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Abstract—An emerging method for data analysis is called
Topological Data Analysis (TDA). TDA is based in the math-
ematical field of topology and examines the properties of spaces
under continuous deformation. One of the key tools used for TDA
is called persistent homology which considers the connectivity
of points in a d-dimensional point cloud at different spatial
resolutions to identify topological properties (holes, loops, and
voids) in the space. Persistent homology then classifies the topo-
logical features by their persistence through the range of spatial
connectivity. Unfortunately the memory and run-time complexity
of computing persistent homology is exponential and current tools
can only process a few thousand points in R>. Fortunately, the
use of data reduction techniques enables persistent homology to
be applied to much larger point clouds. Techniques to reduce
the data range from random sampling of points to clustering
the data and using the cluster centroids as the reduced data.
While several data reduction approaches appear to preserve
the large topological features present in the original point
cloud, no systematic study comparing the efficacy of different
data clustering techniques in preserving the persistent homology
results has been performed. This paper explores the question
of topology preserving data reductions and describes formally
when and how topological features can be mischaracterized or
lost by data reduction techniques. The paper also performs
an experimental assessment of data reduction techniques and
resilient effects on the persistent homology. In particular, data
reduction by random selection is compared to cluster centroids
extracted from different data clustering algorithms.

Index Terms—topological data analysis; persistent homology;
data reduction; sampling; data mining; unsupervised learning

I. INTRODUCTION

The ubiquitous deployment of electronic and computer
based data collection systems has created massive data sets
that defy human analysis. As a result, a broad collection
of mechanized data analysis/data mining techniques have
emerged. One approach for analyzing data is based on the
mathematical field of topology and is called Topological Data
Analysis (TDA) [1]-[5]. Topology is a branch of mathematics
that characterizes the properties of a space that are preserved
under continuous deformation [6]. TDA leverages this aspect
of topology to extract knowledge based on the shape and form
of the data. There are two main techniques that apply TDA
techniques for data analysis, namely: Persistent Homology
(PH) and mapper [1]. TDA, and specifically PH, has been
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demonstrated as an effective data mining technique for a
number of fields. For example, PH has been applied to analyze
networks [7]-[9], brain artery trees [10], digital images [11]-
[16], protein structures [17]-[19] gene sequences [20]-[22],
and cardiovascular diseases [23], [24] to name a few.

Computational persistent homology explores the shape of
the data as the data in the point cloud is interconnected
at different spatial distances (often called e distances). The
computation records the e distances when topological features
(holes, loops, and voids) appear (called the birth) and disap-
pear (called the death). The < birth, death > pair defines the
persistence interval of each topological feature and they can be
displayed in a variety of different forms, including: barcodes,
persistence diagrams, persistence landscapes, and persistence
images [5]. In most cases, persistence intervals are paired with
the dimension that they exist and so the persistence interval
becomes < dimension >, < birth >, < death >.

Unfortunately, the computation of PH is exponential in both
time and space [5]. This prevents the direct application of
PH on big data. For example, the most efficient libraries
for computing PH (currently Ripser [25], GUDHI [26], and
Eirene [27]) can only process a few thousand data points
in R? (unless strict limits are otherwise placed on the PH
processing parameters. This limitation has motivated studies to
explore the application of data reduction techniques to permit
the application of PH on larger data sets [28]-[31]. These
techniques provide good approximations of the PH of the large
features in the point cloud and achieve the PH computation
at 3-4 orders of magnitude faster than using the entire point
cloud (when the entire point cloud can be analyzed). The data
reduction technique of Chazal er al [28] uses repeated trials
of random selections of data from the original point cloud; the
technique of de Silva and Carlsson [30] uses either random or
Maxmin (which finds dispersed points across the point cloud)
to select “landmark” points that have other nearby members
in the point cloud for use; and Moitra et al [29], [31] use
the centroids of k-means++ clusters. While experiments show
that k-means++ centroids provide good results, more accurate
results might be possible with other topologically preserving
data reduction methods.

This paper compares different methods to reduce large point
cloud data sets for computing PH. The study explores multiple
scalings of data reduction using several different data reduction
methods and evaluates how well each method preserves the
topological features in the point cloud. The key objective is



to discover how different methods of data reduction sample
the data such that the resulting sample P’ is a topologically
faithful representation of the original point cloud P. By defi-
nition, the sample is not able to maintain all of the topological
features of the original. However, many uses of TDA are
interested only in the presence and shape of the larger (longer
lived) topological features while considering the small (short
lived) topological features insignificant. Thus, the specific goal
of data reduction is to maintain the structure of the large
topological features while removing the less concerning small
topological features. This paper characterizes the different
types of losses that can occur due to data reduction.

In addition, an experimental assessment that expands the
study initiated by Moitra et al [29] with additional clustering
algorithms and the random and Maxmin methods of [28],
[30] is presented. The samples are composed of the cluster
centroids from several different clustering algorithms, namely:
k-means++ [32], Agglomerative single-linkage [33], and Ag-
glomerative (Ward’s) [34]. In addition comparison to random
sampling (as performed in [28]) and the Maxmin algorithm
developed to select landmark points by de Silva and Carlsson
[30] are included in this study. The PH result from each
sampling method is compared to the PH result from the full
data set where the size of the data permits. While the theory
shows many possible losses from sampling, the experimental
results show that in practice the large topological features are
well-preserved by many of the clustering and random sampling
data reductions. However, as the data reductions increase in
scale, the PH results are better preserved by only a few of the
data clustering algorithms.

The remainder of this paper is organized as follows. Section
IT presents some of the background on PH and topology
preservation. Section III briefly describes related work. Section
IV outlines the general strategy for data reduction with cluster
centroids. Section V provides the motivation for data reduction
using different clustering algorithms. Section VI presents the
experimental results on several different data sets. Finally, we
conclude the paper with some remarks in Section VII.

