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Abstract—An emerging method for data analysis is called
Topological Data Analysis (TDA). TDA is based in the math-
ematical field of topology and examines the properties of spaces
under continuous deformation. One of the key tools used for TDA
is called persistent homology which considers the connectivity
of points in a d-dimensional point cloud at different spatial
resolutions to identify topological properties (holes, loops, and
voids) in the space. Persistent homology then classifies the topo-
logical features by their persistence through the range of spatial
connectivity. Unfortunately the memory and run-time complexity
of computing persistent homology is exponential and current tools
can only process a few thousand points in R

3. Fortunately, the
use of data reduction techniques enables persistent homology to
be applied to much larger point clouds. Techniques to reduce
the data range from random sampling of points to clustering
the data and using the cluster centroids as the reduced data.
While several data reduction approaches appear to preserve
the large topological features present in the original point
cloud, no systematic study comparing the efficacy of different
data clustering techniques in preserving the persistent homology
results has been performed. This paper explores the question
of topology preserving data reductions and describes formally
when and how topological features can be mischaracterized or
lost by data reduction techniques. The paper also performs
an experimental assessment of data reduction techniques and
resilient effects on the persistent homology. In particular, data
reduction by random selection is compared to cluster centroids
extracted from different data clustering algorithms.

Index Terms—topological data analysis; persistent homology;
data reduction; sampling; data mining; unsupervised learning

I. INTRODUCTION

The ubiquitous deployment of electronic and computer

based data collection systems has created massive data sets

that defy human analysis. As a result, a broad collection

of mechanized data analysis/data mining techniques have

emerged. One approach for analyzing data is based on the

mathematical field of topology and is called Topological Data

Analysis (TDA) [1]–[5]. Topology is a branch of mathematics

that characterizes the properties of a space that are preserved

under continuous deformation [6]. TDA leverages this aspect

of topology to extract knowledge based on the shape and form

of the data. There are two main techniques that apply TDA

techniques for data analysis, namely: Persistent Homology

(PH) and mapper [1]. TDA, and specifically PH, has been
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demonstrated as an effective data mining technique for a

number of fields. For example, PH has been applied to analyze

networks [7]–[9], brain artery trees [10], digital images [11]–

[16], protein structures [17]–[19] gene sequences [20]–[22],

and cardiovascular diseases [23], [24] to name a few.

Computational persistent homology explores the shape of

the data as the data in the point cloud is interconnected

at different spatial distances (often called ǫ distances). The

computation records the ǫ distances when topological features

(holes, loops, and voids) appear (called the birth) and disap-

pear (called the death). The < birth, death > pair defines the

persistence interval of each topological feature and they can be

displayed in a variety of different forms, including: barcodes,

persistence diagrams, persistence landscapes, and persistence

images [5]. In most cases, persistence intervals are paired with

the dimension that they exist and so the persistence interval

becomes < dimension >,< birth >,< death >.

Unfortunately, the computation of PH is exponential in both

time and space [5]. This prevents the direct application of

PH on big data. For example, the most efficient libraries

for computing PH (currently Ripser [25], GUDHI [26], and

Eirene [27]) can only process a few thousand data points

in R
3 (unless strict limits are otherwise placed on the PH

processing parameters. This limitation has motivated studies to

explore the application of data reduction techniques to permit

the application of PH on larger data sets [28]–[31]. These

techniques provide good approximations of the PH of the large

features in the point cloud and achieve the PH computation

at 3-4 orders of magnitude faster than using the entire point

cloud (when the entire point cloud can be analyzed). The data

reduction technique of Chazal et al [28] uses repeated trials

of random selections of data from the original point cloud; the

technique of de Silva and Carlsson [30] uses either random or

Maxmin (which finds dispersed points across the point cloud)

to select “landmark” points that have other nearby members

in the point cloud for use; and Moitra et al [29], [31] use

the centroids of k-means++ clusters. While experiments show

that k-means++ centroids provide good results, more accurate

results might be possible with other topologically preserving

data reduction methods.

This paper compares different methods to reduce large point

cloud data sets for computing PH. The study explores multiple

scalings of data reduction using several different data reduction

methods and evaluates how well each method preserves the

topological features in the point cloud. The key objective is978-1-7281-6251-5/20/$31.00 ©2020 IEEE



to discover how different methods of data reduction sample

the data such that the resulting sample P ′ is a topologically

faithful representation of the original point cloud P . By defi-

nition, the sample is not able to maintain all of the topological

features of the original. However, many uses of TDA are

interested only in the presence and shape of the larger (longer

lived) topological features while considering the small (short

lived) topological features insignificant. Thus, the specific goal

of data reduction is to maintain the structure of the large

topological features while removing the less concerning small

topological features. This paper characterizes the different

types of losses that can occur due to data reduction.

