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Abstract—This paper introduces a framework to compute
persistent homology, a principal tool in Topological Data Anal-
ysis, on potentially unbounded and evolving data streams. The
framework is organized into online and offline components. The
online element maintains a summary of the data that preserves
the topological structure of the stream. The offline component
computes the persistence intervals from the data captured by the
summary. The framework is applied to the detection of horizontal
or reticulate genomic exchanges during the evolution of species
that cannot be identified by phylogenetic inference or traditional
data mining. The method effectively detects reticulate evolution
that occurs through reassortment and recombination in large
streams of genomic sequences of Influenza and HIV viruses.

Index Terms—Persistent homology, Topological Data Analysis,
data stream mining, viral evolution, computational genetics.

I. INTRODUCTION

Persistent homology is a powerful tool for data analysis

that extracts information about topological features such as

connected components, loops, and voids in a point cloud at

different spatial connectivities [1]–[5]. Given a set of data

points, persistent homology creates a sequence of increas-

ingly connected and nested subspaces. The persistence of

each topological feature is then recorded as its lifespan as

the feature appears and subsequently disappears through the

sequence of nested subspaces. As a result, persistent homology

segregates significant topological features from noise based

on their lifespans, and often discovers insight not discernible

by conventional methods of data mining [6]–[11]. The capa-

bilities of persistent homology come at the cost of its high

computational complexity. In particular, the memory required

for the computation grows exponentially with the number and

dimension of data objects in the input point cloud [5].

A data stream is a potentially unbounded sequence of

continuously arriving data objects that cannot be stored in

the memory available to a computer. Since random access to

the data is unavailable, algorithms dealing with data streams

must make only one, or very few, passes through the data

[12]. Moreover, the data generation process can be non-

stationary, resulting in a data stream that evolves over time.

Such unique challenges of data stream mining coupled with

the high computational cost of persistent homology are the

primary reasons why persistent homology has not yet been

applied to data stream mining.

Contributions: This paper is a first step to bridge the

gap between data stream mining and persistent homology.
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We develop a general-purpose framework for computing per-

sistent homology on potentially unbounded streaming data.

Consistent with the standard computational paradigm [13] for

processing data streams, our approach consists of two principal

components: (i) online, and (ii) offline.

The online component involves continuously partitioning

the data stream into small clusters (microclusters) and updating

a summary of the stream with the help of a data structure,

known as the feature vector [13]–[17]. This data structure

is designed to maintain a bounded space summary of the

stream for preserving the “meaning” of the original data points

without the need of actually storing them. Moreover, if the data

stream evolves over time, the older microclusters are faded out

to assign more importance to the recent data points [13].

The offline component comprises the computation of per-

sistent homology at fixed intervals on the centers of the

microclusters maintained during the online step. Persistent

homology captures the topological structures of the data by

computing a set of intervals (or lifespans) during which those

structures exist. The lifespans of topological features are the

final outcomes of our framework that are displayed in one of

the standard output formats such as barcodes or persistence

diagrams. Thus, by continuously monitoring the output of the

framework, one can visualize the current state of the stream

and detect any changes in the topological properties with the

progression of the stream.

The proposed framework is applied to streams of genomic

sequences in order to detect reticulate genomic exchanges

during the evolution of viruses. While the phylogenetic tree

structure [18] is the accepted paradigm to represent the vertical

or clonal evolution of species, it cannot effectively capture

horizontal or reticulate events that typically occur through

species hybridization, lateral gene transfer, or recombination

and reassortment. Persistent homology has been shown to

provide a comprehensive representation of both vertical and

horizontal evolution at the same time [9]. While our framework

can be applied to any data stream, the effectiveness of the

approach is demonstrated by extending the study of viral

evolution in [9] to streams of genomic sequences of Influenza

and HIV viruses. By monitoring the output of this framework,

one can identify the occurrence of reticulate events during the

evolution of organisms. Our approach is not limited by the

length or the number of genomic sequences, and the insight it

derives is not available to traditional methods of data mining

or the classical approaches to the study of evolution [9].



II. BACKGROUND AND RELATED WORK

Background: The first part of this section briefly explains the

introductory ideas of persistent homology. An intuitive visual

presentation of the basic concepts can be viewed at [19]. A

formal exposition of the subject is available at [20], [21].