II. BACKGROUND

This section contains a brief overview of persistent ho-
mology and highlights some of the formal theories on the
preservation of topological structure by various data clustering
algorithms [35]. A detailed overview is available at [1], [5].

A. Persistent Homology

Homology is a means to characterize the features of a
topological space. Homology groups at different dimensions d
represent the topological features in that dimension. The Betti
number at each dimension d is the rank of the d** homology
group, which corresponds to the number of holes in d [1].

Computing homology on a finite metric space is achieved
by approximating the space with a representative complex
formed from the points in that space. While there are several
types of complexes (cubical, CW, or simplicial [5]) simplicial
complexes are the most widely used and they will be used in

this paper. Simplicial complexes are composed of simplicies;
generalizations of a triangle to any number of dimensions.
For example, a 0-simplex is a point, an edge is a 1-simplex,
a triangle is a 2-simplex, tetrahedron a 3-simplex, and so
on. However, examining a point cloud statically does not
yield any meaningful topological information [5]. Instead, the
point cloud must be observed at multiple scales via geometric
filtrations in order to discern topological features. Features
that exist over multiple scales are “persistent” and therefore
meaningful from a topology standpoint. Persistent Homology
(PH) is then the notion of homology applied to multiple
geometric scales on a finite metric space.

One of the most common and computationally feasible
complexes to construct filtrations is the Vieforis-Rips (VR)
complex [36]. The filtration is a set of subcomplexes with each
subcomplex based on a distance ¢;. The € distances begin at 0
and increases until all points in the point cloud are connected
(although in practice a maximum € distance is often defined).
As ¢; increases, topological features (holes, voids, and loops)
appear and disappear in the space. Topologically speaking,
the € distance that a topological feature first appears in the
filtration is called the birth. The death of a topological feature
occurs at the € distance where that topological feature no
longer exists in the filtration. Each < birth, death > tuple for
a topological feature is called a persistence interval. Typically
longer persistence intervals represent topologically meaningful
features of the data and shorter ones represent noise [1].
However, in some cases the shorter persistence intervals are
also of interest [10], [37].

B. Preserving Topology via Clustering Algorithms

A theoretical framework for the usage of clustering al-
gorithms to preserve topology of a space is developed by
Carlsson and Memoli [35]. Preliminary work by Niyogi et
al. [38] shows that homological information of a manifold
can be inferred from a random sampling of points distributed
around it. In this case the manifold M is characterized as
a low-dimensional underlying geometric space of the points
in question. Assumptions are made that all probability dis-
tributions of points around the manifold are supported by
it and any noise points are distributed via Gaussians. Given
these strict assumptions Niyogi ef al. [38] were able to show
it is possible to infer higher order homological information
from a sampling and reconstruction of connected components.
In other words, low dimensional topological features can be
used to infer higher dimensional features. In practice it is
nearly impossible to satisfy the assumptions of Niyogi et
al; especially for experimental data [39]. In order to obtain
topological information from noisy data that does not lie
around a manifold persistence must be incorporated with
any homology analysis. Persistence allows one to determine
which homology groups of a space are not created by noise.
Persistence also identifies which features continue existing as
the dimension of the homology groups increases. This solves
the issue of not being able to rely on an underlying manifold
for a data set. Carlsson extends the work of [38] by exploring



what occurs when a more robust sampling method beyond
random sampling is used [39]. Carlsson and Memoli later
found that clustering algorithms in particular enable persistent
homology to be computed on reduced data sets with provable
preservation of persistent features [35].

As outlined in [35], [39] a clustering algorithm C will take
an input set of points and create a mapping which separates
the points into a set of output points in partitions P. Carlsson
notes that clustering is a statistical method of sampling and
mapping the connected components of a topological space
to a partitioned space [39]. This mapping is unique because
it acts as a function between two disparate mathematical
areas — topology and set theory. This allows Carlsson to
use category theory to characterize how clustering algorithms
change topological spaces. A brief description of category
theory is given below; see [40], [41] for a detailed background.

Category theory allows for any entity that fulfills certain
conditions to be meaningfully compared to another entity
that fulfills the same conditions. Generally these entities are
mathematical in nature, however, they do not have to be.
These entities are known as categories. For something to
be referred to as a category, it must be a set of objects
with morphisms (mappings/transformations) between pairs of
objects and possess composition and identity properties. In this
case, the original data set and the reduced data set are both
categories and the clustering algorithm C is a functor between
them. By definition, functors preserve the composition and
identity properties of the categories they map from. This
mapping is continuous. This usage of clustering algorithms as
functors allowed Carlsson and Memoli [35] to develop theories
about how they preserve topological structures of a space and
persistence of topological features in the mapping they create.

III. RELATED WORK

The computation of PH via the VR complex becomes
intractable as the size of a small point cloud extends beyond a
few thousand points in R3. A number of efforts have been
made to simplify the computation wherever possible. The
primary bottlenecks of computing PH are the size of the
simplicial complex and the size and reduction of the boundary
matrix [5]. Early work to alleviate these bottlenecks was
achieved by modifications to the simplicial complex, primarily
concerned with sparsifying the complex. In particular, Sheehy
developed two theoretical methods to sparsify the Vietoris Rips
complex using net trees [42]. Sheehy shows that the use of
net trees to remove points and their incident simplices from
the VR complex does not change the topology. However, this
sparsification did not scale well to larger point clouds [43]. To
attack this problem, Dey et al. [43] implements a method to
approximate VR filtrations on much larger point clouds than
Sheehy through batch collapse of simplices. Dey’s usage of
batch and cluster set distances as opposed to vertex distances
when merging complexes resulted in increased scalability
from the initial approach described in [44]. More recently,
Brehm and Hardering [45] were able to implement a more
scalable version of Sheehy’s sparsification method in the Julia

library Sparips. Sparips first builds a contraction tree
(similar to a cover tree [46]) over the raw data before the
construction of the boundary matrix. The boundary matrix is
then sparsified using information from the contraction tree.
Sparips provides a tighter bound on approximation of PH
than [43] and obtains performance comparable to GUDHI.
All of these approaches reduce the number of complexes
constructed from the original point cloud in order to identify
significant topological features on larger point clouds.