In addition, an experimental assessment that expands the

study initiated by Moitra et al [29] with additional clustering

algorithms and the random and Maxmin methods of [28],

[30] is presented. The samples are composed of the cluster

centroids from several different clustering algorithms, namely:

k-means++ [32], Agglomerative single-linkage [33], and Ag-

glomerative (Ward’s) [34]. In addition comparison to random

sampling (as performed in [28]) and the Maxmin algorithm

developed to select landmark points by de Silva and Carlsson

[30] are included in this study. The PH result from each

sampling method is compared to the PH result from the full

data set where the size of the data permits. While the theory

shows many possible losses from sampling, the experimental

results show that in practice the large topological features are

well-preserved by many of the clustering and random sampling

data reductions. However, as the data reductions increase in

scale, the PH results are better preserved by only a few of the

data clustering algorithms.

The remainder of this paper is organized as follows. Section

II presents some of the background on PH and topology

preservation. Section III briefly describes related work. Section

IV outlines the general strategy for data reduction with cluster

centroids. Section V provides the motivation for data reduction

using different clustering algorithms. Section VI presents the

experimental results on several different data sets. Finally, we

conclude the paper with some remarks in Section VII.

II. BACKGROUND

This section contains a brief overview of persistent ho-

mology and highlights some of the formal theories on the

preservation of topological structure by various data clustering

algorithms [35]. A detailed overview is available at [1], [5].

A. Persistent Homology

Homology is a means to characterize the features of a

topological space. Homology groups at different dimensions d

represent the topological features in that dimension. The Betti

number at each dimension d is the rank of the dth homology

group, which corresponds to the number of holes in d [1].

Computing homology on a finite metric space is achieved

by approximating the space with a representative complex

formed from the points in that space. While there are several

types of complexes (cubical, CW, or simplicial [5]) simplicial

complexes are the most widely used and they will be used in

this paper. Simplicial complexes are composed of simplicies;

generalizations of a triangle to any number of dimensions.

For example, a 0-simplex is a point, an edge is a 1-simplex,

a triangle is a 2-simplex, tetrahedron a 3-simplex, and so

on. However, examining a point cloud statically does not

yield any meaningful topological information [5]. Instead, the

point cloud must be observed at multiple scales via geometric

filtrations in order to discern topological features. Features

that exist over multiple scales are “persistent” and therefore

meaningful from a topology standpoint. Persistent Homology

(PH) is then the notion of homology applied to multiple

geometric scales on a finite metric space.

One of the most common and computationally feasible

complexes to construct filtrations is the Vietoris-Rips (VR)

complex [36]. The filtration is a set of subcomplexes with each

subcomplex based on a distance ǫi. The ǫ distances begin at 0
and increases until all points in the point cloud are connected

(although in practice a maximum ǫ distance is often defined).

As ǫi increases, topological features (holes, voids, and loops)

appear and disappear in the space. Topologically speaking,

the ǫ distance that a topological feature first appears in the

filtration is called the birth. The death of a topological feature

occurs at the ǫ distance where that topological feature no

longer exists in the filtration. Each < birth, death > tuple for

a topological feature is called a persistence interval. Typically

longer persistence intervals represent topologically meaningful

features of the data and shorter ones represent noise [1].

However, in some cases the shorter persistence intervals are

also of interest [10], [37].

B. Preserving Topology via Clustering Algorithms

A theoretical framework for the usage of clustering al-

gorithms to preserve topology of a space is developed by

Carlsson and Memoli [35]. Preliminary work by Niyogi et

al. [38] shows that homological information of a manifold

can be inferred from a random sampling of points distributed

around it. In this case the manifold M is characterized as

a low-dimensional underlying geometric space of the points

in question. Assumptions are made that all probability dis-

tributions of points around the manifold are supported by

it and any noise points are distributed via Gaussians. Given

these strict assumptions Niyogi et al. [38] were able to show

it is possible to infer higher order homological information

from a sampling and reconstruction of connected components.

In other words, low dimensional topological features can be

used to infer higher dimensional features. In practice it is

nearly impossible to satisfy the assumptions of Niyogi et

al; especially for experimental data [39]. In order to obtain

topological information from noisy data that does not lie

around a manifold persistence must be incorporated with

any homology analysis. Persistence allows one to determine

which homology groups of a space are not created by noise.

Persistence also identifies which features continue existing as

the dimension of the homology groups increases. This solves

the issue of not being able to rely on an underlying manifold

for a data set. Carlsson extends the work of [38] by exploring



what occurs when a more robust sampling method beyond

random sampling is used [39]. Carlsson and Memoli later

found that clustering algorithms in particular enable persistent

homology to be computed on reduced data sets with provable

preservation of persistent features [35].

As outlined in [35], [39] a clustering algorithm C will take

an input set of points and create a mapping which separates

the points into a set of output points in partitions P . Carlsson

notes that clustering is a statistical method of sampling and

mapping the connected components of a topological space

to a partitioned space [39]. This mapping is unique because

it acts as a function between two disparate mathematical

areas — topology and set theory. This allows Carlsson to

use category theory to characterize how clustering algorithms

change topological spaces. A brief description of category

theory is given below; see [40], [41] for a detailed background.

Category theory allows for any entity that fulfills certain

conditions to be meaningfully compared to another entity

that fulfills the same conditions. Generally these entities are

mathematical in nature, however, they do not have to be.