Homology is a way of counting the topological features

of a space. In topological data analysis, a given set of data

points is assumed to be sampled from an underlying space S

that has an unknown probability distribution. Computing the

homology of such arbitrary topological spaces is difficult. To

overcome this obstacle, the topology of S is approximated

by a combinatorial structure, called a complex, for which

homology can be computed algorithmically [5]. Simplicial,

cubical, and CW complexes [22] are some of the commonly

used complexes. Since the simplicial complex is the most

widely used with a richer theoretical foundation than others

[5], persistent homology computed from simplicial complexes

is examined in this paper.

A simplicial complex K is a set of points, edges, triangles,

tetrahedrons and so on. K comprises all possible subsets

that can be constructed from the distinct points in K. Each

topological feature of a simplicial complex is assigned a

dimension p. The set of p-dimensional features forms a group,

called the p-th homology group Hp.

A subset Ki ⊆ K is called a subcomplex if Ki itself is a

simplicial complex. A filtration of a complex K is a sequence

of nested subcomplexes ∅ = K0 ⊆ K1 ⊆ K2 ⊆ ... ⊆ Kn =
K. A complex with a filtration is called a filtered complex.

For the computation of persistent homology, a filtered

simplicial complex is constructed on a given set of data points.

Each subcomplex in the filtration is associated to a distinct

value of a scale parameter ε. Since the topological structure

of each subcomplex is usually different from those of other

complexes in the filtration, we say that the topology of a

simplicial complex changes with the scale parameter ε. At

ε = 0, the simplicial complex is a set of disconnected points.

As ε increases, the points start becoming connected to one

another by edges, and subsequently form triangular faces,

tetrahedrons, and so on. With increasing ε, the connected

components become longer, existing connected components

are merged into one another, holes and voids appear (or, are

born) and eventually get filled (or, die). Persistent homology

tracks the birth and death times of these topological features

as ε increases from 0 to a user-specified threshold εmax. A

topological feature is born at εbirth, and dies at εdeath.

The output of persistent homology is a set of pairs of real

numbers (εbirth, εdeath). The difference between the εdeath
and εbirth times is called the lifespan or persistence of a

topological feature. The lifespans of significant topological

features are much longer than those of noise. The pairs

(εbirth, εdeath) can be displayed as a set of lines, called

a barcode, or as a 2-dimensional scatter plot, known as a

persistence diagram.

Related Work: To the best of our knowledge, there is

no existing framework or technique for computing persistent

homology on data streams. Here, we briefly outline the liter-

ature our framework is based on. The method for continuous

summarization of the stream is based on the online compo-

nent of data stream clustering algorithms such as DenStream

[16], CluStream [15], ClusTree [17], and streaming k-means

[12]. It has been shown that when a set of data objects

is partitioned into another set of small clusters, replacing

the original data objects by the cluster centers results in a

bounded-error approximation of the initial data [23], [24].

In the same spirit, the centers of the microclusters produced

during the summarization of the stream accurately represent

an abstract of the data stream and preserve its topological

properties. This is demonstrated in Section IV of this paper.

The offline component of our framework, that comprises

the construction of simplicial complexes and computation of

persistence intervals, is based on the works of [21], [25], [26].

It is worth noting that Kerber et al. [27] developed a

streaming algorithm for the matrix reduction procedure that

generates the persistence intervals. The procedures described

in [27] construct a pipeline for computing persistence of

large simplicial towers using streaming algorithms of bounded

space and time. The input to their algorithm is a large tower,

a generalized representation of a filtered complex, that is

typically stored on the disk. However, their solution can not

be directly applied to the real time streaming applications

because they do not include any strategy to bound the size

of the complex itself as data points continuously arrive from a

potentially infinite stream. The solution of [27] can be regarded

as a bounded memory algorithmic pipeline for computing

persistence from a large data set stored on the disk.

III. PERSISTENT HOMOLOGY ON DATA STREAM

This section presents the approach for computing persistent

homology on streaming data that is outlined in Section I.

The presentation is divided into two parts, namely: (i) the

data summarization or the online component, and (ii) the

computation of persistence intervals or the offline component.