Data reduction through sampling has also been explored to
expand the processing capabilities of PH libraries. Chazal et
al. [28] utilize repeated random sampling of the original point
cloud and compute PH from the average landscape of those
samples. However, as noted by Sheehy [42], the combination
of different persistent diagrams into a single diagram did
not yield the same accuracy; strict assumptions had to be
made on the data for the best results. Moitra et al. [29]
used a similar approach that sampled the point cloud using
k-means++. Because the k-means++ algorithm samples the
data through multiple iterations to reduce the WCSS error,
PH only needs to be calculated on one sample, as opposed
to the multiple samples in Chazal et al. Moitra et al. shows
that sampling the data using k-means++ preserves significant
topological features and has similar results to Chazal et al
[28]. In addition, k-means++ also allows for the use of
upscaling of the reduced data to increase the accuracy of the
persistent intervals computed from the sampled point cloud
[31]. However, these studies did not explore the impact of data
reduction at increasingly large reduction percentages or for
the broader impact that various other data reduction methods
would have on the results of computing PH on reduced data.

Finally, some studies have attempted to use random pro-
jection to enable the computation of PH on high dimensional
data sets. Random projection allows higher dimensional data
to be mapped to lower dimensions, while preserving distances
between points with bounded error [47]. Sheehy uses this
idea to prove that random projection preserves the persistent
homology of the point cloud to a comparable bound [48].
From the theoretical results, Ramamurthy [49] conducted
experiments on PH of randomly projected point clouds and
showed that the persistence diagrams were similar for a variety
of random projections.

IV. ToPOLOGY PRESERVING DATA REDUCTION

The focus of this paper is the transformation of a point cloud
‘P that is too large for computing PH to another point cloud
P’ with fewer total points such that the PH can be computed
on a representative point cloud. Ideally, the transformation
should be such that P and P’ maintain the structure of large
topological structures, homeomorphic to some degree. An
example of a suitable mapping is illustrated in Figure 1. The
leftmost image has 2,000 points and represents the original
point cloud P; the center and rightmost images represent two
topologically preserving reductions of 500 and 250 points
and are possible representations of the reduced point cloud
P’. The general approach is to partition the original point
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cloud and use the geometric centers of the partitions as the
set of points in P’. In addition to preserving the topological
structure, the ideal data reduction methods must be able to
operate on large data sets. Finally, there are additional benefits
if the data reduction is achieved by partitioning. In particular,
the partitioning approach (achieved through data clustering or
otherwise) is desired over random sampling methods [28], [30]
as it permits for upscaling of the partitions on the periphery
of a topological feature to recover a more accurate persistence
interval for that feature [31].

As illustrated in Figure 1, the application of partitioning
centroids to accelerate the computation of persistence changes
the distances between points in the point cloud, but pre-
serves the general shape of the point cloud. This change
in homology can have impact on the < birth,death >
persistence intervals produced from the PH computation, and
even the mischaracterization of some persistence intervals.
More precisely, the approximation of the PH from a data
reduced point cloud can introduce a bounded error on the
lifespans of topological features [29] that is directly related
to the maximum radius of the partition, 7,,,,. In practice this
error should be significantly less and experimental results show
that the actual error is well below this limit [29].

However, there are limits to representing the point cloud
through increasing data reductions; at some point, the topo-
logically significant features of the original data will fail to
emerge.! It is important to understand how and when these
features might disappear. Furthermore, in some cases it is
possible that a topological feature will be lost or shifted to
a lower dimension (when the centroid data does not form
sufficient simplices surrounding the feature in all dimensions
that map to the convex hull of the feature in the full data set).
While this is possible, it generally occurs at more extreme
levels of data reduction. Preliminary experiments in this paper
and elsewhere [29], [31] show that the identification of the
larger topological features in a point cloud are well preserved
by data reduction.

The remainder of this section expands on the technical
approach of this method. In addition to providing details on
the possible implementation methods for this approach, the

n the extreme case where, for example, the reduction to a single point, the
entire structure is lost. However, in this study, we will study more practical
limits and not further discuss these extreme cases.
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Reduction of the Stanford Dragon triangulated mesh model with k-means++

challenges, errors, and perceived solutions are reviewed. In
general a worst case analysis is presented and, in practice,
many of the challenges and performance issues are not as
significant as outlined in this section. For the remainder of
this paper, the following symbols will be used:

e d, the dimension of the elements in the point cloud,

o P = {R%}, the point cloud,

o N =|[P]], the total number of points in the point cloud,

e M, the targeted upper limit of total points in R? to be
used in the PH computation, and

e €= (€g, €1, €4), the sequence of e distances used for
computing PH where ¢; < ¢; for ¢ < j. Further let
€min = €0 AN €65 = €4.

A. Partitioning

This section examines the data reduction step as a generic
partitioning of the points in the original point cloud. Although
some partitioning methods may result in more complete
solutions, in general most d-dimensional spatial partitioning
approaches will work [39]. To enable the computation of
PH on the reduced data set, the partitioning should define
no more than M partitions. Each point in the original point
cloud must be placed in one and only one partition. More
precisely, let P = {p| p C P} be a partitioning of P, then
Vp,q€P|p#qpng=0and U, pp="P.