These entities are known as categories. For something to

be referred to as a category, it must be a set of objects

with morphisms (mappings/transformations) between pairs of

objects and possess composition and identity properties. In this

case, the original data set and the reduced data set are both

categories and the clustering algorithm C is a functor between

them. By definition, functors preserve the composition and

identity properties of the categories they map from. This

mapping is continuous. This usage of clustering algorithms as

functors allowed Carlsson and Memoli [35] to develop theories

about how they preserve topological structures of a space and

persistence of topological features in the mapping they create.

III. RELATED WORK

The computation of PH via the VR complex becomes

intractable as the size of a small point cloud extends beyond a

few thousand points in R
3. A number of efforts have been

made to simplify the computation wherever possible. The

primary bottlenecks of computing PH are the size of the

simplicial complex and the size and reduction of the boundary

matrix [5]. Early work to alleviate these bottlenecks was

achieved by modifications to the simplicial complex, primarily

concerned with sparsifying the complex. In particular, Sheehy

developed two theoretical methods to sparsify the Vietoris Rips

complex using net trees [42]. Sheehy shows that the use of

net trees to remove points and their incident simplices from

the VR complex does not change the topology. However, this

sparsification did not scale well to larger point clouds [43]. To

attack this problem, Dey et al. [43] implements a method to

approximate VR filtrations on much larger point clouds than

Sheehy through batch collapse of simplices. Dey’s usage of

batch and cluster set distances as opposed to vertex distances

when merging complexes resulted in increased scalability

from the initial approach described in [44]. More recently,

Brehm and Hardering [45] were able to implement a more

scalable version of Sheehy’s sparsification method in the Julia

library Sparips. Sparips first builds a contraction tree

(similar to a cover tree [46]) over the raw data before the

construction of the boundary matrix. The boundary matrix is

then sparsified using information from the contraction tree.

Sparips provides a tighter bound on approximation of PH

than [43] and obtains performance comparable to GUDHI.

All of these approaches reduce the number of complexes

constructed from the original point cloud in order to identify

significant topological features on larger point clouds.

Data reduction through sampling has also been explored to

expand the processing capabilities of PH libraries. Chazal et

al. [28] utilize repeated random sampling of the original point

cloud and compute PH from the average landscape of those

samples. However, as noted by Sheehy [42], the combination

of different persistent diagrams into a single diagram did

not yield the same accuracy; strict assumptions had to be

made on the data for the best results. Moitra et al. [29]

used a similar approach that sampled the point cloud using

k-means++. Because the k-means++ algorithm samples the

data through multiple iterations to reduce the WCSS error,

PH only needs to be calculated on one sample, as opposed

to the multiple samples in Chazal et al. Moitra et al. shows

that sampling the data using k-means++ preserves significant

topological features and has similar results to Chazal et al

[28]. In addition, k-means++ also allows for the use of

upscaling of the reduced data to increase the accuracy of the

persistent intervals computed from the sampled point cloud

[31]. However, these studies did not explore the impact of data

reduction at increasingly large reduction percentages or for

the broader impact that various other data reduction methods

would have on the results of computing PH on reduced data.

Finally, some studies have attempted to use random pro-

jection to enable the computation of PH on high dimensional

data sets. Random projection allows higher dimensional data

to be mapped to lower dimensions, while preserving distances

between points with bounded error [47]. Sheehy uses this

idea to prove that random projection preserves the persistent

homology of the point cloud to a comparable bound [48].

From the theoretical results, Ramamurthy [49] conducted

experiments on PH of randomly projected point clouds and

showed that the persistence diagrams were similar for a variety

of random projections.

IV. TOPOLOGY PRESERVING DATA REDUCTION

The focus of this paper is the transformation of a point cloud

P that is too large for computing PH to another point cloud

P ′ with fewer total points such that the PH can be computed

on a representative point cloud. Ideally, the transformation

should be such that P and P ′ maintain the structure of large

topological structures, homeomorphic to some degree. An

example of a suitable mapping is illustrated in Figure 1. The

leftmost image has 2, 000 points and represents the original

point cloud P; the center and rightmost images represent two

topologically preserving reductions of 500 and 250 points

and are possible representations of the reduced point cloud

P ′. The general approach is to partition the original point





• ri, the distance from the partition centroid, P ′
i ∈ P ′, to

the most distant point in that partition, and

• rmax = max(ri), the maximum ri of all the partitions.

Using the topologically similar (but smaller) point could

P ′ to approximate the PH of P will identify the large

topological features (as defined by the bounds of Section

IV-B). In particular, let B be the boundary of points in the

complex defining a d ≥ 2-dimensional topological feature and

let sB = max(distance(bi, bj)) ∀bi, bj ∈ B. Then define

the term “large topological feature” to be any feature with

diameter sB > 2rmax. That is, a large topological feature has

a diameter that is not contained within the largest partition of

P̂ . Depending on its location in the partitions, any topological

feature with a diameter smaller than 2rmax may or may not

be identified during this step. In particular, any topological

feature that falls within the boundary of a partition will be lost;

any topological feature that extends beyond the boundaries

of the partitions are likely to be retained. The degree to

which features are lost may be significantly impacted by the

mechanism/algorithm used to define the partitions.