A. Data Summarization

The objective of the online component is to maintain a

bounded summary or abstract of a potentially unbounded

stream. It is important to bound the number of data objects

in the summary up to the limit that will result in a simplicial

complex (in the subsequent offline step) that can be accom-

modated within the available memory.

The summary of the data stream is maintained by utilizing

the concept of microclusters commonly employed in stream

clustering algorithms. In this section, we outline a generic data

summarization model that is similar to the online component

of several algorithms such as DenStream [16], CluStream [15],

ClusTree [17], and streaming k-means [12]. Each algorithm,

however, adds to or modifies the generic model to include

additional features and capabilities. In practice, the choice of

the data summarization model may vary depending on the

nature of the stream and the application.



In order to process evolving streams, each data point is

assumed to have a weight β−λ∆t that decreases exponentially

with the time (∆t) elapsed since its arrival. β > 0 is often set

to 2. λ > 0 is a user defined input parameter, called the decay

parameter. Higher values of λ denote lower importance of the

historical data points compared to the recent ones.

Microclusters are small groups of similar data points. A

microcluster at time t for a group of points x1, x2, ..., xn

with arrival time stamps T1, T2, ..., Tn is defined as

{w, LS, SS}, where w =
n
∑

i=1

β−λ(t−Ti) is the weight, LS =

n
∑

i=1

β−λ(t−Ti) xi is the weighted linear sum, and SS =

n
∑

i=1

β−λ(t−Ti) x2i is the weighted squared sum of the points

in the microcluster. The tuple {w, LS, SS} is called the feature

vector of a microcluster. From the components of the feature

vector, the center µ and radius r of a microcluster are

computed as µ =
LS

w
, and r =

√

SS

w
−

(LS

w

)2

. Microclusters

have a user defined maximum radius rmax.

A new data point xj can be added to a microcluster by

incrementally updating its feature vector: w ← w + 1, LS ←
LS+xj , and SS ← SS+x2j . When a new data point x arrives,

we check if x can be added to its nearest microcluster c by

computing the updated radius r of c. If r ≤ rmax, then x is

added to c. If r > rmax, a new microcluster is created with

only one data point x in it.

A microcluster loses its weight during the time no new

data point is added to it. If no data point is added to a

microcluster {w, LS, SS} during a time interval ∆t, it is

updated to {β−λ∆tw, β−λ∆tLS, β−λ∆tSS}. If the weight of a

microcluster falls below a threshold wmin, it is considered to

be outdated. We limit the growth of the number of microclus-

ters in memory by eliminating those that did not receive new

data points long enough to have become outdated. Assuming

β = 2, the minimum time ∆tc required for a microcluster to

decay into an outdated one can be computed from the equation

1 + 2−λ∆tcwmin = wmin as ∆tc =
⌈

1
λ
log

(

wmin

wmin−1

)⌉

.

The weights of all microclusters are checked every ∆tc time

period to prune out those that have become outdated. The

microclusters are organized in a tree structure to speed up the

search for the nearest microcluster of a new data point x.

The proposed framework for computing persistent homol-

ogy (up to dimension p and scale parameter ε) on streaming

data based on the data summarization model described above

is outlined in Algorithm 1. The maximum time required to

process each new data point from the stream during the

online component is linear in the number of microclusters. The

offline component that involves the computation of persistence

intervals is described in the following subsection.

B. Computation of Persistence Intervals

Every time the output of persistent homology is requested,

a maximal simplicial complex K is constructed at ε = εmax

on the set of centers C of the microclusters maintained during

Algorithm 1 Streaming Persistent Homology

Given: stream, rmax, wmin, λ, p, ε

1: ∆tc =
⌈

1

λ
log

(

wmin

wmin−1

)⌉

2: while new data points arrive from stream do
3: Read the next point x from stream at current time t.
4: Find the microcluster c nearest to x.
5: Compute the updated radius, r of c, as if x is in c.
6: if r ≤ rmax then
7: Add x to c
8: else
9: Create a new microcluster using x

10: end if
11: if (t modulo ∆tc) = 0 then
12: for each microcluster c do
13: if w < wmin then
14: Delete c
15: end if
16: end for
17: end if
18: if user requests the output of persistent homology then
19: Compute persistence intervals
20: end if
21: end while

the online step. Every simplex σ of K is defined to have a

weight ω that is the maximum of the lengths of all the edges

in σ. A 0-simplex {x} has ω = 0, and a 1-simplex {x, y} has

ω = dist(x, y), the distance between the points x and y. A

total ordering is imposed on the simplices of K such that:

• the simplices are sorted according to their weights, and

• a face of a simplex precedes the simplex.