From this partitioning, the algorithm will then select a single
representative point from each partition to define a new point
cloud with fewer total points than the original point cloud.
While any data point (actual or representative) from each
pattition can serve this purpose, this work will examine the
specific use of the geometric center of each partition where
the geometric center is defined as the mean of each dimension
of all the points in that partition. More precisely, let P’ be the
set of geometric centers of the partitions P, then if pi € P

qep; 4

is the centroid for partition p; € P then pi = = ol . In
the remainder of this paper, the term centroid will be used to
denote the geometric center of a partition.

The principle objective of this step is to build a point cloud
P’ such that the larger topological features present in P are
also present in P’. In the remainder of this paper, the following
additional terms will be used:

. 75, the partitions,
e P’ the centroids,



e 71, the distance from the partition centroid, P’; € P’, to
the most distant point in that partition, and
o Tmaz = max(r;), the maximum r; of all the partitions.

Using the topologically similar (but smaller) point could
P’ to approximate the PH of P will identify the large
topological features (as defined by the bounds of Section
IV-B). In particular, let B be the boundary of points in the
complex defining a d > 2-dimensional topological feature and
let sy = max(distance(b;,b;)) Vb;,b; € B. Then define
the term “large topological feature” to be any feature with
diameter sg > 2r,,4,. That is, a large topological feature has
a diameter that is not contained within the largest partition of
P. Depending on its location in the partitions, any topological
feature with a diameter smaller than 2r,,,, may or may not
be identified during this step. In particular, any topological
feature that falls within the boundary of a partition will be lost;
any topological feature that extends beyond the boundaries
of the partitions are likely to be retained. The degree to
which features are lost may be significantly impacted by the
mechanism/algorithm used to define the partitions.

B. Computing PH on Partition Centroids

The partitioning step is used to create a mapping from the
original, large input point cloud P to a topologically similar
but smaller (in terms of total points) point cloud P’. Ideally
this mapping will be performed in a manner that preserves
the larger topological features of the original point cloud.
Formally ||P’|| < M < |[P|| so that PH can be computed
on P’ in the allotted time and space. This step is performed
as follows. The PH of the original point cloud is estimated
by a computation of PH on the partition centroids P’. When
computing PH on P’ instead of P, the smaller topological
features that lie within a radius of any partition will be hidden
from this PH computation. For the large topological features in
P, approximating the PH using P’ can result in the following
deviations from the PH results of P:

1) The persistence interval < birth, death > may occur at
different (but bounded) e distances.

2) A false topological feature not actually in P may be
identified.

3) A topological feature of P in dimension n > 2 may
present itself in P’ at a different dimension m.

4) A topological feature might be lost by the data reduction
step.

The frequency and significance of these deviations is in-
fluenced by the partitioning methods used to define P and
consequently P’. For the remainder of this section, a worst
case characterizations of these deviations will be presented.

C. Error Bounds on Resulting Persistence Intervals

As developed by Moitra et al [29].

Theorem 1. The shift in the < birth,death > persistence
interval values arising when computing PH from P’ instead
of P is bounded by 27 ,,4,.

Fortunately, this error can be reduced by an upscaling step
[31]. More precisely, the approximate < birth, death > inter-
val for any topological feature identified from the estimated
PH can be refined by recomputing the PH using all of (and
only) the points from the partitions containing the centroids
that form the boundary of the feature. This process is called
upscaling. If the upscaled point cloud contains too many points
for computing PH, an iterative repartitioning and upscaling
can be performed to refine the approximation of the feature
boundary. Of course there is a limit; if the convex hull of
points on the boundary exceeds M, then the improvements by
upscaling may be further limited.

D. False Topological Features

False topological features can arise due to false voids that
lie between the centroids of the reduced point cloud P’. That
is, the gaps between the centroids due to the removal of the
partition points can be such that the centroids of P’ define
a complex around a false topological feature. Formally, these
false features can occur only when:

Theorem 2 (False voids from centroid gaps). False voids can
appear when €pin < 'maz < €maz-

Proof. Consider a 2-dimensional space of 4 square parti-
tions with radius r uniformly filled with points in P, where
Emin <I< €mqr and where the minimum pairwise distance
between any two points in P is less than €;,;,. Then P’ would
consist of the centroids of these squares. Computing PH on
P’ would result in the discovery of a topological feature not
present in the original point cloud P. |

False topological features can be pruned by upscaling [31].

E. Dimension Shift of Topological Feature

Estimating the PH of P using P’ can also cause a topolog-
ical feature to shift dimensions. Shifts into higher dimensions
occur when the points in P’ stretch a feature with a void space
in new dimension. Shifts into lower dimensions occur when a
topological feature that has a convex hull in k-dimensions in
P loses a cover in one (or more) of the dimensions in P’ so
that the convex hull only occurs in j < k-dimensions. That is:

Theorem 3 (Feature shift to higher dimensions). The PH
computation in P’ may shift an identified topological feature
into a higher dimension.

Proof. Consider a point cloud in R?® composed of N points
that contains a single 2-dimensional circle of radius 7 > 2€,,44
in the xy-plane at z = j. Consider a partitioning of the space
such that one partition is a square with sides of length r and
located immediately above the 2-dimensional circle and with
all points outside of the square defining a partition. The data
reduction step will introduce a void space in the z dimension
above and including the circle. ]

Feature shifts to higher dimensions are not a significant
issue. They will be pushed back into the proper dimension
with the upscaling computation.



Theorem 4 (Feature shift to lower dimensions). The PH
computation in P’ may shift an identified topological feature
into a lower dimension.