B. Computing PH on Partition Centroids

The partitioning step is used to create a mapping from the

original, large input point cloud P to a topologically similar

but smaller (in terms of total points) point cloud P ′. Ideally

this mapping will be performed in a manner that preserves

the larger topological features of the original point cloud.

Formally ||P ′|| < M < ||P|| so that PH can be computed

on P ′ in the allotted time and space. This step is performed

as follows. The PH of the original point cloud is estimated

by a computation of PH on the partition centroids P ′. When

computing PH on P ′ instead of P , the smaller topological

features that lie within a radius of any partition will be hidden

from this PH computation. For the large topological features in

P , approximating the PH using P ′ can result in the following

deviations from the PH results of P:

1) The persistence interval < birth, death > may occur at

different (but bounded) ǫ distances.

2) A false topological feature not actually in P may be

identified.

3) A topological feature of P in dimension n > 2 may

present itself in P ′ at a different dimension m.

4) A topological feature might be lost by the data reduction

step.

The frequency and significance of these deviations is in-

fluenced by the partitioning methods used to define P̂ and

consequently P ′. For the remainder of this section, a worst

case characterizations of these deviations will be presented.

C. Error Bounds on Resulting Persistence Intervals

As developed by Moitra et al [29].

Theorem 1. The shift in the < birth, death > persistence

interval values arising when computing PH from P ′ instead

of P is bounded by 2rmax.

Fortunately, this error can be reduced by an upscaling step

[31]. More precisely, the approximate < birth, death > inter-

val for any topological feature identified from the estimated

PH can be refined by recomputing the PH using all of (and

only) the points from the partitions containing the centroids

that form the boundary of the feature. This process is called

upscaling. If the upscaled point cloud contains too many points

for computing PH, an iterative repartitioning and upscaling

can be performed to refine the approximation of the feature

boundary. Of course there is a limit; if the convex hull of

points on the boundary exceeds M , then the improvements by

upscaling may be further limited.

D. False Topological Features

False topological features can arise due to false voids that

lie between the centroids of the reduced point cloud P ′. That

is, the gaps between the centroids due to the removal of the

partition points can be such that the centroids of P ′ define

a complex around a false topological feature. Formally, these

false features can occur only when:

Theorem 2 (False voids from centroid gaps). False voids can

appear when ǫmin < rmax < ǫmax.

Proof. Consider a 2-dimensional space of 4 square parti-

tions with radius r uniformly filled with points in P , where

ǫmin <r< ǫmax and where the minimum pairwise distance

between any two points in P is less than ǫmin. Then P ′ would

consist of the centroids of these squares. Computing PH on

P ′ would result in the discovery of a topological feature not

present in the original point cloud P . �

False topological features can be pruned by upscaling [31].

E. Dimension Shift of Topological Feature

Estimating the PH of P using P ′ can also cause a topolog-

ical feature to shift dimensions. Shifts into higher dimensions

occur when the points in P ′ stretch a feature with a void space

in new dimension. Shifts into lower dimensions occur when a

topological feature that has a convex hull in k-dimensions in

P loses a cover in one (or more) of the dimensions in P ′ so

that the convex hull only occurs in j < k-dimensions. That is:

Theorem 3 (Feature shift to higher dimensions). The PH

computation in P ′ may shift an identified topological feature

into a higher dimension.

Proof. Consider a point cloud in R
3 composed of N points

that contains a single 2-dimensional circle of radius r > 2ǫmax

in the xy-plane at z = j. Consider a partitioning of the space

such that one partition is a square with sides of length r and

located immediately above the 2-dimensional circle and with

all points outside of the square defining a partition. The data

reduction step will introduce a void space in the z dimension

above and including the circle. �

Feature shifts to higher dimensions are not a significant

issue. They will be pushed back into the proper dimension

with the upscaling computation.



Theorem 4 (Feature shift to lower dimensions). The PH

computation in P ′ may shift an identified topological feature

into a lower dimension.

Proof. Consider a 3-dimensional space with a sphere at the

origin with radius rs (ǫmin < rs < ǫmax) and with a uniform

distribution of points extending some finite distance beyond

the surface of the sphere. Consider a partitioning such that

(a) a collection of partitions that lie in the xy-plane at z = 0
with the maximum radius rmax for all of these partitions is

such that ǫmin < rmax < ǫmax the remaining space lies in

two partitions: one covering all points in P at (x, y, z > 0)
and with a centroid at (x, y, z > ǫmax); and covering all

points in P at (x, y, z < 0) and with with a centroid at

(x, y, z < ǫmax). Then the resulting centroid points would be

such that the sphere would only appear to the PH algorithm

as a 2-dimensional circle and no connections would be made

to the centroids above and below the z = 0 axis as they would

lie outside the range of the ǫ values examined by the PH

algorithm. �

Feature shifts into lower dimensions are more problematic.