By assigning the weights and imposing the total ordering on

the simplices, the filtration of K is extracted. The simplicial

complex K is then called a weight-filtered complex [25].

Let the simplices with the total ordering imposed on them

are denoted by σ1, σ2, ..., σnK
, where nK is the total number

of simplices in K. A square matrix ∂, called the boundary

matrix, of order nK is constructed as:

∂[i, j] =

{

1, if σi is a co-dimension one face of σj

0, otherwise.

The columns and rows of ∂ represent the simplices of the

filtration arranged according to the total order. The boundary

(or, co-dimension one face) of a simplex is recorded in its

column (by a 1 in the corresponding row).

The boundary matrix ∂ is reduced to another 0−1 matrix ∂R
by Algorithm 2, called the standard algorithm [21], [26]. Let

low(j) be the row index of the lowest 1 (i.e., the highest row

index of a 1) in column j. If the entire column is zero, then

low(j) is undefined. We scan the columns of ∂ from left to

right, and when we reach a column j such that there is another

column j0 < j with low(j0) = low(j), the column j0 is added

to j. The boundary matrix is reduced when low(j0) 6= low(j)
for any two non-zero columns j0 6= j. The worst case run time

of the standard algorithm is cubic in the number of simplices

nK . In practice, the algorithm has displayed a quasi-linear



behavior on real-world data [27]. A number of solutions have

been designed to improve the worst case run time [5], [27].

Algorithm 2 The standard algorithm

1: for j = 1 to nK do
2: while there exists j0 < j with low(j0) = low(j) do
3: add column j0 to column j
4: end while
5: end for

Once the boundary matrix ∂ is reduced to ∂R, the birth and

death times of topological features are recorded from ∂R, and

are plotted as barcodes or persistence diagrams. The sequence

of barcodes or persistence diagrams, displayed at fixed time

intervals during the progression of the stream, is the final

outcome of our framework.

IV. EXPERIMENTS

In this section, the proposed framework is applied to identify

reticulate genomic exchanges during the evolution of two

different types of viruses: Influenza A and HIV. In addition,

we demonstrate the effect of the decay parameter λ on the

summary of the topological features maintained in memory

with the help of an artificially generated data set.

For maintaining a summary of the stream, the online compo-

nent of ClusTree [17], a well-established data stream clustering

algorithm, is used. It is worth mentioning that this work is

not tied to ClusTree, and could have used any other stream

clustering algorithm. The choice of ClusTree is motivated by

some of its additional advantages, such as:

• the ability to process very fast as well as slower streams,

• a dynamic size of the data summarization model that

adapts to the stream speed, and

• the ability to handle concept drift and outliers.

The centers of the microclusters maintained by ClusTree

constitute a summary of the stream. Persistent homology is

computed on the set of microcluster centers during the offline

step at regular intervals. Below is a list of the implementations

used for the experiments described in this paper.

• ClusTree: the R interface [28] to the algorithm imple-

mented in Java for Massive Online Analysis [29].

• Persistent Homology: the R interface [30] to the GUDHI

library [31], [32], written in C++.

For processing the streams of viral genomic sequences, we

use maxHeight = 10 (for the maximum height of the tree)

and horizon = 450 (for the range of the time window) in the

implementation of ClusTree. The centers of the microclusters

are transformed into a Vietoris–Rips (VR) complex [25] each

time the persistence intervals are computed. The VR complex,

a type of simplicial complex, is the most widely used and the

only practical complex for higher dimensional data. The exe-

cution times reported in the following subsections are captured

on a computer with an Intel(R) Core(TM) i7-3630QM CPU

@ 2.40 GHz and 8 GB of memory, and are averaged over 5

runs. The data sets used for the experiments were stored in

the hard disk of the computer, and were read as file streams
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Fig. 1: Effect of the decay parameter λ on the retention of

topological features in the data summary

(i.e., one data point at a time). The performance and accuracy

of our framework are demonstrated by the execution times,

memory usage and its overall effectiveness in the detection of

reticulate events during the evolution of viruses.