Proof. Consider a 3-dimensional space with a sphere at the
origin with radius rs (€min < Ts < €mqz) and with a uniform
distribution of points extending some finite distance beyond
the surface of the sphere. Consider a partitioning such that
(a) a collection of partitions that lie in the zy-plane at z = 0
with the maximum radius 7,4, for all of these partitions is
such that €,,in, < Tmaee < €mar the remaining space lies in
two partitions: one covering all points in P at (x,y,z > 0)
and with a centroid at (z,y,2 > €mnas); and covering all
points in P at (z,y,z < 0) and with with a centroid at
(2,9, 2 < €maz)- Then the resulting centroid points would be
such that the sphere would only appear to the PH algorithm
as a 2-dimensional circle and no connections would be made
to the centroids above and below the z = 0 axis as they would
lie outside the range of the e values examined by the PH
algorithm. ]

Feature shifts into lower dimensions are more problematic.
They cannot easily be restored to their proper dimension and
the feature will be lost.

FE. Lost Topological Features

In rare cases, a topological feature can be lost when
the points defining the boundary for the convex hull in P
surrounding the topological feature are insufficient in P’ for
a corresponding convex hull to be defined. This issue may
motivate the use of multiple partitioning steps to estimate PH
with strategic partitioning methods.

V. EXPERIMENTAL STUDY

The motivation of this work is to be able to compute PH
on big data. Preliminary data [29], [31] suggests that spherical
clustering methods such as k-means++ can present a suitable
partitioning of the data. However, it is unclear if this is the best
method for data reduction or if other algorithms or heuristics
provide better topologically preserving abstractions.

This experimental study examines the use of other clustering
methods for data reduction. In particular hierarchical clustering
algorithms are of interest due to their theoretical guarantees
of preserving persistent features [35]. More precisely, a com-
parative analysis of k-means++, single-linkage agglomerative
clustering, ward-linkage agglomerative clustering, and Silva’s
Witness maxmin sampling [30] is performed.

Density-based cluster algorithms such as DBSCAN [50],
HDBSCAN [51], and mean-shift were evaluated but performed
poorly due to the lack of ability to set k, the number of
centroids to generate. This led to classifications at different
bandwidths and parameters to attempt to approximate the point
clouds of suitable size. That said, several suitably sized point
clouds were derived using these methods. However, ultimately
the reduced point clouds P’ extracted using these density-
based clustering algorithms failed to preserve the topological

features on par with other methods. As a result these algo-
rithms are excluded from the results in this section.

The experimental study measures the accuracy of the persis-
tence intervals computed with the various approaches against
a reference computation of the persistence intervals on the
original point cloud. Accuracy at this stage is determined by
the Heat Kernel Distance (HKD) [52], [53] between the origi-
nal persistence intervals computed from P and the persistence
intervals computed from P’. The HKD gives a stable heat-
kernel metric for classification applications and is a way to
obtain topological inferences about an object using Gaussian
kernel density estimates. Additionally heat kernel distance is
robust to noise and outliers in data, which makes it a valuable
analysis metric for comparing persistence intervals.

VI. EXPERIMENTAL RESULTS

Each algorithm under comparison was implemented as a
preprocessing step to reduce the input point cloud. In the
case of clustering algorithms such as k-means++, the cluster
centroids were output; for hierarchical cases the dendrogram
was cut at a specific threshold. After each reduced point
cloud was obtained, the PH library Ripser [25] was used to
compute PH on the original and reduced point clouds. Ripser
is currently a state-of-the-art library for computing PH with
Vietoris-Rips complexes, efficient in both speed and memory
performance. However, similar results can be obtained with
GUDHI [26] or Eirene [27]. All experiments were conducted
using an Ryzen Threadripper 1950X with 128GB of RAM.

The HKD comparisons are computed on persistence inter-
vals separated by dimension. While an aggregate comparison
of the HKD to the complete set of persistence intervals (inde-
pendent of dimension) was performed the results did not pro-
vide any significant insights and, due to space considerations,
they are not presented here. Accuracy measured by persistence
interval dimension gives a notion of the preservation of all
persistence intervals in the original data set. However, many
of the persistence intervals contributing to the HKD results in
this instance can be attributed to shorter persistence intervals
or noise that are by definition going to be missing in the
reduced point cloud. Since the focus on this paper is to how
well these reduction methods preserve the significant, larger
topological features, a deeper analysis is necessary. As a result,
several methods to filter the persistence intervals by length are
explored and compared. That is, the persistence intervals from
the original point cloud are examined and cutoff lengths were
established using several filtering methods in an attempt to
isolate the significant persistence intervals for comparison. For
example, one filter finds, by dimension, the shortest persistence
interval from the longest 10% found in the original point
cloud. This length is then used to filter persistence intervals
computed from the original and reduced data sets. The HKD
for these filtered results are then computed and reported. This
will provide insight on how well the reduced data sets preserve
the significant, larger topological features. In cases where the
persistent homology of the original data set could not be
computed due to resource constraints, the maximum number



of points was reduced and compared to continued reduction
with the same algorithm.

Section VI-A analyzes the effect of reduction on dimen-
sional persistence intervals when comparing to the baseline
data set. The experiments provide a comprehensive compari-
son of the different algorithms presented. Section VI-B focuses
on the two methods that produced the best overall HKD results
(k-means++ and Agglomerative Ward) and performs a deeper
analysis of the HKD comparisons as the persistence intervals
are filtered. Each algorithm’s ability to preserve the salient
topological features of the original point cloud are the focus
and motivation for the HKD comparisons with the filtered
persistence intervals.

A. HKD for All Results and Data Sets

Testing data sets used for the comparison include real-
world and synthetic data. Several triangulated mesh models
were used, including an R3 model of the klein bottle, denoted
klein, and an R® model of a lion from the publicly available
triangulated shapes database [54]. Both of these models are
beyond the limitations of persistent homology on the original
point cloud and are reduced using £-means++ to 900 and 1000
points, respectively. These reduced data sets are then used as
the baseline “original” data for these tests.