They cannot easily be restored to their proper dimension and

the feature will be lost.

F. Lost Topological Features

In rare cases, a topological feature can be lost when

the points defining the boundary for the convex hull in P
surrounding the topological feature are insufficient in P ′ for

a corresponding convex hull to be defined. This issue may

motivate the use of multiple partitioning steps to estimate PH

with strategic partitioning methods.

V. EXPERIMENTAL STUDY

The motivation of this work is to be able to compute PH

on big data. Preliminary data [29], [31] suggests that spherical

clustering methods such as k-means++ can present a suitable

partitioning of the data. However, it is unclear if this is the best

method for data reduction or if other algorithms or heuristics

provide better topologically preserving abstractions.

This experimental study examines the use of other clustering

methods for data reduction. In particular hierarchical clustering

algorithms are of interest due to their theoretical guarantees

of preserving persistent features [35]. More precisely, a com-

parative analysis of k-means++, single-linkage agglomerative

clustering, ward-linkage agglomerative clustering, and Silva’s

Witness maxmin sampling [30] is performed.

Density-based cluster algorithms such as DBSCAN [50],

HDBSCAN [51], and mean-shift were evaluated but performed

poorly due to the lack of ability to set k, the number of

centroids to generate. This led to classifications at different

bandwidths and parameters to attempt to approximate the point

clouds of suitable size. That said, several suitably sized point

clouds were derived using these methods. However, ultimately

the reduced point clouds P ′ extracted using these density-

based clustering algorithms failed to preserve the topological

features on par with other methods. As a result these algo-

rithms are excluded from the results in this section.

The experimental study measures the accuracy of the persis-

tence intervals computed with the various approaches against

a reference computation of the persistence intervals on the

original point cloud. Accuracy at this stage is determined by

the Heat Kernel Distance (HKD) [52], [53] between the origi-

nal persistence intervals computed from P and the persistence

intervals computed from P ′. The HKD gives a stable heat-

kernel metric for classification applications and is a way to

obtain topological inferences about an object using Gaussian

kernel density estimates. Additionally heat kernel distance is

robust to noise and outliers in data, which makes it a valuable

analysis metric for comparing persistence intervals.

VI. EXPERIMENTAL RESULTS

Each algorithm under comparison was implemented as a

preprocessing step to reduce the input point cloud. In the

case of clustering algorithms such as k-means++, the cluster

centroids were output; for hierarchical cases the dendrogram

was cut at a specific threshold. After each reduced point

cloud was obtained, the PH library Ripser [25] was used to

compute PH on the original and reduced point clouds. Ripser

is currently a state-of-the-art library for computing PH with

Vietoris-Rips complexes, efficient in both speed and memory

performance. However, similar results can be obtained with

GUDHI [26] or Eirene [27]. All experiments were conducted

using an Ryzen Threadripper 1950X with 128GB of RAM.

The HKD comparisons are computed on persistence inter-

vals separated by dimension. While an aggregate comparison

of the HKD to the complete set of persistence intervals (inde-

pendent of dimension) was performed the results did not pro-

vide any significant insights and, due to space considerations,

they are not presented here. Accuracy measured by persistence

interval dimension gives a notion of the preservation of all

persistence intervals in the original data set. However, many

of the persistence intervals contributing to the HKD results in

this instance can be attributed to shorter persistence intervals

or noise that are by definition going to be missing in the

reduced point cloud. Since the focus on this paper is to how

well these reduction methods preserve the significant, larger

topological features, a deeper analysis is necessary. As a result,

several methods to filter the persistence intervals by length are

explored and compared. That is, the persistence intervals from

the original point cloud are examined and cutoff lengths were

established using several filtering methods in an attempt to

isolate the significant persistence intervals for comparison. For

example, one filter finds, by dimension, the shortest persistence

interval from the longest 10% found in the original point

cloud. This length is then used to filter persistence intervals

computed from the original and reduced data sets. The HKD

for these filtered results are then computed and reported. This

will provide insight on how well the reduced data sets preserve

the significant, larger topological features. In cases where the

persistent homology of the original data set could not be

computed due to resource constraints, the maximum number





Data n k-means++ aggWard aggSingle MaxMin random

H0 H1 H2 H0 H1 H2 H0 H1 H2 H0 H1 H2 H0 H1 H2

k
le

in

(9
0

0
p

ts
) 600 3.40 0.29 0.02 3.20 0.29 0.06 3.51 0.38 0.06 4.68 0.98 0.11 6.36 1.13 0.24

300 11.16 2.09 0.18 10.87 2.05 0.13 12.83 2.48 0.36 13.77 2.76 0.35 13.94 2.79 0.36
200 14.60 2.75 0.29 14.11 2.68 0.28 16.74 3.48 0.43 17.11 3.40 0.39 20.36 3.42 0.38
100 18.41 3.47 0.40 18.46 3.56 0.35 20.94 4.18 – 21.22 4.16 0.41 24.54 3.89 0.41