A. Effect of the Decay Parameter on Data Summary

ClusTree uses an exponential time-dependent decay func-

tion f(∆t) = 2−λ∆t to fade out existing microclusters with

the time elapsed (∆t) since their creation. The decay parameter

λ > 0 controls the rate at which the microclusters are outdated.

The higher λ is, the faster the algorithm “forgets” older data. A

user can, therefore, control the size of the data summarization

model by varying the decay parameter λ. In terms of the

topological structures of the stream, it means that the user can

control the storage of the number of topological features in

memory with the help of λ. A larger λ shortens the “history” of

topological features maintained in memory, whereas a smaller

λ expands the “history”. This is illustrated in Figure 1 with

the help of a synthetic data stream having a total of three

significant topological features (i.e., 1-dimensional loops). The

left column of Figure 1 shows the original data points and

the microcluster centers at the end of the stream. The right

column shows the output of persistent homology, displayed as
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Persistence Diagram at 1000 Points
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Persistence Diagram at 2000 Points
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Persistence Diagram at 3000 Points
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Persistence Diagram at 4000 Points
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Fig. 2: Reticulate evolution in Avian Influenza virus

persistence diagrams, computed on the microcluster centers.

The black dots and red triangles represent 0-dimensional

connected components (H0) and 1-dimensional loops (H1) on

the persistence diagrams. Since significant topological features

have longer lifespans, their death times are much greater than

their birth times. Thus, the red triangles lying far away from

the diagonal (the 45° line that passes through the origin at

(0, 0)) of the persistence diagram represent the loops formed

by the microcluster centers. On the other hand, the points close

to or on the 45° line represent noise.

Although not explicitly shown in Figure 1, the loops appear

sequentially, one at a time, during the progression of the

synthetic stream. By adjusting the value of λ, a user is able to

retain as many or as few loops as desired in the summary of

the stream. For example, setting λ = 0.024 retains only one

loop, whereas λ = 0.0075 preserves all three loops at the end

of the stream. This characteristic of the data summarization

model will be useful in applications where the user intends to

examine the “history” of topological features of an evolving

stream beginning from different times in the past.

B. Evolution of Influenza Virus

As outlined in Section I, vertical or clonal evolution is

usually described with the help of a phylogenetic tree structure.

However, horizontal or reticulate evolution creates loops or

cycles that cannot be represented by a tree. Persistent ho-

mology has been shown to provide a comprehensive math-

ematical structure that captures both vertical and horizontal

evolutionary events at the same time [9]. The study in [9]

shows that in the absence of reticulate evolution, one does

not observe significant 1-dimensional (or higher) topological

features in the genomic sequences of viruses. However, as hor-

izontal evolution begins to occur through viral recombination

and reassortment, the resulting loops manifest themselves as

significant 1-dimensional topological features.

Individual protein segments unaffected by reassortment

represent the absence of reticulate events in the genomic

sequences of viruses. On the other hand, concatenated protein

segments demonstrate the evidence of reassortment that causes

horizontal evolution. Chan et al. [9] studied separate data sets

of individual and concatenated segments to show, respectively,

the absence and presence of reticulate evolution. Due to the

high cost of computing persistent homology, they used a

sampling strategy to select a smaller subset (called landmark

points) of the original data.

Instead of using two separate data sets for individual and

concatenated protein segments, our framework is applied to

a stream of 9, 350 nucleotide sequences of Avian Influenza

A that consists of both individual and concatenated segments.

As a stream processing framework, our ability to compute

persistent homology is not limited by the size of the stream.

Avian Influenza sequences of PB2 protein were downloaded

from the Influenza Virus Database [33] of the National Center

for Biotechnology Information. Individual PB2 segments were

concatenated using the ape package [34] in R. Among the

9, 350 sequences, the first 6, 000 sequences were individ-
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Persistence Diagram at 7000 Points
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Persistence Diagram at 8000 Points
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Persistence Diagram at 9000 Points
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Persistence Diagram at 9350 Points
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Fig. 2: Reticulate evolution in Avian Influenza virus (cont.)

ual segments, whereas the remaining sequences represented

concatenated protein segments. Since the data summarization

models typically work on numeric data, nucleotide sequences

were mapped to numeric vectors in a 45-dimensional Eu-

clidean space (see Section IV-D for details).