In addition, the seeds data set from the UCI machine
learning repository and the Water Treatment Plant data set
(water) were analyzed for higher-dimensional topological
features and the effects of data reduction beyond R®. Both
of these data sets are traditional classification and clustering
data sets that provide a measure of the approach in general
classification, specifically H, and Hs intervals.

Two lower dimensional R? point clouds, twoMoons and
twoC'ircles, were examined to understand the scale based on
n, as features in these two data sets are only relevant up to ;.
Each point cloud is synthetically generated and are comprised
of 2000 points that model, respectively, two separated half
moons and two separated circles.

The test data sets were tested at several different reductions
including extreme reductions down to fewer than 100 points.
HKD results by dimension for each of these data sets is
displayed in Table 1. Each column represents the HKD for
the reduction algorithm used against the various data sets. The
columns are further separated by dimension of the persistence
intervals. Rows represent each data set at a specific reduction.

In general the clustering algorithms perform slightly better
than both the Maxmin and random approaches. k-means++
and Agglomerative Ward (AggWard) can identify some fea-
tures further in reduction, such as twoCircles in H7, but in
other cases random performs well on the lion point cloud sam-
pled from the original 4999 vectors for Hy and H; features,
and only bested by k-means++ and Maxmin in Hs. While
Agglomerative Single Link provides somewhat comparable
results, it also lost more dimensional features in some of the
tests. The results provide some evidence that k-means and
Agglomerative ward consistently provide suitable results at
significant reductions. However, the amount of preservation
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Fig. 2. Knee-based approach on the waterTreatment data set for filtration of
longer persistence intervals.

of large topological features can be difficult to identify while
examining entire dimensions of persistence intervals for the
heat kernel distance. Understanding of the preservation of large
topological features motivates further methods to characterize
preservation of large topological features.

B. HKD for Filtered Results from k-means++ and AggWard

Large topological features are often the focus of persistent
homology; long persistence intervals indicate the importance
of the feature. Classification of large topological features can
be difficult without domain experience to provide static cutoff
lengths of persistence intervals that constitute significance. In
order to consider the same accuracy analysis from Section
VI-A on longer persistence intervals a filter needs to be applied
to remove short persistence intervals. These short persistence
intervals are often considered noise when analyzing data with
persistent homology.

Several different approaches to this filtration of the persis-
tence intervals were analyzed. The filtering is always done
by examining the results from the original, baseline point
cloud results and is set by selecting a cutoff length from the
persistence intervals at each dimension using various filtering
methods. These methods included computing the mean and
standard deviation of the persistence intervals, filtering by the
lengths of the top percentages of the persistence intervals, and
using the kneedle algorithm [55] at various sensitivities to
estimate the (convex) knee of the sorted (in decreasing order)
persistence intervals. While each of these approaches provided
useful filtering for results analysis, the kneedle algorithm, the
sum of the mean and standard deviation, and the (shortest of
the) persistence intervals of the longest 10% in that dimension
provide the most suitable filtering lengths. Variations of the
sensitivity of the kneedle algorithm did not produce significant
differences in the results; the results with sensitivity set at 1.0
are reported.

Figure 2 depicts the persistence interval lengths (sorted in
decreasing order) for homology groups H; and Hs and the
cutoff positions for three of the filtering algorithms studied.
Specifically the cutoff filters for the elbow of the kneedle algo-
rithm (elbow (S=1.0)), the shortest of the first 10% persistent
interval lengths (top: 10.0%) and for the sum of the mean
and standard deviation (mean+stdev). While the mean and
standard deviation (x-+ o) may be a first choice for filtering the
longer persistence intervals, the knee provides a more robust



Data n k-means++ aggWard aggSingle MaxMin random
Hy Hy Hy Hg H; Ho Hy H, Ho Hy Hy Ho Hg Hy Ho
_ 600 340 029 0.02 320 029 0.06 3,51 038 0.06 468 098 0.11 6.36  1.13  0.24
g 300 11.16 2.09 0.18 10.87 2.05 0.13 12.83 248 0.36 13.77 276 0.35 13.94 279 0.36
Eo 200 14.60 275 0.29 14.11  2.68 0.28 16.74 348 043 17.11 340 0.39 20.36 342 0.38
i‘ % 100 18.41 347 0.40 1846 3.56 0.35 20.94 4.18 - 2122 416 041 24.54  3.89 041
50 2141 392 042 2148 395 041 2332 444 - 2347 442 043 27.12 430 042
—_ 750 2,51 032 0.01 258 049 0.00 247 033 0.02 245 032 0.01 196 044 0.02
*E 500 567 095 0.04 568 1.05 0.02 5,57 079 0.06 541 078 0.04 393 0.60 0.01
= 250 9.89 1.63 0.05 994 176 0.10 9.73 146 0.07 941 125 0.05 6.65 1.02 0.05
g § 100 1345 2.17 0.06 1345 219 0.11 1344 2.05 0.09 1228 1.76  0.06 9.26 1.32  0.05
= 50 15.03 240 0.06 1512 254 0.14 1472 224 0.10 13.68 191 0.06 10.19  1.37 0.07
10 17.25  2.68 - 1737 2.83 - 16.49 - - 1498  2.05 - 11.75  1.50 -
_ 200 0.20 0.01 0.01 0.20  0.01 0.01 0.20  0.01 0.01 040 0.03 0.01 0.63 0.05 0.01
‘E_ 150 2.03 0.08 0.03 2.07 0.10 0.03 192  0.13  0.04 236  0.19 0.04 330 046 0.04
L 100 472 048 0.07 485 046 0.05 470 032 0.05 491 049 0.05 6.17 0.79 0.05
SRS 50 850 0.75 0.06 844 0.83 0.07 841 0.85 - 849 0.85 0.07 948 0.97 -
e~ 20 1140 1.00 - 1145 1.01 - 11.25  1.05 - 11.54  1.01 - 12.86  1.04 -
400 2262 091 043 22.81 098 0.30 21.85 097 0.39 21.57 0.67 0.24 2549 0.80 0.13
) 300 4432 223  0.63 4445 245 0.51 42.05 2.07 0.56 42.09 145 030 4846 252 0.58
§ :' 200 67.23 331 0.85 68.11 342 0.81 6542 325 0.89 65.66 3.10 0.70 68.45 341 0.85
g @ 100 91.61 420 094 91.71 434 0.88 91.35 4.53 - 9191 4.66 0.96 90.97 3.99 0.86
= 50 | 103.27 450 094 | 10333 459 095 | 104.03 - - | 104.34 - - | 10259 444 095
@ — 1500 0.27  0.02 0.26  0.01 0.27  0.02 0.54 0.04 0.97  0.10
5 ﬁ 1000 0.99 0.07 0.94 0.07 1.01  0.07 144  0.13 2.11 024
g = 500 248  0.28 245 0.25 2,53  0.24 2.84 031 352 038
§ § 250 385 042 381 039 3.74  0.38 394 041 4.64 0.49
-~ 100 5.13 049 5.16 0.51 4.67 045 479 046 529 0.53
50 5.68 0.55 570  0.53 524 046 521 046 5.64 0.52
@ 1500 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00
= «E 1000 0.00 0.00 0.00  0.00 0.00  0.00 0.01  0.00 0.01 0.01
5 - 500 0.01  0.00 0.01  0.00 0.01  0.00 0.03 0.02 0.03  0.02
g § 250 0.02 0.01 0.02 0.01 0.03  0.02 0.05 0.04 0.06 0.04
-~ 100 0.06 0.03 0.06 0.03 0.10  0.06 0.19 0.12 0.16 0.10
50 0.13  0.06 0.13  0.06 021 0.12 0.31 0.18 025 0.14
TABLE I