50 21.41 3.92 0.42 21.48 3.95 0.41 23.32 4.44 – 23.47 4.42 0.43 27.12 4.30 0.42

li
o

n

(1
0

0
0

p
ts

) 750 2.51 0.32 0.01 2.58 0.49 0.00 2.47 0.33 0.02 2.45 0.32 0.01 1.96 0.44 0.02
500 5.67 0.95 0.04 5.68 1.05 0.02 5.57 0.79 0.06 5.41 0.78 0.04 3.93 0.60 0.01
250 9.89 1.63 0.05 9.94 1.76 0.10 9.73 1.46 0.07 9.41 1.25 0.05 6.65 1.02 0.05
100 13.45 2.17 0.06 13.45 2.19 0.11 13.44 2.05 0.09 12.28 1.76 0.06 9.26 1.32 0.05

50 15.03 2.40 0.06 15.12 2.54 0.14 14.72 2.24 0.10 13.68 1.91 0.06 10.19 1.37 0.07
10 17.25 2.68 – 17.37 2.83 – 16.49 – – 14.98 2.05 – 11.75 1.50 –

se
ed

s

(2
1

0
p

ts
) 200 0.20 0.01 0.01 0.20 0.01 0.01 0.20 0.01 0.01 0.40 0.03 0.01 0.63 0.05 0.01

150 2.03 0.08 0.03 2.07 0.10 0.03 1.92 0.13 0.04 2.36 0.19 0.04 3.30 0.46 0.04
100 4.72 0.48 0.07 4.85 0.46 0.05 4.70 0.32 0.05 4.91 0.49 0.05 6.17 0.79 0.05

50 8.50 0.75 0.06 8.44 0.83 0.07 8.41 0.85 – 8.49 0.85 0.07 9.48 0.97 –
20 11.40 1.00 – 11.45 1.01 – 11.25 1.05 – 11.54 1.01 – 12.86 1.04 –

w
a

te
r

(5
2

7
p

ts
) 400 22.62 0.91 0.43 22.81 0.98 0.30 21.85 0.97 0.39 21.57 0.67 0.24 25.49 0.80 0.13

300 44.32 2.23 0.63 44.45 2.45 0.51 42.05 2.07 0.56 42.09 1.45 0.30 48.46 2.52 0.58
200 67.23 3.31 0.85 68.11 3.42 0.81 65.42 3.25 0.89 65.66 3.10 0.70 68.45 3.41 0.85
100 91.61 4.20 0.94 91.71 4.34 0.88 91.35 4.53 – 91.91 4.66 0.96 90.97 3.99 0.86

50 103.27 4.50 0.94 103.33 4.59 0.95 104.03 – – 104.34 – – 102.59 4.44 0.95

tw
o

M
o

o
n

s

(2
0

0
0

p
ts

) 1500 0.27 0.02 0.26 0.01 0.27 0.02 0.54 0.04 0.97 0.10
1000 0.99 0.07 0.94 0.07 1.01 0.07 1.44 0.13 2.11 0.24

500 2.48 0.28 2.45 0.25 2.53 0.24 2.84 0.31 3.52 0.38
250 3.85 0.42 3.81 0.39 3.74 0.38 3.94 0.41 4.64 0.49
100 5.13 0.49 5.16 0.51 4.67 0.45 4.79 0.46 5.29 0.53

50 5.68 0.55 5.70 0.53 5.24 0.46 5.21 0.46 5.64 0.52

tw
o

C
ir

cl
es

(2
0

0
0

p
ts

) 1500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01

500 0.01 0.00 0.01 0.00 0.01 0.00 0.03 0.02 0.03 0.02
250 0.02 0.01 0.02 0.01 0.03 0.02 0.05 0.04 0.06 0.04
100 0.06 0.03 0.06 0.03 0.10 0.06 0.19 0.12 0.16 0.10

50 0.13 0.06 0.13 0.06 0.21 0.12 0.31 0.18 0.25 0.14

TABLE I
HKD OF THE PERSISTENT DIAGRAMS AT VARIOUS REDUCTIONS BY EACH ALGORITHM UNDER TEST. ENTRIES MARKED “–” ARE WHERE THE REDUCED

DATA LOST ALL THE FEATURES IN THAT DIMENSION. BLANK ENTRIES ARE POINT CLOUDS WITH NO TOPOLOGICAL FEATURES IN THAT DIMENSION.

and mechanized approach to filtering the top-most intervals.

Unfortunately with filtering the top 10% of persistence inter-

vals, the resultant intervals may include shorter intervals based

on the number of persistence intervals generated.

All three filters refine the compared persistence intervals

provides a measurement of preservation of the salient topo-

logical features in the point cloud. An analysis of all data sets

chosen for VI-A are included in Figure II to present a further

comparison of k-means++ and Agglomerative Ward and their

preservation of these longer persistence intervals at various

levels of reduction.

There are several notable findings in the filtered comparison

as shorter barcodes contribute less noise to the heat kernel

distance metric. In the water treatment dataset, the H1 features

in all three filterings displays a significant loss of identified

features when reducing from 200 to 100 points. This dropoff

indicates a large feature has been lost during the reduction and

may indicate the reduction’s limits for that specific dataset.