Figure 2 shows the plots of the first two dimensions of

the Euclidean vectors representing the viral sequences and

the persistence intervals displayed as persistence diagrams at

intervals of 1, 000 data points through the end of the stream.

During the first 6, 000 sequences, the viral protein segments

do not form loops and do not display significant 1-dimensional

topological features (H1) in the persistence diagrams. The

noisy topological features are represented by groups of red

triangles on or near the diagonals of the persistence diagrams.

This phase in the viral evolution represents the occurrence

of only vertical genetic exchanges. After the first 6, 000 se-

Progression

of Stream

Data

Summary

Run-time

Persistent

Homology

Run-time

Total

Run-time

No. of

Micro-

clusters

1 – 1000 0.098 1.909 2.007 303
1001 – 2000 0.102 1.044 1.146 308
2001 – 3000 0.097 2.925 3.022 303
3001 – 4000 0.105 1.178 1.283 301
4001 – 5000 0.098 1.008 1.106 309
5001 – 6000 0.099 3.137 3.236 311
6001 – 7000 0.110 0.797 0.907 318
7001 – 8000 0.100 1.031 1.131 336
8001 – 9000 0.103 1.184 1.287 359
9001 – 9350 0.034 1.295 1.329 361

TABLE I: Run-times (in seconds) for processing each interval

of 1, 000 points of the Avian Influenza stream

quences, horizontal genetic exchanges begin to occur through

reassortment and recombination that result in the reticulate

evolution. The viral sequences affected by reassortment are

represented by concatenated protein segments. Figure 2 shows

that such concatenated sequences form loops that are identified

by distinct red triangular points lying outside of the gray

regions of noise near the diagonals of the persistence diagrams.

The run-times (in seconds) for summarizing the data (online

component) and computing persistent homology (offline com-

ponent) in the 1, 000 point intervals of the stream are shown in

Table I. The total run-time for each 1, 000 points interval is the

sum of the run-times for the online and offline components.

In addition, Table I includes the number of microclusters ac-

cumulated after processing each 1, 000 points. The number of

microclusters indicates the memory usage that remains fairly

constant during the progression of the stream. The memory

usage depends on the decay parameter λ. For this study, we

allowed the ClusTree implementation itself to infer the value

of λ from the stream. The choice of the interval of 1, 000 data

points is reasonable for this data stream. Computing persistent

homology too often can result in a waste of resources, while

computing too infrequently may lead to missing important

topological changes in an evolving stream. We recommend

choosing the parameters of ClusTree (horizon, maxHeight

and λ) as well as the intervals for the offline component

in a way that enables the effective identification of evolving

topological structures in a data stream.

C. Evolution of HIV Virus

In this Section, the applicability of our framework is

demonstrated by identifying reticulate exchanges during the

evolution of the HIV virus. HIV is infamous for frequent

homologous recombination and high mutation rates that lead

to antiretroviral resistance [35] and immunodeficiency [36].

These factors confound the study of evolution of HIV virus

by traditional methods that rely on phylogenetics [9].

As with the study of Avian Influenza, independent and con-

catenated gene segments of HIV virus represent, respectively,

the absence and presence of reticulate genetic exchanges.

This data stream consists of 3, 000 independent sequences

of HIV-1 gag, and 2, 522 concatenated sequences of HIV-

1 gag, pol, and env, the three largest genes of the genome.
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Fig. 3: Identification of reticulate evolution in HIV virus

The data, accessed from [37], was originally downloaded

from the Los Alamos HIV Databases [38]. As before, the

viral sequences were mapped to numeric vectors in a 45-

dimensional Euclidean space. Figure 3 shows the output as

barcodes computed at intervals of 600 data points through the

end of the stream. The absence of reticulate genetic exchanges

in the first 3, 000 independent sequences is demonstrated by

the short H1 bars that represent noise. After that, however,

we begin observing longer H1 bars in the barcodes that

indicate horizontal evolutionary events. Thus, by monitoring

the output of persistent homology, we are able to identify

the occurrence of reassortment and recombination that lead

to reticulate evolution of viruses.