HKD OF THE PERSISTENT DIAGRAMS AT VARIOUS REDUCTIONS BY EACH ALGORITHM UNDER TEST. ENTRIES MARKED “~” ARE WHERE THE REDUCED
DATA LOST ALL THE FEATURES IN THAT DIMENSION. BLANK ENTRIES ARE POINT CLOUDS WITH NO TOPOLOGICAL FEATURES IN THAT DIMENSION.

and mechanized approach to filtering the top-most intervals.
Unfortunately with filtering the top 10% of persistence inter-
vals, the resultant intervals may include shorter intervals based
on the number of persistence intervals generated.

All three filters refine the compared persistence intervals
provides a measurement of preservation of the salient topo-
logical features in the point cloud. An analysis of all data sets
chosen for VI-A are included in Figure II to present a further
comparison of k-means++ and Agglomerative Ward and their
preservation of these longer persistence intervals at various
levels of reduction.

There are several notable findings in the filtered comparison
as shorter barcodes contribute less noise to the heat kernel
distance metric. In the water treatment dataset, the H; features
in all three filterings displays a significant loss of identified
features when reducing from 200 to 100 points. This dropoff
indicates a large feature has been lost during the reduction and
may indicate the reduction’s limits for that specific dataset.
Utilizing the persistence interval filtering can provide insight
to the accuracy of each algorithm in extreme cases of reduction
to quantify only the large persistence intervals for comparison.

Overall partitioning algorithms perform with similar accu-
racy up to a significant percentage of data reduction. However,
several of the algorithms better preserve the salient topological

features at more significant reduction percentages, namely
k-means++ and aggWard. These algorithms provide similar
accuracy results and can give the most accurate persistence
intervals under significant reduction. Between k-means++ and
aggWard, there are slight differences in their ability to preserve
long persistence intervals depending on the structure of the
point cloud. Both are nearly identical in the twoCircles and
twoMoons dataset; aggWard seems to perform better with
triangulated mesh point clouds, while k-means++ has higher
accuracy with the categorical point clouds seeds and water.

VII. CONCLUSIONS

Persistent homology presents a novel approach to analyzing
data. Unfortunately the computation of persistent homology
on big data is not currently possible due to its exponential
complexity. Data reduction is a classic approximation tech-
nique used by the data mining/machine learning communities
to attack computational complexity issues and various explo-
rations to use data reduction for the computation of persistent
homology have been performed. This paper has explored how
well different data reduction strategies functioned to preserve
the large topological features present in a point cloud.

While the experiments performed in this analysis focused
on several notable clustering algorithms, only slight improve-
ments in some algorithms were identified to provide better