Utilizing the persistence interval filtering can provide insight

to the accuracy of each algorithm in extreme cases of reduction

to quantify only the large persistence intervals for comparison.

Overall partitioning algorithms perform with similar accu-

racy up to a significant percentage of data reduction. However,

several of the algorithms better preserve the salient topological

features at more significant reduction percentages, namely

k-means++ and aggWard. These algorithms provide similar

accuracy results and can give the most accurate persistence

intervals under significant reduction. Between k-means++ and

aggWard, there are slight differences in their ability to preserve

long persistence intervals depending on the structure of the

point cloud. Both are nearly identical in the twoCircles and

twoMoons dataset; aggWard seems to perform better with

triangulated mesh point clouds, while k-means++ has higher

accuracy with the categorical point clouds seeds and water.

VII. CONCLUSIONS

Persistent homology presents a novel approach to analyzing

data. Unfortunately the computation of persistent homology

on big data is not currently possible due to its exponential

complexity. Data reduction is a classic approximation tech-

nique used by the data mining/machine learning communities

to attack computational complexity issues and various explo-

rations to use data reduction for the computation of persistent

homology have been performed. This paper has explored how

well different data reduction strategies functioned to preserve

the large topological features present in a point cloud.
While the experiments performed in this analysis focused

on several notable clustering algorithms, only slight improve-

ments in some algorithms were identified to provide better



Data n k-means++ (S=1.0) k-means (x+ σ)) k-means (top 10%) aggWard (S=1.0) aggWard (x+ σ) aggWard (top 10%)

H0 H1 H2 H0 H1 H2 H0 H1 H2 H0 H1 H2 H0 H1 H2 H0 H1 H2
k

le
in

(9
0

0
p

ts
) 600 0.06 0.33 0.03 2.10 0.35 0.03 0.12 0.32 0.02 0.00 0.22 0.01 2.55 0.18 0.01 0.22 0.18 0.01

300 3.55 0.58 0.01 8.58 0.37 0.01 6.10 0.57 0.01 4.66 0.46 0.04 9.54 0.31 0.04 6.41 0.51 0.03
200 7.72 0.31 0.06 7.11 0.25 0.06 8.23 0.28 0.05 9.31 0.28 0.04 8.16 0.24 0.05 9.60 0.26 0.05
100 7.87 0.26 0.13 3.95 0.64 0.13 6.99 0.28 0.11 7.93 0.30 0.07 3.89 0.73 0.07 6.93 0.33 0.07

50 4.99 0.51 0.14 1.11 0.97 0.14 4.00 0.55 0.12 4.92 0.55 0.13 1.04 1.01 0.13 3.93 0.59 0.12

li
o

n

(1
0

0
0

p
ts

) 750 0.09 0.24 0.01 1.89 0.22 0.00 0.09 0.21 0.00 0.67 0.18 0.02 2.23 0.10 0.02 0.13 0.08 0.00
500 0.83 0.09 0.00 4.35 0.10 0.02 0.80 0.09 0.00 2.90 0.11 0.01 4.27 0.12 0.01 0.93 0.12 0.00
250 3.91 0.10 0.03 4.28 0.13 0.04 3.91 0.14 0.02 5.28 0.10 0.04 4.25 0.13 0.04 3.79 0.13 0.03
100 4.20 0.37 0.05 2.07 0.42 0.06 4.20 0.43 0.04 4.67 0.12 0.05 2.23 0.29 0.05 4.33 0.28 0.04

50 3.50 0.55 0.07 0.67 0.60 0.09 3.50 0.61 – 3.31 0.35 0.08 0.68 0.61 0.08 3.49 0.60 –
10 1.35 – – 1.72 – – 1.35 – – 1.12 0.58 – 1.73 0.86 – 1.29 0.85 –

se
ed

s

(2
1

0
p

ts
) 200 0.00 0.03 0.00 0.00 0.01 0.01 0.00 0.03 0.01 0.00 0.03 0.00 0.00 0.01 0.01 0.00 0.03 0.01

150 0.14 0.04 0.00 0.32 0.02 0.00 0.12 0.04 0.01 0.14 0.05 0.01 0.21 0.04 0.00 0.12 0.05 0.01
100 0.45 0.11 0.02 2.34 0.09 0.02 1.13 0.11 0.02 0.60 0.16 0.01 2.06 0.16 0.00 1.23 0.16 0.01

50 0.61 0.23 0.02 2.80 0.22 0.02 2.49 0.23 0.02 1.83 0.29 0.03 2.78 0.24 0.01 2.26 0.29 0.02
25 2.18 0.33 – 0.57 0.27 – 1.76 0.35 – 1.62 0.35 – 0.52 0.30 – 1.71 0.35 –

w
a

te
r

(5
2

7
p

ts
) 400 – 0.53 0.07 0.62 0.28 0.11 0.58 0.38 0.20 – 0.29 0.04 0.92 0.24 0.11 0.87 0.37 0.13