The run-times (in seconds) for the online and offline com-

ponents, as well as the total run-time at each step, are shown

in Table II. The number of microclusters after each 600 points

interval remains approximately constant during the progression

of the stream. The decay parameter λ was set to 0.008 that

led to stable memory usage and effective identification of the

reticulate genetic exchanges in the HIV virus.

D. Data Preparation and Future Work

The data summarization models are based on the incremen-

tal updates to the feature vectors that require the data points

of the stream to be numeric vectors embedded in a metric

space. Since nucleotide sequences are sets of characters, they

do not form a metric space and cannot be directly processed

Progression

of Stream

Data

Summary

Run-time

Persistent

Homology

Run-time

Total

Run-time

No. of

Micro-

clusters

1 – 600 0.061 1.443 1.504 255
601 – 1200 0.064 3.902 3.966 333

1201 – 1800 0.070 3.931 4.001 333
1801 – 2400 0.064 4.555 4.619 349
2401 – 3000 0.058 3.025 3.083 327
3001 – 3600 0.065 2.145 2.210 332
3601 – 4200 0.056 2.089 2.145 330
4201 – 4800 0.062 0.821 0.883 344
4801 – 5400 0.067 1.871 1.938 349
5401 – 5522 0.013 0.988 1.001 343

TABLE II: Run-times (in seconds) for processing each interval

of 600 points of the HIV stream

by the data summarization models. Our approach to transform

the genetic sequences to Euclidean vectors is outlined below.

1) Align the sequences by Multiple Sequence Alignment.

2) Compute pairwise distances between the sequences us-

ing Jukes-Cantor method [39] that has been shown to

preserve the topological properties of the evolution of

genetic sequences [9].

3) Translate the pairwise distances to vectors in a d-

dimensional Euclidean space using Classical Multidi-

mensional Scaling (MDS) [40]. For the experiments in

the previous sections, we empirically chose d = 45 that

provided a good trade-off between the run time and the

value of the loss function that MDS aims to minimize.

As a future direction, we are working towards a solution

that would enable the mapping of genetic sequences to vectors

in a metric space in an online fashion with the help of the

recent progress in alignment-free sequencing methods [41].

In any event, our current framework provides the ability to

identify horizontal evolution in large enough sets of sequences

that cannot be dealt with existing mechanisms. For example,

in the absence of a stream processing framework, the main

bottleneck in the detection of reticulate events in the Avian

Influenza data set of 9, 350 sequences would be the computa-

tion of persistence intervals. The memory requirement for the

data pre-processing steps would be insignificant compared to

that required by persistent homology for 9, 350 data points.

Furthermore, we did not include the execution times for the

data preparation steps in the previous subsections because they

are not integral parts of the proposed framework. The data pre-

processing was required only for the particular application of

our framework to the study of viral evolution.

A Note on the Connected Components: One may ask, “What

is the purpose of the 0-dimensional connected components

(H0) in the study of evolution?” Connected components are

merely an alternative representation of dendrograms or trees

that characterize vertical or clonal evolution. Although not

studied in this paper, 0-dimensional components have been

shown to demonstrate the same evolutionary relationship as

that done by phylogenetic trees. For example, Chan et al.

[9] reconstructed phylogeny from the connected components

of different subtypes of the Hemagglutinin (HA) protein in

Avian Influenza viruses. It is the horizontal or reticulate



evolution that, however, cannot be effectively characterized

by the classical methods for the study of evolution. This

is the reason why persistent homology is said to provide a

comprehensive representation of both vertical and horizontal

evolution at the same time.

V. CONCLUSION

We introduced the first computational model for apply-

ing persistent homology to potentially unbounded real data

streams. The framework described in this paper is evaluated

in terms of execution times, memory usage and the ability

to effectively identify topological changes in evolving data

streams. The applicability of the framework is demonstrated

by the important task of the detection of reticulate evolution of

viruses in streams of genomic sequences. Reticulate genomic

exchanges that occur through recombination, reassortment and

lateral gene transfer in viruses and bacteria are pervasive in

nature and confound the discovery of treatments for diseases

caused by such organisms. The proposed framework, being

a stream processing model, can aid in the discovery of

knowledge from arbitrarily large genomic databases, enabling

the study of evolution of organisms that evolve quickly through

mutation and recombination.
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