Data n | k-means++ (S=1.0) k-means (T + o)) k-means (top 10%) aggWard (S=1.0) aggWard (T + o) aggWard (top 10%)
Hy [ Hy [ Ho> Hy [ Hy [ Ho Hy [ Hy [ Ho Hy [ Hi [ H»> Hy [ Hy [ Ho Hy [ Hy [ Ho
_ 600 | 0.06 0.33 0.03 | 2.10 035 0.03 0.12 032 0.02 | 000 022 001 | 255 0.18 0.01 022 0.18 0.01
ﬁ 300 | 355 058 001 | 858 037 0.01 6.10 0.57 0.01 | 466 046 0.04 | 954 031 0.04 641 051 0.03
Eeo 200 | 772 031 0.06 | 7.11 025 0.06 823 028 005 | 931 028 004 | 816 0.24 0.05 9.60 0.26 0.05
i’ % 100 | 7.87 026 0.13 | 395 0.64 0.13 6.99 028 0.11 | 793 030 0.07 | 3.89 0.73 0.07 6.93 0.33 0.07
50 | 499 051 0.14 | 1.11 097 0.14 400 055 012 | 492 055 0.3 | 1.04 101 0.13 393 059 0.12
—_ 750 | 0.09 0.24 0.01 1.89 022 0.00 0.09 021 0.00 | 067 0.18 0.02 | 223 0.10 0.02 0.13  0.08 0.00
*E_ 500 | 0.83 0.09 0.00 | 435 0.10 0.02 0.80 0.09 0.00 | 290 0.11 0.01 | 427 0.12 0.01 093 0.12 0.00
= 250 | 391 0.10 0.03 | 428 0.13 0.04 391 0.14 0.02 | 528 0.10 0.04 | 425 0.13 0.04 379 0.13  0.03
g § 100 | 420 037 0.05 | 207 042 0.06 420 043 0.04 | 467 0.12 0.05 | 223 029 0.05 433 028 0.04
= 50 | 350 055 007 | 0.67 0.60 0.09 3,50 0.61 -1 331 035 0.08 | 068 061 0.08 349  0.60 -
10 | 1.35 - - | 1.72 - - 1.35 - - | 1.12 0.58 - | 1.73  0.86 - 1.29  0.85 -
_ 200 | 0.00 0.03 0.00 | 0.00 0.01 0.01 0.00 0.03 0.01 | 000 003 0.00 | 0.00 0.01 0.01 0.00 0.03 0.01
‘2_ 150 | 0.14 0.04 0.00 | 0.32 0.02 0.00 0.12 0.04 0.01 | 0.14 005 001 | 021 0.04 0.00 0.12 0.05 0.01
2o 100 | 045 0.11 0.02 | 234 0.09 0.02 1.13  0.11 0.02 | 060 0.16 0.01 | 206 0.16 0.00 1.23  0.16 0.01
SRS 50 | 0.61 023 002 | 280 022 0.02 249 023 0.02 | 1.83 029 003 | 278 024 0.01 226 029 0.02
e 25 | 2.18 0.33 -1 057 027 - 1.76  0.35 - | 1.62 035 - 1052 030 - 1.71 035 -
400 - 053 0.07 | 062 028 0.11 0.58 0.38 0.20 - 029 0.04 | 092 024 0.11 0.87 0.37 0.13
) 300 - 020 0.13 | 1.52 0.16 0.18 176  0.27 0.28 - 026 0.10 | 1.52 042 0.18 1.78 045 0.24
E, :' 200 - 031 020 | 216 059 026 239 074 039 - 024 020 | 3.04 053 026 1.71 076 040
g @ 100 - 075 023 | 1.78 1.09 0.28 7.87 139 043 - 090 022 1.07 122 028 7.15 142 040
50 - 091 - | 819 122 - | 1591 1.56 - - 0.89 -1 759 124 - | 15,59 1.55 -
@ — 1500 | 0.00 0.01 0.17  0.01 0.00  0.00 0.01 0.01 0.19  0.00 0.00  0.00
5 *E_ 1000 | 0.01 0.01 1.75  0.01 0.00 0.01 0.03 0.01 1.72  0.00 0.00 0.00
g = 500 | 040 0.02 299  0.05 0.00 0.02 0.35 0.03 3.06 0.03 0.02 0.01
g g 250 | 1.73  0.03 1.73  0.11 0.29  0.08 1.96  0.02 1.77  0.09 0.29  0.05
-~ 100 | 1.99 0.04 045 0.13 1.72  0.10 1.96 0.05 042 0.15 1.64 0.11
50 | 1.44 0.09 0.14  0.20 1.50 0.15 142 0.07 0.15 0.18 148 0.13
@ 1500 | 0.00 0.00 0.02  0.00 0.00  0.00 0.00  0.00 0.02  0.00 0.00  0.00
% ‘E_ 1000 | 0.02 0.00 0.20  0.00 0.00  0.00 0.01  0.00 0.19  0.00 0.00  0.00
5 - 500 | 0.20  0.00 0.99 0.00 0.00  0.00 0.18  0.00 1.00  0.00 0.00  0.00
g § 250 | 1.32  0.01 1.02  0.01 0.00 0.01 1.34  0.01 1.02  0.01 0.00 0.01
-~ 100 | 1.51 0.03 1.00  0.03 0.85 0.03 .51 0.03 1.00  0.03 0.85 0.03
50 | 1.47  0.06 096 0.06 148 0.06 146  0.06 0.96 0.06 147  0.06
TABLE 11

HKDS OF “FILTERED” PERSISTENCE INTERVALS TO OBSERVE THE ABILITY TO PRESERVE “SIGNIFICANT TOPOLOGICAL FEATURES”. ENTRIES MARKED
“~” ARE WHERE THE REDUCED DATA LOST ALL THE FEATURES IN THAT DIMENSION. BLANK ENTRIES ARE POINT CLOUDS WITH NO TOPOLOGICAL
FEATURES IN THAT DIMENSION.

partitioning results. Algorithm complexity can play a large
role in determining what partitioning algorithm is suitable
to an application. In general, k-means++ and Agglomerative
Ward tend to consistently provide better overall data reduction
results. While Agglomerative Single Link provides comparable
results, at larger reductions it tended to lose more persistence
intervals in the higher dimensions than k-means++ and Ag-
glomerative Ward. Random sampling and the Maxmin [30]
sampling sometimes provide good results, but they tended
to be unpredictable and sometimes produce wildly inaccurate
results. An additional benefit from the use of clustering is that
data around a sampled point can be restored to support the
concept of upscaling [31] to restore more accurate persistence
intervals from the reduced point cloud.

Big data continues to be on the horizon for persistent
homology as techniques for data reduction, simplicial complex
collapses and optimizations, and boundary matrix reduction
continue to increase performance. Approximations in the
hundreds of thousands of points should be possible with a
well designed partitioning and upscaling library, even those
in higher dimensions. Bringing TDA to big data analysis will
provide automated tools for analyzing the connectivity of point
clouds beyond current applications and should be continued to

be explored in all domains.
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