molecules,” in
Mammalian Protein Metabolism, H. N. Munro, Ed. Academic Press,
New York, 1969, vol. 3, ch. 24, pp. 21-132.

M. A. A. Cox and T. E. Cox, “Multidimensional scaling,” in Handbook
of Data Visualization. Springer, Berlin, Heidelberg, 2008, pp. 315-347.
B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman,
and S. Koren, “Mash: fast genome and metagenome distance estimation
using MinHash,” Genome Biology, vol. 17, no. 132, Jun. 2016.