300 – 0.20 0.13 1.52 0.16 0.18 1.76 0.27 0.28 – 0.26 0.10 1.52 0.42 0.18 1.78 0.45 0.24
200 – 0.31 0.20 2.16 0.59 0.26 2.39 0.74 0.39 – 0.24 0.20 3.04 0.53 0.26 1.71 0.76 0.40
100 – 0.75 0.23 1.78 1.09 0.28 7.87 1.39 0.43 – 0.90 0.22 1.07 1.22 0.28 7.15 1.42 0.40

50 – 0.91 – 8.19 1.22 – 15.91 1.56 – – 0.89 – 7.59 1.24 – 15.59 1.55 –

tw
o

M
o

o
n

s

(2
0

0
0

p
ts

) 1500 0.00 0.01 0.17 0.01 0.00 0.00 0.01 0.01 0.19 0.00 0.00 0.00
1000 0.01 0.01 1.75 0.01 0.00 0.01 0.03 0.01 1.72 0.00 0.00 0.00

500 0.40 0.02 2.99 0.05 0.00 0.02 0.35 0.03 3.06 0.03 0.02 0.01
250 1.73 0.03 1.73 0.11 0.29 0.08 1.96 0.02 1.77 0.09 0.29 0.05
100 1.99 0.04 0.45 0.13 1.72 0.10 1.96 0.05 0.42 0.15 1.64 0.11

50 1.44 0.09 0.14 0.20 1.50 0.15 1.42 0.07 0.15 0.18 1.48 0.13

tw
o

C
ir

cl
es

(2
0

0
0

p
ts

) 1500 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
1000 0.02 0.00 0.20 0.00 0.00 0.00 0.01 0.00 0.19 0.00 0.00 0.00

500 0.20 0.00 0.99 0.00 0.00 0.00 0.18 0.00 1.00 0.00 0.00 0.00
250 1.32 0.01 1.02 0.01 0.00 0.01 1.34 0.01 1.02 0.01 0.00 0.01
100 1.51 0.03 1.00 0.03 0.85 0.03 1.51 0.03 1.00 0.03 0.85 0.03

50 1.47 0.06 0.96 0.06 1.48 0.06 1.46 0.06 0.96 0.06 1.47 0.06

TABLE II
HKDS OF “FILTERED” PERSISTENCE INTERVALS TO OBSERVE THE ABILITY TO PRESERVE “SIGNIFICANT TOPOLOGICAL FEATURES”. ENTRIES MARKED

“–” ARE WHERE THE REDUCED DATA LOST ALL THE FEATURES IN THAT DIMENSION. BLANK ENTRIES ARE POINT CLOUDS WITH NO TOPOLOGICAL

FEATURES IN THAT DIMENSION.

partitioning results. Algorithm complexity can play a large

role in determining what partitioning algorithm is suitable

to an application. In general, k-means++ and Agglomerative

Ward tend to consistently provide better overall data reduction

results. While Agglomerative Single Link provides comparable

results, at larger reductions it tended to lose more persistence

intervals in the higher dimensions than k-means++ and Ag-

glomerative Ward. Random sampling and the Maxmin [30]

sampling sometimes provide good results, but they tended

to be unpredictable and sometimes produce wildly inaccurate

results. An additional benefit from the use of clustering is that

data around a sampled point can be restored to support the

concept of upscaling [31] to restore more accurate persistence

intervals from the reduced point cloud.

Big data continues to be on the horizon for persistent

homology as techniques for data reduction, simplicial complex

collapses and optimizations, and boundary matrix reduction

continue to increase performance. Approximations in the

hundreds of thousands of points should be possible with a

well designed partitioning and upscaling library, even those

in higher dimensions. Bringing TDA to big data analysis will

provide automated tools for analyzing the connectivity of point

clouds beyond current applications and should be continued to

be explored in all domains.

REFERENCES

[1] F. Chazal and B. Michel, “An introduction to topological data analysis:
Fundamental and practical aspects for data scientists,” Oct. 2017.

[2] R. Ghrist, “Barcodes: The persistent topology of data,” Bulletin of the

American Mathematical Society, vol. 45, no. 1, pp. 61–75, 2008.
[3] P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson,

M. Alagappan, J. Carlsson, and G. Carlsson, “Extracting insights from
the shape of complex data using topology,” Scientific Reports, vol. 3,
Feb. 2013.

[4] G. Singh, F. Memoli, and G. Carlsson, “Topological methods for the
analysis of high dimensional data sets and 3D object recognition,” in
Eurographics Symposium on Point-Based Graphics, M. Botsch, R. Pa-
jarola, B. Chen, and M. Zwicker, Eds. The Eurographics Association,
2007, pp. 91–100.

[5] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington,
“A roadmap for the computation of persistent homology,” EPJ Data

Science, vol. 6, no. 1, Aug. 2017.
[6] R. Ghrist, Elementary Applied Topology. Createspace, 2014.
[7] G. Petri, M. Scolamiero, I. Donato, and F. Vaccarino, “Topological strata

of weighted complex networks,” PLOS ONE, vol. 8, no. 6, pp. 1–8, Jun.
2013.
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